Advanced Monolithic Systems

AMS4155

2A OUTPUT PWM BUCK CONVERTER

RoHS compliant

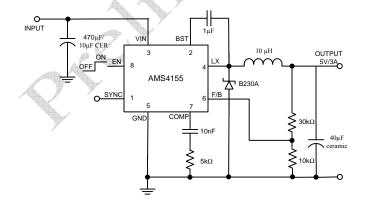
FEATURES

- Stable with low ESR Output Ceramic Capacitors
- Up to 95% Efficiency
- 2A Continuous Output Current
- Wide 4.75V to 20V Operating Input Range
- Fixed 480kHz Frequency
- Thermal Shutdown
- Cycle-by-cycle + hiccup Over Current Protection
- Under Voltage Lockout
- Frequency Synchronization Input
- Operating Temperature: -40°C to 125°C
- Available in an 8-Pin SO Package

APPLICATIONS

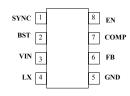
- Battery Chargers
- Portable (Notebook) Computers
- Industrial power supply
- Point of regulation for high performance electronics
- Consumer Electronics
- Audio Power Amplifiers
- Distributed Power Systems
- Pre-Regulator for Linear Regulators
- LCD TVs and LCD monitors

GENERAL DESCRIPTION


The AMS4155 is a monolithic step down switch mode converter with a built in internal power Switch Transistor. It achieves 2A continuous output current over a wide input supply range with excellent load and line regulation.

Current mode operation provides fast transient response and eases loop stabilization. Fault condition protection includes cycle-by-cycle current limiting and thermal shutdown. In shutdown mode the regulator draws 17µA of supply current.

ORDERING INFORMATION


OUTPUT	PACKAGE TYPE		TEMP, RANGE		
VOLTAGE	8 Lead SOIC	•	ACY		
Adjustable	AMS4155S		-25°C to 125°C		

TYPICAL APPLICATION

PIN CONNECTIONS

8L SOIC SO Package (S)

Top View

PIN DESCRIPTION

Pin Number	NAME	DESCRIPTION
1	SYNC	Synchronization Input. This pin is used to synchronize the internal oscillator frequency to an external source. Leave SYNC unconnected or connect to GND if unused.
2	BST	Bootstrap. This capacitor is needed to drive the power switch above the supply voltage. It is connected between LX and BST pins to form a floating supply across the power switch driver. The voltage across Cbst is about 5V and is supplied by the internal Vcc supply when LX pin voltage is low.
3	VIN	Supply Voltage. The AMS4155 operates from a+4.75V to +23V unregulated input. Cin is needed to prevent large voltage spikes from appearing at the input power supply.
4	LX	This connects the inductor to the internal Switch
5	GND	Ground Pin connected to PCB ground plane. This pin is also the ground for internal voltage reference.
6	FB	Feedback. A resistor network of two resistors is used to set-up the output voltage connected between Output to GND. The node between the two resistors is connected to Feedback pin.
7	СОМР	Compensation. This node is the output of the transconductance error amplifier and the input to the current comparator. Frequency compensation is done at this node by connecting a series R-C to ground.
8	ENABLE	Enable. A voltage greater than 2.495V at this pin enables device operation.

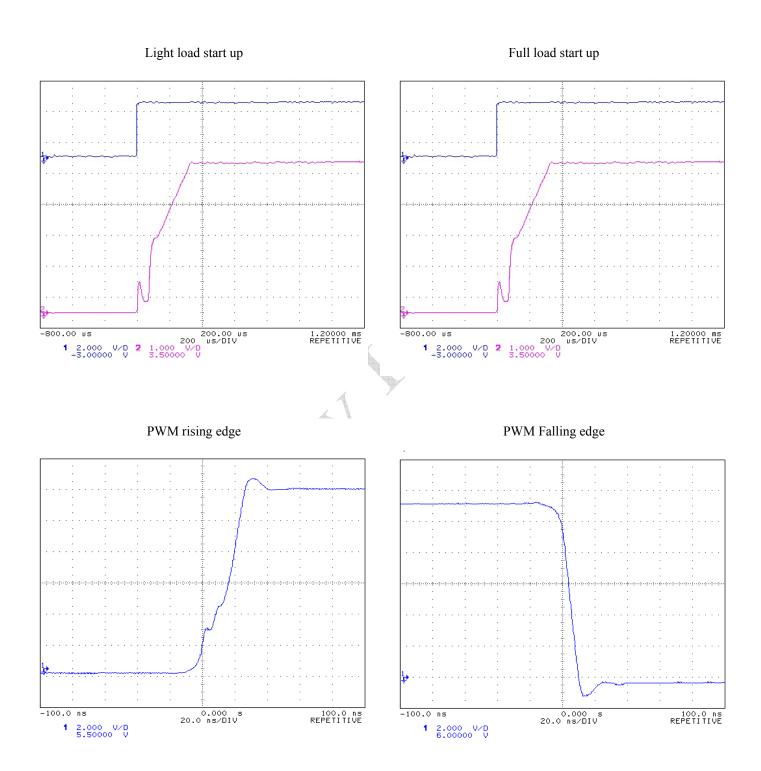
ABSOLUTE MAXIMUM RATINGS

$V_{ m IN}$	28V	LX	-1V to +28V
F/B	-0.3V to +6V	COMP	-0.3V to +6V
EN	-0.3V to +6V	SYNC	-0.3v to +6V
BST	VLX + 6V		

Junction Temperature	+150°C
Storage Temperature	-65°C to +150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

ELECTRICAL CHARACTERISTICS

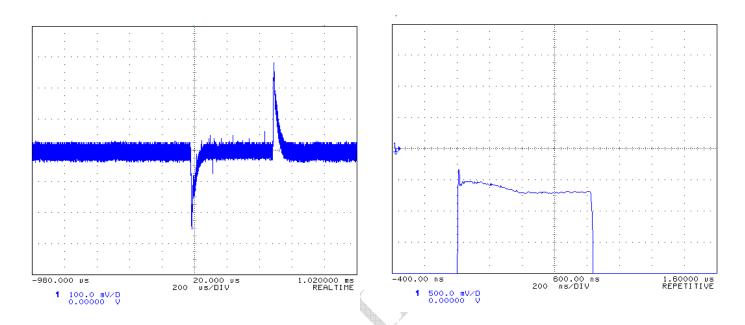
Electrical Characteristics at T_A = 25 °C and VIN=12V (unless otherwise noted).

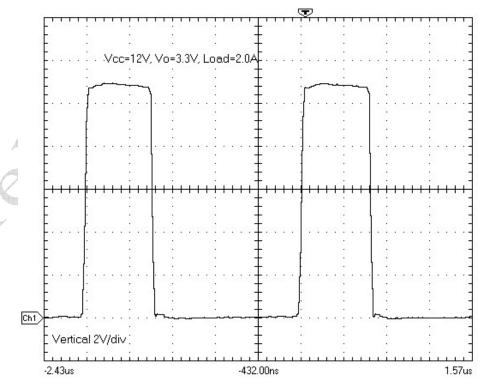

PARAMETER	TEST CONDITIONS	AMS4155			Units
		Min.	Тур.	Max.	
Feedback Voltage	$4.75V \le V_{IN} \le 20V, V_{COMP} \le 2V$	1.215	1.255	1.285	V
Switch On Resistance			0.18		Ω
Switch Leakage	$V_{EN} = 0V$; $VLX = 0V$		0	10	μΑ
Current Limit (1)		3.4	4	6	A
Current Amplifier Gain			1.9		A/V
Error Amplifier Voltage Gain			400		V/V
Error Amplifier Transconductance	$\Delta I_C = \pm 10 \mu A$		730		μA/V
Oscillator Frequency		420	460	500	KHz
Sync Frequency	Sync Drive 0.5V to 2.7V	0.460		1.1	MHz
Maximum Duty Cycle	$V_{FB} = 1.0V$		85		%
Minimum Duty Cycle	$V_{FB} = 1.5V$			3.2	%
Enable Threshold		2.2	2.475	2.55	V
Enable Hysteresis			220		mV
Enable Pull-up Current	7		0.7		μΑ
Under Voltage Lockout					•
Threshold Rising		2.4	2.5	2.6	V
Under Voltage Lockout					
Threshold Hysteresis			200		mV
Supply Current (Shutdown)	$V_{\rm EN} \le 0.4 V$		17	25	μΑ
Supply Current (Quiescent)	$V_{EN} \ge 2.8V; V_{FB} = 1.5V$		0.95	1.1	mA
Thermal Shutdown			153		°C

Note:

1) Equivalent output current = $1.5A \ge 50\%$ Duty Cycle $2.0A \le 50\%$ Duty Cycle

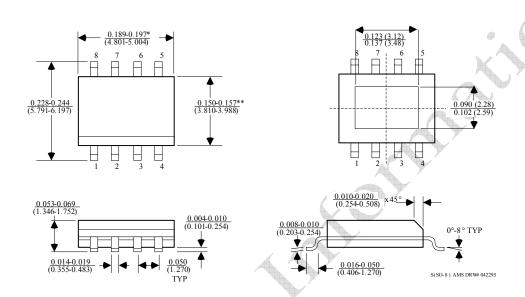
Assumes ripple current = 30% of load current.

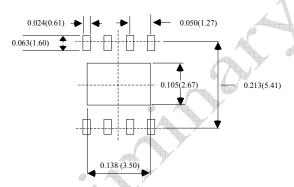

TYPICAL PERFORMANCE CHARACTERISTICS


TYPICAL PERFORMANCE CHARACTERISTICS (continued)

0.5-3A transient on 5V output

Full load Sat (reference = supply at IC)




Typical waveform set at 3.3V output, 2A load and 12V input.

PACKAGE DIMENSIONS inches (millimeters) unless otherwise noted.

8 LEAD SOIC PLASTIC PACKAGE (S)

RECOMMENDED LAYOUT PATTERN

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE

**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE