

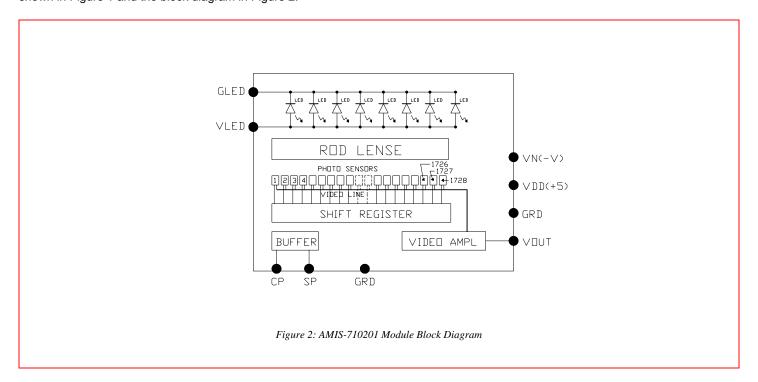
1.0 General Description

The AMIS-710201 (PI201M-A4) is a contact image sensor (CIS) module using MOS image sensor technology for high-speed performance and high sensitivity. The AMIS-710201 is suitable for scanning A4 size (216mm) documents with 8 dots per millimeter (dpm) resolution. Applications include document scanners, mark readers and other office automation equipment.

2.0 Key Features

- · Light source, lens and sensor are integrated into a single module
- 8dpm resolution, 216mm scanning length
- 1.72ms/line scanning speed
- · Wide dynamic range analog output
- Yellow-Green light source
- Compact size 13.5mm x 18mm x 232mm
- Low power
- · Light weight

3.0 Functional Description


The AMIS-710201 imaging array consists of 27 sensors that are cascaded to provide 1728 photo-detectors with their associated multiplex switches and a digital shift register that controls its sequential readout. Mounted in the module is a one-to-one graded indexed micro lens array that focuses the scanned documents to image onto its sensing plane. The on-board amplifier processes the video signal to produce a sequential stream of video at the video output pin of the AMIS-710201 module.

INSIDE PICTURIAL

Figure 1: AMIS-710201 Cross Section

Illumination is by means of an integrated LED light source. All components are housed in a small plastic housing which has a cover glass which acts as the focal point for the object being scanned and protects the imaging array, micro lens assembly and LED light source from dust. I/O to the module is the 10-pin connector located on one end of the module. The cross section of the AMIS-710201 is shown in Figure 1 and the block diagram in Figure 2.

4.0 Absolute Maximum Rating

www.DataSheet4U.com

Table 1: Absolute Maximum Rating

Parameter	Symbols	Maximum Rating	Units
Power supply voltage	Vdd	10	V
	ldd	40	mA
	Vn	-15	V
	ln	10	mA
	VLED	5.25	V
	ILED	650	ma
Input clock pulse (high level)	Vih	Vdd – 0.5V	V
Input clock pulse (low level)	Vil	-0.8	V

5.0 Recommended Operating Conditions (25°C)

Table 2: Recommended Operating Conditions (25°C)

Item	Symbol	Min.	Typical	Max.	Units
Power supply	Vdd	4.5	5.0	5.5	V
	Vn.	-4.5	-5	-12	V
	VLED		5		V
	Idd		11	30	ma
	lvn		6.0	10.0	ma
	ILED		350	550	ma
Input voltage at digital high	Vih	Vdd-1.0	Vdd5	Vdd	V
Input voltage at digital low	Vil	0		0.8	V
Clock frequency	f			1.0 (1)	MHz
Clock pulse high duty cycle		25			%
Clock pulse high duration		250			ns
Integration time	Tint	1.728		10.0	ms
Operating temperature	Тор		25	50	°C

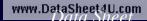
Table 3: Operating Environment

Parameter	Symbols	Maximum Rating	Units
Operating temperature	Тор	0 to 50	°C
Operating humidity	Нор	10 to 85	%
Storage temperature	Tstg	-25 to+75	°C
Storage humidity	Hstg	10 to 90	%

