DATA SHEET

Part No.	AN30216A		
Package Code No.	HQFN044-P-0606		

Publication date: May 2007 SDB00155AEB

Contents

■ Overview	3
■ Features	3
■ Applications	3
■ Package	3
■ Type	3
■ Block Diagram (Application Circuit Example)	4
■ Pin Descriptions	7
■ Absolute Maximum Ratings	9
■ Operating Supply Voltage Range	9

AN30216A Panasonic

AN30216A

ASSP power supply IC

Overview

AN30216A is ASSP Multiple-Output Power Supply IC. It is suitable for CCD system power supply of DSC and cellular phones, etc.

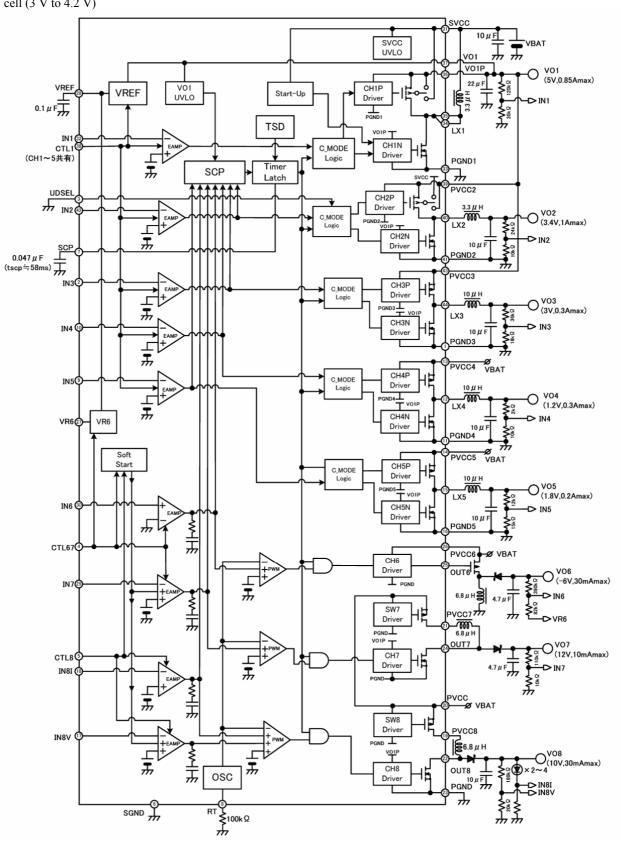
■ Features

- Supply voltage range: 1.5 V to 5.5 V (AA-type battery × 2, lithium 1 cell)
 - * lithium 2 cells available depending on system configurations
- High precision reference voltage: 1.262 V±1%
- External setting of oscillation frequency: 500 kHz to 1.5 MHz (Ch.6 to Ch.8)
- Power supply outputs composition
 - · Ch.1: Synchronous rectification step-up current mode control
 - · Ch.2: Synchronous rectification current mode control (step-up/down selectable)
 - · Ch.3 to Ch.5: Synchronous rectification step-down current mode control
 - · Ch.6: Inverting control of voltage mode for CCD
 - · Ch.7: Step-up control of voltage mode for CCD
 - · Ch.8: Step-up control of voltage mode for LED drive
- Error amp. threshold: ±1.5%
- Standby current: 5 μA or less
- Timer/latch short-circuit protection circuits
- Soft-start
- Power MOSFET (excluding Ch.6)
- I/O shutdown during standby mode (Ch.1, 2, 7, 8)
 - * Available for Ch.2 in step-up mode

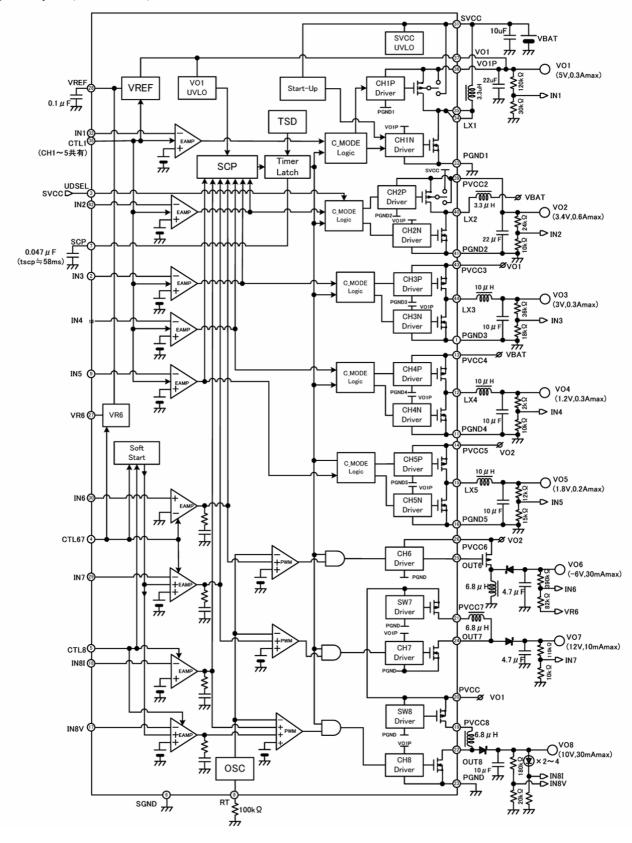
Applications

• For digital still cameras

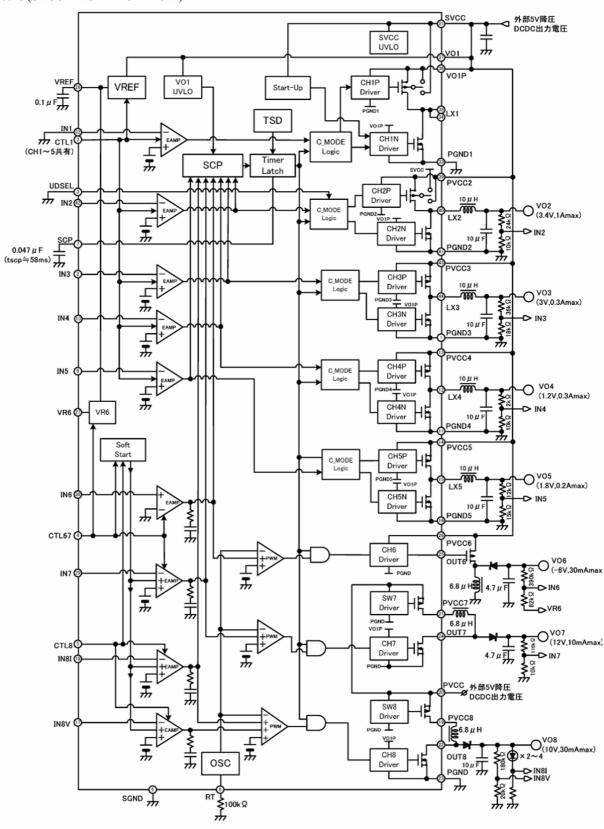
Package


• 44-pin plastic quad flat non-leaded package heat slug down (QFN type)

■ Type


• Bi-CDMOS

■ Block Diagram (Application Circuit Example)


• Li × 1 cell (3 V to 4.2 V)

- Block Diagram (Application Circuit Example) (continued)
 - AA-type battery × 2 (1.5 V to 3.4 V)

- Block Diagram (Application Circuit Example) (continued)
 - Li \times 2 cells (SVCC = VO1 = VO1P = 5 V)

Panasonic

■ Pin Descriptions

Pin No.	Pin name	Туре	Description		
1	PGND3	Ground	Ch.3 ground for output stage		
2	IN3	Input	h.3 error amplifier inverting input		
3	CTL1	Input	h.1 to Ch.5 common ON/OFF control		
4	CTL67	Input	Ch.6, Ch.7 common ON/OFF control		
5	CTL8	Input	Ch.8 ON/OFF control		
6	SGND	Ground	GND (Signal block)		
7	SCP	Output	Capacitor connection pin for timer latch time setting		
8	RT	_	Resistor connection pin for oscillation frequency setting		
9	IN5	Input	Ch.5 error amplifier inverting input		
10	IN4	Input	Ch.4 error amplifier inverting input		
11	PGND4	Ground	Ch.4 ground for output stage		
12	LX4	_	Ch.4 inductive (L) load connection		
13	PVCC4	Power supply	Ch.4 DC-DC supply voltage input		
14	PVCC5	Power supply	Ch.5 DC-DC supply voltage input		
15	LX5	_	Ch.5 inductive (L) load connection		
16	PGND5	Ground	Ch.5 ground for output stage		
17	IN8V	Input	Ch.8 error amplifier inverting input for voltage detection		
18	IN8I	Input	Ch.8 error amplifier inverting input for current detection		
19	PVCC8	Output	Ch.8 Load-SW output		
20	PVCC	Power supply	Ch.7, Ch.8 DC-DC supply voltage input		
21	PVCC7	Output	Ch.7 Load-SW output		
22	OUT8	Output	Ch.8 inductive (L) load connection		
23	PGND	Ground	Ch.6 to Ch.8 output stage common ground pin		
24	OUT7	_	Ch.7 inductive (L) load connection		
25	OUT6	Output	Ch.6 Pch gate drive signal output		
26	PVCC6	Power supply	Ch.6 driver supply voltage input		
27	VR6	Output	Ch.6 bias voltage output for output voltage detection		
28	VREF	Output	Bandgap voltage output		
29	IN7	Input	Ch.7 error amplifier inverting input		
30	IN6	Input	Ch.6 error amplifier non-inverting input		
31	SVCC	Power supply	Battery voltage input		
32	IN1	Input	Ch.1 error amplifier inverting input		
33	PGND1	Ground	Ch.1 ground for output stage		
34	LX1		Ch.1 inductive (L) load connection1		
35	LX1		Ch.1 inductive (L) load connection2		

Panasonic

■ Pin Descriptions (continued)

Pin No.	Pin name	Туре	Description	
36	VO1P	Output	Ch.1 DC-DC output	
37	VO1	Input	Supply voltage input for control block	
38	UDSEL	Input	Ch.2 step-up/down switch setting	
39	PVCC2	Power supply	Ch.2 DC-DC supply voltage input	
40	LX2	_	Ch.2 inductive (L) load connection	
41	PGND2	Ground	Ch.2 ground for output stage	
42	IN2	Input	Ch.2 error amplifier inverting input	
43	PVCC3	Power supply	Ch.3 DC-DC supply voltage input	
44	LX3	_	Ch.3 inductive (L) load connection	

AN30216A Panasonic

■ Absolute Maximum Ratings

A No.	Parameter	Symbol	Rating	Unit	Note
1	Supply voltage	SVCC PVCC PVCC2 PVCC3 PVCC4 PVCC5 VO1	6.5	V	*1
2	Supply current	I_{CC}	_	A	_
3	Power dissipation	P_{D}	242.4	mW	*2
4	Operating ambient temperature	T _{opr}	-20 to +85	°C	*3
5	Storage temperature	T_{stg}	-55 to +150	°C	*3

Note) *1: The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

■ Operating Supply Voltage Range

Parameter	Symbol	Range	Unit	Note
Supply voltage range	SVCC	1.5 to 5.5	V	*1
	VO1, VO1P	4.5 to 5.5		*1
	PVCC2	4.5 to 5.5		*1, 2
	PVCC3	4.5 to 5.5		*1
	PVCC4	1.5 to 5.5		*1
	PVCC5	2.5 to 5.5		*1
	PVCC6, PVCC	2.5 to 5.5		*1

Note) *1: The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

^{*2:} The power dissipation shown is the value at $T_a = 85$ °C for the independent (unmounted) IC package.

^{*3:} Except for the power dissipation, operating ambient temperature, and storage temperature, all ratings are for $T_a = 25$ °C.

^{*2:} The values when Ch.2 output is used in step-down mode

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).

 Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support
 systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - · Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
 - Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.