

Am79C985

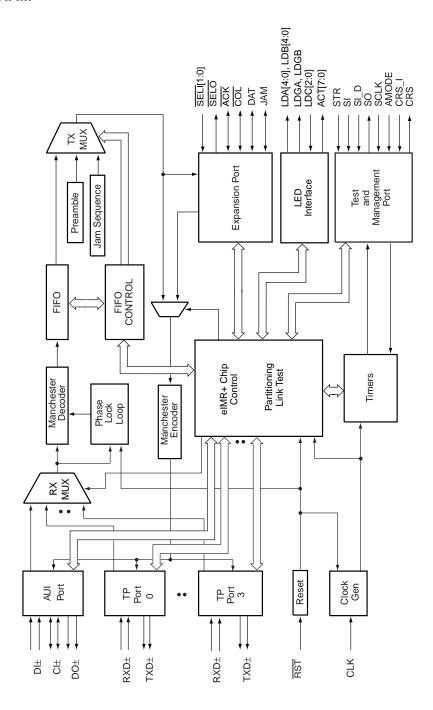
enhanced Integrated Multiport Repeater Plus (elMR+™)

DISTINCTIVE CHARACTERISTICS

- Repeater functions compliant with IEEE 802.3 Repeater Unit specifications
- Direct interface with the Am79C987 Hardware Implemented Management Information Base (HIMIB™) device for building a basic managed multiport repeater
- Full software backwards compatibility with existing hub designs using Integrated Multiport Repeater Plus (IMR+™)/HIMIB devices
- Network management and optional feature accessibility through a dedicated serial management port
- Four integral 10BASE-T transceivers with onchip filtering eliminating the need for external filter modules on the 10BASE-T transmit-data (TXD) and receive-data (RXD) lines
- One Reversible Attachment Unit Interface (RAUITM) port used either as a standard IEEEcompliant AUI port for connection to a Medium Attachment Unit (MAU) or a reversed port for direct connection to a Media Access Controller (MAC)
- Low cost suitable for managed multiport repeater designs

- Number of repeater ports easily expandable with support for up to seven elMR+ devices without the need for an external arbiter
- All ports capable of being individually isolated (partitioned) in response to excessive collision conditions or fault conditions
- Flexible LED support for individual port status and network utilization LEDs
- Programmable extended distance mode on RXD lines allowing connection to cables longer than 100 meters
- Link Test function and Link Test pulse transmission capable of being disabled through the management port allowing devices that do not implement the Link Test function to work with the eIMR+ device
- Programmable automatic polarity detection and correction option permitting automatic recovery from wiring errors
- Full amplitude and timing regeneration for retransmitted waveforms
- CMOS device with a single +5-V supply

GENERAL DESCRIPTION

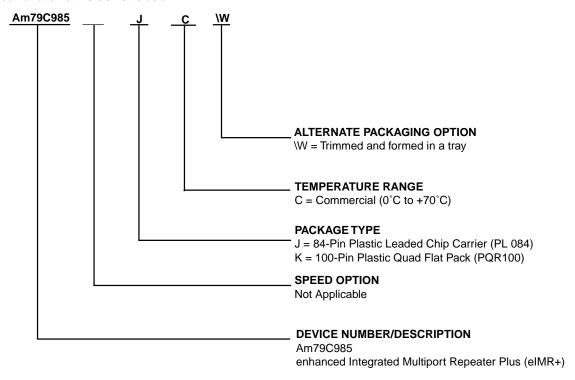

The enhanced Integrated Multiport Repeater Plus (eIMR+) device is a VLSI integrated circuit that provides a system-level solution to designing managed multiport repeaters. The device integrates the repeater functions specified in Section 9 of the IEEE 802.3 standard and Twisted Pair Transceiver functions complying with the 10BASE-T standard.

The eIMR+ device provides four Twisted Pair (TP) ports and one reversible AUI (RAUI) port for direct connection to a MAC. The total number of ports per repeater unit can be increased by connecting multiple eIMR+ devices through their expansion ports, hence, minimizing the total cost per repeater port.

The eIMR+ device also provides a connection to the Am79C987 HIMIB device. The HIMIB device monitors all the necessary counters, attributes, actions, and notifications specified by IEEE 802.3, Section 19 (Layer Management for 10 Megabit per second (Mbps) Baseband Repeaters). When the eIMR+ and HIMIB devices are used together as a chip set, they provide a cost-effective solution to the problem of designing 10BASE-T basic managed multiport repeaters.

The device is fabricated in CMOS technology and requires a single +5-V supply.

BLOCK DIAGRAM



20651B-1

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of the elements below.

Valid Combinations				
Am79C985	JC, KC\W			

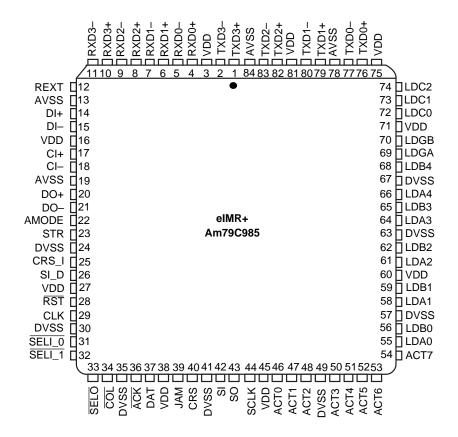
Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

RELATED PRODUCTS

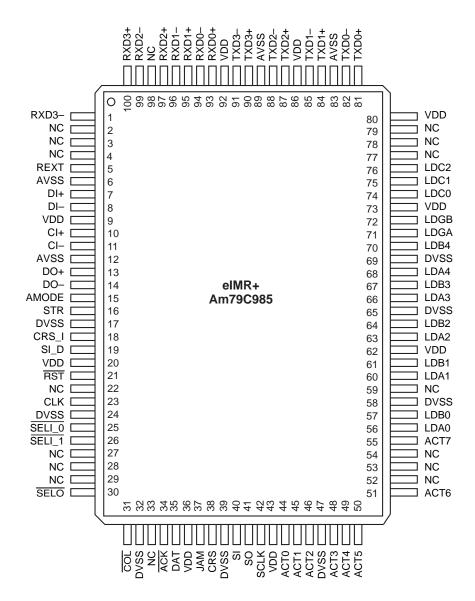
Part No.	Description
Am7990	Local Area Network Controller for Ethernet (LANCE)
Am7992B	Serial Interface Adapter (SIA)
Am7996	IEEE 802.3/Ethernet/Cheapernet Transceiver
Am79C90	CMOS Local Area Network Controller for Ethernet (C-LANCE)
Am79C98	Twisted Pair Ethernet Transceiver (TPEX)
Am79C100	Twisted Pair Ethernet Transceiver Plus (TPEX+)
Am79C981	Integrated Multiport Repeater Plus (IMR+™)
Am79C982	basic Integrated Multiport Repeater (bIMR™)
Am79C983	Integrated Multiport Repeater 2 (IMR2™)
Am79C984A	enhanced Integrated Multiport Repeater (eIMR™)
Am79C987	Hardware Implemented Management Information Base (HIMIB™)
Am79C988	Quad Integrated Ethernet Transceiver (QuIET™)
Am79C900	Integrated Local Area Communications Controller (ILACC™)
Am79C940	Media Access Controller for Ethernet (MACE™)
Am79C960	PCnet™-ISA Single-Chip Ethernet Controller (for ISA bus)
Am79C961	PCnet™-ISA+ Single-Chip Ethernet Controller for ISA (with Microsoft® Plug n' Play® Support)
Am79C961A	PCnet™-ISA II Full Duplex Single-Chip Ethernet Controller for ISA
Am79C965	PCnet™-32 Single-Chip 32-Bit Ethernet Controller
Am79C970	PCnet™-PCI Single-Chip Ethernet Controller (for PCI bus)
Am79C970A	PCnet™-PCI II Full Duplex Single-Chip Ethernet Controller (for PCI bus)
Am79C974	PCnet™-SCSI Combination Ethernet and SCSI Controller for PCI Systems

.


TABLE OF CONTENTS

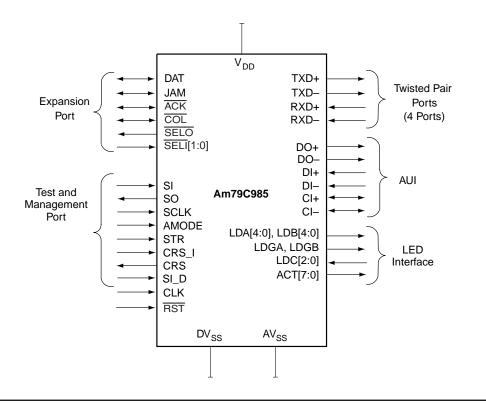
DISTINCTIVE CHARACTERISTICS	
GENERAL DESCRIPTION	
BLOCK DIAGRAM	
ORDERING INFORMATION	4
Standard Products	. 4
RELATED PRODUCTS	
CONNECTION DIAGRAMS (PL 084)	
CONNECTION DIAGRAMS (PQR100)	
LOGIC SYMBOL	
LOGIC DIAGRAM	
PIN DESIGNATIONS (PL084)	
Listed by Pin Number.	
PIN DESIGNATIONS (PQR100)	
Listed by Pin Number	
PIN DESCRIPTION	
AUI Port	
Twisted Pair Ports	
Expansion Bus	
Management Port	
LED Interface	
Miscellaneous Pins	
FUNCTIONAL DESCRIPTION.	
Basic Repeater Functions	
Repeater Function.	
Signal Regeneration	
Jabber Lockup Protection	
Collision Handling	
Fragment Extension	
Auto Partitioning/Reconnection	
Detailed Functions	
Reset	
AUI Port	
TP Port Interface	
Twisted Pair Transmitters	
Connection to Alternate Media	
Twisted Pair Receivers	
Link Test	
Polarity Reversal	
Visual Status Monitoring (LED) Support	
Network Activity Display	. 20
Expansion Bus Interface	21
Internal Arbitration Mode	. 21
IMR+ Mode	21
Management Functions	. 22
eIMR+ /HIMIB Interconnection	. 23
Management Port Interface	23
Command/Response Timing	
Port Activity	
Management Commands	
SET (Write Commands)	
Get (Read Commands)	
SYSTEMS APPLICATIONS	
eIMR+ to TP Port Connection	
Twisted Pair Transmitters	
Twisted Pair Receivers	
I WISIEU FAII RECEIVEIS	21

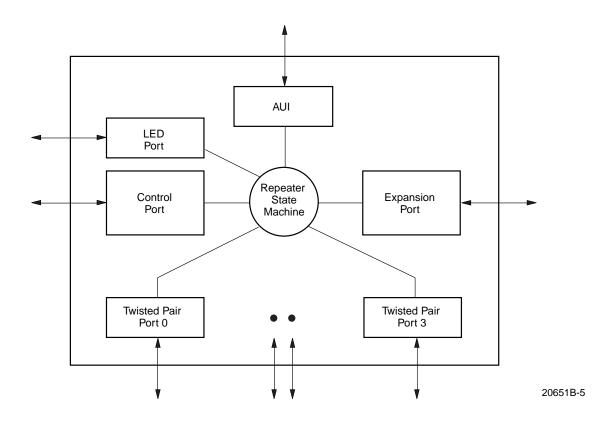
PRELIMINARY


AUI Port Interconnections	
Internal Arbitration Mode Connection	32
IMR+ Mode External Arbitration	
eIMR+ Internal Arbitration Mode Connection	33
IMR+ Mode External Arbitration	
Visual Status Display	34
ABSOLUTE MAXIMUM RATINGS	
OPERATING RANGES	35
DC CHARACTERISTICS over Commercial operating ranges unless otherwise specified 3	
SWITCHING CHARACTERISTICS	37
KEY TO SWITCHING WAVEFORMS	39
SWITCHING WAVEFORMS 3	39
SWITCHING TEST CIRCUIT	44
PHYSICAL DIMENSIONS	45
APPENDIX A - SECURITY	-1

CONNECTION DIAGRAMS (PL 084)

20651B-2


CONNECTION DIAGRAMS (PQR100)


20651B-3

20651B-4

LOGIC SYMBOL

LOGIC DIAGRAM

PIN DESIGNATIONS (PL 084)

Listed by Pin Number

Pin No.	Pin Name						
1	TXD3+	22	AMODE	43	SO	64	LDA3
2	TXD3-	23	STR	44	SCLK	65	LDB3
3	VDD	24	DVSS	45	VDD	66	LDA4
4	RXD0+	25	CRS_I	46	ACT0	67	DVSS
5	RXD0-	26	SI_D	47	ACT1	68	LDB4
6	RXD1+	27	VDD	48	ACT2	69	LDGA
7	RXD1-	28	RST	49	DVSS	70	LDGB
8	RXD2+	29	CLK	50	ACT3	71	VDD
9	RXD2-	30	DVSS	51	ACT4	72	LDC0
10	RXD3+	31	SELI_0	52	ACT5	73	LDC1
11	RXD3-	32	SELI_1	53	ACT6	74	LDC2
12	REXT	33	SELO	54	ACT7	75	VDD
13	AVSS	34	COL	55	LDA0	76	TXD0+
14	DI+	35	DVSS	56	LDB0	77	TXD0-
15	DI-	36	ĀCK	57	DVSS	78	AVSS
16	VDD	37	DAT	58	LDA1	79	TXD1+
17	CI+	38	VDD	59	LDB1	80	TXD1-
18	CI-	39	JAM	60	VDD	81	VDD
19	AVSS	40	CRS	61	LDA2	82	TXD2+
20	DO+	41	DVSS	62	LDB2	83	TXD2-
21	DO-	42	SI	63	DVSS	84	AVSS

