
AN833
The Microchip TCP/IP Stack
INTRODUCTION

There is nothing new about implementing TCP/IP
(Transmission Control Protocol/Internet Protocol) on
Microchip microcontrollers. Interested developers can
easily find many commercial and non-commercial
implementations of TCP/IP for Microchip products. This
application note details Microchip’s own freely
available implementation of the TCP/IP Stack.
The Microchip TCP/IP Stack is a suite of programs that
provides services to standard TCP/IP-based applica-
tions (HTTP Server, Mail Client, etc.), or can be used in
a custom TCP/IP-based application. To better illustrate
this, a complete HTTP Server application is described
at the end of this document and is included with the
stack’s source code archive.
The Microchip TCP/IP Stack is implemented in a modu-
lar fashion, with all of its services creating highly
abstracted layers. Potential users do not need to know
all the intricacies of the TCP/IP specifications to use it. In
fact, those who are only interested in the accompanying
HTTP Server application do not need any specific
knowledge of TCP/IP. (Specific information on the HTTP
Server starts on page 77.)
This application note does not discuss the TCP/IP pro-
tocols in depth. Those who are interested in the details
of the protocols are encouraged to read the individual
Request For Comment (RFC) documents. A partial list
of the key RFC numbers can be found at the end of this
document.

STACK ARCHITECTURE
Many TCP/IP implementations follow a software archi-
tecture referred to as the “TCP/IP Reference model”.
Software based on this model is divided into multiple
layers, where layers are stacked on top of each other
(thus the name “TCP/IP Stack”) and each layer

accesses services from one or more layers directly
below it. A simple version of the TCP/IP Stack model is
shown in Figure 1.
Per specifications, many of the TCP/IP layers are “live”,
in the sense that they do not only act when a service is
requested but also when events like time-out or new
packet arrival occurs. A system with plenty of data
memory and program memory can easily incorporate
these requirements. A multitasking operating system
may provide extra facility and therefore, may make
implementation modular. But the task becomes difficult
when a system employing only an 8-bit microcontroller,
with a few hundred bytes of RAM and limited program
memory is used. In addition, without access to a multi-
tasking operating system, the user must pay special
attention to make the stack independent of the main
application. A TCP/IP Stack that is tightly integrated
with its main application is relatively easy to implement,
and may even be very space efficient. But such a
specialized stack may pose unique problems as more
and more new applications are integrated.
The stack is written in the ‘C’ programming language,
intended for both Microchip C18 and HI-TECH®

PICC-18™ C compilers. Depending on which is used,
the source files automatically make the required
changes. The Microchip TCP/IP Stack is designed to
run on Microchip’s PIC18 family of microcontrollers
only. In addition, this particular implementation is
specifically targeted to run on Microchip’s
PICDEM.netTM Internet/Ethernet demonstration board.
However, it can be easily retargeted to any hardware
equipped with a PIC18 microcontroller.

FIGURE 1: LAYERS OF THE TCP/IP
REFERENCE MODEL

Note: This application note was originally written for
the Microchip TCP/IP Stack released back in
2002; the stack has been updated many
times since. The latest API information is now
provided as a Windows® Help file, TCPIP
Stack Help.chm, which is distributed with
the latest TCP/IP Stack that can be down-
loaded from http://www.microchip.com/tcpip.
The stack now supports 8, 16 and 32-bit PIC®

and dsPIC® devices. This application note is
still useful as a reference material.

Author: Nilesh Rajbharti
Microchip Technology Inc.

Application

Transport

Internet

Host-to-Network
© 2008 Microchip Technology Inc. DS00833C-page 1

AN833

Stack Layers
Like the TCP/IP reference model, the Microchip TCP/IP
Stack divides the TCP/IP Stack into multiple layers
(Figure 2). The code implementing each layer resides in
a separate source file, while the services and APIs
(Application Programming Interfaces) are defined
through header/include files. Unlike the TCP/IP refer-
ence model, many of the layers in the Microchip TCP/IP
Stack directly access one or more layers which are not
directly below it. A decision as to when a layer would
bypass its adjacent module for the services it needs,
was made primarily on the amount of overhead and
whether a given service needs intelligent processing
before it can be passed to the next layer or not.

An additional major departure from traditional TCP/IP
Stack implementation is the addition of two new mod-
ules: “StackTask” and “ARPTask”. StackTask manages
the operations of the stack and all of its modules, while
ARPTask manages the services of the Address
Resolution Protocol (ARP) layer.

As mentioned earlier, the TCP/IP Stack is a “live” stack;
some of its layers must be able to perform some timed
operations asynchronously. To be able to meet this
requirement and still stay relatively independent of the
main application using its services, the Microchip
TCP/IP Stack uses a widely known technique called
cooperative multitasking. In a cooperative multitasking

system, there is more than one task; each performs its
job and returns its control so that the next task can per-
form its job. In this context, “StackTask” and “ARPTask”
are cooperative tasks.

Usually cooperative multitasking (or any other type of
multitasking, for that matter) is implemented by either
the operating system, or the main application itself.
The Microchip TCP/IP Stack is designed to be indepen-
dent of any operating system and thus, implements its
own cooperative multitasking system. As a result, it can
be used in any system, regardless of whether it uses a
multitasking operating system or not. However, an
application utilizing the Microchip TCP/IP Stack must
also use a cooperative multitasking method itself. This
is done by either dividing its job into multiple tasks, or
organizing its main job into a Finite State Machine
(FSM) and dividing a long job into multiple smaller jobs.
The HTTP Server, discussed later in this document,
follows the latter paradigm, and illustrates how a
cooperative application can be implemented.

Notice that the Microchip TCP/IP Stack does not imple-
ment all of the modules that are normally present in the
TCP/IP Stack. Although they are not present, they can
always be implemented as a separate task or module,
if required.

Microchip will implement additional protocols based on
this stack.

FIGURE 2: COMPARING THE MICROCHIP TCP/IP STACK STRUCTURE
TO THE TCP/IP REFERENCE MODEL

HTTP/FTP/ StackTask

UDP/TCP

ICMP

IP

MAC (or SLIP)

ARPTask

ARP

Application

Transport

Internet

Host-to-Network

 TCP/IP Reference Model Microchip Stack Implementation

DHCP
DS00833C-page 2 © 2008 Microchip Technology Inc.

AN833
STACK CONFIGURATION
Cooperative multitasking allows the user’s main appli-
cation to perform its own tasks without having to man-
age the TCP/IP Stack as well. As already noted,
achieving this functionality means that all applications
using the Microchip TCP/IP Stack must also be written
in cooperative multitasking fashion. In addition to the
cooperative multitasking design, the user must first
understand some basic configuration details.

To ease the configuration process, the stack uses ‘C’
compiler “defines”. To enable, disable or set a particular
parameter, the user changes one or more of these
defines. Most of these are defined in the header file,
“StackTsk.h”. Some defines that are defined in other
files are shown with corresponding file name. Once
these file are modified, the user must rebuild the appli-
cation project to include the changes. The “defines” are
listed in Table 1.

TABLE 1: STACK CONFIGURATION DEFINITIONS
Define Values Used By Purpose

CLOCK_FREQ
(compiler.h)

Oscillator
Frequency (Hz)

Tick.c Define system oscillator frequency to
determine tick counter value

TICKS_PER_SECONDS 10-255 Tick.c To calculate a second
TICK_PRESCALE_VALUE 2, 4, 8, 16, 32,

64, 128, 256
Tick.c To determine tick counter value

MPFS_USE_PGRM N/A MP File System
(MPFS.c)

Uncomment this if program memory
will be used for MPFS storage

MPFS_USE_EEPROM N/A MPFS.c Uncomment this if external serial
EEPROM will be used for MPFS
storage

MPFS_RESERVE_BLOCK 0-255 MPFS.c Number of bytes to reserve before
MPFS storage starts

EEPROM_CONTROL External Data
EEPROM Control

Code

MPFS.c To address external data EEPROM

STACK_USE_ICMP N/A StackTsk.c Comment this if ICMP is not required
STACK_USE_SLIP N/A SLIP.c Comment this if SLIP is not required
STACK_USE_IP_GLEANING N/A StackTsk.c Comment this if IP Gleaning is not

required
STACK_USE_DHCP N/A DHCP.c,

StackTsk.c
Comment this if DHCP is not required

STACK_USE_FTP_SERVER N/A FTP.c Comment this if FTP Server is not
required

STACK_USE_TCP N/A TCP.c,
StackTsk.c

Comment this if TCP module is not
required. This module will be auto-
matically enabled if there is at least
one high-level module requiring TCP.

STACK_USE_UDP N/A UDP.c,
StackTsk.c

Comment this if UDP module is not
required. This module will be auto-
matically enabled if there is at least
one high-level module requiring UDP.

STACK_CLIENT_MODE N/A ARP.c, TCP.c Client related code will be enabled
TCP_NO_WAIT_FOR_ACK N/A TCP.c TCP will wait for ACK before

transmitting next packet
MY_DEFAULT_IP_ADDR_BYTE?
MY_DEFAULT_MASK_BYTE?
MY_DEFAULT_GATE_BYTE?
MY_DEFAULT_MAC_BYTE?

0-255 User Application Define default IP, MAC, gateway and
subnet mask values.
Default values are:
10.10.5.15 for IP address
00:04:163:00:00:00 for MAC
10.10.5.15 for gateway
255.255.255.0 for subnet mask
© 2008 Microchip Technology Inc. DS00833C-page 3

AN833
MY_IP_BYTE?
MY_MASK_BYTE?
MY_GATE_BYTE?
MY_MAC_BYTE?

0-255 MAC.c, ARP.c,
DHCP.c, User
Application

Actual IP, MAC, gateway and subnet
mask values as saved/defined by
application. If DHCP is enabled, these
values reflect current DHCP server
assigned configuration.

MAX_SOCKETS 1-253 TCP.c To define the total number of sockets
supported (limited by available RAM).
Compile-time check is done to make
sure that enough sockets are
available for selected TCP
applications.

MAX_UDP_SOCKETS 1-254 UDP.c To define total number of sockets sup-
ported (limited by available RAM).
Compile-time check is done to make
sure that enough sockets are
available for selected UDP
applications.

MAC_TX_BUFFER_SIZE 201-1500 TCP.c, MAC.c To define individual transmit buffer
size

MAX_TX_BUFFER_COUNT 1-255 MAC.c To define total number of transmit
buffers. This number is limited by
available MAC buffer size.

MAX_HTTP_CONNECTIONS 1-255 HTTP.c To define maximum number of HTTP
connections allowed at any time

MPFS_WRITE_PAGE_SIZE
(MPFS.h)

1-255 MPFS.c To define writable page size for
current MPFS storage media

FTP_USER_NAME_LEN
(FTP.h)

1-31 FTP.c To define maximum length of FTP
user name string

MAX_HTTP_ARGS (HTTP.c) 1-31 HTTP.c To define maximum number of HTML
form fields including HTML form name

MAX_HTML_CMD_LEN
(HTTP.c)

1-128 HTTP.c To define maximum length of HTML
form URL string

TABLE 1: STACK CONFIGURATION DEFINITIONS (CONTINUED)
Define Values Used By Purpose
DS00833C-page 4 © 2008 Microchip Technology Inc.

AN833
USING THE STACK
The files accompanying this application note contain
the full source for the Microchip TCP/IP Stack, HTTP
and FTP servers, and DCHP and IP Gleaning modules.
Also included is a sample application that utilizes the
stack.

There are several MPLAB® project files designed to
illustrate all of the different configurations in which the
stack can be used. These are described in Table 2.

Since each of the modules comprising the stack
resides in its own file, users must be certain to include
all of the appropriate files in their project for correct
compilation. A complete list of the modules and
required files is presented in Table 3 (following page).

TABLE 2: STACK PROJECT FILES

Project Name Purpose “Defines” Used

HtNICEE.pjt Microchip TCP/IP Stack using Network Interface
Controller (NIC) and external serial EEPROM –
HI-TECH® C compiler.
Uses IP Gleaning, DHCP, FTP Server, ICMP
and HTTP Server.

MPFS_USE_EEPROM,
STACK_USE_IP_GLEANING,
STACK_USE_DHCP,
STACK_USE_FTP_SERVER,
STACK_USE_ICMP,
STACK_USE_HTTP_SERVER

HtNICPG.pjt Microchip TCP/IP Stack using NIC and internal
program memory – HI-TECH C compiler.
Uses IP Gleaning, DHCP, ICMP and HTTP
Server.

MPFS_USE_PGRM,
STACK_USE_IP_GLEANING,
STACK_USE_DHCP,
STACK_USE_ICMP,
STACK_USE_HTTP_SERVER

HtSlEE.pjt Microchip TCP/IP Stack using SLIP and external
serial EEPROM – HI-TECH Compiler.
Uses FTP Server, ICMP and HTTP Server.

STACK_USE_SLIP,
MPFS_USE_EEPROM,
STACK_USE_FTP_SERVER,
STACK_USE_ICMP,
STACK_USE_HTTP_SERVER

HtSlPG.pjt Microchip TCP/IP Stack using SLIP and internal
program memory – HI-TECH Compiler.
Uses ICMP and HTTP Server.

STACK_USE_SLIP,
MPFS_USE_PGRM,
STACK_USE_ICMP,
STACK_USE_HTTP_SERVER

MPNICEE.pjt Microchip TCP/IP Stack using NIC and external
serial EEPROM – Microchip C18 Compiler.
Uses ICMP and HTTP Server.

MPFS_USE_EEPROM,
STACK_USE_ICMP,
STACK_USE_HTTP_SERVER

MPNICPG.pjt Microchip TCP/IP Stack using NIC and internal
program memory – Microchip C18 Compiler.
Uses ICMP and HTTP Server.

MPFS_USE_PGRM,
STACK_USE_ICMP,
STACK_USE_HTTP_SERVER

MPSlEE.pjt Microchip TCP/IP Stack using SLIP and external
serial EEPROM – Microchip C18 Compiler.
Uses ICMP and HTTP Server.

STACK_USE_SLIP,
MPFS_USE_EEPROM,
STACK_USE_ICMP,
STACK_USE_HTTP_SERVER

MPSlPG.pjt Microchip TCP/IP Stack using SLIP and internal
program memory – Microchip C18 Compiler.
Uses ICMP and HTTP Server.

STACK_USE_SLIP,
MPFS_USE_PGRM,
STACK_USE_ICMP,
STACK_USE_HTTP_SERVER
© 2008 Microchip Technology Inc. DS00833C-page 5

AN833

TABLE 3: MICROCHIP TCP/IP STACK MODULES AND FILE REQUIREMENTS

Module Files Required Purpose

MAC MAC.c
Delay.c

Media Access Layer

SLIP SLIP.c Media Access Layer for SLIP
ARP ARP.c

ARPTsk.c
MAC.c or SLIP.c
Helpers.c

Address Resolution Protocol

IP IP.c
MAC.c or SLIP.c
Helpers.c

Internet Protocol

ICMP ICMP.c
StackTsk.c
IP.c
MAC.c or SLIP.c
Helpers.c

Internet Control Message Protocol

TCP StackTsk.c
TCP.c
IP.c
MAC.c or SLIP.c
Helpers.c
Tick.c

Transmission Control Protocol

UDP StackTsk.c
UDP.c
IP.c
MAC.c or SLIP.c
Helpers.c

User Datagram Protocol

Stack Manager StackTsk.c
TCP.c
IP.c
ICMP.c
ARPTsk.c
ARP.c
MAC.c or SLIP.c
Tick.c
Helpers.c

Stack Manager (“StackTask”), which coordinates the other
Microchip TCP/IP Stack modules

HTTP Server HTTP.c
TCP.c
IP.c
MAC.c or SLIP.c
Helpers.c
Tick.c
MPFS.c
XEEPROM.c(1)

HyperText Transfer Protocol Server

DHCP Client DHCP.c
UDP.c
IP.c
MAC.c
Helpers.c
Tick.c

Dynamic Host Configuration Protocol

Note 1: Required only if the external serial EEPROM for MPFS Storage option (MPFS_USE_EEPROM definition) is
enabled. If selected, the corresponding MPFS image file must be included. (Refer to "MPFS Image Builder"
(page 84) for additional information.)
DS00833C-page 6 © 2008 Microchip Technology Inc.

AN833
Once a project is set up with the appropriate files
included, the main application source file must be mod-
ified to include the programming sentences shown in
Example 1. For a complete working example, refer to
the source code for “Websrvr.c”. This source file,
along with other stack files, implements the HTTP
Server.

To understand how an application specific logic is per-
formed with cooperative multitasking, refer to the
source code for HTTP.c (the HTTP Server task). With-
out cooperative multitasking, applications using the
stack would need to divide their logic into several
smaller tasks, with each being constrained from
monopolizing the CPU for extended periods. The code
for ‘HTTP.c’ demonstrates the state machine approach
of dividing a long application into smaller state machine
states, returning control to the main application
whenever the logic must wait for a certain event.

IP Gleaning StackTsk.c
ARP.c
ARPTsk.c
ICMP.c
MAC.c or SLIP.c

To configure node IP address only.

FTP Server FTP.c
TCP.c
IP.c
MAC.c or SLIP.c

File Transfer Protocol Server.

TABLE 3: MICROCHIP TCP/IP STACK MODULES AND FILE REQUIREMENTS (CONTINUED)
Module Files Required Purpose

Note 1: Required only if the external serial EEPROM for MPFS Storage option (MPFS_USE_EEPROM definition) is
enabled. If selected, the corresponding MPFS image file must be included. (Refer to "MPFS Image Builder"
(page 84) for additional information.)
© 2008 Microchip Technology Inc. DS00833C-page 7

AN833

EXAMPLE 1: CODE ADDITIONS TO THE MAIN APPLICATION
// Declare this file as main application file
#define THIS_IS_STACK_APPLICATION

#include “StackTsk.h”
#include “Tick.h”
#include “dhcp.h” // Only if DHCP is used.
#include “http.h” // Only if HTTP is used.
#include “ftp.h” // Only if FTP is used.
// Other application specific include files
...

// Main entry point
void main(void)
{

// Perform application specific initialization
...

// Initialize Stack components.
// If StackApplication is used, initialize it too.
TickInit();
StackInit();
HTTPInit(); // Only if HTTP is used.
FTPInit(); // Only if FTP is used.

// Enter into infinite program loop
while(1)
{

// Update tick count. Can be done via interrupt.
TickUpdate();

// Let Stack Manager perform its task.
StackTask();

// Let any Stack application perform its task.
HTTPServer(); // Only if HTTP is used.
FTPServer(); // Only if FTP is used.

// Application logic resides here.
DoAppSpecificTask();

}
}

DS00833C-page 8 © 2008 Microchip Technology Inc.

AN833
STACK MODULES AND APIs
The Microchip TCP/IP Stack consists of many mod-
ules. In order to utilize a module, the user must review
and understand its purpose and APIs. A general over-
view of each module, along with a description of their
APIs, is provided in the following sections.

Media Access Control Layer (MAC)
The version of the Microchip TCP/IP Stack covered in
this application note has been specifically written to uti-
lize the Realtek RTL8019AS Network Interface Con-
troller (NIC). The RTL8019AS is a NE2000 compatible
NIC, that implements both the Ethernet physical (PHY)
and MAC layers. If a different NIC is to be used, users
will need to modify or create a new MAC.c file to imple-
ment access. As long as services provided by MAC.c
are not changed, all other modules will remain
unchanged.

The stack utilizes the on-chip SRAM available on the
NIC as a holding buffer, until a higher level module reads
it. It also performs the necessary IP checksum calcula-
tions in the NIC’s SRAM buffer. In addition to the receive
FIFO buffer managed by the NIC itself, the MAC layer
manages its own transmit queue. Using this queue, the
caller can transmit a message and request the MAC to
reserve it so that the same message can be retransmit-
ted, if required. The user can specify sizes for the trans-
mit buffer, transmit queue and receive queue using ‘C’
defines (see Table 1, "Stack Configuration Definitions"
for more information).

Serial Line Internet Protocol (SLIP)
SLIP layer utilizes serial cable as the main communica-
tion media, rather than ethernet cable. SLIP does not
require a NIC, and thus offers very simple and inexpen-
sive IP connection. SLIP is usually a one-to-one con-
nection, where a host computer acts as the client. The
SLIP module is designed to operate with a
Windows®-based computer, though it may be modified
to work with other operating systems with very few
changes. With the modular design of the stack, it is only
necessary to link the SLIP module (SLIP.c) to use it.
The APIs provided by the SLIP module are essentially
the same as those used by MAC (refer to the API
descriptions for MAC on the following pages for
details).

SLIP uses interrupt driven serial data transfer, as
opposed to the polling method used by the NIC MAC.
The main application must declare an interrupt handler
and call the SLIP interrupt handler, MACISR. For addi-
tional details, refer to the source code for
“Websrvr.c”, the Web server example program
included in the downloadable Zip file archive.

In order to connect to the Microchip TCP/IP Stack using
the SLIP module, the host system must be configured
for a SLIP connection. Refer to "Demo Applications"
(page 87) for more information.

MACInit

This function initializes MAC layer. It initializes internal buffers and resets the NIC to a known state.

Syntax
void MACInit()

Parameters
None

Return Values
None

Pre-Condition
None

Side Effects
All pending transmission and receptions are discarded.

Example
// Initialize MAC Module
MACInit();
© 2008 Microchip Technology Inc. DS00833C-page 9

AN833

MACIsTxReady

This function indicates whether at least one MAC transmit buffer is empty or not.

Syntax
BOOL MACIsTxReady()

Parameters
None

Return Values
TRUE: If at least one MAC transmit buffer is empty.

FALSE: If all MAC transmit buffers are full.

Pre-Condition
None

Side Effects
None

Remarks
None

Example
// Check MAC transmit readiness...
if (MACIsTxReady())
{

// Transmit buffer is empty, transmit a message.
...
DS00833C-page 10 © 2008 Microchip Technology Inc.

AN833

MACGetHeader

This function checks the MAC receive buffer; if any packet is found, it returns the remote host and data packet
information.

Syntax
BOOL MACGetHeader(MAC_ADDR *remote, BYTE *type)

Parameters
Remote [out]

Remote MAC address

type [out]

Data packet type

Possible values for this parameter are:

Return Values
TRUE: If a data packet is received and found to be valid. All parameters are populated.

FALSE: If no data packet is received or found to be invalid.

Pre-Condition
None

Side Effects
None

Remarks
Once a data packet is fetched by calling MACGetHeader, the complete data packet must be fetched (using MACGet)
and discarded (using MACDiscardRx). Users cannot call MACGetHeader multiple times to receive multiple packets
and fetch data later on.

Example
// Get possible data packet info.
if (MACGetHeader(&RemoteNodeMAC, &PacketType))
{

// A packet is received, process it.
...

// Once done, discard it.
MACDiscardRx();

...

Value Meaning

MAC_IP An IP data packet is received
MAC_ARP An ARP data packet is received
MAC_UNKNOWN An unknown or unsupported data packet is received
© 2008 Microchip Technology Inc. DS00833C-page 11

AN833

MACGet

This function returns the next byte from an active transmit or receive buffer.

Syntax
BYTE MACGet()

Parameters
None

Return Values
Data byte

Pre-Condition
MACGetHeader, MACPutHeader, MACSetRxBuffer or MACSetTxBuffer must have been called.

Side Effects
None

Remarks
The active buffer (whether transmit or receive) is determined by previous calls to MACGetHeader, MACPutHeader,
MACSetRxBuffer, or MACSetTxBuffer functions. For example, if MACGetHeader is followed by MACGet, the
receive buffer becomes the active buffer. But if MACPutHeader is followed by MACGet, the transmit buffer becomes the
active buffer.

Example 1
// Get possible data packet info.
if (MACGetHeader(&RemoteNode, &PacketType))
{

// A packet is received, process it.
data = MACGet();
...

// When done, discard it.
MACDiscardRx();

...

Example 2
// Load a packet for transmission
if (MACIsTxReady())
{

// Load MAC header.
MACPutHeader(&RemoteNode, MAC_ARP);

// Get active transmit buffer.
Buffer = MACGetTxBuffer();

// Load all data.
...

// We want to calculate checksum of whole packet.
// Set transmit buffer access pointer to beginning of packet.
MACSetTxBuffer(buffer, 0);

// Read transmit buffer content to calculate checksum.
checksum += MACGet();
...

...
DS00833C-page 12 © 2008 Microchip Technology Inc.

AN833

MACGetArray

This function fetches an array of bytes from the active transmit or receive buffer.

Syntax
WORD MACGetArray(BYTE *val, WORD len)

Parameters
val [out]

Pointer to a byte array

len [in]

Number of bytes to fetch

Return Values
Total number of bytes fetched.

Pre-Condition
MACGetHeader, MACPutHeader,MACSetRxBuffer or MACSetTxBuffer must have been called.

Side Effects
None

Remarks
The caller must make sure that total number of data bytes fetched does not exceed available data in current buffer. This
function does not check for buffer overrun condition.

Example
// Get possible data packet info.
if (MACGetHeader(&RemoteNode, &PacketType))
{

// A packet is received, process it.
actualCount = MACGetArray(data, count);

...
© 2008 Microchip Technology Inc. DS00833C-page 13

AN833

MACDiscardRx

This function discards the active receive buffer data and marks that buffer as free.

Syntax
void MACDiscardRx()

Parameters
None

Return Values
None

Pre-Condition
MACGetHeader must have been called and returned TRUE.

Side Effects
None

Remarks
Caller must make sure that there is at least one data packet received before calling this function. MACGetHeader should
be used to determine whether a receive buffer should be discarded or not.

Example
// Get possible data packet info.
if (MACGetHeader(&RemoteNode, &PacketType))
{

// A packet is received, process it.
actualCount = MACGetArray(data, count);
...

// Done processing it. Discard it.
MACDiscardRx();
...
DS00833C-page 14 © 2008 Microchip Technology Inc.

AN833

MACPutHeader

This function assembles the MAC header and loads it to an active transmit buffer.

Syntax
void MACPutHeader(MAC_ADDR *remote, BYTE type, WORD dataLen)

Parameters
remote [in]

Remote node MAC address

type [in]

Type of data packet being sent

Possible values for this parameter are:

data [in]

Number of bytes for this packet, including IP header

Return Values
None

Pre-Condition
MACIsTxReady must have been called and returned TRUE.

Side Effects
None

Remarks
This function simply loads the MAC header into the active transmit buffer. The caller still has to load more data and/or
flush the buffer for transmission. Call MACFlush to initiate transmission of the current packet.

Example
// Check to see if at least one transmit buffer is empty
if (MACIsTxReady())
{

// Assemble IP packet with total IP packet size of 100 bytes
// including IP header.
MACPutHeader(&RemoteNodeMAC, MAC_IP, 100);
...

Value Meaning

MAC_IP An IP data packet is to be transmitted
MAC_ARP An ARP data packet is to be transmitted
© 2008 Microchip Technology Inc. DS00833C-page 15

AN833

MACPut

This function loads the given data byte into an active transmit or receive buffer.

Syntax
void MACPut(BYTE val)

Parameters
val [in]

Data byte to be written

Return Values
None

Pre-Condition
MACGetHeader, MACPutHeader, MACSetRxBuffer or MACSetTxBuffer must have been called.

Side Effects
None

Remarks
This function can be used to modify either a transmit buffer or receive buffer – whichever is currently active.

Example
// Check to see if at least one transmit buffer is empty
if (MACIsTxReady())
{

// Assemble IP packet with total IP packet size of 100 bytes
// including IP header.
MACPutHeader(&RemoteNodeMAC, MAC_IP, 100);

// Now put the actual IP data bytes
MACPut(0x55);
...
DS00833C-page 16 © 2008 Microchip Technology Inc.

AN833

MACPutArray

This function writes an array of data bytes into an active transmit or receive buffer.

Syntax
void MACPutArray(BYTE *val, WORD len)

Parameters
val [in]

Data bytes to be written

len [in]

Total number of bytes to write

Return Values
None

Pre-Condition
MACGetHeader, MACPutHeader, MACSetTxBuffer or MACSetRxBuffer must have been called.

Side Effects
None

Remarks
None

Example
// Check to see if at least one transmit buffer is empty
if (MACIsTxReady())
{

// Assemble IP packet with total IP packet size of 100 bytes
// including IP header.
MACPutHeader(&RemoteNodeMAC, MAC_IP, 100);

// Now put the actual IP data bytes
MACPut(0x55);
MACPutArray(data, count);
...
© 2008 Microchip Technology Inc. DS00833C-page 17

AN833

MACFlush

This function marks active transmit buffer as ready for transmission.

Syntax
void MACFlush()

Parameters
None

Return Values
None

Pre-Condition
MACPutHeader or MACSetTxBuffer must have been called.

Side Effects
None

Remarks
None

Example
// Check to see if at least one transmit buffer is empty
if (MACIsTxReady())
{

// Assemble IP packet with total IP packet size of 100 bytes
// including IP header.
MACPutHeader(&RemoteNodeMAC, MAC_IP, 100);

// Put the actual IP data bytes
MACPut(0x55);
MACPutArray(data, count);
...

// Now transmit it.
MACFlush();

...
DS00833C-page 18 © 2008 Microchip Technology Inc.

AN833

MACDiscardTx

This function discards given transmit buffer content and marks it as free.

Syntax
void MACDiscardTx(BUFFER buffer)

Parameters
buffer [in]

Buffer to be discarded

Return Values
None

Pre-Condition
None

Side Effects
None

Remarks
A transmit buffer identifier that was received by calling MACGetTxBuffer must be used.

Example
// Check to see if at least one transmit buffer is empty
if (MACIsTxReady())
{

// Assemble IP packet with total IP packet size of 100 bytes
// including IP header.
MACPutHeader(&RemoteNodeMAC, MAC_IP, 100);

// Get current transmit buffer
buffer = MACGetTxBuffer();

// Reserve it.
MACReserveTxBuffer (Buffer);

// Put the actual IP data bytes
...

// Now transmit it.
MACFlush();

// No longer need this buffer
MACDiscardTx(buffer);

...
© 2008 Microchip Technology Inc. DS00833C-page 19

AN833

MACSetRxBuffer

This function sets the access location for the active receive buffer.

Syntax
void MACSetRxBuffer(WORD offset)

Parameters
offset [in]

Location (with respect to beginning of buffer) where next access is to occur

Return Values
None

Pre-Condition
None

Side Effects
None

Remarks
Users must make sure that the supplied offset does not go beyond current receive buffer content. If offset overruns the
current receive buffer, all subsequent access to that buffer would yield invalid data.

Example
// Get possible data packet info.
if (MACGetHeader(&RemoteNode, &PacketType))
{

// A packet is received, process it.
actualCount = MACGetArray(data, count);
...

// Fetch data beginning at offset 20
MACSetRxBuffer(20);
data = MACGet();

...
DS00833C-page 20 © 2008 Microchip Technology Inc.

AN833

MACSetTxBuffer

This function sets the access location for a given transmit buffer, and makes that transmit buffer active.

Syntax
void MACSetTxBuffer(BUFFER buffer, WORD offset)

Parameters
buffer [in]

A transmit buffer where this access offset be applied

offset [in]

Location (with respect to beginning of buffer) where next access is to occur

Return Values
None

Pre-Condition
None

Side Effects
None

Remarks
Users must make sure that the supplied offset does not go beyond current transmit buffer content. If offset overruns the
current transmit buffer, all subsequent access to that buffer would yield invalid data.

Example
// Check to see if at least one transmit buffer is empty
if (MACIsTxReady())
{

// Assemble IP packet with total IP packet size of 100 bytes
// including IP header.
MACPutHeader(&RemoteNodeMAC, MAC_IP, 100);

// Get current transmit buffer
buffer = MACGetTxBuffer();

// Put the actual IP data bytes
...

// Calculate the checksum of data packet that is being transmitted
...

// Now update the checksum in this packet.
// To update the checksum, set transmit buffer access to checksum
MACSetTxBuffer(buffer, checksumLocation);
...

// Now transmit it.
MACFlush();

...
© 2008 Microchip Technology Inc. DS00833C-page 21

AN833

MACReserveTxBuffer

This function reserves a given transmit buffer and marks it as unavailable. This function is useful for TCP layer where
a message would be queued until it is correctly acknowledged by remote host.

Syntax
void MACReserveTxBuffer(BUFFER buffer)

Parameters
buffer [in]

A transmit buffer to reserve

This value must be a valid transmit buffer identifier as returned by MACGetTxBuffer function

Return Values
None

Pre-Condition
None

Side Effects
None

Remarks
None

Example
// Check to see if at least one transmit buffer is empty
if (MACIsTxReady())
{

// Transmit IP packet with total IP packet size of 100 bytes
// including IP header.
MACPutHeader(&RemoteNodeMAC, MAC_IP, 100);

// Get current transmit buffer
buffer = MACGetTxBuffer();

// Reserve it, to be discarded when ACK is received.
MACReserveTxBuffer(buffer);

// Put the actual IP data bytes
...

// Calculate the checksum of data packet that is being transmitted
...

// Now update the checksum in this packet.
// To update the checksum, set transmit buffer access to checksum
MACSetTxBuffer(buffer, checksumLocation);
...

// Now transmit it.
MACFlush();

...
DS00833C-page 22 © 2008 Microchip Technology Inc.

AN833

MACGetFreeRxSize

This function returns total receive buffer size available for future data packets.

Syntax
WORD MACGetFreeRxSize()

Parameters
None

Return Values
Total number of bytes available for future data packets.

Pre-Condition
None

Side Effects
None

Remarks
None

Example
// Get available receive buffer size
freeRxBuffer = MACGetFreeRxSize();
© 2008 Microchip Technology Inc. DS00833C-page 23

AN833

MACGetRxBuffer

This macro returns the current receive buffer identifier.

Syntax
BUFFER MACGetRxBuffer()

Parameters
None

Return Values
Active receive buffer identifier.

Pre-Condition
None

Side Effects
None

Remarks
None

Example
// Get possible data packet info.
if (MACGetHeader(&RemoteNode, &PacketType))
{

// Get active receive buffer id.
buffer = MACGetRxBuffer();

// Fetch checksum directly without fetching other data.
MACSetRxBuffer(checkLocation);
checksum = MACGet();

...
DS00833C-page 24 © 2008 Microchip Technology Inc.

AN833

MACGetTxBuffer

This macro returns the current transmit buffer identifier.

Syntax
BUFFER MACGetTxBuffer()

Parameters
None

Return Values
Active transmit buffer identifier.

Pre-Condition
None

Side Effects
None

Remarks
None

Example
// If there is a room, load new message.
if (MACIsTxReady())
{

// Load MAC header
MACPutHeader(&RemoteNode, MAC_ARP, 100);

// Get active transmit buffer id.
buffer = MACGetTxBuffer();

// Modify data byte #20 in transmit buffer
MACSetTxBuffer(buffer, 20);
MACPut(0x55);

...
© 2008 Microchip Technology Inc. DS00833C-page 25

AN833

Address Resolution Protocol
(ARP and ARPTask)
The ARP layer of the Microchip TCP/IP Stack is actu-
ally implemented by two modules: ARP and ARPTask.
ARP, implemented by the file “ARP.c”, creates the ARP
primitives. ARPTask, implemented by the file
“ARPTsk.c”, utilizes the primitives and provides
complete ARP services.

ARPTask is implemented as a cooperative state
machine, responding to ARP requests from the remote
host. It also maintains a one-level cache to store the
ARP reply and returns to a higher level when the appro-
priate calls are made. ARPTask does not implement a
retry mechanism, so the upper level modules or appli-
cations must detect time-out conditions and respond
accordingly.

ARPTask operates in two modes: Server mode and
Server/Client mode. In Server/Client mode, a portion of
code is enabled and compiled to generate ARP
requests from the local host itself. In Server mode, the
ARP request code is not compiled. Usually, if the stack
is used with server applications (such as HTTP Server
or FTP serve)r, ARPTask should be compiled in Server
mode to reduce code size.

The compiler define STACK_CLIENT_MODE includes
the client portion of code. In Server/Client mode,
ARPTask maintains a one-level cache to store the ARP
reply from the remote host. When Server/Client mode
is not enabled, the cache is not defined and the
corresponding RAM and program memory is not used.

ARP Functions:

ARPIsTxReady

This is a macro that calls MACIsTxReady in turn.

Syntax
BOOL ARPIsTxReady()

Parameters
None

Return Values
TRUE: If there is at least one transmit buffer empty.

FALSE: If there is no empty transmit buffer.

Pre-Condition
None

Side Effects
None

Remarks
This macro is provided to create an abstraction only. Rather than calling MACIsTxReady directly, the upper layer that
uses ARP services should call this macro.

Example
// If ARP transmit buffer is ready, transmit ARP packet
if (ARPIsTxReady())
{

// Transmit ARP packet.
ARPPut(&RemoteNode, ARP_REPLY);

...
DS00833C-page 26 © 2008 Microchip Technology Inc.

AN833

ARPGet

This function fetches complete ARP packet and returns necessary information.

Syntax
BOOL ARPGet(NODE_INFO *remote, BYTE *opCode)

Parameters
remote [out]

Remote node information such as MAC and IP addresses

opCode [out]

ARP code

Possible values for this parameter are:

Return Values
TRUE: If a valid ARP packet that was addressed to local host was fetched; remote and opCode contain valid values.

FALSE: Either unknown ARP code was fetched or this packet was not addressed to local host.

Pre-Condition
MACGetHeader is already called AND

Received MAC packet type == MAC_ARP

Side Effects
None

Remarks
This function assumes that the active receive buffer contains an ARP packet and access pointer to this buffer is at the
beginning of ARP packet. Usually higher level layers would check MAC buffer and call this function only if an ARP packet
was detected. This function fetches the complete ARP packet and releases the active receive buffer.

Example
// If MAC packet is received...
if (MACGetHeader(&RemoteNode, &PacketType))
{

// If this is an ARP packet, fetch it.
If (PacketType == MAC_ARP)
{

// This is ARP packet.
ARPGet(&RemoteNode, &ARPCode);

...

Value Meaning

ARP_REPLY “ARP Reply” packet is received
ARP_REQUEST “ARP Request” packet is received
ARP_UNKNOWN An unknown ARP packet is received
© 2008 Microchip Technology Inc. DS00833C-page 27

AN833

ARPPut

This function loads MAC buffer with valid ARP packet.

Syntax
void ARPPut(NODE_INFO *remote, BYTE opCode)

Parameters
remote [in]

Remote node information such as MAC and IP addresses

opCode [in]

ARP code

Possible values for this parameter are:

Return Values
None

Pre-Condition
ARPIsTxReady == TRUE

Side Effects
None

Remarks
This function assembles complete ARP packet and transmits it.

Example
// Check to see if transmit buffer is available
if (ARPIsTxReady())
{

// Transmit it
ARPPut(&RemoteNode, ARP_REQUEST);

...

Value Meaning

ARP_REPLY Transmit this packet as “ARP Reply”
ARP_REQUEST Transmit this packet as “ARP Request”
DS00833C-page 28 © 2008 Microchip Technology Inc.

AN833

ARPTask Functions

ARPInit

This function initializes the ARPTask state machine and prepares it to handle ARP requests and replies.

Syntax
void ARPInit()

Parameters
None

Return Values
None

Pre-Condition
None

Side Effects
None

Remarks
In Server/Client mode, this function also initializes an internal one-level cache.

Example
// Initialize ARPTask
ARPInit();
...
© 2008 Microchip Technology Inc. DS00833C-page 29

AN833

ARPResolve

This function sends out an ARP request to a remote host.

Syntax
void ARPResolve(IP_ADDR *IPAddr)

Parameters
IPAddr [in]

IP Address of remote host to be resolved

Return Values
None

Pre-Condition
ARPIsTxReady == TRUE

Side Effects
None

Remarks
This function is available when STACK_CLIENT_MODE is defined.

Example
// Check to see if transmit buffer is available
if (ARPIsTxReady())
{

// Send ARP request
ARPResolve(&RemoteNodeIP);

...
DS00833C-page 30 © 2008 Microchip Technology Inc.

AN833

ARPIsResolved

This function checks the internal cache and returns matching host address information.

Syntax
BOOL ARPIsResolved(IP_ADDR *IPAddr, MAC_ADDR *MACAddr)

Parameters
IPAddr [in]

IP Address of remote host that is to be resolved

MACAddr [out]

Buffer to hold MAC Address of remote host that is to be resolved

Return Values
TRUE: If a matching IP Address was found in internal cache, corresponding MAC Address is copied to MACAddr.

FALSE: If there is no matching IP Address in internal cache; MACAddr is not populated.

Pre-Condition
None

Side Effects
An entry that matches with internal cache is removed from cache and declared as resolved.

Remarks
Since ARPTask maintains only one level of cache, higher level layer must make sure that second ARP request is not
sent until previous request is resolved. This function is available when STACK_CLIENT_MODE is defined.

Example
// Check to see if transmit buffer is available
if (ARPIsResolved(&RemoteIPAddr, &RemoteMACAddr))
{

// ARP is resolved. Continue with further connection...
...

}
else
{

// Not resolved. Wait...
...

}

© 2008 Microchip Technology Inc. DS00833C-page 31

AN833

Internet Protocol (IP)
The IP layer of the Microchip TCP/IP Stack is imple-
mented by the file “IP.c”. The header file “IP.h”
defines the services provided by the layer.

In this architecture, the IP layer is passive; it does not
respond to IP data packets. Instead, higher level layers
use IP primitives and fetch the IP packet, interpret it
and take appropriate action.

The IP specification requires that the local host
generate a unique packet identifier for each packet
transmitted by it. The identifier allows remote host to
identify duplicate packets and discard them. The
Microchip TCP/IP Stack’s IP layer maintains a private
16-bit variable to track packet identifiers.

IPIsTxReady

This is a macro that calls MACIsTxReady in turn.

Syntax
BOOL IPIsTxReady()

Parameters
None

Return Values
TRUE: If there is at least one transmit buffer empty.

FALSE: If there is no empty transmit buffer.

Pre-Condition
None

Side Effects
None

Remarks
This macro is provided to create an abstraction only. Rather than calling MACIsTxReady directly, the upper layer that
uses IP services should call this macro.

Example
// If IP transmit buffer is ready, transmit IP packet
if (IPIsTxReady())
{

// Assemble IP packet.
IPPutHeader(&Remote, MAC_TCP, IPPacketLen);

...
DS00833C-page 32 © 2008 Microchip Technology Inc.

AN833

IPSetTxBuffer

This is a macro to allow higher level layer set transmit buffer access pointer. This macro takes IP header into account
before calling MACSetTxBuffer.

Syntax
void IPSetTxBuffer(BUFFER buffer, WORD offset)

Parameters
buffer [in]

Transmit buffer identifier whose access pointer is to be set

offset [in]

An offset with respect to IP Data

Return Values
None

Pre-Condition
None

Side Effects
None

Remarks
Layers that use IP services should call this macro to set access pointer for a given transmit buffer. This macro adjusts
the given offset by the length of IP header.

Example
// If IP transmit buffer is ready, transmit IP packet
if (IPIsTxReady())
{

// Assemble IP packet.
IPPutHeader(&Remote, MAC_TCP, IPPacketLen);

// Get current transmit buffer id.
buffer = MACGetTxBuffer();

// Load transmit data
...

// Calculate checksum checkHi:checkLo
...

// Update the checksum.
IPSetTxBuffer(buffer, checkLocation);
MACPut (checkHi);
MACPut (checkLo);
...
© 2008 Microchip Technology Inc. DS00833C-page 33

AN833

IPPutHeader

This function assembles a valid IP header and loads it into active transmit buffer.

Syntax
WORD IPPutHeader(NODE_INFO *remote, BYTE protocol, WORD len)

Parameters
remote [in]

Remote node information such as MAC and IP addresses

protocol [in]

Protocol to use for this data packet

Possible values for this parameter are:

len [in]

Total length of IP data bytes, excluding IP header

Return Values
None

Pre-Condition
IPIsTxReady == TRUE

Side Effects
None

Remarks
This function assembles an IP packet complete with header checksum and correct network byte order. After this
function, the active transmit buffer access pointer points to the beginning of the IP data area.

This function does not initiate IP packet transmission. The caller must either load IP data by calling the MACPut function
and/or calling MACFlush to mark the buffer as ready to transmit.

Example
// Check to see if transmit buffer is available
if (IPIsTxReady())
{

// Load the header
IPPutHeader(&RemoteNode, IP_PROT_ICMP, ICMP_HEADER_SIZE+dataLen);

// Load ICMP data
IPPutArray(ICMPData, dataLen);

// Mark it as ready to be transmitted
MACFlush();

...

Value Meaning

IP_PROT_ICMP Assemble this packet as ICMP
IP_PROT_TCP Assemble this packet as TCP segment
IP_PROT_UDP Assemble this packet as UDP segment
DS00833C-page 34 © 2008 Microchip Technology Inc.

AN833

IPPutArray

This macro loads an array of bytes into the active transmit buffer.

Syntax
void IPPutArray(BYTE *buffer, WORD len)

Parameters
buffer [in]

Data array that is to loaded

len [in]

Total number of items in data array

Return Values
None

Pre-Condition
IPIsTxReady == TRUE

Side Effects
None

Remarks
This macro calls MACPutArray function. This is provided for abstraction only.

Example
// Check to see if transmit buffer is available
if (IPIsTxReady())
{

// Load the header
IPPutHeader(&RemoteNode, IP_PROT_ICMP, ICMP_HEADER_SIZE+dataLen);

// Load ICMP data
IPPutArray(ICMPData, dataLen);

// Mark it as ready to be transmitted
MACFlush();

...
© 2008 Microchip Technology Inc. DS00833C-page 35

AN833

IPGetHeader

This function fetches the IP header from the active transmit buffer and validates it.

Syntax
BOOL IPGetHeader(IP_ADDR *localIP, NODE_INFO *remote, BYTE *protocol, WORD *len)

Parameters
localIP [out]

Local node information such as MAC and IP addresses

remote [out]

Remote node information such as MAC and IP addresses

protocol [out]

Protocol associated with this IP packet

Possible values for this parameter are:

len [out]

Total length of IP data in this packet

Return Values
TRUE: A valid IP packet was received. Remote IP address, packet protocol and packet length parameters are

populated.

FALSE: An invalid IP packet was received. Parameters are not populated.

Pre-Condition
MACGetHeader == TRUE

Side Effects
None

Remarks
This function assumes that the active receive buffer access pointer is positioned to the beginning of the MAC Data area.
In order to satisfy this condition, the higher level layer must perform the following checks before calling this function:

If MACGetHeader == TRUE and PacketType == MAC_IP, call IPGetHeader
Else do not call IPGetHeader

Once the IP packet is processed and no longer needed, the caller must discard it from the MAC buffer by calling the
MACDiscardRx function. Refer to the source code of the Stack Task Manager (StackTsk.c) for details of the actual
implementation.

Value Meaning

IP_PROT_ICMP This is an ICMP packet
IP_PROT_TCP This is a TCP packet
IP_PROT_UDP This is a UDP packet
All others Unknown protocol
DS00833C-page 36 © 2008 Microchip Technology Inc.

AN833

IPGetHeader (Continued)

Example
// Check to see if any packet is ready
if (MACGetHeader(&RemoteMACAddr, &PacketType))
{

// Check what kind of protocol it is
if (PacketType == MAC_IP)
{

// This is IP packet. Fetch it.
IPGetHeader(&Local, &Remote, &IPProtocol, &IPLen);

// Process this IP packet.
...

// When done processing this packet, discard it
MACDiscardRx();

}
else
{

// This is not an IP packet. Handle it
...
© 2008 Microchip Technology Inc. DS00833C-page 37

AN833

IPGetArray

This macro fetches an array of bytes from an active transmit or receive buffer.

Syntax
WORD IPGetArray(BYTE *val, WORD len)

Parameters
val [out]

Pointer to a buffer to byte array

len [in]

Number of bytes to fetch

Return Values
Total number of bytes fetched

Pre-Condition
IPGetHeader, IPPutHeader, IPSetRxBuffer or IPSetTxBuffer must have been called.

Side Effects
None

Remarks
The caller must make sure that the total number of data bytes fetched does not exceed the available data in the active
buffer. This macro does not check for buffer overrun conditions.

Example
// Check to see if any packet is ready
if (MACGetHeader(&RemoteMACAddr, &PacketType))
{

// Check what kind of protocol it is
if (PacketType == MAC_IP)
{

// This is IP packet. Fetch it.
IPGetHeader(&Remote, &IPProtocol, &IPLen);

// Get 20 bytes of data
IPGetArray(IPData, 20);
...

// When done processing this packet, discard it
MACDiscardRx();

}
else
{

// This is not an IP packet. Handle it
...
DS00833C-page 38 © 2008 Microchip Technology Inc.

AN833

IPSetRxBuffer

This macro allows a higher level layer to set the receive buffer access pointer. It takes the IP header into account before
calling MACSetRxBuffer.

Syntax
void IPSetRxBuffer(WORD offset)

Parameters
offset [in]

An offset with respect to IP Data

Return Values
None

Pre-Condition
None

Side Effects
None

Remark
Layers that use IP services should call this macro to set the access pointer for the current buffer. This macro adjusts the
given offset by the length of IP header.

Example
// Check to see if any packet is ready
if (MACGetHeader(&RemoteMACAddr, &PacketType))
{

// Check what kind of protocol it is
if (PacketType == MAC_IP)
{

// This is IP packet. Fetch it.
IPGetHeader(&Remote, &IPProtocol, &IPLen);

// Fetch 20th byte within IP data.
IPSetRxBuffer(20);
data = MACGet();
...

// When done processing this packet, discard it
MACDiscardRx();

}
else
{

// This is not an IP packet. Handle it
...
© 2008 Microchip Technology Inc. DS00833C-page 39

AN833

Internet Control Message Protocol
(ICMP)
The ICMP layer is implemented by the file “ICMP.c”.
The header file “ICMP.h” defines the services provided
by the layer.

In this architecture, the ICMP layer is a passive layer; it
does not respond to the ICMP data packet. Instead,
higher level layers use ICMP primitives and fetch the
ICMP packet, interpret it and take appropriate action.

Normally, ICMP is used to send and receive IP error or
diagnostic messages. In the Microchip TCP/IP Stack,
ICMP implements ICMP primitives that can be used to
generate any of the ICMP messages. In embedded
applications, ICMP is useful for diagnostic purpose.
When enabled, ICMP can respond to “ping” packets,
thus allowing a remote host to determine local host
presence.

The Microchip ICMP layer only responds to ping data
packets of up to 32 bytes; larger packets will be
ignored. If it is necessary to handle larger packets,
modify the compiler define MAX_ICMP_DATA_LEN (in
the header file “StackTsk.h”).

ICMPIsTxReady

This macro determines if at least one transmit buffer is empty.

Syntax
BOOL ICMPIsTxReady()

Parameters
None

Return Values
TRUE: If there is at least one transmit buffer empty.

FALSE: If there is no empty transmit buffer.

Pre-Condition
None

Side Effects
None

Remarks
This macro is provided to create an abstraction only. Rather than calling MACIsTxReady directly, the upper layer that
uses IP services should call this macro.

Example
// If IP transmit buffer is ready, transmit IP packet
if (ICMPIsTxReady())
{

// Transmit ICMP packet.
...
DS00833C-page 40 © 2008 Microchip Technology Inc.

AN833

ICMPPut

This function assembles a valid ICMP packet and transmits it.

Syntax
void ICMPPut(NODE_INFO *remote,

ICMP_CODE code,
BYTE *data,
BYTE len,
WORD id,
WORD seq)

Parameters
remote [in]

Remote node information such as MAC and IP addresses

code [in]

ICMP code to be used for this ICMP packet

Possible values for this parameter are:

data [in]

ICMP data

len [in]

ICMP data length

id [in]

ICMP packet identifier

seq [in]

ICMP packet sequence number

Return Values
None

Pre-Condition
IPIsTxReady == TRUE

Side Effects
None

Remarks
This function asks IP layer to assemble IP header and assembles an ICMP packet, complete with header checksum
and correct network byte order. One major difference between this and other layer “Put” functions is that this function
assembles and transmits the packet in one function. Caller supplies complete data buffer and does not have to supply
data as a separate function call.

Example
// Check to see if transmit buffer is available
if (ICMPIsTxReady())
{

// Transmit ICMP packet.
ICMPPut(&RemoteNode, ICMP_ECHO_REPLY, data, datalen, id, seq);

// Done. ICMP is put into transmit queue.
...

Value Meaning

ICMP_ECHO_REPLY This is an ICMP Echo reply packet
ICMP_ECHO_REQUEST This is an ICMP Echo request packet
© 2008 Microchip Technology Inc. DS00833C-page 41

AN833

ICMPGet

This function fetches the ICMP header from the active transmit buffer and validates it.

Syntax
void ICMPGet(NODE_INFO *remote,

ICMP_CODE *code,
BYTE *data,
BYTE *len,
WORD *id,
WORD *seq)

Parameters
remote [out]

Remote node information such as MAC and IP addresses

code [out]

ICMP code for received ICMP packet

Possible values for this parameter are:

data [out]

ICMP data

len [out]

ICMP data length

id [out]

ICMP packet identifier

seq [out]

ICMP packet sequence number

Return Values
TRUE: A valid ICMP packet was received. All parameters are populated.

FALSE: An invalid ICMP packet was received. Parameters are not populated.

Pre-Condition
IPGetHeader == TRUE and PacketType == IP_PROT_ICMP

Side Effects
None

Remarks
This function assumes that the active receive buffer access pointer is positioned to the beginning of IP Data area. In
order to satisfy this condition, the higher level layer must perform the following checks before calling this function:

If IPGetHeader == TRUE and PacketType == IP_PROT_ICMP, call ICMPGet
Else

Do not call ICMPGet

Once the IP packet is processed and no longer needed, the caller must discard it from MAC buffer by calling the
MACDiscardRx function.

Value Meaning

ICMP_ECHO_REPLY An ICMP Echo reply packet is received
ICMP_ECHO_REQUEST An ICMP Echo request packet is received
For all others An unknown/unsupported packet is received
DS00833C-page 42 © 2008 Microchip Technology Inc.

AN833

ICMPGet (Continued)

Example
// Check to see if any packet is ready
if (IPGetHeader(&Remote, &IPProtocol, &IPLen))
{

// Check what kind of protocol it is
if (IPProtocol == IP_PROT_ICMP)
{

// This is ICMPP packet. Fetch it.
ICMPGet(&ICMPCode, data, &dataLen, &id, &seq);

// Process this ICMP packet.
...

// When done processing this packet, discard it
MACDiscardRx();

}
else
{

// This is not an ICMP packet. Handle it
...
© 2008 Microchip Technology Inc. DS00833C-page 43

AN833

Transmission Control Protocol (TCP)
The TCP layer of the Microchip TCP/IP Stack is imple-
mented by the file “TCP.c”. The header file “TCP.h”
defines the services provided by the layer. In this stack
architecture, TCP is an active layer. It fetches TCP
packets and responds to the remote host according to
the TCP state machine. The TCP module is also imple-
mented as a cooperative task, performing automatic
operations without the knowledge of the main
application.

“TCP.h” provides TCP socket services and hides all
TCP packet handling from the caller. The layer allows
from 2 to 253 TCP sockets, the number limited only by
available memory and compiler used. With more than
one socket, higher level applications can maintain
multiple simultaneous TCP connections and there
could be more than one application using this layer.
This facility is useful when HTTP Server is used. It is
important to know that each socket consumes
approximately 36 bytes (check source file for actual
consumption) and increases overall TCP processing
time.

Unlike other TCP/IP implementations, all sockets in the
Microchip TCP/IP Stack share one or more common
transmit buffers. This approach reduces overall RAM
requirements, but it may create a potential problem,
where a few sockets reserve all available transmit buf-
fers and do not release them on time for other sockets
to use. Under these circumstances, remote hosts
and/or local applications would not be able to contact
the stack. To avoid this, users must make sure that
there are enough transmit buffers for all sockets.

On the receive side, there is only one receive buffer. If
a socket receives its data, the owner of that socket
must fetch and discard the receive buffer in one task
time in order for the other sockets to receive their data.
This design mandates that once a task detects a packet
it is interested in, it must consume the complete packet
in one task time. A task cannot fetch part of a packet
during one task time and expect to fetch the rest of the
packet later.

As required by TCP specifications, each TCP segment
contains a checksum that covers the entire TCP
packet, including the data area. To reduce RAM
requirements, the TCP layer uses the MAC buffer in the
NIC as storage and performs the checksum calculation
in the MAC buffer itself. If the NIC is used as a MAC,
the NIC SRAM is used as a buffer space. But if SLIP is
used as a MAC, the microcontroller’s internal data
RAM is used.

The TCP layer of the Microchip TCP/IP Stack imple-
ments most of the TCP state machine states proposed
by RFC793. It also implements automatic retry and
timed operations, which users can enable or disable by
the compile time definition TCP_NO_WAIT_FOR_ACK.
When automatic retry is enabled, each socket transmit
buffer is reserved until an acknowledgement from the
remote host is received. This design effectively creates
a transmit window of one TCP segment. Thus, data
throughput would be considerably lower than that in
“No Retry” mode. If only the HTTP Server application is
used, the user may disable automatic retry and effec-
tively increase throughput. If the main application’s
logic requires that each packet be acknowledged
before a new one can be transmitted, the user should
enable the “Automatic Retry” mode. With Automatic
Retry enabled, some opened connections may not get
served on time, and the remote host may get time-out
or Reset errors.
DS00833C-page 44 © 2008 Microchip Technology Inc.

AN833

TCPInit

This function initializes the TCP state machine and prepares it for multiple TCP connections.

Syntax
void TCPInit()

Parameters
None

Return Values
None

Pre-Condition
None

Side Effects
None

Remarks
This function is called only once on application start-up.

Example
// Initialize TCP
TCPInit();
© 2008 Microchip Technology Inc. DS00833C-page 45

AN833

TCPListen

This function assigns one of the available sockets to listen on given TCP port.

Syntax
TCP_SOCKET TCPListen(TCP_PORT port)

Parameters
port [in]

TCP Port number on which to listen

Return Values
A valid socket identifier if there was at least one free socket.

INVALID_SOCKET if there is no socket available.

Pre-Condition
None

Side Effects
None

Remarks
None

Example
...

switch(smState)
{
case SM_LISTEN:

// Listen for HTTP requests.
httpSocket = TCPListen(80);
If (httpSocket == INVALID_SOCKET)
{

// Socket is not available
// Return error.
...

}
else

smState = SM_LISTEN_WAIT;
return;

case SM_LISTEN_WAIT:
// Wait for connection...

...
DS00833C-page 46 © 2008 Microchip Technology Inc.

AN833

TCPConnect

This function initiates a connection request to a remote host on a given remote port.

Syntax
TCP_SOCKET TCPConnect(NODE_INFO *remote, TCP_PORT port)

Parameters
remote [in]

Remote host that needs to be connected

port [in]

TCP Port number on remote host to connect to

Return Values
A valid socket identifier if there was at least one free socket and connection request was sent.

INVALID_SOCKET if there is no socket available.

Pre-Condition
None

Side Effects
None

Remarks
This function is available only when STACK_CLIENT_MODE is defined (see "Stack Configuration" (page 3)).

Example
...

switch(smState)
{
case SM_CONNECT:

// Connect to a remote FTP server.
ftpSocket = TCPConnect(&RemoteNode, 21);
If (ftpSocket == INVALID_SOCKET)
{

// Socket is not available
// Return error.

}
else

smState = SM_CONNECT_WAIT;
return;

case SM_CONNECT_WAIT:
// Wait for connection...

...
© 2008 Microchip Technology Inc. DS00833C-page 47

AN833

TCPIsConnected

This function determines whether a given socket is connected to remote host or not.

Syntax
BOOL TCPIsConnected(TCP_SOCKET socket)

Parameters
socket [in]

Socket identifier for which the connection is to be checked

Return Values
TRUE: If given socket is connected to remote host.

FALSE: If given socket is not connected to remote host.

Pre-Condition
None

Side Effects
None

Remarks
None

Example
...

switch(smState)
{
case SM_CONNECT:

// Connect to a remote FTP server.
ftpSocket = TCPConnect(&RemoteNode, 21);
If (ftpSocket == INVALID_SOCKET)
{

// Socket is not available
// Return error.

}
else

smState = SM_CONNECT_WAIT;
return;

case SM_CONNECT_WAIT:
// Wait for connection...
if (TCPIsConnected(ftpSocket))

smState = SM_CONNECTED;
return;

...
DS00833C-page 48 © 2008 Microchip Technology Inc.

AN833

TCPDisconnect

This function requests remote host to disconnect.

Syntax
void TCPDisconnect(TCP_SOCKET socket)

Parameters
socket [in]

Socket identifier that needs to be disconnected

Return Values
None

Pre-Condition
None

Side Effects
None

Remarks
None

Example
...

switch(smState)
{
case SM_CONNECT:

// Connect to a remote FTP server.
ftpSocket = TCPConnect(&RemoteNode, 21);
If (ftpSocket == INVALID_SOCKET)
{

// Socket is not available
// Return error.

}
else

smState = SM_CONNECT_WAIT;
return;

case SM_CONNECT_WAIT:
// Wait for connection...
if (TCPIsConnected(ftpSocket))

smState = SM_CONNECTED;
return;

case SM_CONNECTED:
// Send data
...
// Disconnect
TCPDisconnect(ftpSocket);

...
© 2008 Microchip Technology Inc. DS00833C-page 49

AN833

TCPIsPutReady

This function determines if a socket is ready to transmit. A socket is ready to transmit when it is connected to a remote
host and its transmit buffer is empty.

Syntax
BOOL TCPIsPutReady(TCP_SOCKET socket)

Parameters
socket [in]

Socket identifier that needs to be checked

Return Values
TRUE: If given socket is ready to transmit.

FALSE: If given socket is not connected or there is no transmit buffer ready.

Pre-Condition
None

Side Effects
None

Remarks
None

Example
...

switch(smState)
{
case SM_CONNECT:

// Connect to a remote FTP server.
ftpSocket = TCPConnect(&RemoteNode, 21);
If (ftpSocket == INVALID_SOCKET)
{

// Socket is not available
// Return error.

}
else

smState = SM_CONNECT_WAIT;
return;

case SM_CONNECT_WAIT:
// Wait for connection...
if (TCPIsConnected(ftpSocket))

smState = SM_CONNECTED;
return;

case SM_CONNECTED:
// Send data
if (TCPIsPutReady(ftpSocket))
{

// Send data
...
DS00833C-page 50 © 2008 Microchip Technology Inc.

AN833

TCPPut

This function loads a data byte into the transmit buffer for a given socket.

Syntax
BOOL TCPPut(TCP_SOCKET socket, BYTE byte)

Parameters
socket [in]

Socket identifier that needs to be checked

byte [in]

Data byte to be loaded

Return Values
TRUE: If a given data byte was successfully loaded into the transmit buffer and there is room for more data.

FALSE: If a given data byte was successfully loaded into the transmit buffer and there is no room for more data.

Pre-Condition
TCPIsPutReady == TRUE

Side Effects
None

Remarks
Once a socket is found to be ready to transmit, the user must load all data, or until there is no more room in the socket
buffer. The user cannot load part of the data in one socket and load another socket buffer.

It is important to remember that when socket data is loaded using this function, the actual transmission may or may not
start, depending on total number of data bytes loaded. If the number of bytes loaded is less than the available socket
buffer size, the user must explicitly flush the transmit buffer using the TCPFlush function. If the user tries to load more
bytes then the available buffer size, this function automatically starts the transmission and returns FALSE, so the user
can try again. Usually, it is a good practice to flush the socket buffer after all known data is loaded into buffer, regardless
of whether the buffer was full or not.
© 2008 Microchip Technology Inc. DS00833C-page 51

AN833

TCPPut (Continued)

Example
...

switch(smState)
{
case SM_CONNECT:

// Connect to a remote FTP server.
ftpSocket = TCPConnect(&RemoteNode, 21);
If (ftpSocket == INVALID_SOCKET)
{

// Socket is not available
// Return error.

}
else

smState = SM_CONNECT_WAIT;
return;

case SM_CONNECT_WAIT:
// Wait for connection...
if (TCPIsConnected(ftpSocket))

smState = SM_CONNECTED;
return;

case SM_CONNECTED:
// Send data
if (TCPIsPutReady(ftpSocket))
{

// Send data
TCPPut(ftpSocket, dataByte);

...
DS00833C-page 52 © 2008 Microchip Technology Inc.

AN833

TCPFlush

This function marks given socket transmit buffer as ready to be transmitted.

Syntax
void TCPFlush(TCP_SOCKET socket)

Parameters
socket [in]

Socket identifier that needs to transmitted

Return Values
None

Pre-Condition
None

Side Effects
None

Remarks
This function marks the current transmit buffer as ready to transmit; the actual transmission may not start immediately.
User does not have to check the status of transmission. The NIC will retry transmitting a message up to 15 times (for
the RTL8019AS; check the documentation for the specific NIC if the RTL8019AS is not being used). If the socket is
already flushed, another flush would be ignored.

Example
...

switch(smState)
{
case SM_CONNECT:

// Connect to a remote FTP server.
ftpSocket = TCPConnect(&RemoteNode, 21);
If (ftpSocket == INVALID_SOCKET)
{

// Socket is not available
// Return error.

}
else

smState = SM_CONNECT_WAIT;
return;

case SM_CONNECT_WAIT:
// Wait for connection...
if (TCPIsConnected(ftpSocket))

smState = SM_CONNECTED;
return;

case SM_CONNECTED:
// Send data
if (TCPIsPutReady(ftpSocket))
{

// Send data
TCPPut(ftpSocket, dataByte);
...

// Now transmit it.
TCPFlush(ftpSocket);

...
© 2008 Microchip Technology Inc. DS00833C-page 53

AN833

TCPIsGetReady

This function determines if the given socket contains receive data.

Syntax
BOOL TCPIsGetReady(TCP_SOCKET socket)

Parameters
socket [in]

Socket identifier that needs to transmitted

Return Values
TRUE: If given socket contains receive data.

FALSE: If given socket does not contain any data.

Pre-Condition
None

Side Effects
None

Remarks
None

Example
...

switch(smState)
{
case SM_LISTEN:

// Listen to HTTP socket
httpSocket = TCPListen(&RemoteNode, 80);
If (httpSocket == INVALID_SOCKET)
{

// Socket is not available
// Return error.

}
else

smState = SM_LISTEN_WAIT;
return;

case SM_LISTEN_WAIT:
// Wait for connection...
if (TCPIsConnected(httpSocket))

smState = SM_CONNECTED;
return;

case SM_CONNECTED:
// Fetch data
if (TCPIsGetReady(httpSocket))
{

// Fetch data
...
DS00833C-page 54 © 2008 Microchip Technology Inc.

AN833

TCPGet

This function fetches one data byte from a given socket receive buffer.

Syntax
BOOL TCPGet(TCP_SOCKET socket, BYTE *byte)

Parameters
socket [in]

Socket identifier that needs to be fetched

byte [out]

Data byte that was read

Return Values
TRUE: If a byte was read.

FALSE: If no byte was read.

Pre-Condition
TCPIsGetReady == TRUE

Side Effects
None

Remarks
When a socket is found to contain receive data, the user must fetch one or more data bytes (if required) in one task time
and discard the socket buffer. Data cannot be fetched from another socket until the socket buffer contents for the first
is discarded.

Example
...
switch(smState)
{
case SM_LISTEN:

// Listen to HTTP socket
httpSocket = TCPListen(&RemoteNode, 80);
If (httpSocket == INVALID_SOCKET)
{

// Socket is not available
// Return error.

}
else

smState = SM_LISTEN_WAIT;
return;

case SM_LISTEN_WAIT:
// Wait for connection...
if (TCPIsConnected(httpSocket))

smState = SM_CONNECTED;
return;

case SM_CONNECTED:
// Fetch data
if (TCPIsGetReady(httpSocket))
{

// Fetch data
TCPGet(httpSocket, &dataByte);

...
© 2008 Microchip Technology Inc. DS00833C-page 55

AN833

TCPGetArray

This function fetches a data array from a given socket receive buffer.

Syntax
WORD TCPGetArray(TCP_SOCKET socket,

BYTE *byte,
WORD count)

Parameters
socket [in]

Socket identifier that needs to be fetched

byte [out]

Data array that was read

count [out]

Total number of bytes to read

Return Values
Total number of data bytes read.

Pre-Condition
TCPIsGetReady == TRUE

Side Effects
None

Remarks
When a socket is found to contain receive data, the user must fetch one or more data bytes (if required) and discard the
socket buffer. Data cannot be fetched from another socket until the socket buffer contents for the first is discarded.

This function does not check the request against available data bytes in the receive buffer. The user must make sure
that the current receive buffer is not overrun.
DS00833C-page 56 © 2008 Microchip Technology Inc.

AN833

TCPGetArray (Continued)

Example
...

switch(smState)
{
case SM_LISTEN:

// Listen to HTTP socket
httpSocket = TCPListen(&RemoteNode, 80);
If (httpSocket == INVALID_SOCKET)
{

// Socket is not available
// Return error.

}
else

smState = SM_LISTEN_WAIT;
return;

case SM_LISTEN_WAIT:
// Wait for connection...
if (TCPIsConnected(httpSocket))

smState = SM_CONNECTED;
return;

case SM_CONNECTED:
// Fetch data
if (TCPIsGetReady(httpSocket))
{

// Fetch 20 bytes of data
TCPGetArray(httpSocket, buffer, 20);

...
© 2008 Microchip Technology Inc. DS00833C-page 57

AN833

TCPDiscard

This function releases the receive buffer associated with a given socket.

Syntax
BOOL TCPDiscard(TCP_SOCKET socket)

Parameters
socket [in]

Socket identifier that needs to transmitted

Return Values
TRUE: If receive buffer for given was successfully discarded.

FALSE: If receive buffer for given buffer was already discarded.

Pre-Condition
None

Side Effects
None

Remarks
None

Example
...

switch(smState)
{
case SM_LISTEN:

// Listen to HTTP socket
httpSocket = TCPListen(&RemoteNode, 80);
If (httpSocket == INVALID_SOCKET)
{

// Socket is not available
// Return error.

}
else

smState = SM_LISTEN_WAIT;
return;

case SM_LISTEN_WAIT:
// Wait for connection...
if (TCPIsConnected(httpSocket))

smState = SM_CONNECTED;
return;

case SM_CONNECTED:
// Fetch data
if (TCPIsGetReady(httpSocket))
{

// Fetch 20 bytes of data
TCPGetArray(httpSocket, buffer, 20);

// Process data.
...

// Release the buffer.
TCPDiscard(httpSocket);

...
DS00833C-page 58 © 2008 Microchip Technology Inc.

AN833

TCPProcess

This function acts as “TCPTask”. It fetches an already received TCP packet and executes the TCP State machine for
matching sockets. This function must be called only when a TCP packet is received.

Syntax
BOOL TCPProcess(NODE_INFO *remote, WORD len)

Parameters
remote [in]

Remote node from which current TCP packet was received

len [out]

Total length of TCP packet length, including TCP header

Return Values
TRUE: If this function (task) has completely processed current packet.

FALSE: If this function (task) has partially processed current packet.

Pre-Condition
IPGetHeader == TRUE and IPProtocol = IP_PRO_TCP

Side Effects
None

Remarks
As mentioned above, this function implements the TCP state machine. Users must call this function when a valid TCP
data packet is received. Once a packet is detected, this function fetches and handles the packet. The return value from
this function indicates to the caller if the StackTask state machine state should be changed or not.

In its current implementation, this function always returns TRUE. Refer to the Stack Manager task source code
(StackTsk.c) for details on the actual implementation.

Example
...

switch(smState)
{
case SM_STACK_IDLE:

if (MACGetHeader(&RemoveMAC, &MACFrameType))
{

if (MACFrameType == MAC_IP)
smState = SM_STACK_IP;

...
return;

case SM_STACK_IP:
if (IPGetHeader(&RemoteNode, &IPFrameType, &IPDataCount))
{

if (IPFrameType == IP_PROT_TCP)
smState = SM_STACK_TCP;

...
return;

case SM_STACK_TCP:
if (TCPProcess(&RemoteNode, IPDataCount))

smState = SM_STACK_IDLE;
return;

...
© 2008 Microchip Technology Inc. DS00833C-page 59

AN833

TCPTick

This function acts as another “TCPTask” in addition to TCPProcess. This function checks for time-out conditions for all
sockets and attempts to recover from them.

Syntax
void TCPTick()

Parameters
None

Return Values
None

Pre-Condition
None

Side Effects
None

Remarks
This function implements time-out handling. User must call this function periodically to ensure that time-out conditions
are handled in a timely manner.

Example
TCPTick();
DS00833C-page 60 © 2008 Microchip Technology Inc.

AN833

User Datagram Protocol (UDP)
The UDP layer of the Microchip TCP/IP Stack is imple-
mented by the file “UDP.c”. The header file “UDP.h”
defines the services provided by the layer. In this stack
architecture, UDP is an active layer. It fetches UDP
packets and notifies corresponding UDP socket of data
arrival or transmission. The UDP module is imple-
mented as a cooperative task, performing automatic
operations without the knowledge of the main
application.

“UDP.h” provides UDP socket services and hides all
UDP packet handling from the caller. The layer allows
up to 254 UDP sockets (the number limited only by
available memory and compiler used). With more than
one socket, higher level applications can maintain mul-
tiple simultaneous UDP connections; more than one
application could be using this layer. It is important to
know that each socket consumes approximately
19 bytes (check “UDP.h” file for actual consumption)
and increases overall UDP processing time.

Unlike other socket implementations, all sockets in the
Microchip TCP/IP Stack share one or more common
transmit buffers. This approach reduces overall RAM
requirements, but it may create a potential problem,

where a few sockets reserve all available transmit buf-
fers and do not release them on time for other sockets
to use. Under these circumstances, remote hosts
and/or local applications would not be able to contact
the stack. To avoid this, users must make sure that
there are enough transmit buffers for all sockets.

On the receive side, there is only one receive buffer. If
a socket receives its data, the owner of that socket
must fetch and discard the receive buffer in one task
time in order for the other sockets to receive their data.
This design mandates that once a task detects a packet
it is interested in, it must consume the complete packet
in one task time. A task cannot fetch part of a packet
during one task time and expect to fetch the rest of the
packet later.

The UDP specifications do not mandate that checksum
calculation be performed on UDP packets. To reduce
overall program and data memory requirements, the
Microchip TCP/IP Stack does not implement UDP
checksum calculation; instead, it sets the checksum
fields to zero to indicate that no checksum calculation
is performed. This design decision requires that all
modules utilizing the UDP module ensure their data
integrity.

UDPInit

This function initializes the UDP module and prepares it for multiple UDP connections.

Syntax
void UDPInit()

Parameters
None

Return Values
None

Pre-Condition
None

Side Effects
None

Remarks
This function is called only once on application start-up.

Example
// Initialize UDP
UDPInit();
© 2008 Microchip Technology Inc. DS00833C-page 61

AN833

UDPOpen

This function prepares the next available UDP socket on a given port for possible data transfer. Either the local or remote
node may initiate the data transfer.

Syntax
UDP_SOCKET UDPOpen(UDP_PORT localPort, NODE_INFO *remoteNode, TCP_PORT remotePort)

Parameters
localPort [in]

Local UDP port number on which data transfer will occur

remoteNode [in]

Remote host that contains remotePort

remotePort [in]

UDP Port number on remote host to transfer the data to and from

Return Values
A valid socket identifier if there was at least one free socket.

INVALID_UDP_SOCKET if there is no socket available.

Pre-Condition
None

Side Effects
None

Remarks
This function may be used for both local host-initiated and remote host-initiated data transfers. There is no explicit con-
nection step in UDP. Once a UDP socket is opened, it is ready to transmit or receive the data. When a socket is said to
be opened, it simply means that the corresponding socket is setup to receive and transmit one or more data packets
until that socket is closed.

Example
...

switch(smState)
{
case SM_OPEN:

// Talk to a remote DHCP server.
DHCPSocket = UDPOpen(68, &DHCPServerNode, 67);
If (DHCPSocket == INVALID_UDP_SOCKET)
{

// Socket is not available
// Return error.

}
else

// Broadcast DHCP Broadcast message.
break;

...
DS00833C-page 62 © 2008 Microchip Technology Inc.

AN833

UDPClose

This function closes a given UDP socket and declares it as a free socket.

Syntax
void UDPDisconnect(UDP_SOCKET socket)

Parameters
socket [in]

Identifier of socket that needs to be closed

Return Values
None

Pre-Condition
None

Side Effects
None

Remarks
None

Example
...

switch(smState)
{
case SM_OPEN:

// Talk to a remote DHCP server.
DHCPSocket = UDPOpen(68, &DHCPServerNode, 67);
If (DHCPSocket == INVALID_UDP_SOCKET)
{

// Socket is not available
// Return error.

}
else

// Send DHCP request...
...
// Close the socket
UDPClose(DHCPSocket);

break;
...
© 2008 Microchip Technology Inc. DS00833C-page 63

AN833

UDPIsPutReady

This macro determines if a given socket is ready to transmit. A socket is ready to transmit when at least one of the MAC
transmit buffers is empty. It also sets the given socket as an active UDP socket.

Syntax
BOOL UDPIsPutReady(UDP_SOCKET socket)

Parameters
socket [in]

Identifier of the socket that needs to be checked and set active

Return Values
TRUE: If a given socket is ready to transmit.

FALSE: If there is no transmit buffer ready.

Pre-Condition
None

Side Effects
None

Remarks
Since UDP is a connection less protocol, a socket is always ready to transmit as long as at least the MAC transmit buffer
is empty. In addition to checking for transmitter readiness, UPDIsPutReady also sets the active UDP socket. Once a
socket is set active, successive calls to other UDP functions (such as UDPGet, UDPPut, UDPFlush and
UDPDiscard) use the active socket as the current socket. Therefore, it is not necessary for the user to pass the socket
on every call.

See the UDPGet, UDPPut, UDPFlush and UDPDiscard functions for additional information.

Example
...

switch(smState)
{
case SM_OPEN:

// Talk to a remote DHCP server.
DHCPSocket = UDPOpen(68, &DHCPServerNode, 67);
If (DHCPSocket == INVALID_UDP_SOCKET)
{

// Socket is not available
// Return error.

}
else

// Broadcast DHCP Broadcast message.
smState = SM_BROADCAST;

break;
case SM_BROADCAST:

if (UDPIsPutReady(DHCPSocket))
{

// Socket is ready to transmit. Transmit the data...
...

}
break;

...
DS00833C-page 64 © 2008 Microchip Technology Inc.

AN833

UDPPut

This function loads a data byte into the transmit buffer for an active socket.

Syntax
BOOL UDPPut(BYTE byte)

Parameters
byte [in]

Data byte to be loaded

Return Values
TRUE: If a given data byte was successfully loaded into the transmit buffer and there is room for more data.

FALSE: If a given data byte was successfully loaded into the transmit buffer and there is no room for more data.

Pre-Condition
UDPIsPutReady == TRUE

Side Effects
None

Remarks
Once a socket is found to be ready to transmit, the user must load all data, or until there is no more room in the socket
buffer. The user cannot load part of the data into one socket and part into another socket buffer.

It is important to remember that when socket data is loaded using this function, the actual transmission may or may not
start, depending on total number of data bytes loaded. If the number of bytes loaded is less than the available socket
buffer size, the user must explicitly flush the transmit buffer using the UDPFlush function. If the user tries to load more
bytes then the available buffer size, this function automatically starts the transmission and returns FALSE, so the user
can try again. Usually, it is a good practice to flush the socket buffer after all known data is loaded into buffer, regardless
of whether the buffer was full or not.
© 2008 Microchip Technology Inc. DS00833C-page 65

AN833

UDPPut (Continued)

Example
...

switch(smState)
{
case SM_OPEN:

// Talk to a remote DHCP server.
DHCPSocket = UDPOpen(68, &DHCPServerNode, 67);
If (DHCPSocket == INVALID_UDP_SOCKET)
{

// Socket is not available
// Return error.

}
else

// Broadcast DHCP Broadcast message.
smState = SM_BROADCAST;

break;
case SM_BROADCAST:

if (UDPIsPutReady(DHCPSocket))
{

// Socket is ready to transmit. Transmit the data...
// Note that there is DHCPSocket parameter in UDPPut.
// This UDPPut call will use active socket
// as set by UDPIsPutReady() - that is DHCPSocket.
UDPPut(0x55);
...

}
break;

...
DS00833C-page 66 © 2008 Microchip Technology Inc.

AN833

UDPFlush

This function marks the active socket transmit buffer as ready to be transmitted.

Syntax
void UDPFlush()

Parameters

Return Values
None

Pre-Condition
UDPPut() is already called, and the desired UDP socket is set as the active socket by calling UDPIsPutReady().

Side Effects
None

Remarks
This function marks the current transmit buffer as ready to transmit; the actual transmission may not start immediately.
User does not have to check the status of transmission. The NIC will retry a transmission up to 15 times (for the
RTL8019AS; check the documentation for the specific NIC if the RTL8019AS is not being used). If the socket is already
flushed, another flush would be ignored.

Example
...

switch(smState)
{
case SM_OPEN:

// Talk to a remote DHCP server.
DHCPSocket = UDPOpen(68, &DHCPServerNode, 67);
If (DHCPSocket == INVALID_UDP_SOCKET)
{

// Socket is not available
// Return error.

}
else

// Broadcast DHCP Broadcast message.
smState = SM_BROADCAST;

break;
case SM_BROADCAST:

if (UDPIsPutReady(DHCPSocket))
{

// Socket is ready to transmit. Transmit the data...
// Note that there is DHCPSocket parameter in UDPPut.
// This UDPPut call will use active socket
// as set by UDPIsPutReady() - that is DHCPSocket.
UDPPut(0x55);
...
// Now transmit it.
UDPFlush();

}
break;

...
© 2008 Microchip Technology Inc. DS00833C-page 67

AN833

UDPIsGetReady

This function determines if the given socket contains receive data. It also sets a given socket as an active socket.

Syntax
BOOL UDPIsGetReady(UDP_SOCKET socket)

Parameters
socket [in]

Identifier for the socket that needs to transmitted and set active

Return Values
TRUE: If a given socket contains receive data.

FALSE: If a given socket does not contain any data.

Pre-Condition
UDPOpen() is already called. The value of socket must be that returned by UDPOpen() call.

Side Effects
None

Remarks
None

Example
...

switch(smState)
{
case SM_OPEN:

// Talk to a remote DHCP server.
DHCPSocket = UDPOpen(68, &DHCPServerNode, 67);
If (DHCPSocket == INVALID_UDP_SOCKET)
{

// Socket is not available
// Return error.

}
else

// Wait for response from DHCP server
smState = SM_WAIT_FOR_DATA;

break;
case SM_WAIT_FOR_DATA:

if (UDPIsGetReady(DHCPSocket))
{

// Socket does contain some data. Fetch it and process it.
...

}
break;

...
DS00833C-page 68 © 2008 Microchip Technology Inc.

AN833

UDPGet

This function fetches one data byte from an active socket receive buffer.

Syntax
BOOL UDPGet(BYTE *byte)

Parameters
byte [out]

Data byte that was read

Return Values
TRUE: If a byte was read.

FALSE: If no byte was read.

Pre-Condition
UDPIsGetReady == TRUE

Side Effects
None

Remarks
When a socket is found to contain receive data, the user must fetch one or more data bytes (if required) in one task time
and discard the socket buffer. Data cannot be fetched from another socket until the socket buffer contents for the first
is discarded.

Example
...

switch(smState)
{
case SM_OPEN:

// Talk to a remote DHCP server.
DHCPSocket = UDPOpen(68, &DHCPServerNode, 67);
If (DHCPSocket == INVALID_UDP_SOCKET)
{

// Socket is not available
// Return error.

}
else

// Wait for response from DHCP server
smState = SM_WAIT_FOR_DATA;

break;
case SM_WAIT_FOR_DATA:

if (UDPIsGetReady(DHCPSocket))
{

// Socket does contain some data. Fetch it all.
// buffer is a pointer to BYTE.
while(UDPGet(buffer))

buffer++;
// Process it.
...
// Discard the socket buffer.
...

}
break;

...
© 2008 Microchip Technology Inc. DS00833C-page 69

AN833

UDPDiscard

This function releases the receive buffer associated with an active socket.

Syntax
BOOL UDPDiscard()

Parameters
None

Return Values
TRUE: If the receive buffer was successfully discarded.

FALSE: If the receive buffer was already discarded.

Pre-Condition
None

Side Effects
None

Remarks
None

Example
...

switch(smState)
{
case SM_OPEN:

// Talk to a remote DHCP server.
DHCPSocket = UDPOpen(68, &DHCPServerNode, 67);
If (DHCPSocket == INVALID_UDP_SOCKET)
{

// Socket is not available
// Return error.

}
else

// Wait for response from DHCP server
smState = SM_WAIT_FOR_DATA;

break;
case SM_WAIT_FOR_DATA:

if (UDPIsGetReady(DHCPSocket))
{

// Socket does contain some data. Fetch it all.
// buffer is a pointer to BYTE.
while(UDPGet(buffer))

buffer++;
// Process it..
...
// Discard the socket buffer.
UDPDiscard();

}
break;

...
DS00833C-page 70 © 2008 Microchip Technology Inc.

AN833

UDPProcess

This function acts as “UDPTask”. It fetches an already received UDP packet and assigns it to a matching UDP socket.
This function must be called only when a UDP packet is received.

Syntax
BOOL UDPProcess(NODE_INFO *remote, WORD len)

Parameters
remote [in]

Remote node from which the current UDP packet was received

len [in]

Total length of UDP packet length, including UDP header

Return Values
TRUE: If this function (task) has completely processed the current packet.

FALSE: If this function (task) has partially processed the current packet.

Pre-Condition
IPGetHeader == TRUE and IPProtocol = IP_PRO_UDP

Side Effects
None

Remarks
As mentioned above, this function implements the UDP task. Users must call this function when a valid UDP data packet
is received. Once a packet is detected, this function fetches and handles the packet. The return value from this function
indicates to the caller if the StackTask state machine state should be changed or not. In its current implementation, this
function always returns TRUE.

Refer to the Stack Manager task source code (StackTsk.c) for details on the actual implementation.

Example
...

switch(smState)
{
case SM_STACK_IDLE:

if (MACGetHeader(&RemoveMAC, &MACFrameType))
{

if (MACFrameType == MAC_IP)
smState = SM_STACK_IP;

...
return;

case SM_STACK_IP:
if (IPGetHeader(&RemoteNode, &IPFrameType, &IPDataCount))
{

if (IPFrameType == IP_PROT_UDP)
smState = SM_STACK_UDP;

...
return;

case SM_STACK_UDP:
if (UDPProcess(&RemoteNode, IPDataCount))

smState = SM_STACK_IDLE;
return;

...
© 2008 Microchip Technology Inc. DS00833C-page 71

AN833

Dynamic Host Configuration Protocol
(DHCP)
The DHCP layer of the Microchip TCP/IP Stack is
implemented by the file “dhcp.c”. The header file
“dhcp.h” defines the services provided by the layer.
DHCP is an active layer that broadcasts DHCP
requests and automatically receives and decodes
DHCP responses. Its main features include:
• Configuration of the IP and gateway addresses

and subnet mask
• Automatic DHCP lease time and lease renewal

management
• Fully automatic operation without user application

intervention
The DHCP module is implemented as a cooperative
task, performing automatic operations without the
knowledge of the main application. The actual DHCP
integration and control is done by the Stack Manager; it
handles all required operations as part of its standard
task, using the DHCP APIs to control the module’s
behavior. The user does not need to know about DHCP
in order to use it.
A user application may also choose to call some of the
APIs to directly control DHCP operation, such as
whether DHCP is configured or not, and whether to per-
manently stop DHCP. Normally, the user’s application
should not need to directly interact with DHCP at all.
To use the DHCP module, the user project files must be
modified as follows:
1. Uncomment STACK_USE_DHCP in the header

file “StackTsk.h”.

2. Include the “dhcp.c” and “udp.c” files in the
project.

3. Increase MAX_UDP_SOCKETS by one (at least
one UDP socket must be available for DCHP;
adjust the numbers of sockets based on UDP
and DCHP needs).

When DHCP is implemented, the user application must
not attempt network communications until DHCP is
configured properly. Normally, if a user application
contains one or more client applications that require
communications on power-up or Reset, the application
must check that DHCP is configured before
transmitting any data using the lower layer modules.
This can be done with the function DHCPIsBound
(page 75).
The official DHCP specification (RFC1541) requires
the DHCP client to renew its IP configuration before its
lease time expires. To track lease time, the user appli-
cation must make sure that TickUpdate() is called
as required, and that reasonable time accuracy is
maintained (refer to the source code file “websrvr.c”
for a working example). The time resolution required is
15 minutes, plus or minus, which means that
TickUpdate() may be called at a very low priority.
For the DHCP module to automatically configure the
addresses and subnet mask, there must be at least one
DHCP server on the network. It is the user’s responsi-
bility to implement some method for “publishing” the
configurations back to potential users. Options range
from manually reading the information from a display
on each node, to storing the information in a central
server. DHCP updates the values of MY_IP_BYTE?,
MY_GATE_BYTE? and MY_MASK_BYTE? as a result of
automatic configuration.

DHCPTask

This is the core DHCP task function which performs the necessary protocol actions.

Syntax
void DHCPTask()

Parameters
None

Return Values
None

Pre-Condition
None

Side Effects
None

Remarks
This function must be called periodically.

Example
// Invoke DHCP task
DHCPTask();
DS00833C-page 72 © 2008 Microchip Technology Inc.

AN833

DHCPDisable

This macro disables the DHCP module, even before its task is invoked.

Syntax
void DHCPDisable()

Parameters
None

Return Values
None

Pre-Condition
Must be called before DHCPTask is called.

Side Effects
None

Remarks
This function is useful if an application requires user option to disable DHCP mode as part of its configuration. Normally,
if DHCP is not required at all, it should not be included in the project. But in the event that an application requires run
time selection of DHCP, this function can be used to disable DHCP. The Microchip TCP/IP Stack Demo application uses
this function to demonstrate run time disabling of DHCP module.

This function must be called before DHCPTask function is called. Once DHCPTask is called, use DHCPAbort (page 74)
to disable the DHCP. If DHCPDisable is called after DHCPTask was executed, the DHCP UDP socket will become an
orphan. Any new DHCP responses received by this node will be stored in DHCP UDP socket, but it will not be retrieved
by any application; eventually, no application or layer will be able to receive data at all.

Example
void main()
{

// Initialize application and stack
...
StackInit();

// If required disable DHCP here.
if (DHCPIsDisabled)

DHCPDisable();

// Now enter into main loop.
while(1)
{

// Perform necessary steps.
...

}
}

© 2008 Microchip Technology Inc. DS00833C-page 73

AN833

DHCPAbort

This function aborts an already active DHCP task and disables it for the life of the application.

Syntax
void DHCPAbort()

Parameters
None

Return Values
None

Pre-Condition
Must be called after DHCPTask is called at least once.

Side Effects
None

Remarks
This function can be used to disable or abort DHCP after DHCPTask is called. It is important to note that, once
DHCPTask is started, the node may have already obtained a DHCP configuration. If DHCP is aborted after obtaining an
IP configuration, the configuration will not be automatically renewed. Failure to renew the configuration may result in the
node being unable to communicate on the network. It may also result in the same IP address being assigned to another
node, causing unreliable communications.

The Microchip Stack does not provide any feedback regarding the validity of the IP configuration.

Example
void main()
{

// Initialize application and stack
...
StackInit();

// Now enter into main loop.
while(1)
{

// Perform necessary steps.
...
// After some iteration, application needs DHCP aborted.
DHCPAbort();

}
}

DS00833C-page 74 © 2008 Microchip Technology Inc.

AN833

DHCPIsBound

This macro checks if the DHCP module has obtained an IP configuration (is “bound”).

Syntax
BOOL DHCPIsBound()

Parameters
None

Return Values
TRUE: If DHCP is bound to an IP configuration.

FALSE: If DHCP is not yet bound.

Pre-Condition
None

Side Effects
None

Remarks
Use this function to determine if DHCP is bound or not. This function is useful when a user application consists of one
or more client applications that needs to communicate on power-up or Reset. Before attempting to communicate, the
user application must wait until DHCP is bound to IP configuration.

When DHCP is bound to an IP configuration, the corresponding values MY_IP_BYTE?, MY_GATE_BYTE? and
MY_MASK_BYTE? are updated.

Example
void main()
{

// Initialize application and stack
...
StackInit();

// Now enter into main loop.
while(1)
{

// Perform necessary steps.
...
// Check to see if DHCP is bound. If yes, display the IP address
if (DHCPIsBound())
{

// Display MY_IP_BYTE? value.
DisplayIPAddress();

}
}

}

© 2008 Microchip Technology Inc. DS00833C-page 75

AN833

IP Gleaning for IP Address Configuration
As a lean alternative to DCHP, the Microchip TCP/IP
Stack also implements a simple method, known as IP
Gleaning, to remotely set the IP address of Microchip
Stack node. This method is not an Internet Protocol
standard, and there is no corresponding RFC docu-
ment. IP Gleaning allows only the IP address to be set.
For complete IP configuration, DCHP must be used.
IP Gleaning does not require any additional software
modules. Instead, it uses the ARP and ICMP modules.
To use it, the file “icmp.c” must be included in
the project, and the compiler define
STACK_USE_IP_GLEANING must be uncommented in
the StackTsh.h header file.

With IP Gleaning enabled, the Microchip Stack enters
into a special “IP Configuration” mode on Reset. During
this mode, it accepts any ICMP (ping) message that is
destined to this node, and sets the node’s IP address
to that of the ping message’s destination. Once a valid
ping packet is received, the stack exits from
“Configuration” and enters into normal mode.

During configuration, the user application must not
attempt to communicate; it may call the function
StackIsInConfigMode() to determine whether or
not the stack is in Configuration mode.
StackIsInConfigMode() == TRUE indicates that
the stack is in Configuration mode.

To remotely set the IP address of the stack node, it is
necessary to issue a sequence of commands from a
remote machine. For this example, assume that a node
running the Microchip Stack needs to be assigned an
IP address of 10.10.5.106. The MAC address of this
node (hexadecimal) is 0a-0a-0a-0a-0a-0a. After
resetting the node, another system on the network (we
will assume a computer running Microsoft® Windows®)
issues the commands:
> arp -s 10.10.5.106 0a-0a-0a-0a-0a-0a

> ping 10.10.5.106

This should generate a standard series of ping
responses from 10.10.5.106, indicating the node has
been successfully assigned the IP address.

The Stack Manager
As already noted, the Microchip TCP/IP Stack is a col-
lection of different modules. Some modules (such as IP,
TCP, UDP and ICMP) must be called when a corre-
sponding packet is received. Any application utilizing
the Microchip TCP/IP Stack must perform certain steps
to ensure that modules are called at the appropriate
times. This task of managing stack modules remains
the same, regardless of main application logic.
In order to relieve the main application from the burden
of managing the individual modules, the Microchip
TCP/IP Stack uses a special application layer module
known as “StackTask”, or the Stack Manager. This
module is implemented by the source file
“StackTsk.c”. StackTask is implemented as a coop-
erative task; when given processing time, it polls the
MAC layer for valid data packets. When one is
received, it decodes it and routes it to the appropriate
module for further processing.
It is important to note that Stack Manager is not part of
the Microchip TCP/IP Stack. It is supplied with the stack
so the main application does not have to manage stack
modules, in addition to its own work. Before the Stack
Manager task can be put to work, it must be initialized
by calling the StackInit() function. This function ini-
tializes the Stack Manager variables and individual
modules in the correct order. Once StackInit() is
called, the main application must call the
StackTask() function periodically, to ensure that all
incoming packets are handled on time, along with any
time-out and error condition handling.
The exact steps used by StackTask are shown in the
algorithm in Example 1.

EXAMPLE 1: THE STACK MANAGER ALGORITHM
If a data packet received then

Get data packet protocol type
If packet type is IP then

Fetch IP header of packet
Get IP packet type
if IP packet type is ICMP then

Call ICMP module
else if IP packet type is TCP then

Call TCP module
else if IP packet type is UDP then

Call UDP module
else

Handle not supported protocol
End If

End If
Else if packet type is ARP then

Call ARP module
End If

End If
DS00833C-page 76 © 2008 Microchip Technology Inc.

AN833
THE MICROCHIP HTTP SERVER
The HTTP Server included with this application note is
implemented as a cooperative task that co-exists with
the Microchip TCP/IP Stack and the user’s main appli-
cation. The Server itself is implemented in the source
file “HTTP.c”, with a user application implementing two
callback functions. The demo application source file
“Websrvr.c” file should be used as a template
application to create the necessary interfaces.
The HTTP Server provided here does not implement all
HTTP functionality; it is a minimal server targeted for
embedded system. The user can easily add new
functionality as required.
The HTTP Server incorporates these main features:
• Supports multiple HTTP connections
• Contains a simple file system (MPFS)
• Supports Web pages located in either internal

program memory or external serial EEPROM
• Includes a PC-based program to create MPFS

images from a given directory
• Supports the HTTP method “GET” (other methods

can be easily added)
• Supports a modified Common Gateway Interface

(CGI) to invoke predefined functions from within
the remote browser

• Supports dynamic web page content generation
The server consists of the following main components:
• MPFS Image Builder
• MPFS Access Library
• MPFS Download Routine (implemented by the

main application)
• HTTP Server Task
In order to integrate the HTTP Server into a user
application, do the following:
1. Uncomment STACK_USE_HTTP_SERVER in the

header file “StackTsk.h” to enable HTTP
Server related code.

2. Set the desired MAX_HTTP_CONNECTIONS
value in the “StackTsk.h” header file.

3. Include the files “http.c” and “mpfs.c” in the
project.

4. Depending where web pages are stored,
uncomment either MPFS_USE_PGRM, or
MPFS_USE_EEPROM. If external data EEPROM
is used as a storage media, include the file
“xeeprom.c” as well.

5. Modify the main() function of the application to
include the HTTP server (see the code example
in Example 1 (page 8)).

It will also be necessary to generate any Web pages in
advance and convert them into a compatible format for
storage. For the Microchip Stack and its HTTP Server,
the particular format is MPFS (see the section on
"Microchip File System (MPFS)" (page 83) for details).
If the MPFS image is to be stored in an external data

EEPROM, a programming method may need to be
included in the application, especially if the content is
expected to change. There are three main options for
programming external EEPROMs:
1. Use a programmer application or device sup-

plied by the data EEPROM vendor to program
the MPFS image. Always make sure that MPFS
image starts after the “Reserved Block”.

2. Include a download routine in the main applica-
tion that can accept data from an external data
source (i.e., from a computer through a serial
data connection) and program it into the
EEPROM. An example routine is provided with
the Microchip Stack source code (see "MPFS
Download Demo Routine" (page 88)).

3. Include the FTP Server module into the project
and program the MPFS image remotely across
the network using FTP. See "Uploading an
MPFS Image Using the FTP Client" (page 85)
for more information.

The HTTP Server uses the file “index.htm” as its
default Web page. If a remote client (browser)
accesses the HTTP Server by its IP address or domain
name only, “index.htm” is the default page served.
This requires that all applications include a file named
“index.htm” as part of their MPFS image. If
necessary, the name of this default file can be changed
by modifying the compiler definition
HTTP_DEFAULT_FILE_STRING in the “http.c” file.
It is very important to make sure that none of the Web
page file names contain any of the following
non-alphanumeric characters:
• single or double quotes (‘ and “)
• left or right angle brackets (< and >)
• the pound sign (#)
• the percent sign (%)
• left or right brackets or braces ([,{,] and })
• the “pipe” symbol (|)
• the backslash (\)
• the caret (^)
• the tilde (~)

If a file does contain any of these characters, the corre-
sponding Web page will become inaccessible. No prior
warning will be given.
The HTTP Server also maintains a list of file types that
it supports. It uses this information to advise a remote
browser on how to interpret a particular file, based on
the file’s three-letter extension. By default, the
Microchip HTTP Server supports “.txt”, “.htm”,
“.gif”, “.cgi”, “.jpg”, “.cla” and “.wav” files. If an
application uses file types that are not included in this
list, the user may modify the table “httpFiles”, along
with corresponding “httpContents” enumerations in
the file “http.c”.
© 2008 Microchip Technology Inc. DS00833C-page 77

AN833
DYNAMIC HTTP PAGE GENERATION
The HTTP Server can dynamically alter pages and
substitute real-time information, such as input/output
status. To incorporate this real-time information, the
corresponding CGI file (*.cgi) must contain a text
string ‘%xx’, where the ‘%’ character serves as a control
code and ‘xx’ represents a two-digit variable identifier.

The variable value has a range of 00-99. When the
HTTP Server encounters this text string, it removes the
‘%’ character and calls the HTTPGetVar function. If the
page requires ‘%’ as a display character, it should be
preceded by another ‘%’ character. For example, to
display “23%” in a page, put “23%%”.

HTTPGetVar

This function is a callback from HTTP. When the HTTP server encounters a string ‘%xx’ in a CGI page that it is serving,
it calls this function. This function is implemented by the main user application and is used to transfer application specific
variable status to HTTP.

Syntax
WORD HTTPGetVar(BYTE var, WORD ref, BYTE *val)

Parameters
var [in]

Variable identifier whose status is to be returned

ref [in]

Call Reference. This reference value indicates if this is a very first call. After first call, this value is strictly maintained
by the main application. HTTP uses the return value of this function to determine whether to call this function again
for more data. Given that only one byte is transferred at a time with this callback, the reference value allows the
main application to keep track of its data transfer. If a variable status requires more than bytes, the main application
can use ref as an index to data array to be returned. Every time a byte is sent, the updated value of ref is returned
as a return value; the same value is passed on next callback. In the end, when the last byte is sent, the application
must return HTTP_END_OF_VAR as a return value. HTTP will keep calling this function until it receives
HTTP_END_OF_VAR as a return value.

Possible values for this parameter are:

val [out]

One byte of data that is to be transferred

Return Values
New reference value as determined by main application. If this value is other than HTTP_END_OF_VAR, HTTP will call
this function again with return value from previous call.

If HTTP_END_OF_VAR is returned, HTTP will not call this function and assumes that variable value transfer is finished.

Possible values for this parameter are:

Pre-Condition
None

Value Meaning

HTTP_START_OF_VAR This is the very first callback for given variable for the current instance. If
a multi-byte data transfer is required, this value should be used to condi-
tionally initialize index to the multi-byte array that will be transferred for
current variable.

For all others Main application-specific value.

Value Meaning

HTTP_END_OF_VAR This is a last data byte for given variable. HTTP will not call this
function until another variable value is needed.

For all others Main application specific value.
DS00833C-page 78 © 2008 Microchip Technology Inc.

AN833

HTTPGetVar (Continued)

Side Effects
None

Remarks
Although this function requests a variable value from the main application, the application does not have to return a
value. The actual variable value could be an array of bytes that may or may not be the variable value. What information
to return is completely dependent on the main application and the associated Web page. For example, the variable ‘50’
may mean a JPEG frame of 120 x 120 pixels. In that case, the main application can use the reference as an index to
the JPEG frame and return one byte at a time to HTTP. HTTP will continue to call this function until it receives
HTTP_END_OF_VAR as a return value of this function.

Given that this function has a return value of 16 bits, up to 64 Kbytes of data can be transferred as one variable value.
If more length is needed, two or more variables can be placed side-by-side to create a larger data transfer array.

Example 1
Consider the page “status.cgi” that is being served by HTTP.

“status.cgi” contains following HTML line:

…
<td>S3=%04</td><td>D6=%01</td><td>D5=%00</td>
…

During processing of this file, HTTP encounters the ‘%04’ string. After parsing it, HTTP makes a callback
HTTPGetVar(4, HTTP_START_OF_VAR, &value). The main user application implements HTTPGetVar as follows:

WORD HTTPGetVar(BYTE var, WORD ref, BYTE *val)
{

// Identify variable.
// Is it RB5 ?
if (var == 4)
{

// We will simply return ‘1’ if RB5 is high,
 // or ‘0’ if low.

if (PORTBbits.RB5)
*val = ‘1’;

else
*val = ‘0;

// Tell HTTP that this is last byte of
// variable value.
return HTTP_END_OF_VAR;

}
else
// Check for other variables...
...

}

For more detail, refer to “Webpages*.cgi” files and the corresponding callback in the “Websrvr.c” source file.
© 2008 Microchip Technology Inc. DS00833C-page 79

AN833

HTTPGetVar (Continued)

Example 2
Assume that the page “status.cgi” needs to display the serial number of the HTTP Web server device.

The page “status.cgi” being served by HTTP contains the following HTML line:

…
<td>Serial Number=%05</td>
…

While processing this file, HTTP encounters the ‘%05’ string. After parsing it, HTTP makes a callback
HTTPGetVar(4, HTTP_START_OF_VAR, &value). The main application implements HTTPGetVar as follows:

WORD HTTPGetVar(BYTE var, WORD ref, BYTE *val)
{

// Identify variable.
// Is it RB5 ?.
// If yes, handle RB5 value - will be similar to Example 1.
// Is it “SerialNumber” variable ?
if (var == 5)
{

// Serial Number is a NULL terminated string.
// First of all determine, if this is very first call.
if (ref == HTTP_START_OF_VAR)
{

// This is the first call. Initialize index to SerialNumber
 // string. We are using ref as our index.

ref = (BYTE)0;
}
// Now access byte at current index and save it in buffer.
*val = SerialNumberStr[(BYTE)ref];
// Did we reach end of string?
if (*val == ‘\0’)
{

// Yes, we are done transferring the string.
// Return with HTTP_END_OF_VAR to notify HTTP server that we

 // are finished transferring the value.
return HTTP_END_OF_VAR;

}
// Or else, increment array index and return it to HTTP server.
(BYTE)ref++;
// Since value of ref is not HTTP_END_OF_VAR, HTTP server will call
// us again for rest of the value.
return ref;

else
// Check for other variables...
...

}

For more detail, refer to “Webpages*.cgi” files and the corresponding callback in the “Websrvr.c” source file.
DS00833C-page 80 © 2008 Microchip Technology Inc.

AN833

HTTP CGI
The HTTP server implements a modified version of
CGI. With this interface, the HTTP client can invoke a
function within HTTP and receive results in the form of
a Web page. A remote client invokes a function by
HTML GET method with more than one parameter.
Refer to RFC1866 (the HTML 2.0 language
specification) for more information.

When a remote browser executes a GET method with
more than one parameter, the HTTP server parses it
and calls the main application with the actual method
code and its parameter. In order to handle this method,
the main application must implement a callback func-
tion with an appropriate code.

The Microchip HTTP Server does not perform “URL
decoding”. This means that if any of the form field text
contains certain special non-alphanumeric characters
(such as <, >, ”, #, %, etc.), the actual parameter value
would contain “%xx” (“xx” being the two-digit hexa-
decimal value of the ASCII character) instead of the
actual character. For example, an entry of “<Name>”
would return “%3CName%3C”. See "The Microchip
HTTP Server" (page 77) for a complete list of
characters.

A file that contains HTML form, must have “.cgi” as its
file extension.

HTTPExecCmd

This function is a callback from HTTP. When the HTTP server receives a GET method with more than one parameter,
it calls this function. This callback function is implemented by the main application. This function must decode the given
method code and take appropriate actions. Such actions may include supplying new Web page name to be returned
and/or performing an I/O task.

Syntax
void HTTPExecCmd(BYTE **argv, BYTE argc)

Parameters
argv [in]

List of command string arguments. The first string (argv[0]) represents the form action, while the rest
(argv[1..n]) are command parameters.

argc [in]

Total number of parameters, including form action.

Return Values
Main application may need to modify argv[0] with a valid web page name to be used as command result.

Pre-Condition
None

Side Effects
None

Remarks
This is a callback from HTTP to the main application as a result of a remote invocation. There could be simultaneous
(one after another) invocation of a given method. Main application must resolve these simultaneous calls and act
accordingly.

By default, the number of arguments (or form fields) and total of argument string lengths (or form URL string) is limited
to 5 and 80, respectively. The form fields limit includes the form action name. If an application requires a form with more
than four fields and/or total URL string of more than 80 characters, the corresponding definitions of MAX_HTTP_ARGS
and MAX_HTML_CMD_LEN (defined in “http.c”) must be increased.
© 2008 Microchip Technology Inc. DS00833C-page 81

AN833

HTTPExecCmd (Continued)

Example
Consider the HTML page “Power.cgi”, as displayed by a remote browser:

<html>
<body><center>
<FORM METHOD=GET action=Power.cgi>
<table>
<tr><td>Power Level:</td>
<td><input type=text size=2 maxlength=1 name=P value=%07></td></tr>
<tr><td>Low Power Setting:</td>
<td><input type=text size=2 maxlength=1 name=L value=%08></td></tr>
<tr><td>High Power Setting:</td>
<td><input type=text size=2 maxlength=1 name=H value=%09></td></tr>
<tr><td><input type=submit name=B value=Apply></td></tr>
</table>
</form>
</body></html>

This page displays a table with labels in the first column and text box values in the second column. The first row, first
column cell contains the string “Power Level”; the second column is a text box to display and modify the power level
value. The last row contains a button labelled “Apply”. A user viewing this page has the ability to modify the value in the
Power Level text box and click on “Apply” button to submit the new power level value to the Microchip Stack.
Assume that a user enters values of ‘5’, ‘1’ and ‘9’ in Power Level, Low-Power Setting and High-Power Setting text
boxes respectively, then clicks on the “Apply” button. The browser would create a HTTP request string
“Power.cgi?P=5&L=1&H=9” and send it to the HTTP server. The server in turn calls HTTPExecCmd with the following
parameters:

argv[0] = “Power.cgi”, argv[1] = “P”, argv[2] = “5”, argv[3]=“L“, argv[4]=“1”, argv[5]=“H“,
argv[6]=“9“
argc = 7

The main application implements HTTPExecCmd as below:

void HTTPExecCmd(BYTE *argv, BYTE argc)
{

BYTE i;
// Go through each parameters for current form command.
// We are skipping form action name, so i starts at 1...
for (i = 1; i < argc; i++)
{

// Identify parameter.
if (argv[i][0] == ‘P’) // Is this power level?
{

// Next parameter is the Power level value.
PowerLevel = atoi(argv[++i]);

}
else if (argv[i][0] == ‘L’) // Is this Low Power Setting?

LowPowerSetting = atoi(argv[++i]);
else if (argv[i][0] == ‘H’) // Is this High Power Setting?

HighPowerSetting = atoi(argv[++i]);
}
// If another page is to be displayed as a result of this command, copy
// its upper case name into argv[0]
// strcpy(argv[0], “RESULTS.CGI”);

}

Note: For this example, the total number of arguments exceeds the default limit of 5. In order for this example to
function properly, the value of MAX_HTTP_ARGS (located in “http.c”) must be set to at least 7.

For more detail, refer to the “Webpages*.cgi” files and the corresponding callback in the “Websrvr.c” source file.
DS00833C-page 82 © 2008 Microchip Technology Inc.

AN833
MICROCHIP FILE SYSTEM (MPFS)
The Microchip HTTP Server uses a simple file system
(the Microchip File System, or “MPFS”) to store Web
pages. The MPFS image can be stored in on-chip pro-
gram memory or an external serial EEPROM. MPFS
follows a special format to store multiple files in given
storage media, which is summarized in Figure 3.

FIGURE 3: MPFS IMAGE FORMAT

The length of “Reserved Block” is defined by
MPFS_RESERVE_BLOCK. The reserved block can be
used by the main application to store simple configura-
tion values. MPFS storage begins with one or more
MPFS FAT (File Allocation Table) entries, followed by
one or more file data. The FAT entry describes the file
name, location and its status. The format for the FAT
entry is shown in Figure 4.

FIGURE 4: MPFS FAT ENTRY FORMAT

The Flag indicates whether the current entry is in use,
deleted, or at the end of the FAT.

Each FAT entry contains either a 16-bit or 24-bit
address value. The address length is determined by
the type of memory used, as well as the memory size
model. If internal program memory is used, and the
Microchip TCP/IP Stack project is compiled with a small
memory model, 16-bit addresses are used. If internal
program memory and the large memory model are
selected, a 24-bit address is used. The 16-bit address-
ing scheme is always used for external EEPROM
devices, regardless of the memory size model. This
implies a maximum MPFS image size of 64 Kbytes for
these devices.

MPFS uses “short” file names of the “8 + 3” format
(8 bytes for the actual file name and 3 bytes for the
extension, or NNNNNNNN.EEE). The 16-bit address
gives the start of the first file data block. All file names
are stored in upper case to make file name
comparisons easier.

The address in each FAT entry points in turn to a data
block that contains the actual file data. The data block
format is shown in Figure 5. The block is terminated
with a special 8-bit flag called EOF (End Of File), fol-
lowed by FFFFh (for 16-bit addressing), or FFFFFFh
(24-bit addressing). If the data portion of the block con-
tains an EOF character, it is stuffed with the special
escape character, DLE (Data Link Escape). Any
occurrence of DLE itself is also stuffed with DLE.

FIGURE 5: MPFS DATA BLOCK FORMAT

Reserved Block

MPFS FAT Entry 1

MPFS FAT Entry n

File 1

File n

Flag

(8 bits)

Address

(16 or 24 bits)

File Name

(8-byte + 3-byte format)

FFFFh or

(16 or 24 bits)

EOF

(8 bits)

Data

(variable length)
FFFFFFh
© 2008 Microchip Technology Inc. DS00833C-page 83

AN833

MPFS Image Builder
This application note includes a special PC-based
program (MPFS.exe) that can be used to build MPFS
image from a set of files. Depending on where the
MPFS will ultimately be stored, the user has the option
to generate either a ‘C’ data file or binary file
representing the MPFS image.

The complete command line syntax for MPFS.exe is

mpfs [/?] [/c] [/b] [/r<Block>]
<InputDir> <OutputFile>

where

/? displays command line help

/c generates a ‘C’ data file

/b generates a binary data file (default output)

/r reserves a block of memory at beginning of the file
(valid only in Binary Output mode, with a default value
of 32 bytes)

<InputDir> is the directory containing the files for
creating the image

<OutputFile> is the output file name

For example, the command

mpfs /c <Your WebPage Dir> mypages.c

generates the MPFS image as a ‘C’ data file,
mypages.c, from the contents of the directory “Your
Web Pages”. In contrast, the command

mpfs <Your WebPage Dir> mypages.bin

generates a binary file of the image with a 32-byte
reserved block (both binary format and the 32-byte
block are defaults), while

mpfs /r128 <Your WebPage Dir> mypages.bin

generates the same file with a 128-byte reserved block.

Before the MPFS image is built, the user must create
all of the Web pages and related files and save in a
single directory. If the file extension is “htm”, the Image
Builder strips all carriage return and linefeed characters
to reduce the overall size of the MPFS image.

If the MPFS image is to be stored in internal program
memory, the generated ‘C’ data file must be linked with
the “Websrvr’ project. If the image is to be stored in an
external serial EEPROM, the binary file must be
downloaded there. For more information, refer to "The
Microchip FTP Server" (page 85).

The MPFS Image Builder does not check for size limi-
tations. If the binary data format is selected, verify that
the total image size does not exceed the available
MPFS storage space.

MPFS Access Library
The source file “MPFS.c” implements the routines
required to access MPFS storage. Users do not need
to understand the details of MPFS in order to use
HTTP. All access to MPFS is performed by HTTP,
without any help from the main application.

The current version of the MPFS library does not allow
for the addition or deletion of individual files to an exist-
ing image; all of the files comprising a single MPFS
image are added at one time. Any changes require the
creation of a new image file.

If internal program memory is used for MPFS storage,
MPFS_USE_PGRM must be defined. Similarly, if external
data EEPROM is used for MPFS storage,
MPFS_USE_EEPROM must be defined. Only one of
these definitions can be present in “StackTsk.h”; a
compile-time check makes certain that only one option
is selected.

Depending on the type of memory device used, its page
buffer size will vary. The default setting of the page buf-
fer size (as defined by MPFS_WRITE_PAGE_SIZE in
the header file (“MPFS.h”)) is 64 bytes. If a different
buffer size is required, change the value of
MPFS_WRITE_PAGE_SIZE appropriately.

Note: Using a reserve block size other than the
default of 32 bytes requires a change to the
compiler define MPFS_RESERVE_BLOCK
in the header file “StackTsk.h”.

Note: This version of the MPFS access library
uses the file “xeeprom.c” for access to
external data EEPROMs. When a file is
being read or written, MPFS exclusively
controls the I2C bus and will not allow any
other I2C slave or master device to com-
municate. Users creating applications with
multiple I2C devices need to bear this in
mind.
DS00833C-page 84 © 2008 Microchip Technology Inc.

AN833
THE MICROCHIP FTP SERVER
The FTP Server included with this application note is
implemented as a cooperative task that co-exists with
the Microchip TCP/IP Stack and the user’s main appli-
cation. The Server itself is implemented in the source
file “FTP.c”.

The FTP Server provided here does not implement all
of the functionality specified in RFC 959; it is a minimal
server targeted for embedded system. It incorporates
these main features:

• One FTP connection, authenticated by the user
application

• Automatic interaction with the file system (MPFS)
• Remote programmability of entire MPFS image

with one “put” command
• No individual file upload or retrieve support

The user can add new functionality as required.

The server actually consists of two components: the
FTP server itself, and the FTP authentication callbacks
implemented by a user application. The user must
implement a callback with the FTPVerify function that
verifies both the FTP user name and password. (See
the “FTPVerify” function on the next page for more
detail.) The demo application source file “Websrvr.c”
should be used as a template application to create the
necessary interfaces. Refer to “Demo Application” for a
working example of how to integrate the FTP server
into a user application.

To integrate the FTP Server into a user application, do
the following:

1. Uncomment STACK_USE_FTP_SERVER in the
“StackTsk.h” header file.

2. Increase the number of defined sockets by two
(depending on the number already available).

3. Include the files “FTP.c” and “mpfs.c” in the
project.

4. Uncomment either MPFS_USE_PGRM or
MPFS_USE_EEPROM, depending on where the
Web pages are to be stored. If an external data
EEPROM is used as a storage media, include
“xeeprom.c” in the project.

5. Modify the main() function of the application to
include the HTTP server (see the code example
in Example 1 (page 8)).

The Microchip FTP Server allows only one FTP
connection at a time. Each FTP connection requires
two TCP sockets.

FTP Server uses a default time-out of approximately
180 seconds for both uploads and downloads. If a
remote FTP connection stays IDLE for more than 180
seconds, it is automatically disconnected. This ensures
that an orphan connection or a problem during a file
upload does not tie up the FTP server indefinitely.

Uploading an MPFS Image Using the FTP
Client
The main purpose of the FTP Server in the Microchip
Stack is to remotely upgrade the MPFS image. The cur-
rent version is available only when using the external
data EEPROM for MPFS storage; it will not work if the
MPFS_USE_PGRM option is selected.

A typical exchange between a user and a node running
the Microchip Stack with FTP Server is shown in
Example 2. In this instance, an MPFS image is being
uploaded from a computer to the node. For the sake of
illustration, this is what a user would see using a
command window from a computer running Microsoft
Windows; other systems and terminal emulations may
vary slightly. The actual FTP user name and password
depends on the user application; the Web Server demo
application (page 87) uses the values shown. FTP Cli-
ent actions (i.e., manual input from the user) are shown
in bold. System prompts and FTP server responses
are in plainface.

EXAMPLE 2: UPLOADING AN MPFS
IMAGE USING FTP

Note: The FTP server does NOT echo back the
password as the user types it in. In the
instance above, it is shown to illustrate
what the user would enter.

c:\ ftp 10.10.5.15

220 ready

User (10.10.5.15: (none)): ftp

331 Password required

Password: microchip

230 Logged in

ftp> put mpfsimg.bin

200 ok

150 Transferring data...

226 Transfer Complete

ftp> 16212 bytes transferred in
0.01Seconds 16212000.00Kbytes/sec.

ftp> quit

221 Bye
© 2008 Microchip Technology Inc. DS00833C-page 85

AN833

FTPVerify

This function is a callback from the FTP Server. The server calls this function when it receives a connect request from
a remote FTP client. This function is implemented by the main user application, and is used to authenticate the remote
FTP user.

Syntax
BOOL FTPVerify(char *login, char *password)

Parameters
login [in]

Character string that contains the user name

password [in]

Character string that contains the password

Return Values
TRUE: If login and password match the login and password variable values defined in the user application

FALSE: If either the login or password do not match

FTP Server uses the return value from this function to allow or disallow access by the remote FTP user.

Pre-Condition
None

Side Effects
None

Remarks
The length user name may range from 0 through 9. If a longer user name is required, modify the value of
FTP_USER_NAME_LEN in the header file “ftp.h”.

The maximum password string length and total FTP command length is predefined to be 31. If a longer password and/or
command is required, modify the value of MAX_FTP_CMD_STRING_LEN in “FTP.c”.

Example
This example demonstrates how a FTP callback will be implemented.

ROM char FTPUserName[] = “ftp”;
#define FTP_USER_NAME_LEN (sizeof(FTP_USER_NAME)-1)
ROM char FTPPassword[] = “microchip”;
#define FTP_USER_PASS_LEN (sizeof(FTP_USER_PASS)-1)

BOOL FTPVerify(char *login, char *password)
{

if (!memcmppgm2ram(FTP_USER_NAME, login, FTP_USER_NAME_LEN))
{

if (!memcmppgm2ram(FTP_USER_PASS, password, FTP_USER_PASS_LEN))
return TRUE;

}
return FALSE;

}

For more detail, refer to “Webpages*.cgi” files and the corresponding callback in the “Websrvr.c” source file.
DS00833C-page 86 © 2008 Microchip Technology Inc.

AN833
DEMO APPLICATIONS
Included with the Microchip TCP/IP Stack is a complete
working application that demonstrates all of the TCP/IP
modules. This application (the “Web Server”) is
designed to run on Microchip’s PICDEM.netTM

Ethernet/Internet demonstration board. The main source
file for this application is “websrvr.c”. Users should
refer to the source code as a starting point for creating
their own applications, utilizing different aspects of the
Microchip TCP/IP Stack. The sample projects also
included with the Microchip Stack illustrate different
configurations in which this demo application can be run.

Configuring the PICDEM.net Board and
the Web Server
To run the demo application, it is necessary to have a
HEX code file. One option is to build one of the sample
projects based on the compiler and hardware configu-
ration to being used; alternatively, use the already built
HEX file for the corresponding project (see Table 2 on
page 5 for a list of projects included with the Microchip
Stack). Follow the standard procedure for your device
programmer when programming the microcontroller.
Make sure that the following configuration options are
set:

• Oscillator: HS
• Watchdog Timer: Disabled
• Low-Voltage Programming: Disabled

When the programmed microcontroller is installed on
the PICDEM.net demo board and powered up, the Sys-
tem LED should blink to indicate that the application is
running. The LCD display will show

MCHPStack v2.0
on the first line (the version number may differ, depend-
ing on the release level of the application), and either a
configuration message or an IP address on the second
line.

Once programmed, the demo application may still need
to be configured properly before it is put on a real net-
work. The instructions below are specific to Microsoft
Windows and the HyperTerminal terminal emulator;
your procedure may vary if you use a different
operating system or terminal software.

1. Program a PIC18 microcontroller as noted
above, and install it on the PICDEM.net board.

2. Connect the PICDEM.net board to an available
serial port on the computer, using a standard
RS-232 cable.

3. Launch HyperTerminal (Start > Programs >
Accessories).

4. At the “Connection Description” dialog box,
enter any convenient name for the connection.
Click “OK”.

5. At the “Connect To” dialog box, select the COM
port that the PICDEM.net board is connected to.

Click “OK”.
6. Configure the serial port connected to the

PICDEM.net board:
• 19200 bps,
• 8 data bits, 1 STOP bit and no parity
• no flow control

Click “OK” to initiate the connection.

7. Apply power to the board while holding the S3
switch, or press and hold both the Reset and S3
switches; then, release the Reset switch. The
LCD display shows the message

MCHPStack v2.0
Board Setup...
(The version number may differ depending on the
release level of the application.) Release S3.

The Configuration menu appears in the terminal
window:

MCHPStack Demo Application v1.0
(Microchip TCP/IP Stack 2.0)

1: Change board Serial number.

2: Change default IP address.

3: Change default gateway address.

4: Change default subnet mask.

5: Enable DHCP and IP Gleaning.

6: Disable DHCP and IP Gleaning.

7: Download MPFS image.

8: Save & Quit.

Enter a menu choice (1-8):

8. Select each of the items that need to be config-
ured and enter the new values (generally, this
will only be items 2, 3, and 4). Select item 8 to
save the changes and exit configuration; the
new addresses are saved to the data EEPROM.
The application exits Configuration mode and
runs the Web Server.

Connecting to an Ethernet Network
When running the Web Server demo application, the
PICDEM.net board can be directly connected to an
Ethernet network with no other modifications. Of
course, the IP configuration must be compatible with
that of the network. By default, the Web Server
application uses these values for configuration:

• IP Address: 10.10.5.15
• Gateway Address: 10.10.5.15
• Subnet Mask: 255.255.255.0

Even if the IP address is compatible, the gateway and
mask may not be. If changes are required, there are
several ways to go about it.
© 2008 Microchip Technology Inc. DS00833C-page 87

AN833

AUTOMATIC CONFIGURATION WITH DHCP

If the network uses DHCP configuration, no additional
work is needed. When the board is connected to the
network and powered up, it will be assigned an IP
configuration by the DHCP server. During this process,
the LCD display shows the message

DCHP/Gleaning...
After several seconds, the display shows the assigned
IP address, for example:

100.100.100.1 1
The actual IP address displayed in the assigned
address of the board. The number on the far right indi-
cates the number of times the DHCP lease has been
renewed. This is shown for informational purposes only.

Depending on how the network has been configured, the
PICDEM.net board’s IP address may change after being
powered down for an extended period (i.e., the board’s
DHCP lease has expired and the old address has been
taken by another device). Always use the IP address
currently displayed to communicate with the board.

PRE-DEFINED NETWORK CONFIGURATIONS

Some networks may be “hard configured”; that is, each
device has an address that has been manually
assigned by the network administrator. In these cases,
the PICDEM.net board should be configured manually
before attaching it to the network, with the IP configura-
tion provided by the administrator. Refer back to "Con-
figuring the PICDEM.net Board and the Web Server"
(page 87) for details.

SETTING THE IP ADDRESS WITH IP
GLEANING

If the board is connected to the network and only
requires a change of IP address, IP Gleaning (page 76)
can be used. As already mentioned, this method can
be used to configure the IP address, but not the
gateway or subnet mask.

To use IP gleaning, the MAC address of the device
must be known. This is always a 6-byte hexadecimal
number of the format “xx-xx-xx-xx-xx-xx”. For
PICDEM.net boards, the MAC is always
00-04-A3-00-nn-nn, where “nn-nn” is the serial
number of the board in hexadecimal format. Thus, a
board with serial number 1234 (or 04D2h) has a MAC
address 00-04-A3-00-04-D2.

Once the MAC address and new IP address of the
device are determined, the address is determined by
resetting the device, then issuing from a remote termi-
nal the arp and ping commands. Continuing with the
example above, if we wanted to assign the previously
mentioned board the new IP address of 10.10.5.50, we
would send the commands

> arp -s 10.10.5.50 00-04-a3-00-04-d2

> ping 10.10.5.50

A successful ping response indicates that the IP
address has been changed.

MPFS Download Demo Routine
If an MPFS image is to be stored in an external serial
EEPROM, it must either be pre-programmed with the
MPFS image or downloaded from another application.
The Web Server demo implements a simple MPFS
download routine, which accepts an MPFS binary file
from a terminal emulator using the Xmodem protocol.

To download a binary file in MPFS format:

1. If not already done, set up the PICDEM.net
board for configuration (see "Configuring the
PICDEM.net Board and the Web Server",
steps 1 through 7).

2. At the Configuration menu, type ‘7’ to start the
MPFS download. You should see “Ready to
download...” message. At this time, you should
also see the left User LED (D6) blinking
approximately twice per second.

3. From the HyperTerminal “Transfer” menu, select
“Send File…”. In the “Send File” dialog box,
browse to the directory containing the file
“mpfsimg.bin”, and select. Select “Xmodem”
as the protocol.

4. Click “Send”. Data transfer should start auto-
matically. The User LED will blink as fast as data
is received from the computer.

5. When the file is completely transferred, press ‘8’
to exit the Configuration mode.

The Web Server application is now running, and the
HTTP server is ready to serve the pages just loaded.

Demo HTTP Server
When configured correctly and provided with an MPFS
image, the demo HTTP Server (page 77) will serve
Web pages. The sample pages included with the
Microchip Stack source archive illustrate both a modi-
fied form of CGI (a remote method invocation) and
dynamic page generation.

Demo FTP Server
This demo application is discussed in detail starting on
page 85. Among other things, it allows for remotely
updating the MPFS image across a network. The
default configuration uses the FTP user name of “ftp”
and password of “microchip”. These are defined in the
Web Server demo application.
DS00833C-page 88 © 2008 Microchip Technology Inc.

AN833
SLIP CONFIGURATION FOR
WINDOWS 95/98 SYSTEMS
Any personal computer running 32-bit versions of
Microsoft Windows (that is, Windows 95 or higher) can
be configured to use a SLIP connection for its network
communication services. This section outlines the
steps required to configure a desktop system for SLIP,
and create a pre-defined SLIP connection.

Creating the connection is done in two steps: 1) creat-
ing a dummy modem on an available COM port, and 2)
defining a dial-up connection type for that device.

The procedure described here applies to both
Windows 95 (all versions except the original release)
and 98; some steps may differ, depending on the oper-
ating system and revision level. For sake of brevity, the
configuration process for Windows NT and Windows
2000 Professional Desktop have been omitted. Inter-
ested users in creating a SLIP connection with these
operating systems should refer to Microsoft
documentation for more details, using these steps as a
guide.

To create the dummy modem:

1. From the Control Panel (Start > Settings >
Control Panel), double click on the “Modems”
applet.

2. If no modem is installed in the system, an intro-
ductory dialog box will appear; check the appro-
priate box to prevent Windows from searching
for a device. Click “Next”.
If a modem is already installed, a Modem Prop-
erties sheet will appear. Click the “Add” button.
At any subsequent dialog boxes, opt to manually
choose the device; do not let Windows search
for the device or automatically select drivers.

3. At the device selection dialog box, select
“Standard Modem Types” from the “Manufactur-
ers” drop-down list; select any of the standard
modems (preferably 19.2 Kbaud or faster) from
the “Models” list. Click “Next”.

4. At the following dialog box, select the appropri-
ate COM port, and speed (if requested). Click
“Next”.

5. Following the installation message and a brief
delay, a successful installation message will
appear. Click “Finish”.

Once the device is created on the proper port, it can be
configured for SLIP.

1. Launch the Dial-up Connection Wizard (Start >
Settings > Dial-up Connections > Add a
Connection)

2. At the first “Make New Connection” dialog box,
select the newly created Standard Modem as
the device. Click “Next”.

3. When asked for a phone number at the next dia-
log, enter any phone number (this will not be
used). Use the default area code and location.
Click “Next”.

4. Click “Finish” to create the next connection. It
will appear as a new icon in the “Dial-up
Networking” folder.

5. Right click on the new connection icon and
select “Properties” from the menu.

6. At the Connection Properties sheet, select the
“General” tab. Verify that the standard (dummy)
modem is selected in the “Connect Using”
drop-down menu. Click on the “Configure” button.

7. At the configuration property sheet, set the baud
rate to 38,400. Select the “Connection” tab, and
verify that the communications settings are
8 data bits, 1 STOP bit and no parity. Click on
the “Advanced” button.

8. Deselect the “Use Flow Control” checkbox. Click
“OK” to close the dialog box, then “OK” to close
the configuration property sheet (you are now
back at the Connection Properties sheet).

9. Select the “Server Types” tab. Select “SLIP –
Unix Connection” from the “Dial-Up Server
Type” drop-down list. Uncheck all check boxes
except at the bottom check box, “TCP/IP”. Click
on the “TCP/IP Settings” button.

10. Enter an IP address of “10.10.5.1”. Deselect the
“IP header compression” and “Use default gate-
way on remote network” options. Click “OK” to
return to the Properties sheet.

11. Select the “Scripting” tab, then click the
“Browse” button to locate the directory where
the file “empty.scp” resides (included in the
Microchip TCP/IP Stack archive file). Select the
file and click “OK”.

12. Click “OK” to finish.

To use the SLIP connection, double-click on its icon.
Use the Web browser and any IP application to
communicate over the connection.

Note 1: The address used in this configuration is
for the host desktop system for this con-
nection; it is NOT the address of the target
system. The IP address of 10.10.5.1 is
used specifically with the PICDEM.net
Demonstration Board.

2: The host system and target must be on
the same subnet.
© 2008 Microchip Technology Inc. DS00833C-page 89

AN833
MEMORY USAGE
The total amount of memory used for the Microchip
TCP/IP Stack depends on the compiler and modules
being used. Typical sizes for the various stack modules
at the time of publication of this document (June 2002),
using HI-TECH PICC-18TM V8.11PL1 compiler are
shown in Table 4.

TABLE 4: MEMORY USAGE FOR THE
VARIOUS STACK MODULES
USING HI-TECH® PICC-18™
COMPILER

CONCLUSION
The Microchip TCP/IP Stack is not the first application
of its type for the Microchip PIC18 family of micro-
controllers. What it does provide is a space efficient
and modular version of TCP/IP, implementing coopera-
tive multitasking (without an operating system) in a
small footprint. With its adaptability to many firmware
applications and its availability as a no cost software
solution, this stack should prove to be useful in devel-
oping applications where embedded control requires
network connectivity.

Module
Program
Memory
(words)

Data Memory
(bytes)

MAC (Ethernet) 906 5(1)

SLIP 780 12(2)

ARP 392 0
ARPTask 181 11
IP 396 2
ICMP 318 0
TCP 3323 42
HTTP 1441 10
FTP Server 1063 35
DHCP Client 1228 26
IP Gleaning 20 1
MPFS(3) 304 0
Stack Manager 334(4) 12+ICMP Buffer
Note 1: As implemented with the RTL8019AS NIC.

2: Does not include the size of transmit and
receive buffers, which are user defined.

3: Internal program memory storage.
4: Maximum size. Actual size may vary.
DS00833C-page 90 © 2008 Microchip Technology Inc.

AN833
APPENDIX A: SOURCE CODE
The complete source code for the Microchip TCP/IP
Stack, including the demo applications and necessary
support files, is available under a no-cost license
agreement. It is available for download as a single
archive file from the Microchip corporate Web site, at

www.microchip.com.
After downloading the archive, always check the file
“version.log” for the current revision level and a history
of changes to the software.

APPENDIX B: PARTIAL LIST OF
RFC DOCUMENTS

The complete list of Internet RFCs and the associated
documents are available on many Internet web sites.
Interested readers are referred to www.faqs.org/rfcs
and www.rfc-editor.org as starting points.

RFC
Document Description

RFC 826 Ethernet Address Resolution Protocol
(ARP)

RFC 791 Internet Protocol (IP)

RFC 792 Internet Control Message Protocol
(ICMP)

RFC 793 Transmission Control Protocol (TCP)

RFC 768 User Datagram Protocol (UDP)

RFC 821 Simple Mail Transfer Protocol (SMTP)

RFC 1055 Serial Line Internet Protocol (SLIP)

RFC 1866 Hypertext Markup Language
(HTML 2.0)

RFC 2616 Hypertext Transfer Protocol (HTTP) 1.1

RFC 1541 Dynamic Host Configuration Protocol
(DHCP)

RFC 1533 DHCP Options

RFC 959 File Transfer Protocol (FTP)
© 2008 Microchip Technology Inc. DS00833C-page 91

AN833

NOTES:
DS00833C-page 92 © 2008 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2008 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, PRO MATE, rfPIC and SmartShunt are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, UNI/O, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2008, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS00833C-page 93

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS00833C-page 94 © 2008 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

01/02/08

