5

AM9709, AM97C09, AH5009 Series Monolithic Analog Current Switches **General Description**

A versatile family of monolithic JFET analog switches designed to economically fulfill a wide variety of multiplexing and analog switching applications.

Even numbered switches may be driven directly from standard 5V logic, whereas the odd numbered switches are intended for applications utilizing 10V or 15V logic. The monolithic construction guarantees tight resistance match and track.

The AM97C09 series is specifically intended to be driven from CMOS providing the best performance at lowest cost.

Applications

- AD/DA converters
- Micropower converters
- Industrial controllers
- Position controllers
- Data acquisition

Active filters

- Signal multiplexers/demultiplexers
- Multiple channel AGC
- Quad compressors/expanders
- -Choppers/demodulators
- Programmable gain amplifiers
- . High impedance voltage buffer
- Sample and hold

Features

- Interfaces with standard TTL and CMOS
- On-resistance match 2 ohms Low "ON" resistance 100 ohms Very low leakage 50 pA Large analog signal range ±10V peak High switching speed 150 ns 80 dB
- Excellent isolation between channels. at 1 kHz

Absolute Maximum Ratings

Input Voltage	
AM9709-12CN, AH5009-24CN	30V
AM97C09-12CN	25V
Positive Analog Signal Voltage	30V
Negative Analog Signal Voltage	15V
Diode Current	10 m A
Drain Current	30 m A
Power Dissipation	500 mW
Operating Temperature Range	25°C to +85°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10 seconds)	300°C

Electrical Characteristics

AM9709, AM97C09, AH5009 (Notes 1 and 2)

			5V TTL AM9710CN AM9712CN		5V TTL AH5010-16 (EVEN SERIES)		5V-10V CMOS AM97C10CN AM9712CN		UNITS
PARAMETER		CONDITIONS							
			ТҮР	MAX	түр	MAX	түр	MAX	
I _{GSX}	Input Current "OFF"	V _{GD} 11V, V _{SD} - 0.7V T _A = 85°C	0.01	2 100	0_01	0.2 10			nA nA
I _{GSX}	Input Current "OFF"	V _{GD} = 15V, V _{SD} - 0 7V T _A - 85 C					0 0 1	2 100	nA nA
IDIOFFI	Leakage Current "OFF"	V _{SD} - 0,7V, V _{GS} = 3,8V T _A = 85 C	0.01	0.2 10	0.01	0 2 10			nA nA
ID(OFF)	Leakage Current "OFF"	V _{SD} = 0 7V, V _{GS} = 4 3V T _A = 85 C					0 01	2 100	nA nA
I _{G(ON)}	Leakage Current ''ON''	V _{GD} 0V, I _S = 1 mA T _A = 85 [°] C	0 08	1 200	0.08	1 200	0.08	1 200	nA nA
I _{G(ON)}	Leakage Current "ON"	$V_{GD} = 0V, I_S = 2 mA$ $T_A = 85''C$	0 13	5 10		1000 10	0.13	5 10	nΑ μΑ
I _{G(ON)}	Leakage Current ''ON''	V _{GD} = 0V, I _S = -2 mA T _A = 85 °C	0 1	10 20		100 100	0.10	10 20	nA μA
rds(ON)	Drain Source Resistance	V _{GS} = 0.35V, I _S = 2 mA T _A = +85 °C	90	150 240	90	150 240			Ω Ω
rds(on)	Drain Source Resistance	V _{G5} = 0V, L, = 2 mA T _A = 85 C					90	150 240	Ω Ω
VDIODE	Forward Diode Drop	I _D 05mA		0.8				08	V
rDS(ON)	Match	V _{GS} - 0, I _D = 1 mA	4	20		50	4	20	Ω
Ton	Turn ''ON'' Time	See ac Test Circuit	150	500	150	500	150	500	ns
TOFF	Turn "OFF" Time	See ac Test Circuit	300	500	300	500	300	500	ns
ст	Cross Talk	See ac Test Circuit	120		120		120		dB

Note 1r Test conditions 25"C unless otherwise noted.

Note 2: "OFF" and "ON" notation refers to the conduction state of the FET switch.