PIN DESIGNATIONS (PQR100)

Listed by Pin Number

Pin No.	Pin Name						
1	RXD3-	26	SELI_1	51	ACT6	76	LDC2
2	NC	27	NC	52	NC	77	NC
3	NC	28	NC	53	NC	78	NC
4	NC	29	NC	54	NC	79	NC
5	REXT	30	SELO	55	ACT7	80	VDD
6	AVSS	31	COL	56	LDA0	81	TXD0+
7	DI+	32	DVSS	57	LDB0	82	TXD0-
8	DI-	33	NC	58	DVSS	83	AVSS
9	VDD	34	ACK	59	NC	84	TXD1+
10	CI+	35	DAT	60	LDA1	85	TXD1-
11	CI-	36	VDD	61	LDB1	86	VDD
12	AVSS	37	JAM	62	VDD	87	TXD2+
13	DO+	38	CRS	63	LDA2	88	TXD2-
14	DO-	39	DVSS	64	LDB2	89	AVSS
15	AMODE	40	SI	65	DVSS	90	TXD3+
16	STR	41	SO	66	LDA3	91	TXD3-
17	DVSS	42	SCLK	67	LDB3	92	VDD
18	CRS_I	43	VDD	68	LDA4	93	RXD0+
19	SI_D	44	ACT0	69	DVSS	94	RXD0-
20	VDD	45	ACT1	70	LDB4	95	RXD1+
21	RST	46	ACT2	71	LDGA	96	RXD1-
22	NC	47	DVSS	72	LDGB	97	RXD2+
23	CLK	48	ACT3	73	VDD	98	NC
24	DVSS	49	ACT4	74	LDC0	99	RXD2-
25	SELI_0	50	ACT5	75	LDC1	100	RXD3+

Note:

1. NC = No Connection.

PIN DESCRIPTION

AUI Port

DI+, DI-Data In

Differential Input

DI± are differential, Manchester receiver pins. The signals comply with IEEE 802.3, Section 7.

DO+, DO-Data Out Differential Output

DO± are differential, Manchester output driver pins. The signals comply with IEEE 802.3, Section 7.

CI+, CI-Collision Input Differential Input/Output

CI± are differential, Manchester I/O signals. As an input, CI is a collision-receive indicator. As an output, CI generates a 10-MHz signal if the eIMR+ device senses a collision.

Twisted Pair Ports

TXD+₀₋₃, TXD-₀₋₃
Transmit Data
Differential Output

TXD± are 10BASE-T port differential drivers (4 ports).

RXD+₀₋₃, RXD-₀₋₃ Receive Data Differential Input

RXD \pm are 10BASE-T port differential receive inputs (4 ports).

Expansion Bus

DAT

Data

Input/Output/3-State

If the SELO and ACK pins are asserted during non-collision conditions, the eIMR+ device drives NRZ data onto the DAT line, regenerating the preamble if necessary. During a collision, when JAM is HIGH, DAT is used to differentiate between single-port (DAT=1) and multiport (DAT=0) collisions. DAT is an output when ACK is asserted and the eIMR+ device's ports are active; DAT is an input when ACK is asserted and the ports are inactive. If ACK is not asserted, DAT is in the high-impedance state. It is recommended that DAT be pulled up or down via a high value resistor.

JAM Jam

Input/Output/3-State

The active eIMR+ device drives JAM HIGH, if it detects a collision condition on one or more of its ports. The

state of the DAT pin is used in conjunction with JAM to indicate a single port (DAT = 1) or multiport (DAT=0) collision. JAM is in the high-impedance state if neither the SEL nor ACK signal is asserted. It is recommended that JAM be pulled up or down via a high value resistor.

SELI₀₋₁ Select In Input, Active LOW

When the expansion bus is configured for Internal Arbitration mode, these signals indicate that another eIMR+ device is active; \overline{SELI}_0 or \overline{SELI}_1 is driven by \overline{SELO} from the upstream device. At reset, \overline{SELI}_0 selects between the Internal Arbitration mode and the IMR+ mode of the expansion bus; a HIGH selects the Internal Arbitration mode and a LOW selects the IMR+ mode.

SELI_1	SELI_0	Arbitration Mode	
Х	1	Internal	
Х	0	IMR+	

SELO Select Out Output, Active LOW

If the expansion bus is configured for Internal Arbitration mode, an eIMR+ device drives this pin LOW when it is active or when either of its $\overline{\text{SELI}}_{0\text{-}1}$ pins is LOW. An active eIMR+ device is defined as having one or more ports receiving or colliding and/or is still transmitting data from the internal FIFO, or extending a packet to the minimum of 96 bit times. When the expansion bus is configured for IMR+ mode, $\overline{\text{SELO}}$ is active when the eIMR+ device is active (acquiring the functionality of the $\overline{\text{REQ}}$ pin on the Am79C981 IMR+ device).

ACK Acknowledge Input/Output, Active LOW, Open Drain

This signal is asserted to indicate that an eIMR+ device is active. It also signals to the other eIMR+ devices the presence of a valid collision status on the JAM line and valid data on the DAT line. When the eIMR+ device is configured for Internal Arbitration mode, \overline{ACK} is an I/O, and must be pulled to VDD via a minimum equivalent resistance of 1 k Ω . When the eIMR+ device is configured for IMR+ mode, \overline{ACK} is an input driven by an external arbiter.

COL Collision Input/Output, Active LOW, Open Drain

When asserted, $\overline{\text{COL}}$ indicates that more than one eIMR+ device is active. Each eIMR+ device generates the Collision Jam sequence independently. When the eIMR+ device is configured for Internal Arbitration

mode, \overline{COL} is an I/O and must be pulled to VDD via a minimum equivalent resistance of 1 k Ω . When the eIMR+ device expansion port is configured for IMR+ mode, \overline{COL} is an input driven by an external arbiter.

Management Port

AMODE

AUI Mode

Input

At reset, this pin sets the AUI port to either normal or reversed mode. If AMODE is LOW at the rising edge of RST, the AUI port is set to the normal mode; if AMODE is HIGH, the AUI port is set to the reversed mode.

CRS

Carrier Sense

Output

The states of the internal carrier-sense signals for the AUI port and the four twisted-pair ports are output continuously on this pin. The output is a serial bit stream synchronized to CLK. When two eIMR+ devices share a common HIMIB device, CRS on the first device must be connected to the CRS_I (input) of the second eIMR+ device.

CRS_I Carrier Sense In

Input

CRS_I is used when two eIMR+ devices share a common HIMIB device. The CRS output from the first eIMR+ should be input to the second eIMR+ via this pin. Internally, the second eIMR+ appends the information on CRS_I to its own carrier-sense information and outputs the combined result to the HIMIB chip via its CRS pin. At the rising edge of RST, CRS_I is used to set the eIMR+ device's management mode. CRS_I HIGH indicates that only a single eIMR+ device is connected to the HIMIB chip. CRS_I LOW indicates that two eIMR+ devices are connected to a HIMIB chip.

SCLK

Serial Clock In

Input

Serial data (input or output) is clocked (in or out) on the rising edge of the signal on this pin. SCLK is asynchronous to CLK and can operate at frequencies up to 10 MHz.

SI

Serial In

Input

The SI pin is used as a test/management serial input port. Management commands are clocked in on this pin synchronous to the SCLK input.

At reset, SI sets the state of the Automatic Polarity Reversal function. If SI is HIGH at the rising edge of RST,

Automatic Polarity Reversal is disabled. If SI is LOW at the rising edge of $\overline{\text{RST}}$, Automatic Polarity Reversal is enabled.

SI_D Serial Input Append Input

SI_D is used when two eIMR+ devices share a common HIMIB device. The SO output from the first eIMR+ device should be input to the second eIMR+ chip via this pin. Internally, the second eIMR+ chip appends the SI_D data to its own serial data stream and outputs the result to the HIMIB device via its SO pin.

When two eIMR+ devices are connected to a HIMIB device, the HIMIB device has attribute counters for the AUI port on only one of the eIMR+ devices. That eIMR+ device is referred to as the *primary* eIMR+ device. The other device is referred to as the *secondary* eIMR+ device.

At the rising edge of RST, the combination of CRS_I and SI_D is used to set the elMR+ device's management mode. If CRS_I is HIGH, the state of SI_D is ignored and the elMR+ device is configured as a single elMR+. If CRS_I is LOW, SI_D HIGH indicates that the elMR+ device is the secondary device. If CRS_I is LOW and SI_D is LOW, the elMR+ device is configured as the primary device.

			Two elMf	R+ Devices
CRS_I	SI_D	Single elMR+ Device	Primary eIMR+ Device	Secondary eIMR+ Device
0	0		√	
0	1			√
1	0	V		
1	1	V		

SO Serial Out Output

The SO pin is used as a management command serial output port. Responses to management commands are clocked out on this pin synchronous to the SCLK input.

STR Store Input

The HIMIB device uses this input to communicate with the eIMR+ device. STR connects to an internal pull-up resistor. The resistance value is sufficiently high to allow the STR pins of two eIMR+ devices to be connected together without presenting an excessive load to the HIMIB device.

LED Interface

LDA₀₋₄, LDB₀₋₄ LED Drivers

Output, Open Drain

LDA $_{0-4}$ and LDB $_{0-4}$ drive LED Bank A and LED Bank B, respectively. LDA $_0$ and LDB $_0$ indicate the status of the AUI port; LDA $_{1-4}$ and LDB $_{1-4}$ indicate the status of the four TP ports. The port attributes monitored by LDA $_{0-4}$ and LDB $_{0-4}$ are programmed by three pins, LDC $_{0-2}$.

LDGA

Global LED Driver, Bank A Output, Open Drain

LDGA is the Global LED driver for LED Bank A. The signal represents global CRS or COL conditions. In a multiple-elMR+ configuration, LDGA from each of the elMR+ devices can be tied together to drive a single global LED in Bank A.

LDGB

Global LED Driver, Bank B Output, Open Drain

LDGB is the Global LED driver for LED Bank B. The signal represents global CRS or JAB conditions. In a multiple elMR+ configuration, LDGB from each of the elMR+ devices can be tied together to drive a single global LED in Bank B.

LDC₀₋₂ LED Control

Input

These pins select the attributes that will be displayed on LDA₀₋₄, LDB₀₋₄, LDGA, and LDGB. If an LED is programmed to display two attributes, the attribute associated with the periodic blink takes precedence.

ACT₀₋₇ Activity Display Output, Open Drain

These signals drive the activity LEDs, which indicate the percentage of network utilization. The display is updated every 250 ms.

Miscellaneous Pins

RST

Reset

Input, Active LOW

When \overline{RST} is LOW, the eIMR+ device resets to its default state. On the rising (trailing) edge of \overline{RST} , the eIMR+ also monitors the state of the $\overline{SEL}I_{0-1}$, SI, and AMODE pins, to configure the operating mode of the device. In multiple eIMR+ systems, the falling (leading) edge of the \overline{RST} signal must be synchronized to CLK.

CLK

Master Clock In

Input

This pin is a 20-MHz clock input.

REXT

External Reference

Input

This pin is used for an internal current reference. It must be tied to VDD via a 13-k Ω resistor with 1% tolerance.

VDD

Power

Power Pin

This pin supplies power to the device.

AVSS

Analog Ground

Ground Pin

This pin is the ground reference for the differential receivers and drivers.

DVSS

Digital Ground

Ground Pin

This pin is the ground reference for all the digital logic in the elMR+ device.

FUNCTIONAL DESCRIPTION

The Am79C985 eIMR+ device is a single-chip implementation of an IEEE 802.3/Ethernet repeater (or hub). It is offered with four integral 10BASE-T ports plus one RAUI port comprising the basic repeater. The eIMR+ device is also expandable, enabling the implementation of high port count repeaters based on several eIMR+ devices.

The eIMR+ device interfaces directly with AMD's Am79C987 HIMIB device. This allows hardware designers to implement a fully managed multiport repeater, as specified by the IEEE 802.3 standard, Section 19, Layer Management for 10 Mbps Baseband Repeaters. When the eIMR+ and HIMIB devices are used as a chip set, the HIMIB device maintains complete repeater and per-port statistics, which can be accessed on demand through an 8-bit parallel interface.

The eIMR+ chip complies with the full set of repeater basic functions as defined in Section 9 of ISO 8802.3 (ANSI/IEEE 802.3c). The basic repeater functions are summarized in the paragraphs below.

Basic Repeater Functions

The Am79C985 chip implements the basic repeater functions as defined by Section 9.5 of the ANSI/IEEE 802.3 specification.

