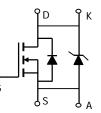


AO4704 N-Channel Enhancement Mode Field Effect Transistor with Schottky Diode

General Description

The AO4704 uses advanced trench technology to provide excellent $R_{DS(ON)}$, shoot-through immunity and body diode characteristics. This device is suitable for use as a synchronous switch in PWM applications. The co-packaged Schottky Diode boosts efficiency further. AO4704 is Pb-free (meets ROHS & Sony 259 specifications). AO4704L is a Green Product ordering option. AO4704 and AO4704L are electrically identical.

Features


$$\begin{split} V_{DS} & (V) = 30V \\ I_D = 13 \text{ A } (V_{GS} = 10V) \\ R_{DS(ON)} < 11.5 \text{m}\Omega \ (V_{GS} = 10V) \\ R_{DS(ON)} < 13 \text{m}\Omega \ (V_{GS} = 4.5V) \end{split}$$

SCHOTTKY

VDS (V) = 30V, IF = 3A, VF<0.5V@1A

SOIC-8

	D/K
7	⊐ D/К
6	— D/К
5	🗖 D/К
	7 6 5

Absolute Maximum Ratings T _A =25°C unless otherwise noted								
Parameter Drain-Source Voltage		Symbol	MOSFET	Schottky	Units			
		V_{DS}	30		V			
Gate-Source Voltage		V_{GS}	±12		V			
	T _A =25°C	I_	13					
Continuous Drain Current ^A	T _A =70°C	– I _D	10.4		Α			
Pulsed Drain Current ^B		I _{DM}	40]			
Schottky reverse voltage	Schottky reverse voltage			30	V			
	T _A =25°C	1		4.4				
Continuous Forward Current ^A	T _A =70°C	- I _F		3.2	A			
Pulsed Diode Forward Current ^B		I _{FM}		30				
	T _A =25°C	- P _D	3.1	3.1	w			
Power Dissipation	T _A =70°C		2	2	v			
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	-55 to 150	°C			

Thermal Characteristics					
Parameter		Symbol	Тур	Max	Units
Maximum Junction-to-Ambient ^A	t ≤ 10s	– R _{0JA}	28	40	°C/W
Maximum Junction-to-Ambient ^A	Steady-State	I N ₀ JA	54	75	°C/W
Maximum Junction-to-Lead ^C	Steady-State	R _{0JL}	21	30	°C/W

Thermal Characteristics: Schottky					
Parameter		Symbol	Тур	Max	Units
Maximum Junction-to-Ambient ^A	t ≤ 10s	- R _{θJA}	36	40	°C/W
Maximum Junction-to-Ambient ^A	Steady-State	I N ₀ JA	67	75	°C/W
Maximum Junction-to-Lead ^C	Steady-State	$R_{ ext{ heta}JL}$	25	30	°C/W

A: The value of R_{0JA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t \leq 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using 80 $\,\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T _A=25°C. The SOA curve provides a single pulse rating.

F. The Schottky appears in parallel with the MOSFET body diode, even though it is a separate chip. Therefore, we provide the net forward drop, capacitance and recovery characteristics of the MOSFET and Schottky. However, the thermal resistance is specified for each chip separately.

Rev5: August 2005

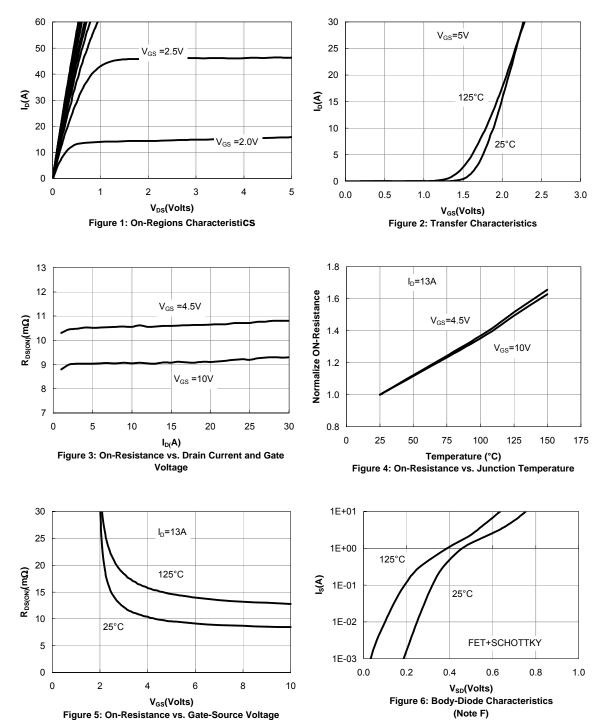
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISINGOUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

