DATA SHEET

Part No.	AN18207A
Package Code No.	LQFP048-P-0707A

Panasonic

Contents

Overview	3
■ Features	3
Applications	3
■ Package	3
■ Туре	3
Application Circuit Example	4
■ Pin Descriptions	5
■ Absolute Maximum Ratings	7
Operating Supply Voltage Range	7
■ Allowable Voltage Range	8
Electrical Characteristics	9
■ Electrical Characteristics (Reference values for design)	11
■ Electrical Characteristics Test Procedures	14
■ Technical Data	16
• I ² C-bus interface	16
• I/O block circuit diagrams and pin function descriptions	27
• $P_D - T_a$ diagram	36
Usage Notes	37
Special attention and precaution in using	37

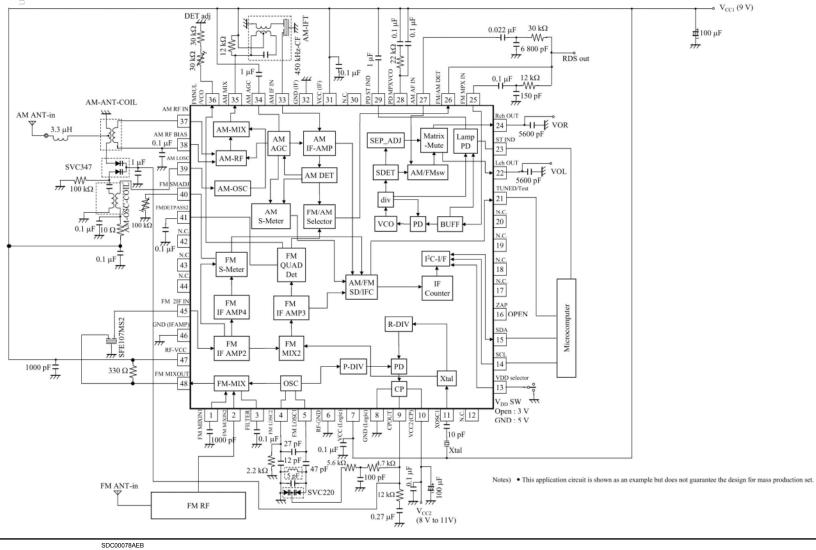
AN18207A Tuner IC for home-audio stereo set

Overview

AN18207A is all-in-one IC for a radio of home-audio use. As for FM portion, FM MIX to FM MPX are integrated. As for AM portion, AM-RF to AM detector are integrated. FM/AM PLL synthesizer with pre-scale function is also integrated. Therefore, AN18207A can achieve the most function of radio.

Features

- AM : RF + MIX + L-OSC, FM : MIX + L-OSC, FM/AM : IF + DET, FM-MPX, PLL
- I²C-bus control
- FM detector coil less
- Separation adjustment free


Applications

• Tuner, radio

Package

- 48 pin Plastic Low Profile Quad Flat Package (QFP type)
- Type
 - Silicon Monolithic Bipolar IC

Application Circuit Example

1

Panasonic

Pin Descriptions

Pin No.	Pin name	Туре	Description
1	FM MIXIN1	Input	FM mixer input 1
2	FM MIXIN2	Input	FM mixer input 2
3	FILTER	Input / Output	FILTER
4	FM LOSC2	Output	FM local oscillator load 2 (Emitter side)
5	FM LOSC1	Input	FM local oscillator load 1 (Base side)
6	RF-GND	Ground	RF-GND
7	VCC (Logic)	Power supply	Logic-V _{CC}
8	GND (Logic)	Ground	Logic-GND
9	CPOUT	Output	Charge pump output
10	VCC2 (CP)	Power supply	Charge pump-V _{CC}
11	XOSC1	Input	Crystal oscillator
12	N.C.		N.C. (Open in IC)
13	VDD selector	Input	V _{DD} selector
14	SCL	Input	Serial clock input (SCL)
15	SDA	Input / Output	Serial data input / output (SDA)
16	ZAP		Pulse input for ZAP (Must be open)
17	N.C.		N.C. (Open in IC)
18	N.C.		N.C. (Open in IC)
19	N.C.		N.C. (Open in IC)
20	N.C.		N.C. (Open in IC)
21	TUNED/Test/FM S- Meter	Output	TUNED / Test monitor output / FM S-Meter
22	Lch OUT	Output	L-ch. de-emphasis output (External capacitor 0.0056 μ F : Time constant = 50 μ s)
23	ST IND	Output	Stereo indicator
24	Rch OUT	Output	R-ch. de-emphasis output (External capacitor 0.0056 μ F : Time constant = 50 μ s)
25	FM MPX IN	Input	FM MPX input
26	FM/AM DET	Output	FM/AM detector output
27	AM AF IN	Input	AM AF input
28	PD MPXVCO	Input / Output	Phase detector for MPX-VCO
29	PD ST IND	Input / Output	Phase detector for MPX stereo detector
Da 39 5he	NLC.com		N.C. (Open in IC)

Panasonic

■ Pin Descriptions (continued)

Pin No.	Pin name	Туре	Description
31	VCC	Power supply	VCC
32	GND	Ground	GND
33	AM IF IN	Input	AM IF amp. input
34	AM AGC	Input / Output	AM-AGC level detector
35	AM MIX	Output	AM mixer output
36	FMNUL/VCO	Input / Output	MPX-VCO frequency adjustment / FM detector center adjustment
37	AM RF IN	Input	AM RF input
38	AM RF BIAS	Input / Output	AM RF input reference bias
39	AM LOSC	Input / Output	AM local oscillator load
40	FM SMADJ	Input / Output	FM signal meter adjustment
41	FMDETPASS2	Input / Output	FM detector bypass 2
42	N.C.		N.C. (Open in IC)
43	N.C.		N.C. (Open in IC)
44	N.C.		N.C. (Open in IC)
45	FM 2IF IN	Input	FM 2nd IF amp. input
46	GND	Ground	GND for IF amp.
47	RF-VCC	Power supply	RF-V _{CC}
48	FM MIXOUT	Output	FM mixer output

Absolute Maximum Ratings

Note) Absolute maximum ratings are limit values which are not destructed, and are not the values to which operation is guaranteed.

A No.	Parameter	Symbol	Rating	Unit	Notes
1	Supply voltage	V _{CC1}	10.5	V	*1
		V _{CC2}	11.5		.1
2	Supply current	I _{CC}	60	mA	—
3	Power dissipation	P _D	294	mW	*2
4	Operating ambient temperature	T _{opr}	-20 to +85	°C	*3
5	Storage temperature	T _{stg}	-55 to +150	°C	*3

Notes)*1 : The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

V_{CC2} is VCC for charge pump.

*2 : The power dissipation shown is the value at $T_a = 85^{\circ}C$ for the independent (unmounted) IC package without a heat sink. When using this IC, refer to the • P_D - T_a diagram in the \blacksquare Technical Data and design the heat radiation with sufficient margin so that the allowable value might not be exceeded based on the conditions of power supply voltage, load, and ambient temperature.

*3 : Except for the power dissipation, operating ambient temperature, and storage temperature, all ratings are for $T_a = 25^{\circ}C$.

Operating supply voltage range

Parameter	Symbol	Range	Unit	Notes
	V _{CC1}	8.0 to 10.0	V	*
Supply voltage range	V _{CC2}	8.0 to 11.0	v	*

Note) *: The values under the condition not exceeding the above absolute maximum ratings and the power dissipation. V_{CC2} is VCC for charge pump.

Allowable Voltage Range

 Notes)
 Voltage values, unless otherwise specified, are with respect to GND.

 GND is voltage for RF-GND, GND(Logic), GND(IF), GND(IF AMP). RF-GND = GND(Logic) = GND(IF) = GND(IF AMP)

 Do not apply external currents or voltages to any pin not specifically mentioned. Please make Pin16 open.

 For the circuit currents, "+" denotes current flowing into the IC, and "-" denotes current flowing out of the IC.

 Pin No.
 Pin name

 Rating
 Unit

Pin No.	Pin name	Rating	Unit	Notes
1	FM MIXIN1	-0.3 to (V _{CC1} +0.3)	V	
2	FM MIXIN2	-0.3 to (V _{CC1} +0.3)	V	
3	FILTER	-0.3 to (V _{CC1} +0.3)	V	
5	FM LOSC1	-0.3 to (V _{CC1} +0.3)	V	
11	XOSC1	-0.3 to (V _{CC1} +0.3)	V	
13	VDD selector	-0.3 to (V _{CC1} +0.3)	V	
14	SCL	- 0.3 to 5.3	V	
15	SDA	- 0.3 to 5.3	V	
25	FM MPX IN	-0.3 to (V _{CC1} +0.3)	V	
27	AM AF IN	-0.3 to (V _{CC1} +0.3)	V	
28	PD MPXVCO	-0.3 to (V _{CC1} +0.3)	V	
29	PD ST IND	-0.3 to (V _{CC1} +0.3)	V	
33	AM IF IN	-0.3 to (V _{CC1} +0.3)	V	
34	AM AGC	-0.3 to (V _{CC1} +0.3)	V	
36	FMNUL/VCO	-0.3 to (V _{CC1} +0.3)	V	_
37	AM RF IN	-0.3 to (V _{CC1} +0.3)	V	
38	AM RF BIAS	-0.3 to (V _{CC1} +0.3)	V	
39	AM LOSC	-0.3 to (V _{CC1} + 0.3)	V	
40	FM SMADJ	-0.3 to (V _{CC1} + 0.3)	V	_
41	FMDETPASS2	-0.3 to (V _{CC1} + 0.3)	V	_
45	FM 2IF IN	-0.3 to (V _{CC1} + 0.3)	V	

Panasonic

Electrical Characteristics at $V_{CC1} = 9.0 \text{ V}$, $V_{CC2} = 10 \text{ V}$ Note) $T_a = 25^{\circ}\text{C}\pm2^{\circ}\text{C}$ unless otherwise specified.

в	Devenester	Ourseland	Que d'itiene		Limits		1.1	Natas			
No.	Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Notes			
AM	$AM = f_c = 999 \text{ kHz}$										
1	AM-quiescent current	amIt	No input, Current from V _{CC1}	14	28	42	mA	*1			
2	AM output 1	amVo1	$V_{IN3} = 30 \text{ dB}\mu$, 1 kHz, 30% AM output	52	92	172	mV[rms]				
3	AM output 2	amVo2	$V_{IN3} = 74 \text{ dB}\mu$, 1 kHz, 30% AM output	128	208	288	mV[rms]	_			
4	AM-S/N ratio 1	amSN1	$V_{IN3} = 30 \text{ dB}\mu$, 1 kHz, 30% AM output S/N	17	23		dB				
5	AM-S/N ratio 2	amSN2	$V_{IN3} = 74 \text{ dB}\mu$, 1 kHz, 30% AM output S/N	47	53		dB				
6	AM THD 1	amT1	$V_{IN3} = 74 \text{ dB}\mu$, 1 kHz, 30% output distortion factor		0.4	1.1	%				
7	AM THD 2	amT2	V _{IN3} = 103 dBµ, 1 kHz, 30% output distortion factor		0.5	2.0	%				
8	AM-SD sensitivity	amSDS	0% mod Sens set (I^2C) = X'C'	33	43	53	dBμ	_			
FM m	nono f _c = 10.7 MHz										
9	FM-RDS output	fmRDS	$V_{IN2} = 80 \text{ dB}\mu$, 1 kHz, 100%	320	480	640	mV[rms]	—			
10	FM-quiescent current 1	fmIt1	No input, Current supplied from V_{CC1}	36	47	58	mA	*1			
11	FM-quiescent current 2	fmIt2	No input, Current supplied from V _{CC2}	53	105	160	μA	*1			
12	FM output	fmVo	$V_{IN2} = 80 \text{ dB}\mu$, 1 kHz, 100% output	600	800	1 000	mV[rms]				
13	FM-S/N ratio	fmSN	V _{IN2} = 100 dBμ, 1 kHz, 100% FM output S/N	68	72		dB				
14	FM-mono THD	fmTm1	$V_{IN2} = 80 \text{ dB}\mu$, 1 kHz, 100% output distortion factor	_	0.2	1.3	%	_			
15	FM-SD sensitivity	fmSDS	0% mod Sens set $(I^2C) = X'5'$	31	41	51	dBμ	_			
16	FM-mute ratio	fmMUTE	$V_{IN2} = 80 \text{ dB}\mu$, 1 kHz, 100% output ratio to fmVo (mute on)	54	74		dB				

Note) *1 : No input = $-10 \text{ dB}\mu$ or less.

Panasonic

Electrical Characteristics (continued) at $V_{CC1} = 9.0 \text{ V}, V_{CC2} = 10 \text{ V}$ Note) $T_a = 25^{\circ}C \pm 2^{\circ}C$ unless otherwise specified.

В	Parameter	Sumbol	Conditions		Limits		Unit	Notes
No.	Parameter	Symbol	Conditions	Min	Тур	Max	Unit	notes
FM st	tereo f _c = 10.7 MHz							
17	FM-L-ch. separation	fmSepL	$V_{IN2} = 80 \text{ dB}\mu$, 1 kHz, 90% L-ch. output separation	30	40		dB	
18	FM-R-ch. separation	fmSepR	$V_{IN2} = 80 \text{ dB}\mu$, 1 kHz, 90% R-ch. output separation	30	40	_	dB	
19	FM-stereo THD	fmTs1	$V_{IN2} = 80 \text{ dB}\mu$, 1 kHz, stereo (L + R) 90% output distortion factor		0.35	1.5	%	
20	FM-carrier-leak	fmCL	pilot = 10% output level	20			dB	
21	FM-stereo detect sensitivity	fm _{STON}	$V_{IN2} = 80 \text{ dB}\mu$, fp = 19 kHz	1.3	3.0	5.0	%	
FM F	E f _c = 98 MHz							
22	FM-FE S/N ratio	fmSN	V _{IN1} = 12 dBµ, 1 kHz, 100% mod VO _{DET}	28	39	_	dB	
23	FM-Mixer output level	fmMIXout	$V_{IN1} = 64 \text{ dB}\mu$, IFOUT	6.4	8.2	10.0	mV[rms]	
24	FM-LOSC level	fmOSCout	No input, 108.7 MHz	215	280	345	mV[rms]	_
FM m	nono $f_c = 10.7 \text{ MHz}$							
25	FM limiting sensitivity	fmVlim	1 kHz, 100% of output -3 dB (Ref. input level V _{IN2} = 80 dBµ)	_	26	37	dBμ	_
26	AM suppression ratio	AMR	$V_{IN2} = 100 \text{ dB}\mu$, fm = 1 kHz AM : 30% mod FM : 100% mod	54	68		dB	

Panasonic

\blacksquare Electrical Characteristics (Reference values for design) at V_{CC1} = 9.0 V , V_{CC2} = 10 V

Notes) $T_a = 25^{\circ}C\pm 2^{\circ}C$ unless otherwise specified. The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection. If a problem does occur related to these characteristics, we will respond in good faith to user concerns.

в	Devenueter	Oursehal	Conditions	Refe	rence v	alues	Unit	Notoo
No.	Parameter	Symbol	Conditions	Min	Тур	Max		Notes
PLL								
27	Charge pump output pull-up current	Icpup	120 μA mode Pin 9 output current	90	129	170	μΑ	_
28	Charge pump output pull-down current	Icpdown	120 μA mode Pin 9 input current	-170	-120	-72	μΑ	_
I ² C in	terface							
29	ACK Low-level output voltage	V _{ACK}	ACK Pin 15 voltage I = 3 mA	0		0.4	V	_
30	Low-level output voltage 1	V _{OL1}	$V_{DD} > 2 V$ IP50 = 3 mA	0		0.4	V	_
31	High-level input voltage 1	V _{IHI_5}	Voltage which recognized that SDA and SCL are High-level 5 V mode Pin 13 : GND	3.5		5.5	V	
32	Low-level input voltage 1	V _{ILO_5}	Voltage which recognized that SDA and SCL are Low-level 5 V mode Pin 13 : GND	- 0.5	_	1.5	V	_
33	High-level input voltage 2	V _{IHI_3}	Voltage which recognized that SDA and SCL are High-level 3 V mode Pin 13 : OPEN	2.1		3.5	v	
34	Low-level input voltage 2	V _{ILO_3}	Voltage which recognized that SDA and SCL are Low-level 3 V mode Pin 13 : OPEN	- 0.5		0.9	V	_

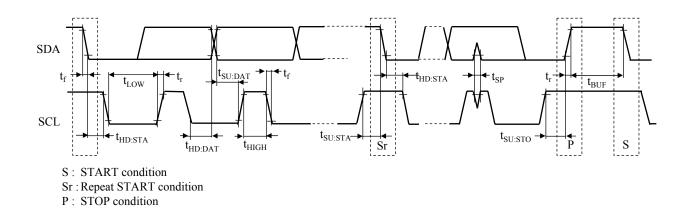
Panasonic

Electrical Characteristics (Reference values for design) (continued) at V_{CC1} = 9.0 V , V_{CC2} = 10 V

Notes) $T_a = 25^{\circ}C \pm 2^{\circ}C$ unless otherwise specified.

The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection. If a problem does occur related to these characteristics, we will respond in good faith to user concerns.

В	Deremeter	Current al	Conditions	Refe	rence va	alues	Unit	Notes
No.	Parameter	Symbol	Conditions	Min	Тур	Max		Notes
I ² C I	C Interface (Fast-mode)							
35	SCL maximum frequency	f _{SCL}			—	400	kHz	*2
36	Hysteresis of Schmitt trigger inputs 1	Vhys1	5 V mode Pin 13 : GND	0.25	—		V	*2
37	Hysteresis of Schmitt trigger inputs 1	Vhys2	3 V mode Pin 13 : OPEN	0.15	—		V	*2
38	Output fall time from V_{IHmin} to V_{ILmax}	Tof	Bus capacitance : 10 pF to 400 pF Ip < 6 mA	20 + 0.1C _b	—	250	ns	*2
39	Pulse width of spikes which must be suppressed by the input filter	t _{SP}	_	0		50	ns	*2
40	Capacitance for each I/O pin	Ci	Bus capacitance : 10 pF to 400 pF		—	10	pF	*2
41	Hold time (repeated)	t _{HD:STA}	The first clock pulse is generated after $t_{HD:STA}$	0.6			μs	*2
42	Low period of the SCL clock	t _{LOW}	_	1.3	_		μs	*2
43	High period of the SCL clock	t _{HIGH}	_	0.6	_	—	μs	*2
44	Set-up time for a repeat START condition	t _{SU:STA}	_	0.6	—		μs	*2
45	Data hold time	t _{HD:DAT}		0	_	0.9	μs	*2
46	Data set-up time	t _{SU:DAT}	—	100	—	—	ns	*2
47	Rise time of both SDA and SCL signals	t _r	_	20 + 0.1C _b		300	ns	*2
48	Fall time of both SDA and SCL signals	t _f	—	20 + 0.1C _b	_	300	ns	*2
49	Set-up time of STOP condition	t _{SU:STO}		0.6			μs	*2
50	Bus free time between a STOP and START condition	t _{BUF}	_	1.3			μs	*2
51	Capacitive load for each bus line	C _b				400	pF	*2


Panasonic

■ Electrical Characteristics(Reference values for design)(continued)at V_{CC1} = 9 V, V_{CC2} = 10 V

Notes) $T_a = 25^{\circ}C \pm 2^{\circ}C$ unless otherwise specified.

The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection. If a problem does occur related to these characteristics, we will respond in good faith to user concerns.

в	Deremeter	Sumbol	Conditions	Reference values			Unit	Notes			
No.	Parameter	Symbol	Symbol Conditions	Min	Тур	Max	Unit	notes			
I ² C I	I ² C Interface (Fast-mode) (continued)										
52	Noise margin at the Low-level for each connected device	V_{aL1}	5 V mode Pin 13 : GND	0.5	_	—	v	*2			
53	Noise margin at the High-level for each connected device	V_{aH1}	5 V mode Pin 13 : GND	1.0			v	*2			
54	Noise margin at the Low-level for each connected device	V _{aL2}	3 V mode Pin 13 : OPEN	0.3	_		V	*2			
55	Noise margin at the High-level for each connected device	V _{aH2}	3 V mode Pin 13 : OPEN	0.6			V	*2			
56	Input current each I/O pin at 5V mode	Ii5	$V_{IN} = 0.5 V$ to 4.5 V	-10		10	μΑ	*2			
57	Input current each I/O pin at 3V mode	Ii3	$V_{IN} = 0.3 V \text{ to } 2.7 V$	-10		10	μΑ	*2			

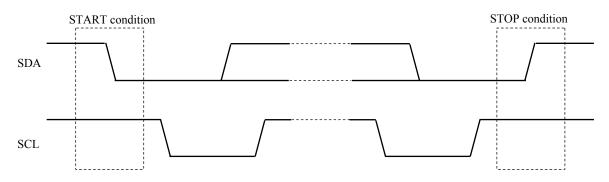
Panasonic

Electrical Characteristics Test Procedures

с			Input		Output			Pin se	ttings		
No.	Parameter	Pin No.	Conditions	Pin No.	Conditions	V _{CC1}	V _{CC2}	SW1	SW2	SW3	SW4
AM											
1	AM-quiescent current	_	No signal		_	9 V	10 V	2	1	2	2
2	AM output 1	37	$f = 999 \text{ kHz}, V_{1N3} = 30 \text{ dB}\mu$ fs = 1 kHz, AM : 30% mod	22	30 kHz LPF	9 V	10 V	2	1	2	2
3	AM output 2	37	$f = 999 \text{ kHz}, V_{1N3} = 74 \text{ dB}\mu$ fs= 1 kHz, AM : 30% mod	22	30 kHz LPF	9 V	10 V	2	1	2	2
4	AM-S/N ratio 1	37	$f = 999 \text{ kHz}, V_{1N3} = 30 \text{ dB}\mu$ fs = 1 kHz, AM : 30% S/N	22	30 kHz LPF	9 V	10 V	2	1	2	2
5	AM-S/N ratio 2	37	$f = 999 \text{ kHz}, V_{IN3} = 74 \text{ dB}\mu$ fs = 1 kHz, AM : 30% S/N	22	30 kHz LPF	9 V	10 V	2	1	2	2
6	AM THD 1	37	$f = 999 \text{ kHz}, V_{IN3} = 74 \text{ dB}\mu$ fs = 1 kHz, AM : 30% mod	22	30 kHz LPF	9 V	10 V	2	1	2	2
7	AM THD 2	37	$f = 999 \text{ kHz}, V_{IN3} = 110 \text{ dB}\mu,$ fs=1 kHz, AM : 30% mod	22	30 kHz LPF	9 V	10 V	2	1	2	2
8	AM-SD sensitivity	37	f = 999 kHz, AM : 0% mod	21	$27 \text{ k}\Omega$ pull-up	9 V	10 V	2	1	2	2
FM	mono										
9	FM-RDS output	2	$V_{IN2} = 80 \text{ dB}\mu$, fs = 1 kHz FM : 100% mod	26	30 kHz LPF	9 V	10 V	2	1	2	2
10	FM-quiescent current 1	_	No signal		_	9 V	10 V	2	1	2	2
11	FM-quiescent current 2		No signal			9 V	10 V	2	1	2	2
12	FM output	2	$f = 10.7 \text{ MHz}, V_{IN2} = 80 \text{ dB}\mu,$ fs = 1 kHz, FM : 100% mod	24	30 kHz LPF	9 V	10 V	2	1	2	2
13	FM-S/N ratio	2	$f = 10.7 \text{ MHz}, V_{IN2} = 100 \text{ dB}\mu, FM : 100% L-ch S/N$	24	30 kHz LPF	9 V	10 V	2	1	2	2
14	FM-mono THD	2	$f = 10.7 \text{ MHz}, V_{IN2} = 80 \text{ dB}\mu,$ fs = 1 kHz, FM : 100% mod	24	30 kHz LPF	9 V	10 V	2	1	2	2
15	FM-SD sensitivity	2	f = 10.7 MHz, 0 % mod	21	$27 \text{ k}\Omega$ pull-up	9 V	10 V	2	1	2	2
16	FM-mute ratio	2	$f = 10.7 \text{ MHz}, V_{IN2} = 80 \text{ dB}\mu$ fs = 1 kHz, FM : 100% mod	22 24	30 kHz LPF	9 V	10 V	2	1	2	2

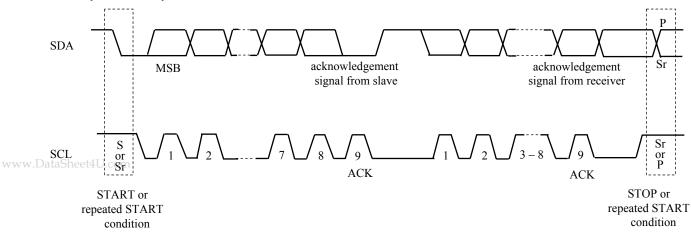
Panasonic

С			Input		Output			Pin se	ttings		
No.	Parameter	Pin No.	Conditions	Pin No.	Conditions	V _{CC1}	V _{CC2}	SW1	SW2	SW3	SW4
FM	stereo										
17	FM-L-ch. separation	2	f = 10.7 MHz, V _{IN2} = 80 dBµ, 1 kHz, (L = 90%, pilot = 10%)	22	15 kHz LPF	9 V	10 V	2	1	1	1
18	FM-R-ch. separation	2	f = 10.7 MHz, V _{IN2} = 80 dBµ, 1 kHz (R = 90%, pilot = 10%)	24	15 kHz LPF	9 V	10 V	2	1	1	1
19	FM-stereo THD	2	f = 10.7 MHz, $V_{IN2} = 80 \text{ dB}\mu, 1 \text{ kHz}$ (L + R = 90%, pilot = 10%)	22 24	15 kHz LPF	9 V	10 V	2	1	1	1
20	FM-carrier-leak	V _{IN2}	$f = 10.7 \text{ MHz}, V_{IN2} = 80 \text{ dB}\mu, fs = 19 \text{ kHz} (pilot = 10%)$	VOL		9 V	10 V	2	1	2	2
21	FM-stereo detect sensitivity	V _{IN2}	$\label{eq:10.7} \begin{array}{l} f = 10.7 \mbox{ MHz}, \\ V_{\rm IN2} = 80 \mbox{ dB}\mu, \\ fs = 19 \mbox{ kHz} \end{array}$	12	27 kΩ pull-up	9 V	10 V	2	1	2	2
FM	FE f _c = 98 MHz										
22	FM-FE S/N ratio	V _{IN1}	f = 98 MHz, V _{INI} = 12 dBµ, 1 kHz, 100% mod	VO Det	30 kHz LPF	9 V	10 V	1	1	2	2
23	FM-IF output level	V _{IN1}	f = 98 MHz, $V_{IN3} = 64 \text{ dB}\mu, 0\% \text{ mod}$	IF OUT		9 V	10 V	2	1	2	2
24	FM-LOSC level	_	No input, f = 108.7 MHz	VF MOS	_	9 V	10 V	2	1	2	2
FM	mono f _c = 10.7 MHz										
25	FM limiting sensitivity	V _{IN2}	1 kHz, 100% of output -3 dB (Ref. input level $V_{IN2} = 80 \text{ dB}\mu$)	VOL	30 kHz LPF	9 V	10 V	2	1	2	2
26	AM suppression ratio	V _{IN2}	$V_{IN2} = 100 \text{ dB}\mu$, fm = 1 kHz, AM : 30% mod FM : 100% mod	VOL	30 kHz LPF	9 V	10 V	2	1	2	2


■ Electrical Characteristics Test Procedures (continued)

Technical Data

- I²C-bus interface
- 1. Basic Rules
 - This IC, I²C-bus, is designed to correspond to the Standard-mode (100 kbps) and Fast-mode (400 kbps) devices in the version 2.1 of Philips Co.'s specification. However, it does not correspond to the H_s -mode (to 3.4 Mbps).
 - This IC will be operated as a slave device in the I²C-bus system.
 - The program operation check of this IC has not been conducted on the multi-master bus system and the mix-speed bus system, yet. The connected confirmation of this IC to the CBUS receiver also has not been checked. Please confirm our company if it will be used in these mode systems.
 - Purchase of Panasonic I²C Components conveys a license under the Philips I²C patent right to use these components in an I²C systems, provided that the system conforms to the I²C standard specifications as defined by Philips.


2. START and STOP conditions

A High to Low transition on the SDA line while SCL is High is one such unique case. This situation indicates a START condition. A Low to High transition on the SDA line while SCL is High defines a STOP condition. START and STOP conditions are always generated by the master. The bus is considered to be free again a certain time after the STOP condition.

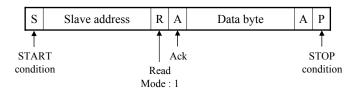
3. Transferring Data

Every byte put on the SDA line must be 8-bits long. The number of bytes that can be transmitted per transfer is unrestricted. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first. If a slave can't receive or transmit another complete byte of data until it has performed some other function, for example servicing an internal interrupt, it can hold the clock line SCL Low to force the master into a wait state. Data transfer then continues when the slave is ready for another byte of data and releases clock line SCL.

SDC00078AEB

Panasonic

- Technical Data (continued)
- I²C-bus interface (continued)
- 4. DATA format
 - 1) Write mode
 - 1.1) Slave address : 1011 0110 (B6H)
 - 1.2) Format


• Data update mode

S	Slave address	W	Α	Sub address	Α	Data byte		A P					
STA	DТ	Î	↑ Ack					↑ STOP					
condi		Writ	e					condition					
		Mode	:0										
• 4	uto-increment mod	e								n			
S	Slave address	W	A	Sub address	А	Data 1	A	Data 2	A	ľ	Data n	A	Р
-									l	ľ			

2)	Read	mode
----	------	------

- 2.1) Subaddress : None
- 2.2) Slave address : 1011 0111 (B7H)

2.3) Format

Ex.) In case data is read from Address 01h after data is written to Address 01h.

• Write	S	Slave address	0	Α	Sub address 01h	Α	Data byte	Α	Р
			,	,					
• Read	S	Slave address	1	Α	Data byte	A	Р		

Panasonic

Technical Data (continued)
 I²C-bus interface (continued)
 5. Register Map

Sub	MSB			DATA	BYTE			LSB	
Address	D7	D6	D5	D4	D3	D2	D1	D0	
00	PLL-CP Current Select (ICO)	_				SD Tuned Leve (DSS4 - DSS0)			
01	AM SD Hysteresis Control (AMHIS)	PLL-Ref Frequency Select (RO)	CP Select (FCPS)	Mute ON/OFFMA TX (MUS)	Stereo Tuning Selector (TUS)	Force Monaural (FOM)	SD Mode Switch (SDS)	FM/AM Switch (DSS0)	
02		PLL-N Divider (N7 - N0)							
03	_		PLL-N Divider (N13 - N8)						
04	FM IF AMP STOP (LIMSTOP)	L-OSC Stop (VMOS3)		mp Control - PHD0)			Signal Monitor - DS0)		
05		Adjustment M		ctor Adjustment - DE0)	/ Write Mode		Read / Write Mode (ZRW)	Adjustment Mode (EMU)	
06							nt Mode: MPX stment / Write I (SE2 - SE1)		
07	_					Mixer AGC (MXAGC)	CIS selection (CIS)	AM IF AMP Stop (D070)	

- Technical Data (continued)
 - I²C-bus interface (continued)
 - 6. Sub address byte and data byte format (Write mode)

Tuner-control (GI SUB-ADD 00H (\								
Bit	Name		Fun	iction				
LSB : D0	DSS0	FM and AM-SD tuned level						
D1	DSS1		Be sure to set it when you change FM / AM. High : Sensitivity low					
D2	DSS2	Low : Sensitivity high	Low : Sensitivity high					
D3	DSS3	Ex.)	This sensitivity is affected by an external RF amp. gain. Ex.)					
D4	DSS4	FM : X'5' AM : X'C' It is recommended to set "0" for DSS4.						
D5								
D6		Don't care $(0/1)$						
MSB : D7	ICO	PLL-charge pump current so $120 \ \mu A \rightarrow Fast lock up time 30 \ \mu A \rightarrow S/N \text{ improvement}Normal : 120 \mu A$	2	lcp [μA] 120 30				
		Normai : 120 µA						

Technical Data (continued)

• I²C-bus interface (continued)

Tuner-control (Gro SUB-ADD 01H (W									
Bit	Name			Function					
LSB : D0	FAS	FM / AM switch 0 : FM 1 : AM							
D1	SDS	1 : SD mode (IF couAM AGC-time-consta0 : $500 \text{ k}\Omega$ 1 : 10IF counter is activatedAnd an inside impedar	$ \begin{array}{l} \text{SD mode switch (FM / AM IF counter)} \\ 1: \text{SD mode (IF counter : ON)} \\ \text{AM AGC-time-constant select} \\ 0: 500 \ \text{k}\Omega 1: 10 \ \text{k}\Omega \\ \text{IF counter is activated by setting this bit to "1" at I^2C stop condition.} \\ \text{And an inside impedance of AM-AGC is changed at AM.} \\ \text{A time constant becomes 1/50 in the case of "1". *1)} \end{array} $						
D2	FOM								
D3	TUS	Selector to force mona 0 : ON 1 : OFF	Selector to force monaural when stereo indicator is off. 0: ON 1: OFF						
D4	MUS	Mute switch 1 : ON Output AF buffer amp	. mute						
D5	FCPS	FM mode & SDS OFF 0 : CP 30 μA fixed 1 : CP selectable (SI		D7)					
		PLL-reference frequen	ncy selector			_			
	50	RO FM AM							
D6	RO	0 25 kHz 10 kHz							
		1 50 kHz 9 kHz							
MSB : D7	AMHIS	AM-SD hysteresis con 1 : AM-SD hysteres							

Note) *1 : When SDS mode is ON and stop condition of I^2C comes, IF count is carried out . After 70 ms of Stop condition, a result is ready to read.

Technical Data (continued)

I²C-bus interface (continued)
Sub address byte and data byte format (Write mode) (continued)

Tuner-control (Gi SUB-ADD 02H (\		
Bit	Name	Function
LSB : D0	N0	PLL-N divider
D1	N1	N-divider
D2	N2	
D3	N3	$ FM: N = 2^{13} \times N13 + 2^{12} \times N12 + 2^{11} \times N11 + \dots + 2^{0} \times N0 AM: N = 2^{9} \times N13 + 2^{8} \times N12 + 2^{7} \times N11 + \dots + 2^{0} \times N4 $
D4	N4	(Not use N0 to N3 at AM mode.)
D5	N5	
D6	N6	
MSB : D7	N7	

Tuner-control (Gr SUB-ADD 03H (V			
Bit	Name	Function	
LSB : D0	N8	PLL-N divider	
D1	N9	N-divider	
D2	N10		
D3	N11	FM: $N = 2^{13} \times N13 + 2^{12} \times N12 + 2^{11} \times N11 + \dots + 2^{0} \times N0$ AM: $N = 2^{9} \times N13 + 2^{8} \times N12 + 2^{7} \times N11 + \dots + 2^{0} \times N4$	
D4	N12	(Not use N0 to N3 at AM mode.)	
D5	N13		
D6			
MSB : D7			

Technical Data (continued)

• I²C-bus interface (continued)

6. Sub address byte and data byte format (Write mode) (continued)

Bit	Name						Function			
		Ana	alog / lo	gic sig	nal mon	itor				
			DS0	DS1	DS2	DS3		Monitor point		
LSB : D0	DS0		0	0	0	0	Monitor OFF			
			1	0	0	0	Monitor of FM de	tector reference voltage		
		_	0	1	0	0	Monitor of FM de	tector adjustment DAC output		
			1	1	0	0	Monitor of FM sep	paration adjustment DAC output		
D1	DS1		0	0	1	0	Monitor of the hy indicator	steresis DC voltage of FM-SD		
			1	0	1	0	Monitor of the hy indicator	steresis DC voltage of stereo		
			0	1	1	0	Monitor of SD-O	N level adjustment DAC output		
D2	DS2		1	1	1	0	FM S-Meter			
	032		0	0	0	1	AM S-Meter			
			1	0	0	1	Monitor of MPX-	VCO		
				0	1	0	1	PS output		
						1	1	0	1	ANC output
			0	0	1	1	RED output			
D3	DS3		1	0	1	1	F450			
			0	1	1	1	NIFC			
			1	1	1	1	Monitor of the hy indicator	steresis DC voltage of AM-SD		
		Cha	arge pur	np cont	rol					
D4	PHD0		PHD	0 P	HD1	Charg	e pump control			
			0		0	Normal	mode			
			1		0	Force u	р			
D5	PHD1		0		1	Force d	own			
			1		1	Hi-Z m	ode			
D6	VMOS3	1:1	L-OSC	stop						
MSB : D7	LIMSTOP	0.1	FM IF a	mn sta	n (Pin	() I ow)				

Technical Data (continued)
 I²C-bus interface (continued)

6. Sub address byte and data byte format (Write mode) (continued)

Tuner-control (Group 3) SUB-ADD 05H (Write)					
Bit	Name	Function			
LSB : D0	EMU	Adjustment mode 1 : ON			
D1	ZRW	Read / write mode 0 : Read 1 : Write			
D2	DE0				
D3	DE1				
D4	DE2	At adjustment mode : FM detector adjustment			
D5	DE3	At write mode : 1 : Writing bit			
D6	DE4				
MSB : D7	DE5				

Tuner-control (Group 3) SUB-ADD 06H (Write)					
Bit	Name	Function			
LSB : D0	SE0	At adjustment mode : MPX separation adjustment			
D1	SE1				
D2	SE2	At write mode : 1 : Writing bit			
D3	_				
D4	_				
D5	_	Set them "0" all.			
D6	_				
MSB : D7					

■ Technical Data (continued)

I²C-bus interface (continued)
Sub address byte and data byte for

6. Sub address byte and data byte format (Write mode) (continued)
Tuner-control (Group 3)

Tuner-control (Group 3) SUB-ADD 07H (Write)				
Bit	Name	Function		
LSB : D0	D070	1 : AM IF amp. stop		
D1	CIS	0 : FM IF counter band width = 40 kHz, 1 : FM IF counter band width = 10 kHz		
D2	MXAGC	0 : Mixer AGC off, 1 : Mixer AGC on		
D3	_			
D4	_			
D5		Set them "0" all.		
D6	—			
MSB : D7	—			

- Technical Data (continued)
 - I²C-bus interface (continued)
 - 7. Data byte format (Read mode)

Tuner-control (Group 4) SUB-ADD none (Read)					
Bit	Name	Function			
LSB : D0	IFC	IF counter output 0 : No signal AM IF C band width = 4 kHz, FM IFC band width = 40 kHz, or 10 kHz			
D1					
D2					
D3					
D4		D1 to D7 = 1			
D5					
D6					
MSB : D7					

Technical Data (continued)

• I²C-bus interface (continued)

8. Precaution in setup of I²C-bus data

- 1) Power on
 - a) All data must be set on IC when the power supply is tuned on. (SUB ADD : 00H to 07H)
 - b) IF limit amplifier must be ON at the time of the initial data transfer of I^2C . (SUB ADD : 04H, D7 = "1")
 - c) The power supply transition time ($V_{CC1, 2} = 0 \rightarrow 9 \text{ V}$) must be more than 10 ms.
 - d) Electric current flows in the power supply off condition when a power supply is connected to the TUNED terminal (Pin 21). Therefore, be careful in the case of the backup mode such as a microcomputer.

2) Pin 16

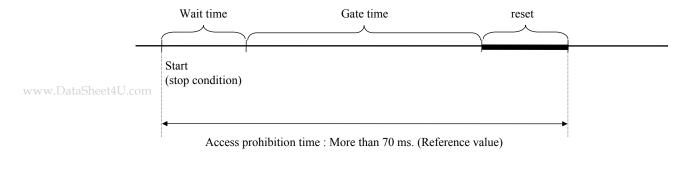
Don't use Pin 16 (ZAP). It must be open.

- 3) Monitor function
 - a) Pin 21 of this IC has a function to monitor internal circuit terminals of this IC. The monitor point of analog signal or digital signal is set by SUBADD : 04H, D0 to D3. The choice of monitor point of logic signal is SUBADD : 0AH. It is chosen by D0 to D2 of 0AH.
 - b) Don't choose more than one monitor point (analog, logic) at the same time.
 - c) It is prohibited choosing the monitor point when IF limit amplifier is compulsory off (SUBADD : 04H, D7 = "0"). Be sure to turn on IF limit amplifier when you use monitor function.
 - d) Monitor function is a function for the test purpose only in our company, and its function is not guaranteed. When it is needed to send data, all data must be "0". Don't use it with the actual tuner set.
- 4) Charge pump test function
 - a) SUBADD : 04H D4 to D5 are the bits for the function check of charge pump. For a normal use, they must be set to "0".
- 5) Handling unused bits

a) All unused bits must be set to "0". When it is necessary to input Subaddress data, all unused bits must be set to "0".

6) Set number of N divider

Don't establish N value about settlement of N divider in 271 or less.


7) The timing of IF counter

IF counter starts to count when it detects Stop condition of write mode at SDS mode (SUB ADD : 01H, D1 = "1"). The result of the IF count can get it when it begins to read it after the progress about more than 70 ms and it is made the mode and begins to read it.

To prevent IF counter's abnormal function, so that stop condition may not come between about 70 ms of the following. (see the figure below.) Even if this timing isn't kept, IC doesn't become uncontrollable. But the following condition are occurred by the transmitting data.

- a) When there are data which turn off SDS :
- Counter stops, and it is reset. The judgment result of IF counter isn't right. Ignore data and erase it. b) In the case of the dummy data:

Stop condition is ignored, and IF counter works as it is. (It isn't reset.) If an original access prohibition time passes, the proper result of IF counter is obtained.

• I/O block circuit diagrams and pin function descriptions

Note) The characteristics listed below are reference values derived from the design of the IC and are not guaranteed.

Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
41	1.9 V	(41)	4 kΩ	FM detector bypass 2 External capacitor = 0.1 μF
42 to 44		OPEN		N.C.
45	10.7 MHz	42 V $4.2 V$ $4.2 V$ $14.6k$ 45 $12k$ GND $12k$ C $12k$ C	330 Ω (AC input)	FM IF amp. input
46	_	_	_	GND (IF amp)
47	_	GND VCC GND 12k GND	_	RF-VCC

• I/O block circuit diagrams and pin function descriptions (continued)

Note) The characteristics listed below are reference values derived from the design of the IC and are not guaranteed.

Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
48	$f = f_{OSC} - f_{RF}$ or $f = f_{RF} - f_{OSC}$		500 Ω to High	FM mixer output
1	f = fmRF	$\begin{array}{c} \text{GND} & \textcircled{12k} \\ \text{GND} & \textcircled{12k} \\ \hline \\ \text{GND} & \textcircled{12k} \\ \hline \\ \text{C} \\ C$	400 Ω (f = 100 MHz)	FM mixer input
2	VWVV	$\begin{array}{c c} & \downarrow & \downarrow^{2.3} \lor \downarrow \\ \hline & & & \\ GND & & 12k \\ GND & & & GND \\ \hline & & & \\ GND & & & \\ GND & & & \\ \end{array}$	(1 100 WILL)	

• I/O block circuit diagrams and pin function descriptions (continued)

Note) The characteristics listed below are reference values derived from the design of the IC and are not guaranteed.

Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
3	1.9 V	3 GND	1 kΩ	FM AGC FILTER External capacitor = 0.1 μF
4		4 VCC 4 3.9k 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Low	FM L-OSC2 FM local oscillator load 2 (Emitter side)
5	VVVVV	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	3.9 kΩ	FM L-OSC1 FM local oscillator load 1 (Base side)
6	—	_	_	RF-GND

• I/O block circuit diagrams and pin function descriptions (continued)

Note) The characteristics listed below are reference values derived from the design of the IC and are not guaranteed.

Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
7	DC	(7) (12k) (3) (12k) (3) (3) (4) (5) (4) (5) (5) (5) (5) (5) (5) (5) (5		VCC for Logic
8	_	_	_	GND for Logic and Charge pump
9	DC	Phase DET 9 GND GND	High	CPOUT Charge pump output
10	DC	(10 VCC2 GND 12k GND	_	VCC2 Charge pump-V _{CC}
11		VCC (1) GND GN	120 Ω	Crystal oscillator
12	_	OPEN	_	N.C.

• I/O block circuit diagrams and pin function descriptions (continued)

Note) The characteristics listed below are reference values derived from the design of the IC and are not guaranteed.

Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
13		$(13) \xrightarrow{102k} 1.05k$	103 kΩ	V _{DD} selector
14	JUU	(14)	High	SCL Serial clock input
15		GND Ilk Ilk Ilk Ilk Ilk Ilk Ilk Ilk	High	SDA Serial data input / output
16		(16) GND 12k GND		ZAP (Must be open.)
17 to 20		OPEN	_	N.C.