Repeater Function

If any single network port senses the start of a valid packet on its receive lines, the eIMR+ device will retransmit the received data to all other enabled network ports (except when contention exists among any of the ports or when the receive port is partitioned). To allow multiple eIMR+ device configurations, the data will also be repeated on the expansion bus data line (DAT).

Signal Regeneration

When retransmitting a packet, the eIMR+ device ensures that the outgoing packet complies with the IEEE 802.3 specification in terms of preamble structure and timing characteristics. Specifically, data packets repeated by the eIMR+ device will contain a minimum of 56 preamble bits before the Start-of-Frame Delimiter. In addition, the eIMR+ restores the voltage amplitude of the repeated waveform to levels specified in the IEEE 802.3 specification. Finally, the eIMR+ device restores signal symmetry to repeated data packets, removing jitter and distortion caused by the network cabling. Jitter present at the output of the AUI port will be better than 0.5 ns; jitter at the TP outputs will be better than 1.5 ns.

The start-of-packet propagation delay for a repeater set is the time delay between the first edge transition of a data packet on its input port to the first edge transition of the repeated packet on its output ports. The start-of-packet propagation delay for the elMR+ is within the

specification given in Section 9.5.5.1 of the IEEE 802.3 standard.

Jabber Lockup Protection

The eIMR+ device implements a built-in jabber protection scheme to ensure that the network is not disabled by the transmission of excessively long data packets. This protection scheme causes the eIMR+ device to interrupt transmission for 96 bit-times if the device has been transmitting continuously for more than 65,536 bit times. This is referred to as MAU Jabber Lockup Protection (MJLP). The MJLP status for the eIMR+ device can be read through the Management Port, using the Get MJLP Status command.

Collision Handling

The eIMR+ device will detect and respond to collision conditions as specified in the IEEE 802.3 specification. Repeater configurations consisting of multiple eIMR+ devices also comply with the IEEE 802.3 specification, using status signals provided by the expansion bus. In particular, a repeater based on one or more eIMR+ devices will handle the transmit collision and one-port-left collision conditions correctly, as specified in Section 9 of the IEEE 802.3 specification.

Fragment Extension

If the total packet length received is less than 96 bits, including preamble, the eIMR+ device will extend the repeated packet length to 96 bits by appending a Jam sequence to the original fragment.

Auto Partitioning/Reconnection

Any of the TP ports or the AUI port can be partitioned if the duration or frequency of collisions becomes excessive. The eIMR+ device will continue to transmit data packets to a partitioned port, but will not respond, as a repeater, to activity on the partitioned port's receiver. The eIMR+ device will monitor the port and reconnect it once certain criteria are met. The criteria for reconnection are specified by the IEEE 802.3 standard. In addition to the standard reconnection algorithm, the eIMR+ device implements an alternative reconnection algorithm, which provides a more robust partitioning function for the TP ports and/or AUI port. The eIMR+ device partitions each TP port and the AUI port separately and independently of other network ports.

The eIMR+ device will partition an enabled network port if either of the following conditions occurs at that port:

- A collision condition exists continuously for more than 2048 bit times. (AUI port—SQE signal active; TP port—simultaneous transmit and receive).
- 2. A collision condition occurs during each of 32 consecutive attempts to transmit to that port.

In the AUI port, a collision condition is indicated by an active SQE signal. In a TP port, a collision condition is

indicated when the port is simultaneously attempting to transmit and receive.

Once a network port is partitioned, the eIMR+ device will reconnect that port, according to the selected reconnection algorithm, as follows:

- Standard reconnection algorithm—A data packet longer than 512-bit times (nominal) is transmitted or received by the partitioned port without a collision.
- Alternative reconnection algorithm—A data packet longer than 512-bit times (nominal) is transmitted by the partitioned port without a collision.

A partitioned port can also be reconnected by disabling and re-enabling the port.

All TP ports use the same reconnection algorithm; either they must all use the standard algorithm, or they must all use the alternative reconnection algorithm. However, the reconnection algorithm for the AUI port is programmed independently from that of the TP ports.

Detailed Functions

Reset

The eIMR+ device enters the reset state when the reset (RST) pin is driven LOW. After the initial application of power, the RST pin must be held LOW for a minimum of 150 μ s. If the \overline{RST} pin is subsequently asserted while power is maintained to the eIMR+ device, a reset duration of only 4 µs is required. This allows the eIMR+ device to reset its internal logic. During reset, the eIMR+ registers are set to their default values. Also during reset, the eIMR+ device sets the output signals to their inactive state; that is, all analog outputs are placed in their idle state, no bidirectional signals are driven, all active-HIGH signals are driven LOW and all active-LOW signals are driven HIGH. In a multiple eIMR+ system, the reset signal must be synchronized to CLK. See Figure 13 in the Systems Applications section.

The elMR+ device also monitors the state of the SELI₀₋₁, SI, CRS_I, SI_D, and AMODE pins on the rising (trailing) edge of RST to configure the operating mode of the device.

Table 1 summarizes the state of the eIMR+ chip following reset.

AUI Port

The AUI Port is fully compatible with the IEEE 802.3, Section 7 requirement for an AUI port. It has the signals associated with an AUI port: DO, DI, and CI.

The AUI port has two modes of operation: normal and reverse. When configured for normal operation, the functionality is that of an AUI port on a MAC (CI is an input). When configured for reverse operation, the functionality is that of an AUI on a MAU (CI is an output). The mode of the AUI port is set during the trailing (rising) edge of the reset pulse, by the state of the AMODE pin. A LOW sets the AUI port to its normal mode (CI Input) and a HIGH sets the AUI port to its reverse (CI Output) mode.

The eIMR+ device can be connected directly to a MAC through the AUI port. This requires that the AUI port be configured for reverse operation. Refer to the *Systems Applications* section for more details.

TP Port Interface

Twisted Pair Transmitters

TXD is a differential twisted-pair driver. When properly terminated, TXD will meet the electrical requirements for 10BASE-T transmitters as specified in IEEE 802.3, Section 14.3.1.2.

The TXD signal is filtered on the chip to reduce harmonic content per IEEE 802.3, Section 14.3.2.1 (10BASE-T). Since filtering is performed in silicon, TXD can connect directly to a standard transformer, thereby, eliminating the need for external filtering modules. Proper termination is shown in the *Systems Applications* section.

Table 1. eIMR+ States after Reset

Function	State after Reset	Pull Up/Pull Down
Active-LOW Outputs	HIGH	No
Active-HIGH Outputs	LOW	No
SO Output	HIGH	No
DAT, JAM	HIGH IMPEDANCE	Either
Transmitters (TP and AUI)	IDLE	No
Receivers (TP and AUI)	ENABLED	Terminated
AUI Partitioning/Reconnection Algorithm	STANDARD ALGORITHM	N/A
TP Partitioning/Reconnection Algorithm	STANDARD ALGORITHM	N/A
Link Test Functions for TP Ports	ENABLED, TP PORTS IN LINK FAIL	N/A
Automatic Receiver Polarity Reversal Function	DISABLED IF SI PIN IS HIGH ENABLED IF SI PIN IS LOW	N/A

Connection to Alternate Media

The eIMR+ device can be connected to the AUI port of any MAU device. Thus, it can support 10BASE-2, 10BASE-5, and 10BASE-FL. To connect to an alternate media type, on-chip filtering should be disabled. This can be achieved by substituting the normal 110- Ω resistor connected across the TXD differential output with a 500- Ω resistor. If on-chip filtering is disabled at a TP port, the Link Pulse must also be disabled. Refer to the section on *eIMR+ Management Commands* for programming details.

Once port filtering is disabled, the TXD output will be a square waveform and can be connected to the AUI port of a transceiver. Some external components are necessary to correctly interface the TXD output to the transceiver.

Twisted Pair Receivers

RXD is a differential twisted-pair receiver. When properly terminated, RXD will meet the electrical requirements for 10BASE-T receivers as specified in IEEE 802.3, Section 14.3.1.3. The receivers do not require external filter modules. Proper termination is shown in the *Systems Applications* section.

The receiver's threshold voltage can be programmed to an extended-distance mode. In this mode, the differential receiver's threshold is reduced to allow a longer cable than the 100 meters specified in the IEEE 802.3 standard. For programming details, refer to the *Management Commands* section.

Link Test

The integrated TP ports implement the Link Test function, as specified in the IEEE 802.3 10BASE-T standard. The elMR+ device will transmit Link Test pulses to any TP port after that port's transmitter has been inactive for more than 8 ms to 17 ms. Conversely, if a TP port does not receive any data packets or Link Test pulses for more than 65 ms to 132 ms and the Link Test function is enabled for that port, then that port will enter the link-fail state. The elMR+ device will disable a port in link-fail state (i.e., disable repeater transmit and receive functions) until it receives either four consecutive Link Test pulses or a data packet.

The Link Test function can be disabled via the eIMR+ management port on a port-by-port basis, to allow the eIMR+ device to operate with pre-10BASE-T networks that do not implement the Link Test function. When the Link Test function is disabled, the eIMR+ device will not allow the TP port to enter link-fail state, even if no Link Test pulses or data packets are being received. Note, however, that the eIMR+ device will always transmit Link Test pulses to all TP ports, regardless of whether or not the port is enabled, partitioned, in link-fail state,

or has its Link Test function disabled. Separate management commands exist for enabling and disabling the transmission of Link Test pulses on a port-by-port basis.

Polarity Reversal

The TP ports can be programmed to receive data if a wiring error results in a data packet being received at a TP port with reversed polarity. This function will be enabled upon reception of a negative End Transmit Delimiter (ETD) or negative pulses and allows subsequent packets to be received with the correct polarity. The polarity-reversal function is executed once following reset or link-fail and can be programmed via the management port to be enabled or disabled on a port-by-port basis. The function may be enabled or disabled, following a reset, depending on the level of the SI signal on the rising edge of the RST pulse.

Visual Status Monitoring (LED) Support

The eIMR+ status port can be connected to LEDs to facilitate the visual monitoring of repeater port status. The status port has twelve output signals, LDA $_{0-4}$, and LDB $_{0-4}$, LDGA, and LDGB. LDA $_{0-4}$ and LDB $_{0-4}$ represent the four TP ports and AUI port. LDGA and LDGB are global indicators. Attributes that may be monitored are Carrier Sense (CRS), Collision (COL), Partition (PAR), Link Status (LINK), Loopback (LB), Port Disabled (DIS), and Jabber (JAB). Three control bits, LDC $_{0-2}$, select the particular attributes to be displayed on the LEDs. Table 1 shows how the programming combinations for LDC $_{0-2}$ control the attributes that will be monitored.

Each LED drive pin (LDGA, LDGB, LDA₀₋₄, and LDB₀₋₄) has two states: Off and LOW. When none of the selected attributes are true, the driver is off and the diode is unlit. When an attribute is true, the driver is LOW, and the corresponding LEDs in Bank A or Bank B will be lit.

Some of the settings (LDC $_2$ = 1) include a blink function. This allows two attributes to be selected for a given state on the pin. As an example when LDC $_{0-2}$ = 110, the LDA outputs relating to TP ports will be solidly lit when there is a link established at that port. However, whenever there is activity on a port, the corresponding LDA pin will switch on (LOW) and off at a period of 130 ms. Note that a partition on that port will also cause the pin to go LOW.

On LDC settings that have two attributes for a state on a pin (blink or solid-on), the attribute causing the output to blink has priority. (Those attributes are shown in Table 2 with a blink period specified next to it.) If an attribute has no blink period specified, the LED indicates the attribute by being solidly lit.

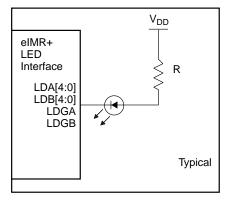
LI	LED Control		Globa	I LEDs	TP I	LEDs	AUI	LEDs
LDC ₂	LDC ₁	LDC ₀	LDGA	LDGB	LDA ₁₋₄	LDB ₁₋₄	LDA ₀	LDB ₀
0	0	0	CRS	COL	LINK (Note 2)	PAR	LB	PAR
0	0	1	CRS	COL	LINK	CRS	LB	CRS
0	1	0			Reserve	d (Note 5)		
0	1	1			Reserve	d (Note 5)		
1	0	0			LINK	PAR		PAR
			CRS 260-ms blk	COL 260-ms blk	CRS 260-ms blk	COL 260-ms blk	CRS 260-ms blk	COL 260-ms blk
1	0	1	COL	JAB	LINK (Note 3)	PAR (Note 3)	(Note 3)	PAR (Note 3)
				CRS 512-ms blk CRS 512-ms blk				
1	1	0	CRS	COL	LINK	PAR or DIS		PAR or DIS
					CRS 130-ms blk		CRS 130-ms blk	
1	1	1	CRS	COL	LINK (Note 4)	COL (Note 4)	(Note 4)	PAR (Note 4)
					PAR 1.56-s blk		PAR 1.56-s blk	

Table 2. LED Attribute-Monitoring Program Options

Notes:

- CRS = Carrier Sense, COL = Collision, JAB = Jabber, LINK = Link, LB = Loop Back, PAR = Partition, DIS = Port Disabled, blk = Blink (Number = period of Blink).
- 2. For the LDC₀₋₂ setting of 000: If the port is partitioned, the LINK LED is off.
- 3. All LEDs blink 16 times at 260 ms per blink after reset.
- 4. All LEDs are on for approximately 4 seconds after reset.
- 5. $LDC_{0-2} = '010'$ and '011' are undefined.

The LEDs can also be controlled via the management port. The Enable Software Override commands turn the LEDs on regardless of the attributes selected for display through the LDC setting. Enable Software Override of Bank A LEDs causes the LDA₀₋₄ and LDGA pins to be driven LOW, and Enable Software Override of Bank B LEDs causes the LDB₀₋₄ and LDGB pins to be driven LOW. The blink rate is set by the Software Override LED Blink Rate command. The periods are off, 512 ms, 1560 ms, or solid on.


LED software override is executed in two stages, by first issuing the blink rate (Software Override of LED Blink Rate) and then issuing the command to enable the particular port LEDs (Enable Software Override of Bank A/B LEDs). All port combinations selected for software override control will reference the blink rate last issued by the Software Override of the LED Blink Rate command.

LDA₀₋₄, LDB₀₋₄, LDGA, and LDGB are open drain output drivers that sink 12 mA of current to turn on the LEDs. In a multiple elMR+ configuration, the outputs from the global LED drivers (LDGA and LDGB) of each chip can be tied together to drive a single pair of global status LEDs.

CRS and COL are extended to make it easier for visual recognition; that is, they will remain active for some time even if the corresponding condition has expired. Once carrier sense is active, CRS will remain active for a minimum of 4 ms. Once a collision is detected, COL is active for at least 4 ms. The exception to this rule is for selection LDC $_{0-2}$ = 111. For this selection, COL is stretched to 100 μ s.

When $LDC_{0-2} = 000$ or $LDC_{0-2} = 001$, the loopback attribute (LB) for the AUI port is displayed on LDA_0 . LB is true when DO on the MAU is successfully looped back to DI on the AUI port. LB is false (off) if a loopback error is detected, or if the AUI port is disabled or in the reverse mode. Transmit carrier sense is sampled at the end of packet to determine the state of LB. The state of LB remains latched until carrier sense is sampled again for the next packet. The default/power-up state for LB is false (off).

Figure 1 shows the recommended connection of LEDs. When LDA₀₋₄, LDB₀₋₄, LDGA, or LDGB are LOW, the LED lights.

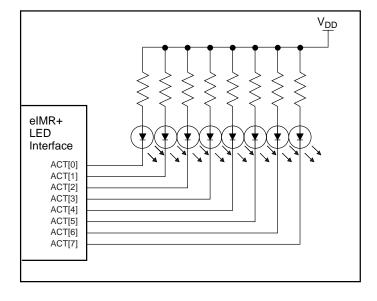
20651B-6

Figure 1. Visual Monitoring Application—Direct LED Drive

Network Activity Display

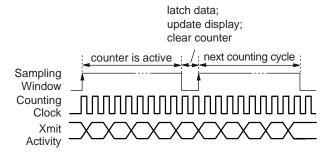
The eIMR+ status port can drive up to eight LEDs to indicate the network-utilization level as a percentage of bandwidth. The status port uses eight dedicated outputs (ACT₀₋₇) to drive a series of LEDs. The number of LEDs in the series that will be lit increases as the amount of network activity increases. ACT₀ represents the lowest level of activity; ACT₇ represents the highest. ACT₀₋₇ are open-drain outputs that typically sink 12 mA of current to turn on the LEDs. See Figure 2.

Table 3 shows ACT₀₋₇ as a function of the percentage of network utilization. The table uses a scale that is more sensitive at low utilization levels. 100% utilization represents the maximum number of events that could occur in a given window of time.


The update rate and corresponding internal sampling window for ACT[7:0] is 250 ms. During this sampling window, a counter is used to count the number of times

repeater transmit activity is TRUE. The counter uses a free-running clock which has the granularity to detect the minimum packet size of 96 bit times.

Figure 3 shows the timing relationship between the sampling window, counting clock, and transmit activity.


Table 3. Network Utilization

Number of LEDs Lit by ACT ₀₋₇	Percentage Utilization
8	> 900/
•	>80%
7	>64%
6	>32%
5	>16%
4	>8%
3	>4%
2	>2%
1	>1%

20651B-7

Figure 2. Network Activity Display

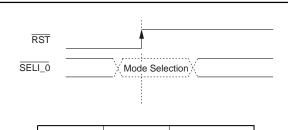
20651B-8

Figure 3. Activity Sampling

Expansion Bus Interface

The eIMR+ device expansion bus allows multiple eIMR+ devices to be interconnected.

The expansion bus supports two modes of operation: internal arbitration mode and IMR+ mode. The internal arbitration mode uses a modified daisy-chain scheme to eliminate the need for any external arbitration circuitry. The IMR+ mode maintains the full functionality of the IMR+ (Am79C981) expansion bus and benefits from minimum delays. In this mode, the eIMR+ device requires external circuitry to handle arbitration for control of the bus.


The eIMR+ arbitration mode is determined at reset. This occurs on the trailing edge of \overline{RST} according to the state of \overline{SELI}_{0-1} , as illustrated in Figure 4.

The eIMR+ device can be connected to a HIMIB device, as described in the eIMR+/HIMIB Interconnection section. The connection to a HIMIB device is not dependent on the mode of the expansion bus. In other words, the eIMR+ device can be connected to a HIMIB device whether the expansion bus is in internal-arbitration mode or IMR+ mode.

Internal Arbitration Mode

The internal arbitration mode uses a daisy-chain (cascade) configuration. \overline{SELI}_{0-1} are arbitration inputs and \overline{SELO} is the arbitration output. \overline{SELO} goes LOW when there is activity on one or more of the elMR+ ports, or a \overline{SELI} input is LOW. The \overline{SEL} lines are connected as shown in Figure 5. This technique allows activity indication to propagate down the chain to the end device. All unused \overline{SELI} inputs must be tied to VDD.

ACK and COL are global activity I/O pins. When the eIMR+ device senses activity, it drives ACK LOW.

SELI_1	SELI_0	Arbitration Mode
X	1	Internal
X	0	IMR+

20651B-9

Figure 4. Expansion Bus Mode Selection

An eIMR+ device drives $\overline{\text{COL}}$ LOW when it senses more than one device is active; that is, if the device has an active port AND a $\overline{\text{SELI}}$ input is LOW, OR both $\overline{\text{SELI}}$ inputs are LOW.

In Boolean notation, the formula for $\overline{\text{COL}}$ is as follows:

$$\overline{COL}$$
 = (Active port & ($\overline{SELI}_1 + \overline{SELI}_0$))+
(\overline{SELI}_1 & \overline{SELI}_0)

where

& represents the Boolean AND operation

+ represents the Boolean OR operation

ACK and COL are mutually exclusive. If the eIMR+ device driving ACK senses COL LOW, the device will deassert ACK.

DAT and JAM are synchronized to CLK. DAT is the repetition of data from any connected port (either TP or AUI port) encoded in NRZ format. JAM is an internal collision indicator. If JAM is HIGH, the active eIMR+ device has detected an internal collision across one or more of its ports. When this occurs, the DAT signal distinguishes between single-port collisions and multiport collisions. DAT = 1 indicates a single port collision; DAT = 0 indicates a multiport collision.

The drive capabilities of the I/O signals on the expansion bus (DAT, JAM, \overline{ACK} , and \overline{COL}) are sufficient to allow seven elMR+ devices to be connected together without the use of external transceivers or buffers.

The maximum number of elMR+ devices that can be daisy chained is limited by the propagation delay of the elMR+ devices. In practice, the depth of the cascade is limited to three elMR+ devices, thus allowing a maximum of seven elMR+ devices connected together via this expansion bus as shown in Figure 5.

The active device will not drive the data line, DAT, until one bit time (100 ns) after \overline{SELO} goes LOW. This is to avoid a situation where two devices drive DAT simultaneously.

IMR+ Mode

In IMR+ mode, the expansion bus requires an external arbiter. The arbiter allows only one eIMR+ device to control the expansion bus. If more than one device attempts to take control, the arbiter terminates all access and signals a collision condition.

In IMR+ mode, DAT and JAM retain the same functionality as in internal arbitration mode, but \overline{ACK} and \overline{COL} are inputs to the eIMR+ device, driven by the external arbiter. The arbiter should drive \overline{ACK} LOW when exactly one eIMR+ device is active. It should drive \overline{COL} when more than one eIMR+ device is active. \overline{SELO} is an output from the eIMR+ device. It indicates that the eIMR+ device has an active port and is requesting access to the bus. When \overline{ACK} is HIGH, DAT and JAM are in the high-impedance state. DAT and JAM go active when \overline{ACK} goes LOW. Refer to the *Systems Applications* section (Fig.14) for the configuration of IMR+ mode of operation.

Note: The IMR+ mode is recommended when arbitrating between multiple boards.

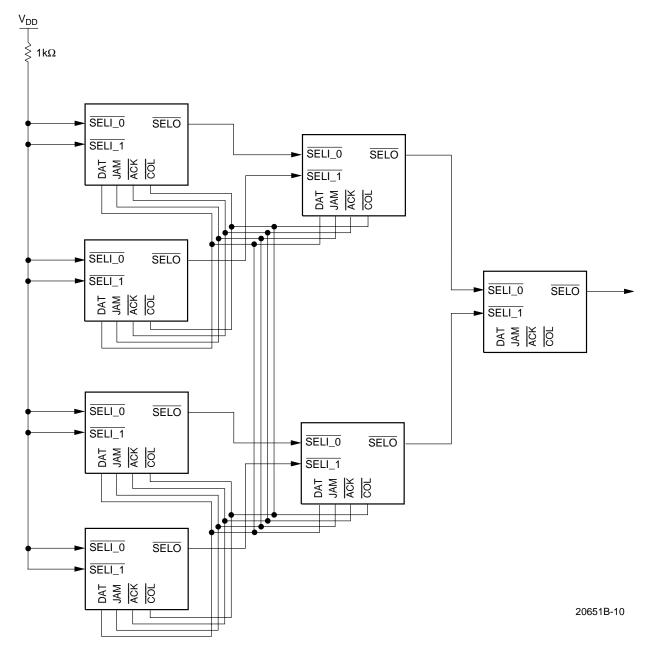


Figure 5. Internal Arbitration—elMR+ Devices in Cascade

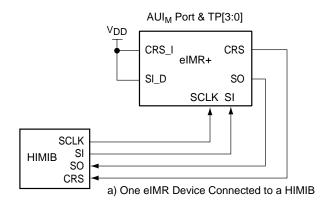
Management Functions

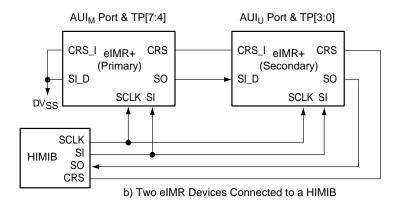
The eIMR+ device receives management commands in the form of byte-length data on the serial input pin, SI. If the eIMR+ device is expected to provide data in response to the command, it will send byte-length data to the serial-output pin, SO. Both the input and output data streams are clocked with the rising edge of the SCLK signal. The byte-length data is in RS232 serial-data format; that is, one start bit followed by eight data bits. The externally generated clock at the SCLK pin

may be either a free-running clock synchronized to the input bit patterns, or a series of individual transitions meeting the setup-and-hold times with respect to the input bit pattern. If the latter method is used, 20 SCLK clock transitions are required for management commands that produce SO data, and 14 SCLK clock transitions are required for management commands that do not produce SO data.

eIMR+/HIMIB Interconnection

The eIMR+ device interfaces directly to the HIMIB device for full repeater manageability. To this end, the eIMR+ device has a management port and a serial output that allows the HIMIB device to monitor port activity.


The eIMR+ device is designed to allow one or two eIMR+ devices to operate with a single HIMIB device. Because the HIMIB device can monitor nine ports (8 TP ports & 1 AUI port), one of the eIMR+ AUI ports is not managed (statistics not kept). When two eIMR+ devices are connected to a HIMIB device, one is designated the primary device and the other is designated the secondary device. This designation serves to identify which device has the managed AUI port. The primary device has the managed AUI port and TP4-7. The secondary device has the unmanaged AUI port and TP0-3. Figure 6 shows how the HIMIB and eIMR+ devices are interconnected.


When only one eIMR+ device is connected to a HIMIB device, the AUI port is managed. The HIMIB device treats the twisted-pair ports as TP0-3.

Although the HIMIB device does not monitor the AUI port on the secondary eIMR+ device, the AUI port on the secondary device defaults to enabled at reset. The port can be disabled via the Secondary AUI Port Enable command.

Management Port Interface

The eIMR+ management port is made up of six signals: SI, SI_D, SO, CRS, CRS_I, and SCLK. SI is the serial input from an external management module or the HIMIB device. On the secondary eIMR+ device, SI_D is the response input from the primary eIMR+ device. It is also used at reset to set the eIMR+ device as either a primary or secondary device. CRS transmits the state of the eIMR+ device's internal carrier sense signals.

20651B-11

Figure 6. elMR-to-HIMIB Connection

When two eIMR+ devices are connected to one HIMIB device, the secondary device transmits the status of its TP ports, then transmits the status of the primary eIMR+TP ports and AUI port (CRS and CI). Note that the secondary device does not transmit the status of its AUI port. At Reset, the secondary device (and single eIMR+device) internally synchronizes the CRS stream to begin with the AUI CI bit. SO is the eIMR+ device response to a Get command.

The pins SI_D and CRS_I are multi-purpose pins. Their primary purpose is management input to the primary eIMR+ device. They are also used to set the management mode of the eIMR+ device. The mode is set on the rising edge of RST. The settings are shown in Table 4.

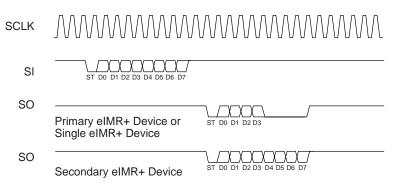
Following reset, the eIMR+ devices retain their management designations. However, CRS_I and SI_D return to their management port functions.

Command/Response Timing

Figure 7 shows the command/response timing. At the end of a GET command, the eIMR+ device waits two SCLK cycles and then transmits the response on SO. The secondary eIMR+ device stores the data received on the SI_D input (from the primary eIMR+ device) in an internal register. When it has transmitted D3 data, it

appends the received response to the end of the SO signal.

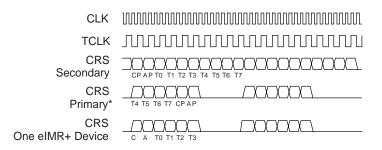
Following reset, after the eIMR+ devices have been assigned their primary and secondary designation, SO and SI D return to their management-port functions.


Port Activity

In addition to providing a means for receiving commands and sending data in response to those commands, the management port includes a CRS signal that transmits the state of the eIMR+ device's internal carrier-sense signals.

When two eIMR+ devices are connected to one Am79C987 HIMIB device (as shown in the *System Applications* section), CRS_I of the secondary device receives the following signals from the primary device: the carrier-sense signals of the AUI port, the CI-bit status of the AUI port, and the carrier-sense signals of the TP ports. The secondary device transmits the status of the AUI port (CRS and CI) for the primary device, the status of its own TP ports (TP0-TP3), and then the status of the primary device's TP ports (TP4-TP7). The status of the AUI port of the secondary device is not retransmitted (see Figure 8).

Table 4. eIMR+ Device Management Designations


			I WO EIMIK+ Devices	
CRS_I	SI_D	Single elMR+ Device	Primary elMR+ Device	Secondary elMR+ Device
0	0		V	
0	1			√
1	0	V		
1	1	$\sqrt{}$		

Note: For SO on the Primary device, D[3:0] corresponds to TP[7:4].

20651B-12

Figure 7. Management Get Command/Response

^{*} Shows actual output stream to secondary device.

20651B-13

Figure 8. Port Activity Signals with Am79C987 HIMIB Device

Management Commands

The following section details the operation of each management commands available in the elMR+ device. In all cases, the individual bits in each command are shown with the most-significant bit (bit 7) on the left and the least-significant bit (bit 0) on the right. Table 5 and Table 6 show a summary of default states and a summary of management commands, respectively.

Note: Data is transmitted and received on the serial data lines least-significant bit first and most-significant bit last.

Table 5. Summary of Default States after Reset

eIMR+ Programmable Option—CSA	Off
AUI Partitioning Algorithm	Normal
TP Partitioning Algorithm	Normal
AUI/TP Port	Enabled
Link Test	Enabled
Link Pulse	Enabled
Automatic Receiver Polarity Reversal	State of SI at reset
Extended Distance Mode	Disabled
Blink Rate	Off
Software Override of LEDs	Disabled

Table 6. Management Port Command Summary

	_	SO Data	1	
		Single elMR+	SO Data	SO Data
Commands	SI Data	Device	Primary	Secondary
Set (Write Commands)				1
elMR+ Chip Programmable Options	0000 1CSA			
Alternate AUI Partitioning Algorithm	0001 1111			
Alternate TP Partitioning Algorithm	0001 0000			
Primary AUI Port Disable	0010 1111			
Secondary AUI Port Disable	0010 1110			
Primary AUI Port Enable	0011 1111			
Secondary AUI Port Enable	0011 1110			
TP Port Disable	0010 0###			
TP Port Enable	0011 0###			
Disable Link Test Function (per TP port)	0100 0###			
Enable Link Test Function (per TP port)	0101 0###			
Disable Link Pulse (per TP port)	0100 1###			
Enable Link Pulse (per TP port)	0101 1###			
Disable Automatic Receiver Polarity Reversal	0110 0###			
(per TP port)	01100###			
Enable Automatic Receiver Polarity Reversal	0111 0###			
(per TP port)	01110###			
Disable Receiver Extended Distance Mode	0110 1###			
(Per TP port)				
Enable Receiver Extended Distance Mode (Per TP port)	0111 1###			
Disable Software Override of LEDs				
(Per Port - AUI & TP)	1001 ####			
Enable Software Override of Bank-A LEDs				
(Per Port - AUI & TP, Global)	1011 ####			
Enable Software Override of Bank-B LEDs	1100 ####			
(Per Port - AUI & TP, Global)	1100 ####			
Software Override LED Blink Rate	1110 1###			
Get (Read Commands)		•	•	,
AUI Port Status (B, S, and L Cleared)	1000 1111	PBSL 0000	0000 PBSL	PBSL _P PBSL _S
AUI Port Status (B Cleared)	1000 1101	PBSL 0000	0000 PBSL	PBSL _P PBSL _S
AUI Port Status (S, L, Cleared)	1000 1011	PBSL 0000	0000 PBSL	PBSL _P PBSL _S
AUI Port status (None Cleared)	1000 1001	PBSL 0000	0000 PBSL	PBSL _P PBSL _S
TP Port Partitioning Status	1000 0000	0000 C3C0	0000 C7C4	C7C0
Bit Rate Error Status of TP Ports	1010 0000	0000 E3E0	0000 E7E4	E7E0
Link Test Status of TP Ports	1101 0000	0000 L3L0	0000 L7L4	L7L0
Receive Polarity Status of TP Ports	1110 0000	0000 P3P0	0000 P7P4	P7P0
MJLP Status	1111 0000	M000 0000	0000 M000	M _P 000 M _S 000
Version	1111 1111	0000 0011	0000 0011	0011 _P 0011 _S

SET (Write Commands)

Chip Programmable Options

SI Data 0000 1CSA SO Data (Pri) None

SO Data (Sec) None

The eIMR+ chip programmable options can be enabled (or disabled) by setting (or resetting) one or more of the C, S, and A bits in the command string. The three programmable options are C - CI Reporting, S - AUI test mask, and A - Alternate port activity monitor (PAM) function.

C HIMIB Connection

This bit, when set, indicates to the eIMR+ device that it is connected to a HIMIB device.

S AUI SQE Test Mask

Setting this bit allows the eIMR+ chip to ignore activity on the CI signal pair, during the SQE test window, following a transmission on the AUI port. Enabling this function does not prevent the reporting of this condition by the eIMR+ device. The two functions operate independently.

The SQE Test Window, as defined in IEEE 802.3 (Section 7.2.2.2.4) is from 6 bit times to 34 bit times (0.6 μ s to 3.4 μ s). This includes the delay introduced by a 50-m AUI. CI activity that occurs outside this window is not ignored and is treated as a true collision.

A Alternate Port Activity Monitor Function

Setting this bit causes the Port Activity Monitor (PAM) function to be altered such that the CRS data is presented unmodified. In default operation, CRS is masked if the port is either disabled or partitioned. Note that the HIMIB device resets this bit (default operation).

Alternate AUI Partitioning Algorithm

SI Data 0001 1111 SO Data (Pri) None SO Data (Sec) None

Invoking this command sets the partition/reconnection scheme for the AUI port to the alternate (transmit-only) reconnection algorithm. To return the AUI port to the standard (transmit or receive) reconnection algorithm, it is necessary to reset the eIMR+ device. The standard partitioning algorithm is selected on reset. If two eIMR+ devices are connected, this command sets both AUI ports.

Alternate TP Partitioning Algorithm

SI Data 0001 0000 SO Data (Pri) None SO Data (Sec) None

Invoking this command sets the partition/reconnection scheme for the TP ports to the alternate (transmit-only)

reconnection algorithm. To return the TP ports to the standard (transmit or receive) reconnection algorithm, it is necessary to reset the elMR+ device. The standard partitioning algorithm is selected on reset.

Primary AUI Port Disable

SI 0010 1111 SO Data (Pri) None SO Data (Sec) None

This command disables the AUI port on the primary eIMR+ device. Subsequently the eIMR+ chip will ignore all inputs to this port and will not transmit a DAT or JAM pattern on the AUI port. Disabling the AUI port also sets the partitioning state machine of the AUI port to the idle state. Therefore, a partitioned port can be reconnected by first disabling the AUI port and then enabling the AUI port.

The AUI port on the primary eIMR+ device defaults to enabled on reset.

Secondary AUI Port Disable

SI Data 0010 1110 SO Data (Pri) None SO Data (Sec) None

This command disables the AUI port on the eIMR+ device designated as the secondary HIMIB attachment. Subsequently the eIMR+ chip will ignore all inputs to this port and will not transmit a DAT or JAM pattern on the AUI port. Disabling the AUI port also sets the partitioning state machine of the AUI port to the idle state. Therefore, a partitioned port can be reconnected by first disabling the AUI port and then enabling the AUI port.

The AUI port on the secondary eIMR+ device defaults to enabled on reset.

Primary AUI Port Enable

SI 0011 1111
SO Data (Pri) None
SO Data (Sec) None

This command enables the AUI port on the primary eIMR+ device.

Secondary AUI Port Enable

SI Data 0011 1110 SO Data (Pri) None SO Data (Sec) None

This command enables the AUI port on the eIMR+ device designated as the secondary HIMIB attachment. When enabled, the secondary AUI port is fully functional, and can be controlled by the serial/management interface. However, when used with the Am79C987 device, no status is displayed for this port since the HIMIB device does not manage this port. At reset, this port is enabled.

TP Port Disable

SI Data 0010 0###
SO Data (Pri) None
SO Data (Sec) None

This command disables the TP port designated by the three least-significant bits of the command byte. Subsequently the eIMR+ chip will ignore all inputs to the designated port and will not transmit a DAT or JAM pattern on that port. Disabling the TP port also sets the partitioning state machine of that port to the idle state. Therefore, a partitioned port can be reconnected by first disabling the port and then enabling it. Designated port values of b111 through b100 in the command byte correspond to TP7 through TP4 in the primary eIMR+ device. Designated port values of b011 through b000 in the command byte correspond to TP3 through TP0 in the secondary eIMR+ device.

TP Port Enable

SI Data 0011 0###
SO Data (Pri) None
SO Data (Sec) None

This command enables the TP port designated by the three least-significant bits of the command byte. Designated port values of b111 through b100 in the command byte correspond to TP7 through TP4 in the primary eIMR+ device. Designated port values of b011 through b000 in the command byte correspond to TP3 through TP0 in the secondary eIMR+ device.

Disable Link Test Function (per TP port)

SI Data 0100 0###
SO Data (Pri) None
SO Data (Sec) None

This command disables the Link test function of the TP port designated by the three least-significant bits of the command data. As a consequence of this, the port will no longer be disconnected if it fails the Link Test. If a port has the Link Test disabled, reading the Link Test Status indicates a 'Link Pass'. Designated port values of b111 through b100 in the command byte correspond to TP7 through TP4 in the primary eIMR+ device. Designated port values of b011 through b000 in the command data correspond to TP3 through TP0 in the secondary eIMR+ device.

Enable Link Test Function (per TP port)

SI Data 0101 0###
SO Data (Pri) None
SO Data (Sec) None

This command enables the Link test function of the TP port designated by the three least-significant bits of the command data. As a consequence of this, the port is disconnected if it fails the Link Test. Designated port values of b111 through b100 in the command byte correspond to TP7 through TP4 in the primary

eIMR+ device. Designated port values of b011 through b000 in the command data correspond to TP3 through TP0 in the secondary eIMR+ device.

Disable Link Pulse (Per TP Port)

SI Data 0100 1###
SO Data (Pri) None
SO Data (Sec) None

This command disables the transmission of the Link pulse on the TP port designated by the three least-significant bits of the command byte. Designated port values of b111 through b100 in the command byte correspond to TP7 through TP4 in the primary eIMR+ device. Designated port values of b011 through b000 in the command data correspond to TP3 through TP0 in the secondary eIMR+ device.

Enable Link Pulse (Per TP Port)

SI Data 0101 1###
SO Data (Pri) None
SO Data (Sec) None

This command enables the transmission of the Link pulse on the TP port designated by the three least-significant bits of the command byte. Designated port values of b111 through b100 in the command byte correspond to TP7 through TP4 in the primary eIMR+ device. Designated port values of b011 through b000 in the command byte correspond to TP3 through TP0 in the secondary eIMR+ device.