6.0 Electro-Optical Characteristics (25°C)

Table 4: Flectro-Optical Characteristics (25°C)

Parameter	Symbol	Parameter	Units	Note
Number of photo detectors		1728	Elements	
Pixel-to-pixel spacing		125	μm	
Line scanning rate	Tint ⁽¹⁾	1.728	ms	@ 1.0MHz clock frequency
Clock frequency ⁽²⁾		1.0	MHz	
Bright output voltage(3)		0.6	Volts	
Bright output non-uniformity ⁽⁴⁾		<+/-30	%	
Adjacent pixel non-uniformity(5)		<25	%	
Dark non-uniformity ⁽⁶⁾		<200	mV	
Dark output voltage ⁽⁶⁾		<200	mV	
Modulation transfer function ⁽⁷⁾		>30	%	


Definitions:

- Tint: line scanning rate or integration time. Tint is determined by the interval of two start pulse (SP).
- f: main clock frequency.
- $Vpavg = \sum Vp(n)/1728$
- $\begin{aligned} &\mathsf{Up} = \left[(\mathsf{Vpmax} \mathsf{Vp}) \ / \ \mathsf{Vp} \right] \times 100\% \text{ or } \left[(\mathsf{Vp} \mathsf{Vpmin}) \ / \ \mathsf{Vp} \right] \times 100\%. \\ &\mathsf{Upadj} = \mathsf{MAX} \left[\ | \ (\mathsf{Vp(n)} \mathsf{Vp(n+l)} \ | \ / \ \mathsf{Vp(n)} \right] \times 100\% \text{ Upadj is the nonuniformity percentage pixel-to-pixel.} \end{aligned}$
- Ud = Vdmax Vdmin
 - Vdmin is the minimum output on a black document(O.D.=0.8).
- Vdmax: maximum output voltage of black document (O.D.= 0.8).

 MTF = [(Vmax Vmin) / (Vmax + Vmin)] x 100 [%] Vmax: maximum output voltage at 4.0lp/mm Vmin: minimum output voltage at 4.0lp/mm.
- lp / mm: line pair per mm.
- O.D. Optical Density

The module will produce video above 1.5MHz, but with adjacent pixel smearing. Hence, with signal degradation it can be used above 1.5MHz.

7.0 Switching Characteristics (25°C)

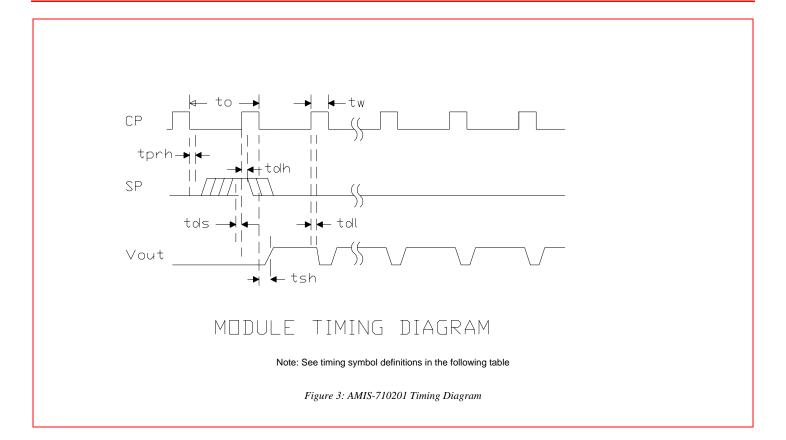
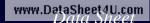
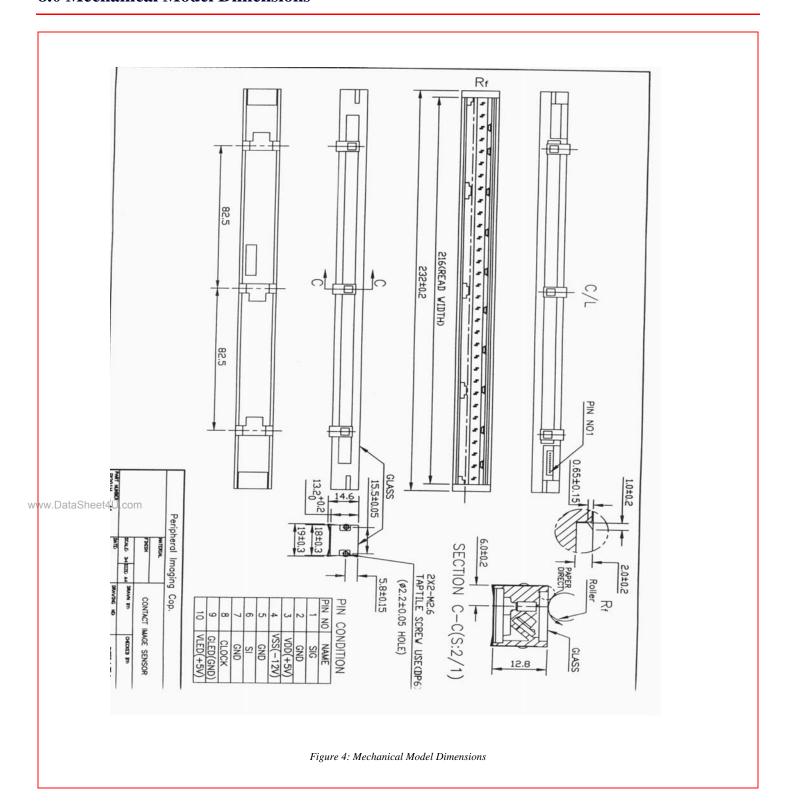


Table 5: Symbol Definitions for the Above Timing Diagram

item	Symbol	Min.	Typical	Max.	Units
Clock cycle time	to	1.0		4.0	μS
Clock pulse width	tw	250			ns
Clock duty cycle		25		75	%
Prohibit crossing time of start	tprh	15			ns
pulse					
Data setup time	tds	20			ns
Data hold time	tdh	20			ns
Signal delay time	tdl	50			ns
Signal settling time	tsh	350			ns




Table 6: Pin Configurations

Pin Number	Symbol	Names and Functions
1	Vout	Analog video output
2	Gnd	Ground; 0V
3	Vdd (+5V)	Positive power supply
4	Vn (-5V to −12V)	Negative power supply
5	Gnd	Ground; 0V
6	SP	Shift register start pulse
7	Gnd	Ground; 0V
8	СР	Sampling clock pulse
9	GLED	Ground for the light source; 0V
10	VLED	Supply for the light source

www.DataSheet4U.com

8.0 Mechanical Model Dimensions

AMIS-710201: 200dpi CIS Module

9.0 Company or Product Inquiries

For more information about AMI Semiconductor, our technology and our product, visit our Web site at: http://www.amis.com

North America

Tel: +1.208.233.4690 Fax: +1.208.234.6795

Europe

Tel: +32 (0) 55.33.22.11 Fax: +32 (0) 55.31.81.12

www.DataSheet4U.com

Production Technical Data - The information contained in this document applies to a product in production. AMI Semiconductor and its subsidiaries ("AMIS") have made every effort to ensure that the information is accurate and reliable. However, the characteristics and specifications of the product are subject to change without notice and the information is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify that data being relied on is the most current and complete. AMIS reserves the right to discontinue production and change specifications and prices at any time and without notice. Products sold by AMIS are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. AMIS makes no other warranty, express or implied, and disclaims the warranties of noninfringement, merchantability, or fitness for a particular purpose. AMI Semiconductor's products are intended for use in ordinary commercial applications. These products are not designed, authorized, or warranted to be suitable for use in life-support systems or other critical applications where malfunction may cause personal injury. Inclusion of AMIS products in such applications is understood to be fully at the customer's risk. Applications requiring extended temperature range, operation in unusual environmental conditions, or high reliability, such as military or medical life-support, are specifically not recommended without additional processing by AMIS for such applications. Copyright © 2006 AMI Semiconductor, Inc.