Electrical Characteristics (Continued)

· · · · ·		Ι	15V TTL 15V		V TTL 10		V CMDS		
PARAMETER		CONDITIONS	AM9709CN AM9711CN		AH500915 (DDD SERIES)		AM97C09CN AM97C11CN		UNITS
			TYP	MAX	TYP	MAX	TYP	MAX	
I _{GSX}	Input Current "OFF"	$V_{GD} = 11V, V_{SD} = 0.7V$ $T_A = 85^{\circ}C$	0.01	2 100	0_01	0.2 10			nA nA
I _{GSX}	Input Current "OFF"	V _{GD} = 15V, V _{SD} = 0.7V T _A = 85 C					0.01	2 100	nA nA
I _{DIOFFI}	Leakage Current "OFF"	V _{SD} = 0 7V, V _{GS} = 9 3V T _A = 85 C					0 01	2 100	nA nA
IDIOFF	Leakage Current "OFF"	$V_{SD} = 0.7V, V_{GS} = 10.3V$ $T_A = 85\degree C$	0.01	2 10	0 01	0.2 10			nA nA
IGIONI	Leakage Current "ON"	V _{GD} 0V, I _S 1 mA T _A - 85 C	0 04	0 5 100	0 04	0.5 100	0.04	0.5 100	nA nA
I _{G(ON)}	Leakage Current "ON"	V _{GD} = 0V, I _S = 2 mA T _A = 85°C	0.07	2		2 2	0.07	2 1	nA μA
IGION	Leakage Current ''ON''	V _{GD} = 0V, I _S = -2 mA T _A - 85°C	0.05	5 2		100 20	0 05	5 2	nA μA
r _{DS(ON)}	Drain Source Resistance	V _{GS} = 0V, I _S = 2 mA T _A = 85 °C					60	100 160	Ω Ω
CDS(ON)	Drain-Source Resistance	V _{GS} = 15V, I _S = 2 mA T _A ÷ 85 C	60	100 160	60	100 160			Ω Ω
VDIODE	Forward Diode Drop	I _D = 0 5 mA		0.8				0.8	v
DS(ON)	Match	V _{GS} = 0, i _D = 1 mA	2	10		50	2	10	Ω
TON	Turn "ON" Time	See ac Test Circuit	150	500	150	500	150	500	ns
TOFF	Turn "OFF" Time	See ac Test Circuit	300	500	300	500	300	500	ns
СТ	Cross Talk	See ac Test Circuit	120		120		120		dB

AM9709, AM97C09, AH5009 Series

5

Schematic Diagrams and Pin Connections

Four Channel

• •

 $\begin{array}{l} \text{AM97C09CN} \; (\text{R}_{\text{DS}(\text{DN})} \leq 100\,\Omega, \; 10-15 \text{V} \; \text{CMOS}) \\ \text{AM97C10CN} \; (\text{R}_{\text{DS}(\text{DN})} \leq 150\,\Omega, \; 5-10 \text{V} \; \text{CMDS}) \\ \text{AM9709CN}, \; \text{AH5009CN} \; (\text{R}_{\text{DS}(\text{ON})} \leq 100\,\Omega, \; 15 \text{V} \; \text{TTL}) \\ \text{AM9710CN}, \; \text{AH5010CN} \; (\text{R}_{\text{DS}(\text{DN})} \leq 150\,\Omega, \; 5 \text{V} \; \text{TTL}) \end{array}$

 $\begin{array}{l} \mbox{AM97C11CN} (R_{DS(DN)} \leq 100\,\Omega, 10-15V\mbox{ CMOS}) \\ \mbox{AM97C12CN} (R_{DS(DN)} \leq 150\,\Omega, 5-10V\mbox{ CMDS}) \\ \mbox{AM9711CN}, \mbox{AH5011CN} (R_{DS(DN)} \leq 100\,\Omega, 15V\mbox{ TL}) \\ \mbox{AM9712CN}, \mbox{AH5012CN} (R_{DS(ON)} \leq 150\,\Omega, 5V\mbox{ TL}) \\ \end{array}$

Three-Channel

4

AH5015CN (R_DS(ON) \leq 100 $\Omega,$ 15V TTL) AH5016CN (R_DS(DN) \leq 150 $\Omega,$ 5V TTL)

Test Circuits and Switching Time Waveforms

Applications Information

Theory of Operation

The AM/AH series of analog switches are primarily intended for operation in current mode switch applications; i.e., the drains of the FET switch are held at or near ground by operating into the summing junction of an operational amplifier. Limiting the drain voltage to under a few hundred millivolts eliminates the need for a special gate driver, allowing the switches to be driven directly by standard TTL (AM9710), 5V-10V CMOS (AM97C10), open collector 15V TTL (AM9709), and 10–15V CMOS (AM97C09).

Two basic switch configurations are available, multiple independent switches (N by SPST) and multiple pole switches used for multiplexing (NPST-MUX). The MUX versions such as the AM9709 offer common drains and include a series FET operated at $V_{GS} = 0V$. The additional FET is placed in feedback path in order to compensate for the "ON" resistance of the switch FET as shown in *Figure 1*.

AM9709, AM97C09, AH5009 Series

Applications Information (Continued)

The closed-loop gain of Figure 1 is:

$$A_{VCL} = \frac{R2 + r_{DS(ON)O2}}{R1 + r_{DS(ON)O1}}$$

For R1 = R2, gain accuracy is determined by the $r_{DS'ON}$ match between Q1 and Q2. Typical match between Q1 and Q2 is 4 ohms resulting in a gain accuracy of 0.05% (for R1 = R2 = 10 k Ω).

Noise Immunity

The switches with the source diodes grounded exhibit improved noise immunity for positive analog signals in the "QFF" state. With $V_{\rm IN}$ = 15V and the $V_{\rm A}$ = 10V, the source of Q1 is clamped to about 0.7V by the diode ($V_{\rm GS}$ = 14.3V) ensuring that ac signals imposed on the 10V will not gate the FET "ON."

Selection of Gain Setting Resistors

Since the AM/AH series of analog switches are operated current mode, it is generally advisable to make the signal current as large as possible. However, current through the FET switch tends to forward bias the source to gate junction and the signal shunting diode resulting in leakage through these junctions. As shown in *Figure 2*, $I_{G(ON)}$ represents a finite error in the current reaching the summing junction of the op amp.

Secondly, the $r_{DS(ON)}$ of the FET begins to "round" as I_S approaches $I_{DSS}.$ A practical rule of thumb is to maintain I_S at less than 1/10 of $I_{DSS}.$

Combining the criteria from the above discussion yields:

$$R1_{(MIN)} \ge \frac{V_{A(MAX)} A_D}{I_{G(ON)}}$$
(2a)

or

$$\geq \frac{V_{A(MAX)}}{I_{DSS}/10}$$
(2b)

whichever is worse.

I_{DSS} = Saturation current of the FET switch ≈ 20 mA

In a typical application, V_A might = ±10V, A_D = 0.1%, $0^{\circ}C \le T_A \le 85^{\circ}C$. The criterion of equation (2b) predicts:

$$R1_{(MIN)} \geq \frac{10V}{\frac{20 \text{ mA}}{10}} = 5 \text{ k}\Omega$$

For R1 $^\circ$ 5k, I_S \cong 10V/5k or 2 mA. The electrical characteristics guarantee an I_{G(ON)} \leq 1µA at 85°C for the AM9710. Per the criterion of equation (2a):

$$R1_{(MIN)} \ge \frac{(10V)(10^{-3})}{1 \times 10^{-6}} \ge 10 \ k\Omega$$

Since equation (2a) predicts a higher value, the 10k resistor should be used.

The "OFF" condition of the FET also affects gain accuracy. As shown in *Figure 3*, the leakage across Q2, $I_{D(OFF)}$ represents a finite error in the current arriving at the summing junction of the op amp.

Accordingly:

$$R1_{(MAX)} \leq \frac{V_{A(M|N)} A_{D}}{(N) I_{D(OFF)}}$$

Vhere:	V _{A(MIN)}	 Minimum value for the analog input signal
	Α,	 Desired accuracy
	N	= Number of channels
	I _{D(OFF)}	= "QFF" leakage of a given FET switch

As an example, if N = 10. A_D = 0.1%, and $I_{D(OFF)} \leq$ 10 nA at 85°C for the AM9709, R1(MAX) is:

$$R1_{(MAX)} \le \frac{(1V)(10^{-3})}{(10)(10 \times 10^{-9})} = 10k$$

Selection of R2, of course, depends on the gain desired and for unity gain R1 = R2.

Lastly, the foregoing discussion has ignored resistor tolerances, input bias current and offset voltage of the op amp--all of which should be considered in setting the overall gain accuracy of the circuit.

FIGURE 2. On Leakage Current, IG(ON)

AM9709, AM97C09, AH5009 Series

Applications Information (Continued)

TTL Compatibility

Two input logic drive versions of AM/AH series are available: the even numbered part types are specified to be driven from standard 5V-TTL logic and the odd numbered types from 15V open collector TTL.

Standard TTL gates pull-up to about 3.5V (no load). In order to ensure turn-off of the even numbered switches such as AM9710, a pull-up resistor, $R_{\rm EXT}$, of at least 10 k Ω should be placed between the 5V $V_{\rm CC}$ and the gate output as shown in Figure 4.

Likewise, the open-collector, high voltage TTL outputs should use a pull-up resistor as shown in Figure 5. In

both cases, $t_{\rm (OFF)}$ is improved for lower values of $R_{\rm EXT}$ and the expense of power dissipation in the low state.

CMOS Compatibility

The cost effective AM97C09 series of switches is optimized for CMOS drive without resistor pull-up. The AM97C10's and AM97C12's are specified for 5V-10V operation while the AM97C09's and AM97C11's are specified for 10V-15V operation.

Definition of Terms

The terms referred to in the electrical characteristics tables are as defined in *Figure 6*.

FIGURE 5. Interfacing with +15V Open Collector TTL

Applications Information (Continued)

Typical Applications (Continued)

16-Channel Multiplexer

5

Typical Applications (Continued)

8-Bit Binary (BCD) Multiplying D/A Converter

