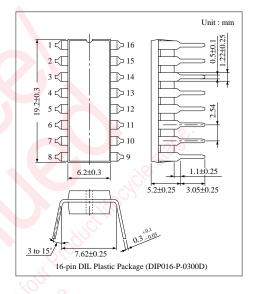
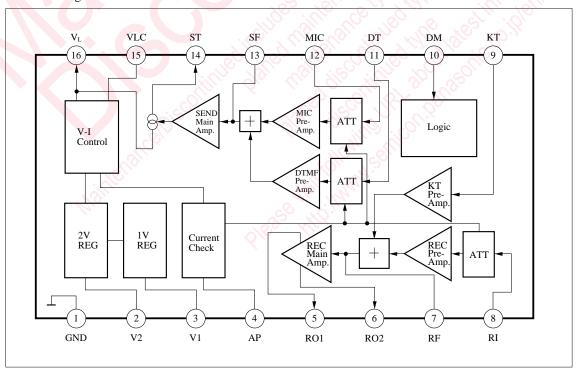
AN6150


Speech Network Circuit

Overview


The AN6150 is an integrated circuit designed for telephone speech network. It has the basic function necessary to apply a sound signal onto the line and is applicable for various types of handsets.

■ Features

- Wide operating voltage range: 3 to 11.5V
- Built-in amplifiers for "Dial Tone" and "DTMF"
- Amplifier output switchable.
- Each amplifier gain automatically changeable depending on line current.
- Various types of microphones and receivers are available.

■ Block Diagram

■ Pin Descriptions

Pin No.	Pin name	Pin No.	Pin name
1	GND	9	KEY In TONE input
2	2V REG.	10	Dial mute SW
3	1V REG.	11	DTMF input
4	ATT control	12	MIC input
5	REC output	13	Transmission filter
6	REC output	14	SIDE tone
7	REC filter	15	LIN filter
8	REC input	16	LIN

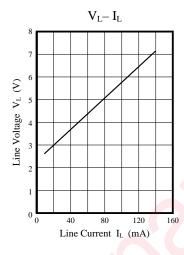
■ Absolute Maximum Ratings (Ta=25°C)

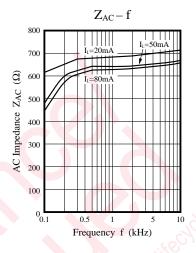
Parameter	Symbol	Rating	Unit	
Line voltage	$V_{\rm L}$	14.4	V	
Line current	$I_{\rm L}$	135	mA	
Power dissipation (Ta=60°C)	P_{D}	1380	mW	
Operating ambient temperature	$T_{ m opr}$	-30 to + 75	°C	
Storage temperature	T_{stg}	-55 to + 150	°C	

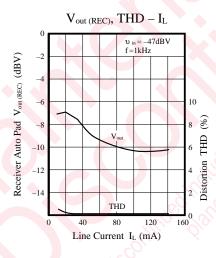
■ Electrical Characteristics (I_L=40mA, f_{in}=1kHz, Ta=25°C)

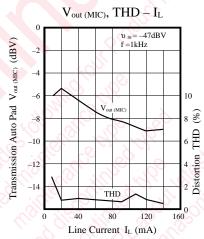
Parameter	Symbol	Condition	min	typ	max	Unit
Receive System		912 Chi:				90.
Receiver gain *1	G_{V-R}	V _i =-45dBm	-7	-4.5	-2	dBm
Receiver output distortion *1	THD_R	V _i =-45dBm	~ © 0	1	5	%
Max. receiver level *1	V_{O-R}	THD=5%	0	4	10	dBm
Receiver auto pad *1	ΔAP_{-R}	V _i =-45dBm, DI _L =100 to 20mA	-5.5	<u>–3</u>	- 0.5	dB
KEY IN TONE gain *1	G _{V-KT}	V _i =-40dBm, Dial Mute SW- ON	-25	-22.5	-20	dBm
Transmission System	1,71/6	all all iso into	7000	c0/,		
Transmission gain *2	G_{V-T}	V _i =-45dBm	-6	<u>→</u> 4	-2	dBm
Transmission output distortion *2	THD_{-T}	V _i =-45dBm	40.	1	5	%
Max. transmission level *2	V_{O-T}	THD=5%	-2.2	2.8		dBm
Transmission auto pad *2	ΔAP_{-T}	V _i =-45dBm, DI _L =100 to 20mA	-6.5	-3.5	-1	dB
DTMF gain *2	G_{V-DT}	V _i =-35dBm, Dial Mute SW- ON	-8	-6	-4	dBm
DTMF output distortion *2	THD_{-DT}	V _i =-35dBm, Dial Mute SW- ON	_	1	5	%
DTMF auto pad *2	ΔAP_{-DT}	V _i =-35dBm, DI _L =100 to 20mA	-6	-4	-2	dB
Power Supply						
DC line voltage (1)	V_{L-1}	I _L =12mA	2.4	3	3.6	V
DC line voltage (2)	V_{L-2}	I _L =127mA	5.4	7.8	10.2	V
Internal supply voltage	V _{CC}	I _L =12mA	1.7	2.0	2.3	V

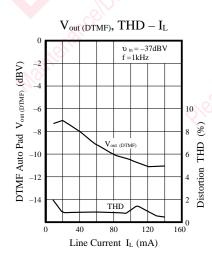
^{*1} Connect the $1k\Omega$ load between Pins5 and 6 for measurement. *2 Connect the 600Ω receiver impedance between Pins16 and 1 and measure it at the receiver side.

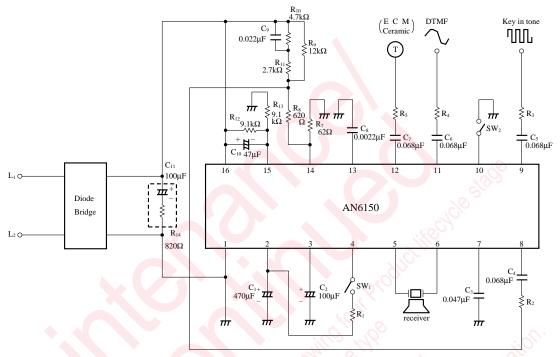

■ Electrical Characteristics (cont.) (I_L=40mA, f_{in}=1kHz, Ta=25°C)

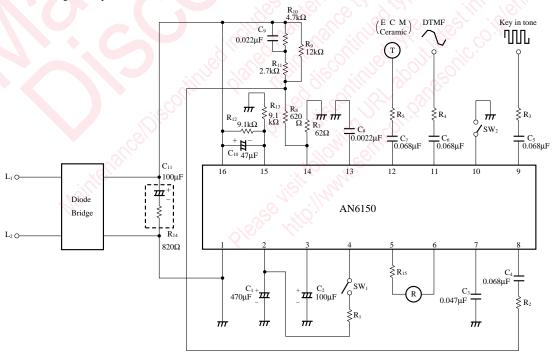

Parameter	Symbol	Condition	min	typ	max	Unit
Dial Mute input						
Dial mute OFF	V_{DM-H}		0.8		V _{CC}	V
Dial mute ON	$V_{\mathrm{DM-L}}$	A			0.3	V
Input current (1)	I_{DM-H}	$V_{DM} = V_{CC}$	-2.0	0.1	2.0	μΑ
Input current (2)	I_{DM-L}	V _{DM} =0V	-2.0	- 0.2	- 0.02	μΑ
Receiver System			•	•		
K. T. output distortion *1, 4	THD _{-KT}	V _i =-42dBV, I _L =40mA		1		%
Mute						
K.T. mute *1, 4	M _{-KT}	V _i =-15dBV, Dial mute SW- OFF	40			dB
MIC mute *2, 4	M _{-T}	V _i =-40dBV, Dial mute SW- ON	60		1995.	dB
DTMF mute *2, 4	M _{-DT}	V _i =-28dBV, Dial mute SW- OFF	40	76	<u> </u>	dB
Power Supply				3		
AC impedance (1)*3, 4	Z _{AC-1}	I _L =30mA, f _{in} =1kHz	400	670	800	Ω
AC impedance (2)*3, 4	Z_{AC-2}	I _L =90mA, f _{in} =1kHz	400	620	800	Ω


^{*1} Connect the $1k\Omega$ load between Pins5 and 6 for measurement


 ^{*2} Connect the 600Ω receiver impedance between Pins16 and 1 measure it at the receiver side.
 *3 Connect o between Pins16 and 1 for measurement.
 *4 Characteristics above are of reference values for design but not guaranteed values.


■ Characteristics Curve





■ Application Circuits

• In case of using ceramic receiver

• In case of using low impedance receiver

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).

 Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
- Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.