• I/O block circuit diagrams and pin function descriptions (continued)

Note) The characteristics listed below are reference values derived from the design of the IC and are not guaranteed.

Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
21	_		1 kΩ	TUNED/Test SD-OUT FM/AM tuning indicator Test monitor output
22	DC bias = 3.5 V	7.35k 1.05k (CC) 7.35k	8.4 kΩ	L-ch. de-emphasis output (External capacitor 0.0056 µF Time constant = 50 µs)
23	_	23 1k GND GND 12k GND	1 kΩ	ST-OUT FM stereo indicator
24	DC bias = 3.5 V	7.35k T.05k GND CC	8.4 kΩ	R-ch. de-emphasis output (External capacitor 0.0056 μF Time constant = 50 μs)
25	Composite signal	(25) (25) (25) (498k) (3.5 V) (25) (500 kΩ	FM MPX input
26	_	AM-DET 205 FM-DET C GND 12k GND	200 Ω	FM/AM detector output (Please make it to OPEN when unused.)
27 DataS	AM-AF	27 1.05k 10k 10k 3.5 V	11 kΩ	AM AF input

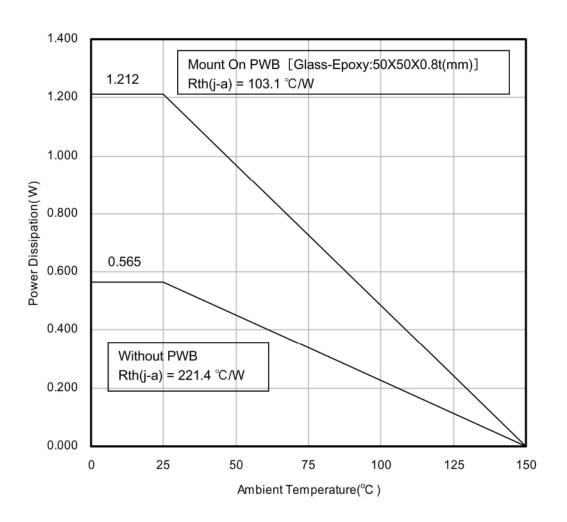
• I/O block circuit diagrams and pin function descriptions (continued)

Note) The characteristics listed below are reference values derived from the design of the IC and are not guaranteed.

Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
28	DC ≅ V _{CC1} – 1.4 V	46k 46k 1.05k 28 GND	46 kΩ	Phase detector for MPX-VCO
29	DC ≅ V _{CC1} – 1.4 V	214k 214k 1.05k 29 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	214 kΩ	Stereo DET of MPX

• I/O block circuit diagrams and pin function descriptions (continued)

Note) The characteristics listed below are reference values derived from the design of the IC and are not guaranteed.


Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
30		OPEN		N.C.
31	_	(3)		VCC
32	_	_		GND
33	$ \underbrace{\int \int \int f^2 V}_{f=450 \text{ kHz}} v $	$\begin{array}{c} 33 \\ \hline \\ GND \\ GND \\ \hline \\ GND \\ \hline \\ 12k \\ 2V \\ \hline \\ 12k \\ 2V \\ \hline \\ \hline \\ \end{array}$	3.3 kΩ	AM IF amp. input
34	DC	AM DET GND AM GND	51 kΩ / 501 kΩ	AM-AGC level detector
35	$f = f_{OSC} - f_{RF}$	(35) GND GND GND GND CSCin I mA	High	AM mixer output

• I/O block circuit diagrams and pin function descriptions (continued)

Note) The characteristics listed below are reference values derived from the design of the IC and are not guaranteed.

Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
36	_	2 V 1k GND	1 kΩ	FM DET-NULL and MPX- VCO adjustment
37	522 kHz - 1 720 kHz	38 250 37 250 37 250 37 250 37 250 37 250 37 250 37 250 37 250 37 250 37 250 37 37 37 37 37 37 37 37	High	AM RF input
38		VCC 1 mA GND GND GND GND GND $I1k$ GND GND	1 kΩ	AM RF reference
39		30 mA		AM L-OSC AM local oscillator load
40 v.DataS	heet4U.com	5 V 22k 1.05k (40) GND	23 kΩ	FM signal meter adjustment

- Technical Data (continued)
- $P_D T_a$ diagram

Usage Notes

- Special attention and precaution in using
 - 1. This IC is intended to be used for general electronic equipment [Home audio tuner].
 - Consult our sales staff in advance for information on the following applications:
 - Special applications in which exceptional quality and reliability are required, or if the failure or malfunction of this IC may directly jeopardize life or harm the human body.
 - · Any applications other than the standard applications intended.
 - (1) Space appliance (such as artificial satellite, and rocket)
 - (2) Traffic control equipment (such as for automobile, airplane, train, and ship)
 - (3) Medical equipment for life support
 - (4) Submarine transponder
 - (5) Control equipment for power plant
 - (6) Disaster prevention and security device
 - (7) Weapon
 - (8) Others : Applications of which reliability equivalent to (1) to (7) is required
 - 2. Pay attention to the direction of LSI. When mounting it in the wrong direction onto the PCB (printed-circuit-board), it might smoke or ignite.
 - 3. Pay attention in the PCB (printed-circuit-board) pattern layout in order to prevent damage due to short circuit between pins. In addition, refer to the Pin Description for the pin configuration.
 - 4. Perform a visual inspection on the PCB before applying power, otherwise damage might happen due to problems such as a solderbridge between the pins of the semiconductor device. Also, perform a full technical verification on the assembly quality, because the same damage possibly can happen due to conductive substances, such as solder ball, that adhere to the LSI during transportation.
 - 5. Take notice in the use of this product that it might break or occasionally smoke when an abnormal state occurs such as output pin- V_{CC} short (Power supply fault), output pin-GND short (Ground fault), or output-to-output-pin short (load short).
 - And, safety measures such as an installation of fuses are recommended because the extent of the above-mentioned damage and smoke emission will depend on the current capability of the power supply.

And IC is destroyed under the conditions listed below,

- (1) V_{CC2} and Pin5 are shorted.
- (2) V_{CC2} and Pin22 are shorted.
- (3) V_{CC2} and Pin45 are shorted.
- 6. When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.

Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.

- 7. When using the LSI for new models, verify the safety including the long-term reliability for each product.
- 8. When the application system is designed by using this LSI, be sure to confirm notes in this book. Be sure to read the notes to descriptions and the usage notes in the book.

www.DataSheet4U.com

Panasonic

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.

Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.

- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

20080805