<u>Disable Automatic Receiver Polarity Reversal (Per TP Port)</u>

SI Data 0110 0###
SO Data (Pri) None
SO Data (Sec) None

This command disables the Automatic Receiver Polarity Reversal function for the TP port designated by the three least-significant bits in the command byte. If this function is disabled on a TP port receiving with reversed polarity (due to a wiring error), the TP port will fail the Link Test due to the incorrect polarity of the received Link pulses. Designated port values of b111 through b100 in the command byte correspond to TP7 through TP4 in the primary elMR+ device. Designated port values of b011 through b000 in the command byte correspond to TP3 through TP0 in the secondary elMR+ device.

The state of Automatic Polarity Reversal function is set by SI on reset. If SI is HIGH at the rising edge of RST, the eIMR+ device disables Automatic Polarity Reversal. If SI is LOW at the rising edge of RST, the eIMR+ device enables Automatic Polarity Reversal.

Enable Automatic Receiver Polarity Reversal (Per TP Port)

SI Data 0111 0###
SO Data (Pri) None
SO Data (Sec) None

This command enables the Automatic Receiver Polarity Reversal function for the TP port designated by the three least-significant bits in the command byte. If enabled in a TP port, the eIMR+ chip will automatically invert the polarity of that port's receiver circuitry if the TP port is detected as having reversed polarity (due to wiring error). After reversing the receiver polarity, the TP port could then receive subsequent (reverse polarity) packets correctly. Designated port values of b111 through b100 in the command byte correspond to TP7 through TP4 in the primary eIMR+ device. Designated port values of b011 through b000 in the command byte correspond to TP3 through TP0 in the secondary eIMR+ device.

<u>Disable Receiver Extended Distance Mode (Per TP Port)</u>

SI Data 0110 1###
SO Data (Pri) None
SO Data (Sec) None

This command disables the Receiver Extended Distance Mode and restores the RXD circuit of the transceiver to normal squelch levels for the TP-port driver designated by the three least-significant bits of the command data. Designated port values of b111 through b100 in the command byte correspond to TP7 through TP4 in the primary elMR+ device. Designated port values of b011 through b000 in the command byte correspond to TP3 through TP0 in the secondary elMR+ device.

Enable Receiver Extended Distance Mode (Per TP Port)

SI Data 0111 1###
SO Data (Pri) None
SO Data (Sec) None

This command modifies the RXD circuit of the transceiver for the TP-port driver designated by the three least-significant bits of the command data. The RXD squelch-threshold value is lowered to accommodate signal attenuation associated with lines longer than 100 meters. Designated port values of b111 through b100 in the command byte correspond to TP7 through TP4 in the primary elMR+ device. Designated port values of b011 through b000 in the command byte correspond to TP3 through TP0 in the secondary elMR+ device. At reset, Receiver Extended Distance Mode is disabled and the RXD circuit defaults to normal squelch-threshold values.

<u>Disable Software Override of LEDs</u> (Per Port - AUI and TP, Global)

SI Data 1001 ####
SO Data (Pri) None
SO Data (Sec) None

This command Disables software override of the Port LEDs.

Individual LEDs and combinations of LEDs can be selected via the lower four bits of the command byte, as follows:

<i>####</i>	Port(s) affected
0000-0111	TP0 - TP7
1000	Primary AUI
1001	Secondary AUI
1010	Both AUI ports
1011	All TP ports
1100	All ports
1101	Primary Global
1110	Secondary Global
1111	All Global

Following command execution, the attributes displayed on the LEDs will be determined by LDC₀₋₂. Software override of LEDs is disabled after reset.

Enable Software Override of Bank-A LEDs (Per Port - AUI and TP, Global)

SI Data 1011 ####
SO Data (Pri) None
SO Data (Sec) None

This command forces the LEDs in Bank A to blink. Individual LEDs and combinations of LEDs can be selected via the lower four bits of the command byte, as follows:

####	Port(s) affected
0000-0111	TP0 - TP7
1000	Primary AUI
1001	Secondary AUI
1010	Both AUI ports
1011	All TP ports
1100	All ports
1101	Primary Global
1110	Secondary Global
1111	All Global

The designated LED drivers(s) will switch between LOW and 'off' at the rate set by the Software Override Blink Rate command. Enable Software Override of Bank A LEDs references the blink rate last issued, and overrides any other attribute specified by LDC_{0-2} . Software override of LEDs is disabled after reset.

Enable Software Override of Bank-B LEDs (Per Port - AUI and TP, Global)

SI Data	1100 ####
SO Data (Pri)	None
SO Data (Sec)	None

This command forces the LEDs in Bank B to blink. Individual LEDs and combinations of LEDs can be selected via the lower four bits of the command byte, as follows.

<u>####</u>	Port(s) affected
0000-0111	TP0 - TP7
1000	Primary AUI
1001	Secondary AUI
1010	Both AUI ports
1011	All TP ports
1100	All ports
1101	Primary Global
1110	Secondary Global

The designated LED drivers(s) will switch between LOW and 'off' at the rate set by the Software Override of LED Blink Rate command. Enable Software Override of Bank B LEDs references the blink rate last issued, and overrides any other attribute specified by LDC_{0-2} . Software override of LEDs is disabled after reset.

Software Override of LED Blink Rate

SI Data	1110 1###
SO Data (Pri)	None
SO Data (Sec)	None

This command sets the blink Period of the LEDs with Software Override enabled. The duty cycle is 50%. This command defaults to 'off' at reset.

<u>Setting</u>	Blink Period
1110 1000	Off
1110 1001	512 ms
1110 1010	1560 ms
1110 1011	Solid On

These settings apply to the blink rate for both Bank A and Bank B. This command must precede the Enable Software Override of Bank A/B LEDs command. All LED combinations selected for software override will reference the blink rate last issued.

Get (Read Commands)

AUI Port(s) Status

SI Data	1000 1111
SO Data (Sec)	PBSL _P PBSL _S
SO Data (Pri)	0000 PBSL
SO Data (Single)	PBSL 0000

The combined AUI status of the eIMR+ device(s) allows a single instruction to be used to monitor the AUI port(s).

The four local status bits are:

P Partitioning Status

This bit is '0' if the AUI port is partitioned and '1' if the AUI port is connected.

B Bit Rate Error

This bit is set to '1' if there is an instance of FIFO overflow or underflow. The bit is cleared when the eIMR+ device is read.

S SQE Test Status

This bit is set to '1' if the SQE test error is detected by the elMR+ chip. The bit is cleared when the status is read.

L Loopback Error

The MAU attached to the AUI port is required to loopback data transmitted to DO onto the DI circuit. If the loopback carrier is not detected by the eIMR+ device, this bit is set to '1'. This bit is cleared when the status is read.

If a single eIMR+ device is connected to a HIMIB device, SO is PBSL 0000. If two eIMR+ devices are connected to a HIMIB device, SO on the primary device is 0000 PBSL $_{\rm PBSL}_{\rm S}$. The subscript ($_{\rm P}$) indicates the statistics of the primary eIMR+ device and the subscript ($_{\rm S}$) indicates the statistics of the secondary eIMR+ device.

Alternate AUI Port(s) Status

There are three further variations of the AUI Port Status Command allowing selective clearing of a combination of B.S. and L bits. These are the following:

Alternate 1: B is not cleared, S and L are Cleared

SI Data	1000 1011
SO Data (Sec)	PBSL _P PBSL _S
SO Data (Pri)	0000 PBSL
SO Data (Single)	PBSL 0000

Alternate 2: S and L are not cleared, B is Cleared

SI Data	1000 1101
SO Data (Sec)	PBSL _P PBSL _S
SO Data (Pri)	0000 PBSL
SO Data (Single)	PBSL 0000

Alternate 3: None of S, B, and L are Cleared

SI Data	1000 1001
SO Data (Sec)	PBSL _P PBSL _S
SO Data (Pri)	0000 PBSL
SO Data (Single)	PBSL 0000

TP Port Partitioning Status

SI Data 1000 0000 SO Data (Sec) 0000 P3..P0,

P7..P0 (output to HIMIB)

SO Data (Pri) 0000 P7..P4 SO Data (Single) 0000 P3..P0

> Pn = 0 TP Port Partitioned Pn = 1 TP port Connected

where *n* is a port number in the range 0-7

The response to this command gives the partitioning status of all four TP ports. If a port is disabled, reading its partitioning status will indicate that it is connected. If two elMR+ devices are connected together, the secondary device indicates the status of all eight TP ports. P7...P4 correspond to the four ports of the primary device. P3..P0 correspond to the four ports of the secondary device.

Bit Rate Error Status of TP Ports

SI Data 1010 0000 SO Data (Sec) 0000 E3..E0,

E7..E0 (output to HIMIB)

SO Data (Pri) 0000 E7..E4

SO Data (Single) 0000 E3..E0

En = 0 No Error En = 1 FIFO Overflow where n is a port number in the range 0-7.

The response to this command gives the bit-rate-over-flow or underflow (data rate mismatch) condition of all the TP ports. A 1 indicates that the FIFO has overflowed or underflowed due to the amount of data received by the corresponding port. If two eIMR+ devices are connected together, the secondary device indicates the status of all eight TP ports. E7...E4 correspond to the four ports of the primary device. E3...E0 correspond to the four ports of the secondary device.

Link Test Status of TP ports

SI Data 1101 0000 SO Data (Sec) 0000 L3..L0,

L7.....L0 (output to HIMIB)

SO Data (Pri) 0000 L7..L4 SO Data (Single) 0000 L3..L0

> Ln = 0 TP Port n in Link Test Failed Ln = 1 TP port n in Link Test Passed

where n is a port number in the range 0-7.

The response to this command gives the Link Test status of all the TP ports. A disabled port continues to report Link Test status. Re-enabling the port causes the port to be placed in the Link Test Fail state. If two elMR+devices are connected together, the secondary device indicates the status of all eight TP ports. L7..L4 correspond to the four ports of the primary device. L3..L0 correspond to the four ports of the secondary device.

Receive Polarity Status of TP Ports

SI Data 1110 0000 SO Data (Sec) 0000 P3.....P0,

P7.....P0 (output to HIMIB)

SO Data (Pri) 0000 P7.....P4 SO Data (Single) 0000 P3.....P0

> Pn = 0 TP Port n Polarity Correct Pn = 1 TP port n Polarity Reversed

where *n* is a port number in the range 0-7

The response to this command gives the Received Polarity status of all the TP ports. If the polarity is detected as reversed for a TP port, then the elMR+ device will set the appropriate bit in this command's result only if the Polarity Reversal Function is enabled for that port. If two elMR+ devices are connected together, the secondary device indicates the status of all eight TP ports. P7...P4 correspond to the four ports of the primary device. P3..P0 correspond to the four ports of the secondary device.

MJLP Status

SI Data 1111 0000 SO Data (Sec) M000 0000.

 $M_P000 M_S000$ (to HIMIB)

SO Data (Pri) 0000 M000 SO Data (Single) M000 0000

Each eIMR+ device contains an independent MAU Jabber Lock Up Protection timer. The timer is designed to inhibit the transmit function of the eIMR+ device if it has been transmitting continuously for more than 65536 bit times. This bit remains set and is only cleared when the MJLP status is read using this command. If two eIMR+ devices are connected together, the secondary device will indicate the status of both devices (M_P is the status of the primary device; M_S is the status of the secondary device).

Version

SI Data 1111 1111 SO Data (Sec) 0000 0011,

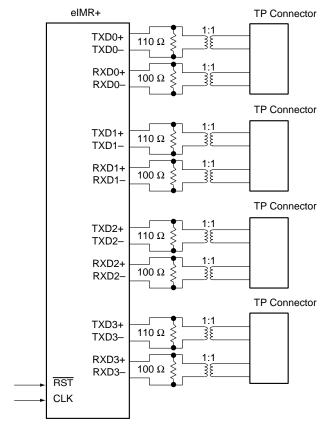
0011_P 0011_S (to HIMIB)

SO Data (Pri) 0000 0011 SO Data (Single) 0000 0011

The response to this command gives the version of the eIMR+ device. 0011 was chosen to help distinguish the eIMR+ device from the IMR (Am79C980) and the IMR+ (Am79C981) devices. If two eIMR+ devices are connected together, the secondary device will indicate the version of the primary device in the upper four bits of the SO byte, and its own version number in the lower four bits.

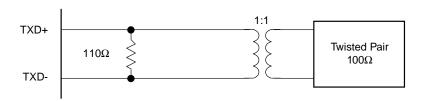
SYSTEMS APPLICATIONS eIMR+ to TP Port Connection

The eIMR+ device provides a system solution to designing non-managed multiport repeaters. The eIMR+ device connects directly to AC coupling modules for a 10BASE-T hub. Figure 9 shows the simplified connection.


Twisted Pair Transmitters

TXD signals need to be properly terminated to meet the electrical requirement for 10BASE-T transmitters. Proper termination is shown in Figure 10 which consists

of a 110- Ω resistor and a 1:1 transformer. The load is a twisted-pair cable that meets IEEE 802.3, Section 14.4 specifications. The cable is terminated at the opposite end by 100 Ω .


Twisted Pair Receivers

RXD signals need to be properly terminated to meet the electrical requirements for 10BASE-T receivers. Proper termination is shown in Figure 11. Note that the receivers do not require external filter modules.

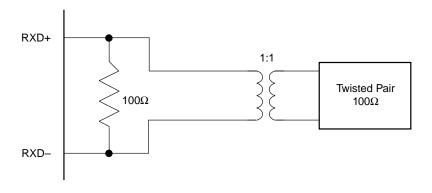

20651B-14

Figure 9. Simplified 10BASE-T Connection

20651B-15

Figure 10. TXD Termination

20651B-16

Figure 11. RXD Termination

MAC Interface

The eIMR+ device can be connected directly to a MAC through the AUI port. This requires that the AUI port be configured in the reverse mode and connected as shown in Figure 12a. Notice that DI is connected to DO

of the MAC and DO is connected to DI of the MAC, because the reverse configuration only affects CI. Where CI is an input in the normal mode, in the reverse mode, CI is an output. Figure 12b shows the normal AUI configuration for reference.

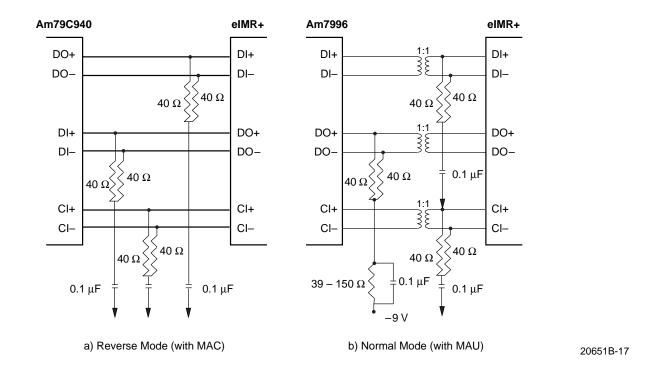


Figure 12. AUI Port Interconnections

Internal Arbitration Mode Connection

The internal arbitration mode uses a modified daisy-chain scheme to eliminate the need for any external arbiter. In this mode, \overline{ACK} and \overline{COL} need to be pulled up through a minimum resistance of 1 k Ω . The DAT and JAM pins also need to be pulled down via a high value resistor. Refer to Figure 13.

IMR+ Mode External Arbitration

The IMR+ mode maintains the full functionality of AMD's IMR+ (Am79C981) device's expansion bus. In this mode, the eIMR+ device requires external circuitry to handle arbitration for control of the bus. Figure 14 shows the configuration for the IMR+ mode of operation.

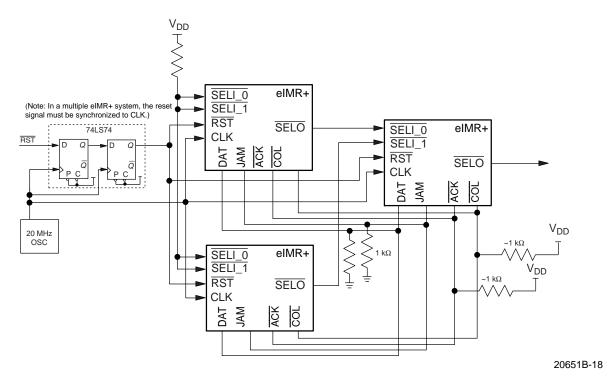
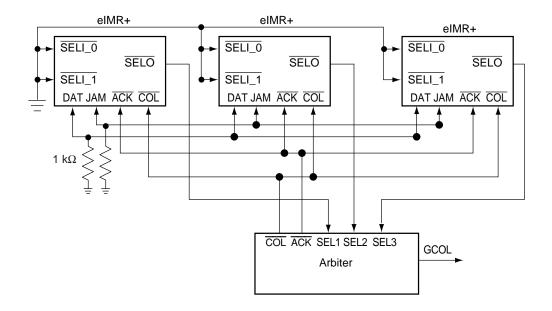



Figure 13. elMR+ Internal Arbitration Mode Connection


20651B-19

Figure 14. IMR+ Mode External Arbitration

Visual Status Display

LDA/B[4:0] and LDGA/B provide visual status indicators for the eIMR+. LDA/B[4:0] displays Link, Carrier Sense, Collision, and Partition information for the TP and AUI ports. LDGA/B display global Carrier Sense, Collision, and Jabber information.

In a multiple eIMR+ configuration, the global LED drivers (LDGA/B) from each chip can be tied together to drive a single pair of global status LEDs. The open drain output of these drivers facilitate this configuration. Refer to Figure 15.

20651B-20

Figure 15. Visual Status Display Connection

ABSOLUTE MAXIMUM RATINGS

may differ.

Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect reliability. Programming conditions

OPERATING RANGES Commercial (C) Devices

Temperature (T_A) 0° C to +70° C Supply Voltages (V_{DD}) +5 V $\pm 5\%$ Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over Commercial operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Digital I/O					
V_{IL}	Input LOW Voltage	$V_{SS} = 0.0 \text{ V}$	-0.5	0.8	V
V_{IH}	Input HIGH Voltage	$V_{SS} = 0.0 V$	2.0	0.5 + V _{DD}	V
V_{OL}	Output LOW Voltage	$I_{OL} = 4.0 \text{ mA}$	_	0.4	V
V _{OH}	Output HIGH Voltage	$I_{OH} = -0.4 \text{ mA}$	2.4	-	V
I _{IL}	Input Leakage Current	$V_{SS} < V_{IN} < V_{DD}$	_	10	μΑ
I _{ILSTR}	Input Leakage Current for STR pin	$V_{SS} < V_{IN} < V_{DD}$	_	50	μΑ
V_{OLOD}	Open Drain Output LOW Voltage (LED pins)	$I_{OLOD} = 12 \text{ mA}$	_	0.4	V
AUI Ports					
I_{IAXD}	Input Current at DI± and CI± Pairs	$V_{SS} < V_{IN} < V_{DD}$	-500	500	μΑ
V _{AICM}	DI±, CI± Open Circuit Input Voltage Range	I _{IN} = 0	V _{DD} – 3.0	V _{DD} – 1.0	V
V_{AIDV}	Differential Mode Input Voltage Range (DI, CI)	V _{DD} = 5.0 V	-2.5	+2.5	V
V _{ASQ}	DI, CI Squelch Threshold	-	-275	-160	mV
V _{ATH}	DI Switching Threshold	(Note 1)	-35	+35	mV
V _{AOD}	Differential Output Voltage (DO+) - (DO)	$R_L = 78 \Omega$	620	1100	mV
V_{AOC}	Differential Output Voltage (CI+) – (CI–) (Reverse Mode)	$R_L = 78 \Omega$	620	1100	mV
V _{AODI}	DO Differential Output Voltage Imbalance	$R_L = 78 \Omega$	-25	+25	mV
V _{AOD} OFF	DO Differential Idle Output Voltage	$R_L = 78 \Omega$	-40	+40	mV
I _{AOD} OFF	DO Differential Idle Output Current	R _L = 78 Ω (Note 1)	-1.0	+1.0	mA
V_{AOCM}	DO+, DO- Common Mode Output Voltage	$R_L = 78 \Omega$	2.5	V _{DD}	V
Twisted Pair	r Ports				
I _{IRXD}	Input Current at RXD± and CI± Pairs	AV _{SS} <v<sub>IN<v<sub>DD</v<sub></v<sub>	-500	500	μΑ
R _{RXD}	RXD Differential Input	(Note 1)	10	-	kΩ
V_{TIVB}	RXD+, RXD– Open Circuit Input Voltage (bias)		V _{DD} – 3.0	V _{DD} – 1.5	V
V_{TID}	Differential Mode Input Range (RXD)	V _{DD} = 5.0 V	-3.1	+3.1	V

DC CHARACTERISTICS (continued)

Parameter							
Symbol	Parameter Description	Test Conditions	Min	Max	Unit		
Twisted Pair Ports (Continued)							
V _{TSQ+}	RXD Positive Squelch Threshold (peak)	Sinusoid 5 MHz <f<10 mhz<="" td=""><td>300</td><td>520</td><td>mV</td></f<10>	300	520	mV		
V _{TSQ}	RXD Negative Squelch Threshold (peak)	Sinusoid 5 MHz <f<10 mhz<="" td=""><td>-520</td><td>-300</td><td>mV</td></f<10>	-520	-300	mV		
V _{THS+}	RXD Post-Squelch Positive Threshold (peak)	Sinusoid 5 MHz <f<10 mhz<="" td=""><td>150</td><td>293</td><td>mV</td></f<10>	150	293	mV		
V _{THS}	RXD Post-Squelch Negative Threshold (peak)	Sinusoid 5 MHz <f<10 mhz<="" td=""><td>-293</td><td>-150</td><td>mV</td></f<10>	-293	-150	mV		
V _{LTSQ+}	RXD Positive Squelch Threshold (peak) - Extended Distance Mode	Sinusoid 5 MHz <f<10 mhz<="" td=""><td>180</td><td>365</td><td>mV</td></f<10>	180	365	mV		
V _{LTSQ} _	RXD Negative Squelch Threshold (peak) - Extended Distance Mode	Sinusoid 5 MHz <f<10 mhz<="" td=""><td>-365</td><td>-180</td><td>mV</td></f<10>	-365	-180	mV		
V _{LTHS+}	RXD Post-Squelch Positive Threshold - Extended Distance Mode	Sinusoid 5 MHz <f<10 mhz<="" td=""><td>90</td><td>175</td><td>mV</td></f<10>	90	175	mV		
V _{LTHS} _	RXD Post-Squelch Negative Threshold - Extended Distance Mode	Sinusoid 5 MHz <f<10 mhz<="" td=""><td>-175</td><td>-90</td><td>mV</td></f<10>	-175	-90	mV		
V _{RXDTH}	RXD Switching Threshold	(Note 1)	-60	60	mV		
Power Supp	Power Supply Current						
I _{DD}	Power Supply Current (Idle) (Note 2)	CLK = 20 MHz V _{DD} = +5.25V	-	100	mA		
	Power Supply Current (Transmitting)	CLK = 20 MHz V _{DD} = +5.25V	_	350	mA		

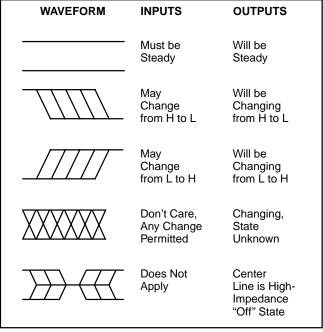
Notes:

- 1. Parameter not tested.
- 2. LED current not included. Maximum current rating on LED drivers is 12 mA.

SWITCHING CHARACTERISTICS

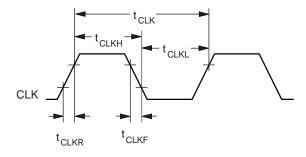
Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit			
Clock and Reset Timing								
t _{CLK}	CLK Clock Period		49.995	50.005	ns			
t _{CLKH}	CLK Clock High		20	30	ns			
t _{CLKL}	CLK Clock Low		20	30	ns			
t _{CLKR}	CLK Rise Time		_	10	ns			
t _{CLKF}	CLK Fall Time		_	10	ns			
t _{PRST}	Reset Pulse Width after Power On		150	_	μs			
t _{RST}	Reset Pulse Width		4	_	μs			
t _{RSTSET}	Reset HIGH Setup Time with respect to CLK		15	_	ns			
t _{RSTHLD}	Reset LOW Hold Time		0	_	ns			
t _{XRS}	AMODE, SELI ₀ , CRS_I, and SI_D Setup Time to Rising Edge of RST		0	-	ns			
t _{XRH}	AMODE, SELI ₀ , CRS_I and SI_D Hold Time from Rising Edge of RST		400	-	ns			
AUI Port Tim	ning							
t _{DOTD}	CLK Rising Edge to DO Toggle		_	30	ns			
t _{DOTR}	DO+, DO- Rise Time (10% to 90%)		_	7.0	ns			
t _{DOTF}	DO+, DO- Fall Time (90% to 10%)		_	7.0	ns			
t _{DORM}	DO+, DO- Rise and Fall Time Mismatch		_	1.0	ns			
t _{DOETD}	DO± End of Transmission		275	375	ns			
t _{PWODI}	DI Pulse Width Accept/Reject Threshold	V _{IN} > V _{ASQ} (Note 2)	15	45	ns			
t _{PWKDI}	DI Pulse Width Not to Turn-off Internal Carrier Sense	V _{IN} > V _{ASQ} (Note 3)	136	200	ns			
t _{PWOCI}	CI Pulse Width Accept/Reject Threshold	V _{IN} > V _{ASQ} (Note 4)	10	26	ns			
t _{PWKCI}	CI Pulse Width Not to Turn-off Threshold	V _{IN} > V _{ASQ} (Note 5)	75	160	ns			
t _{CITR}	CI Rise Time (In Reverse Mode)		_	7.0	ns			
t _{CITF}	CI Fall Time (In Reverse Mode)		_	7.0	ns			
t _{CIRM}	CI+, CI– Rise and Fall Time Mismatch (AUI in Reverse Mode)		_	1.0	ns			
Expansion E	Bus Timing							
t _{CLKHRL}	CLK HIGH to SELO Driven LOW	C _L = 50 pF	15	30	ns			
t _{CLKHRH}	CLK HIGH to SELO Driven HIGH	C _L = 50 pF	15	30	ns			
t _{CLKHDR}	CLK HIGH to DAT/JAM Driven	C _L = 100 pF	14	30	ns			
t _{CLKHDZ}	CLK HIGH to DAT/JAM Not Driven	C _L = 100 pF	14	30	ns			
t _{DJSET}	DAT/JAM Setup Time to CLK		10	_	ns			
t _{DJHOLD}	DAT/JAM Hold Time from CLK		9	_	ns			
t _{CASET}	COL/ACK Setup Time to CLK		10	_	ns			
t _{CAHLD}	COL/ACK Hold Time from CLK		9	_	ns			
tsclkhld	SI, SCLK Hold Time		50	-	ns			

SWITCHING CHARACTERISTICS (continued)


Parameter									
Symbol	Parameter Description	Test Conditions	Min	Max	Unit				
Twisted Pair Port Timing									
t _{TXTD}	CLK Rising Edge to TXD± Transition Delay		ı	50	ns				
t _{TETD}	Transmit End of Transmission		250	375	ns				
t _{PWKRD}	RXD Pulse Width Maintain/Turn-off Threshold	V _{IN} > V _{THS} (Note 6)	136	200	ns				
t _{PERLP}	Idle Signal Period		8	24	ms				
t _{PWLP}	Idle Link Test Pulse Width		75	120	ns				
Management Port Timing									
t _{SCLK}	SCLK Clock Period		100	_	ns				
t _{SCLKH}	SCLK Clock HIGH		30	_	ns				
t _{SCLKL}	SCLK Clock LOW		30	-	ns				
t _{SCLKR}	SCLK Clock Rise Time		-	10	ns				
t _{SCLKF}	SCLK Clock Fall Time		-	10	ns				
t _{SISET}	SI Input Setup Time to SCLK Rising Edge		10	-	ns				
t _{SIHLD}	SI Input Hold Time from SCLK Rising Edge		10	_	ns				
t _{SODLY}	SO Output Delay from SCLK Rising Edge	C _L = 100 pF	_	40	ns				
t _{CLKHCRS}	CLK Rising Edge to CRS valid	C _L = 100 pF	5	40	ns				
t _{STRSET}	STR Setup Time		5	-	ns				
t _{STRHLD}	STR Hold Time		9	_	ns				

Notes:

- 1. Parameter not tested.
- 2. DI pulses narrower than t_{PWODI} (min) will be rejected; pulses wider than t_{PWODI} (max) will turn internal DI carrier sense on.
- 3. DI pulses narrower than t_{PWKDI} (min) will maintain internal DI carrier on; pulses wider than t_{PWKDI} (max) will turn internal DI carrier sense off.
- 4. CI pulses narrower than t_{PWOCI} (min) will be rejected; pulses wider than t_{PWOCI} (max) will turn internal CI carrier sense on.
- 5. CI pulses narrower than t_{PWKCI} (min) will maintain internal CI carrier on; pulses wider than t_{PWKCI} (max) will turn internal CI carrier sense off.
- 6. RXD pulses narrower than t_{PWKRD} (min) will maintain internal RXD carrier sense on; a pulse wider than t_{PWKRD} (max) will turn RXD carrier sense off.


38 Am79C985

KEY TO SWITCHING WAVEFORMS

KS000010-PAL

SWITCHING WAVEFORMS

20651B-21

Figure 16. Clock Timing

Am79C985 39

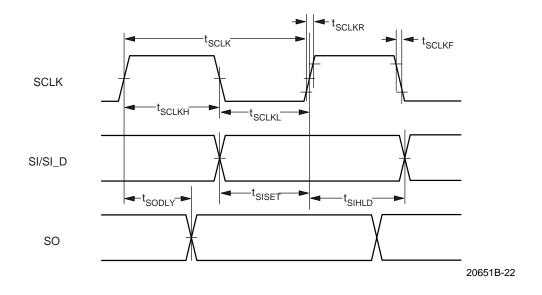
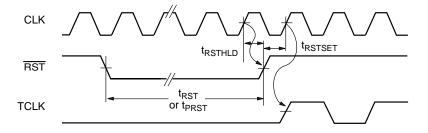



Figure 17. Management Port Timing

Note: TCLK represents internal eIMR+ timing

20651B-23

Figure 18. Reset Timing

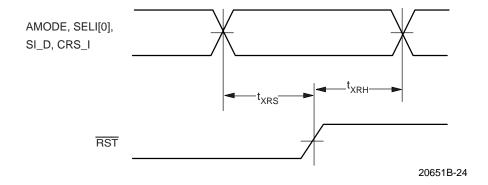
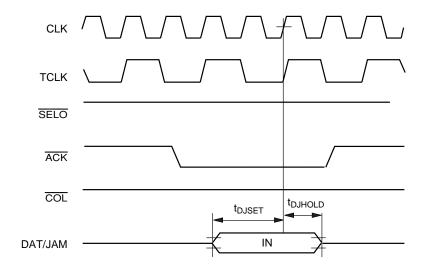
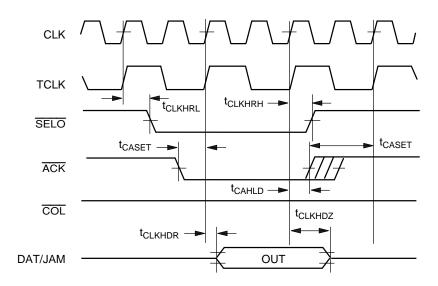



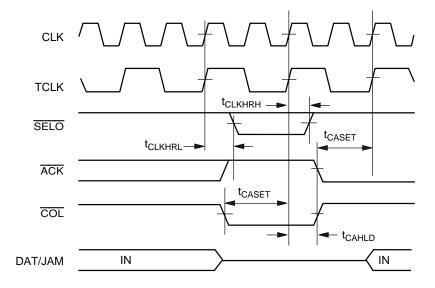
Figure 19. Mode Initialization


40 Am79C985

Note: TCLK represents internal eIMR+ timing

20651B-25

Figure 20. Expansion Bus Input Timing



Note: TCLK represents internal eIMR+ timing

20651B-26

Figure 21. Expansion Bus Output Timing

Am79C985 41

Note: TCLK represents internal eIMR+ timing

20651B-27

Figure 22. Expansion Bus Collision Timing

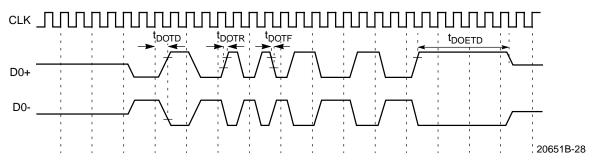
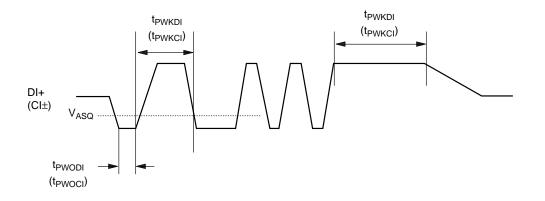



Figure 23. AUI Timing Diagram

20651B-29

Figure 24. AUI Receive Diagram

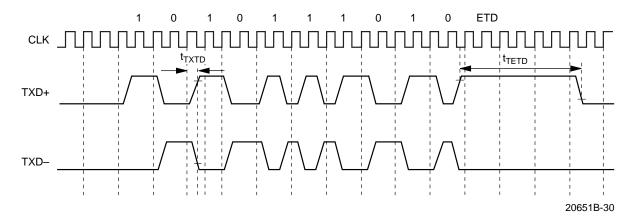


Figure 25. TP Ports Output Timing Diagram

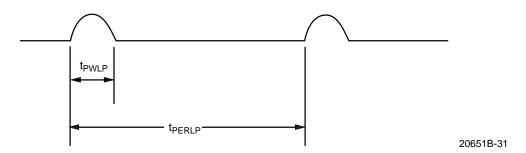


Figure 26. TP Idle Link Test Pulse

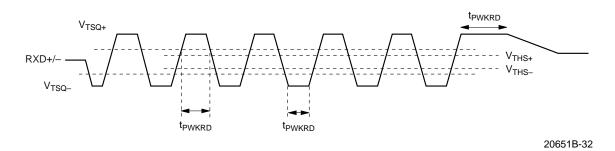
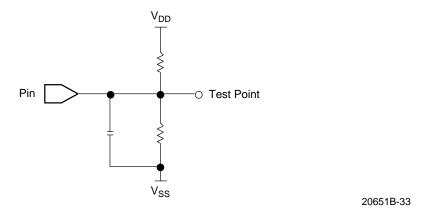
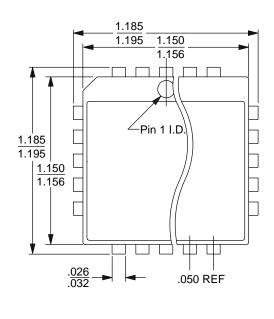


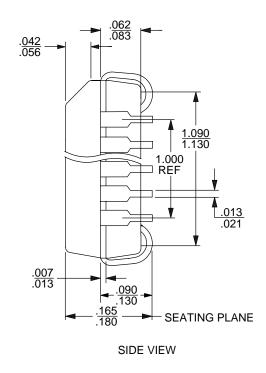
Figure 27. TP Receive Timing Diagram

Am79C985 43

SWITCHING TEST CIRCUIT



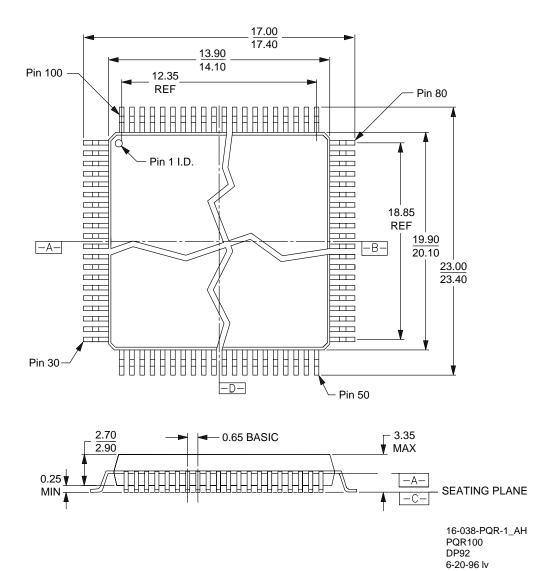

Figure 28. Switching Test Circuit


44 Am79C985

PHYSICAL DIMENSIONS

PL 084

84-Pin Plastic Leaded Chip Carrier (measured in inches)



16-038-SQ PL 084 DF79 8-1-95 ae

45

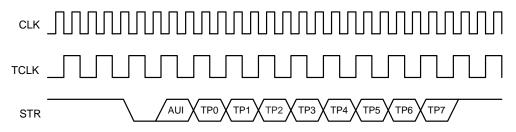
PQR100

100-Pin Plastic Quad Flat Pack

Security

EAVESDROP PROTECTION

The eIMR+/HIMIB devices are capable of providing network eavesdrop protection. This feature is protected by a software key. An application note containing the necessary software key and implementation details is available from AMD. A brief description of eavesdrop protection is given below. For more information, contact your local AMD sales representative.


FEATURES SUMMARY

Eavesdrop protection is based on the concept that confidential data should only be received by specified secure stations. The eIMR+/HIMIB devices are capable of repeating packets only to ports considered secure for a packet's destination address. On all other ports, transmission can be disrupted by transmitting a pattern of alternating 1s and 0s.

The eIMR+/HIMIB can disrupt packet transmission, as described above, on ports not having a valid address. Valid addresses are determined by comparing a

packet's destination address with the two address registers associated with each repeater port: Last Source Address Register and Preferred Source Address Register. Eavesdrop protection can be masked on a port-by-port basis. Disruption of multicast packets can also be masked on a port-by-port basis. If the destination address is a broadcast address, the packet is transmitted unmodified on all ports.

In many instances, a station targeted with a specific destination address will not reside within the same repeater as the originating station. To ensure that packets arrive at the intended destination, eIMR+/HIMIB ports can be programmed to pass packets with an invalid destination address undisturbed if no other port on the repeater has a valid address that matches the destination address. The eIMR+/HIMIB devices can determine if there is a match on the repeater by monitoring its ports and by monitoring signals on the eIMR+/HIMIB expansion bus.

Note: TCLK illustrates internal eIMR+ chip clock phase relationship.

20651B-34

Figure A1. STR Input Signal from Am79C987 HIMIB Device

Am79C985 A-1

Trademarks

Copyright © 1997 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Hardware Implemented Management Information Base (HIMIB), Integrated Multiport Repeater (IMR) Integrated Multiport Repeater Plus (IMR+), Basic Integrated Multiport Repeater (bIMR), and enhanced Multiport Repeater Plus (eIMR+) are trademarks of Advanced Micro Devices, Inc.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

A-2 Am79C985