DATA SHEET | Part No. | AN8953NFA | | |------------------|----------------|--| | Package Code No. | QFP056-P-1010B | | SEMICONDUCTOR COMPANY MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD. ### Contents | ■ Features | 3 | |----------------------------------|---| | ■ Applications | 3 | | ■ Package | 3 | | ■ Application Circuit | 4 | | ■ Pin Descriptions | 5 | | ■ Absolute Maximum Ratings | 6 | | ■ Operating Supply Voltage Range | 6 | AN8953NFA Panasonic # AN8953NFA ## Silicon Monolithic Bi-CMOS IC #### ■ Features • IF-AMP 1, IF-AMP 2, DET, NOISE-SQ, RSSI, DATA-AMP, BATT-LOW, COMPANDER, SP-AMP, Half-Mute, OSC, PRESCALER, PROGRAMMABLE-COUNTER, Pre-AMP, Vol Control, Power Down, Splatter-Filter #### ■ Applications • IC for Cordless Telephone (IF + COMPANDER + PLL) #### ■ Package • Quad 56-Pin Plastic Package (QFP Type) SDE00022AEB 3 00000 **Panasonic** ### ■Pin Descriptions | Pin No. | F | Pin Description | Pin No. | | Pin Description | |---------|------------|-------------------------------|---------|-----------------------|----------------------------| | 1 | EN | Enable input | 29 | DET-IN | FM detector input | | 2 | C-DET | COMP detection | 30 | IF 2-OUT | IF amp 2 output | | 3 | SF-OUT | Splatter filter output | 31 | N-DET | Noise detection | | 4 | SFC 2 | External splatter filter | 32 | RSSI-DET | RSSI detection | | 5 | SFC 1 | COMP output | 33 | IF 2-IN | IF amp 2 input | | 6 | COMP-DC | COMP output V _{REF} | 34 | IF 2-V _{REF} | IF amp 2 V _{REF} | | 7 | POFF | Power down input | 35 | IF 1-OUT | IF amp 1 output | | 8 | MIC-OUT | Microphone amp output | 36 | V _{CC1} | V _{CC1} | | 9 | MIC-IN | Microphone amp input | 37 | IF 1-IN | IF amp 1 input | | 10 | BREF | Audio system reference output | 38 | GND 1 | Ground 1 | | 11 | PD-OUT | Power down output | 39 | RXVCC | RX-counter V _{CC} | | 12 | V_{CC2} | V _{CC2} | 40 | PDL | BL, PD threshold selection | | 13 | DOUT | Data amp output | 41 | RXGND | RX - counter gnd | | 14 | GND 2 | Ground 2 | 42 | FINR | RX - counter input | | 15 | BTL | SP amp output 1 | 43 | SIG-OUT | LD, RSSI, ND output | | 16 | SP-OUT | SP amp output 2 | 44 | Batt-Low | Battery Low output | | 17 | SP-IN | SP amp input | 45 | VSS | Logic gnd | | 18 | TXDET | Half-Mute detection | 46 | RX-PD | RX-phase comparator output | | 19 | PE | ZAP write | 47 | PLLREG | Logic power source output | | 20 | GND 3 | Ground 3 | 48 | TX-PD | TX-phase comparator output | | 21 | EXPOUT | EXP output | 49 | TXVCC | TX-counter V _{CC} | | 22 | DIN | Data amp input | 50 | FINT | TX-counter input | | 23 | EDET | EXP detection | 51 | TXGND | TX-counter gnd | | 24 | PreAMP-OUT | Pre-amp output | 52 | OSCI | Xtal oscillator input | | 25 | PreAMP-IN | Pre-amp input | 53 | OSCD 1 | Xtal oscillator output 1 | | 26 | DET-OUT | FM detector output | 54 | OSCD 2 | Xtal oscillator output 2 | | 27 | NFIN | Noise filter input | 55 | DATA | Serial data input | | 28 | NFOUT | Noise filter output | 56 | CLK | Clock input | SDE00022AEB 5 AN8953NFA Panasonic #### ■ Absolute Maximum Ratings | Α | Absolute Maximum Ratings | | | | | | |-----|--|------------------------------|--|------------------|------|--| | No. | Parameter Symbol | | Rating | Unit | Note | | | 1 | Storage temperature | T_{stg} | - 55 to + 125 | °C | *1 | | | 2 | Operating ambient temperature | T_{opr} | - 20 to + 75 | °C | *1 | | | 3 | Operating ambient atmospheric pressure | P _{opr} | $1.013 \times 10^5 \pm 0.61 \times 10^5$ | Pa | | | | 4 | Operating constant gravity | $G_{ m opr}$ | 9 810 | m/S ² | | | | 5 | Operating shock | Sopr | 4 900 | m/S ² | | | | 6 | Supply voltage | $V_{CC1}, V_{CC2}, RxV_{CC}$ | 6.5 | V | *2 | | | 7 | Supply current | I_{CC} | 30 | mA | *3 | | | 8 | Power dissipation | P_{D} | 195 | mW | | | Note) *1: Expect for the operating ambient temperature and storage temperature, all ratings are for Ta = 25°C. From now on, we call this four supply voltage as ${\rm V}_{\rm CC}$ ### ■ Operating Supply Voltage Range | Parameter | Symbol | Range | Unit | |--------------------------------|---|------------|------| | Operating supply voltage range | V_{CC1} , V_{CC2} , RxV_{CC} , TxV_{CC} | 2.7 to 5.5 | V | SDE00022AEB 6 $^{*2:} Power supply terminals \ (V_{CC1} \ (Pin\ 36),\ V_{CC2} \ (Pin\ 12)) \ should \ be \ supplied \ with \ same \ supply \ voltage.$ ^{*3 :} I_{CC} is defined as total current consumption at four power supply terminals (V_{CC1} (Pin 36), V_{CC2} (Pin 12), RxV_{CC} (Pin 39), TxV_{CC} (Pin 49)). # Request for your special attention and precautions in using the technical information and semiconductors described in this material - (1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technical information described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan. - (2) The technical information described in this material is limited to showing representative characteristics and applied circuits examples of the products. It neither warrants non-infringement of intellectual property right or any other rights owned by our company or a third party, nor grants any license. - (3) We are not liable for the infringement of rights owned by a third party arising out of the use of the technical information as described in this material. - (4) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances). Consult our sales staff in advance for information on the following applications: - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body. - Any applications other than the standard applications intended. - (5) The products and product specifications described in this material are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements. - (6) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage, and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure made massible to people to separate supplies to product a Massacras are the systems such - break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products. - (7) When using products for which damp-proof packing is required, observe the conditions (including shelf life and amount of time let standing of unsealed items) agreed upon when specification sheets are individually exchanged. - (8) This material may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.