Electrical Characteristics (T_J=25°C unless otherwise noted)

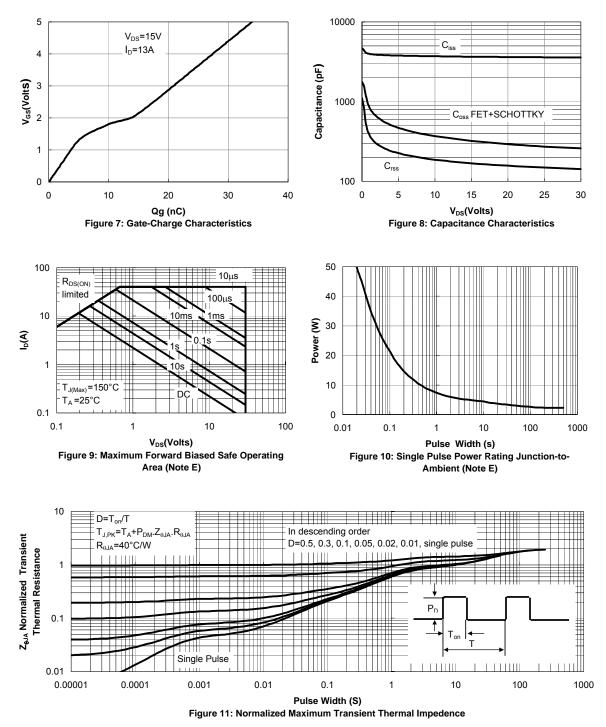
Symbol	Parameter	Conditions		Тур	Max	Units
STATIC F	PARAMETERS	-				
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V				V
I _{DSS} Zero Gate Voltage Drain Current. (Set by Schottky leakage)	Zure Onte Mallana Durin Ourmant	V _R =30V		0.007	0.05	
	-	V _R =30V, T _J =125°C		3.2	10	mA
	(Get by Genoliky leakage)	V _R =30V, T _J =150°C		12	20	
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±12V			100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=250\mu A$	0.6	1.1	2	V
I _{D(ON)}	On state drain current	V _{GS} =4.5V, V _{DS} =5V				Α
R _{DS(ON)} S		V _{GS} =10V, ID=13A		9.1	11.5	
	Static Drain-Source On-Resistance	T _J =125°	°C	13.3	16.5	mΩ
		V _{GS} =4.5V, I _D =12.2A		10.5	13	mΩ
g _{FS}	Forward Transconductance	V _{DS} =5V, I _D =13A		37		S
V _{SD}	Diode + Schottky Forward Voltage	I _S =1A,V _{GS} =0V		0.45	0.5	V
I _S	Maximum Body-Diode + Schottky Continuous Curr	rent			5	Α
DYNAMIC	C PARAMETERS					
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz		3656	4050	pF
C _{oss}	Output Capacitance (FET+Schottky)			322		pF
C _{rss}	Reverse Transfer Capacitance	7		168		pF
R _g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		0.86	1.1	Ω
SWITCHI	NG PARAMETERS					
Q _g (4.5V)	Total Gate Charge			30.5	36	nC
Q _{gs}	Gate Source Charge	V _{GS} =10V, V _{DS} =15V, I _D =13A		4.6		nC
Q _{gd}	Gate Drain Charge	7		8.6		nC
t _{D(on)}	Turn-On DelayTime			6.2	9	ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_L =1.1 Ω , R_{GEN} =0 Ω		4.8	7	ns
t _{D(off)}	Turn-Off DelayTime			55	75	ns
t _f	Turn-Off Fall Time			7.3	11	ns
t _{rr}	Body Diode+Schottky Reverse Recovery Time	I _F =13A, dI/dt=100A/μs		20.3	25	ns
Q _{rr}	Body Diode+Schottky Reverse Recovery Charge	I _F =13A, dl/dt=100A/μs		8.4	12.5	nC

A: The value of R_{0JA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}$ C. The value in any given application depends on the user's specific board design. The current rating is based on the t \leq 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature. C. The R $_{\text{NA}}$ is the sum of the thermal impedence from junction to lead R $_{\text{NA}}$ and lead to ambient.


C. The R_{0JA} is the sum of the thermal impedence from junction to lead R_{0JL} and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using 80 $\,\mu s$ pulses, duty cycle 0.5% max.


E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T _A=25°C. The SOA curve provides a single pulse rating.

F. The Schottky appears in parallel with the MOSFET body diode, even though it is a separate chip. Therefore, we provide the net forward drop, capacitance and recovery characteristics of the MOSFET and Schottky. However, the thermal resistance is specified for each chip separately Rev5: August 2005.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS