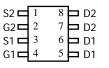
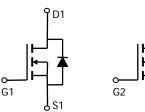


AO4812A

Dual N-Channel Enhancement Mode Field Effect Transistor


General Description


The AO4812A uses advanced trench technology to provide excellent $R_{DS(ON)}$ and low gate charge. The two MOSFETs make a compact and efficient switch and synchronous rectifier combination for use in buck converters. AO4812A is Pb-free (meets ROHS & Sony 259 specifications). AO4812AL is a Green Product ordering option. AO4812A and AO4812AL are electrically identical.

Features

$$\begin{split} &V_{DS} \; (V) = 30V \\ &I_{D} = 6.9A \; \; (V_{GS} = 10V) \\ &R_{DS(ON)} < 28m\Omega \; (V_{GS} = 10V) \\ &R_{DS(ON)} < 42m\Omega \; (V_{GS} = 4.5V) \end{split}$$

9 D2

SOIC-8

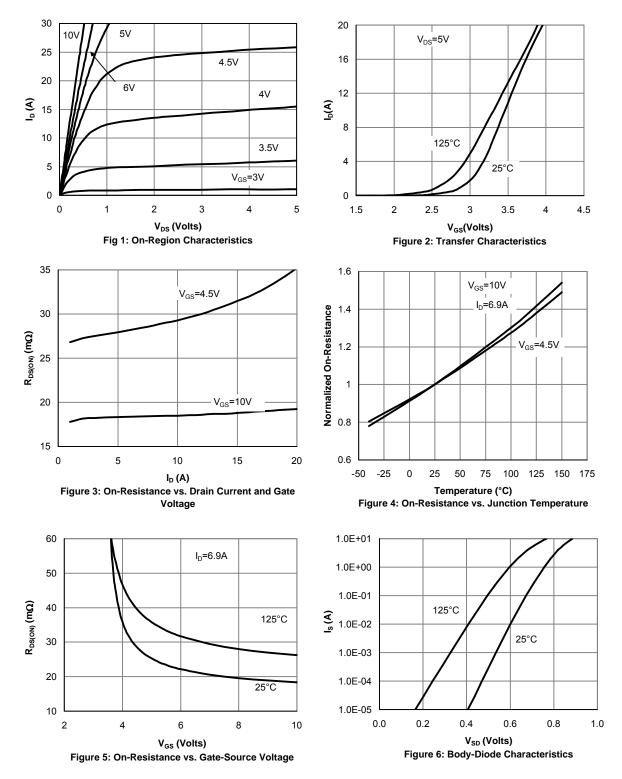
Absolute Maximum Ratings T _A =25°C unless otherwise noted							
Parameter		Symbol	Maximum	Units			
Drain-Source Voltage		V _{DS}	30	V			
Gate-Source Voltage		V _{GS}	±20	V			
Continuous Drain	T _A =25°C		6.9				
Current ^A	T _A =70°C	I _D	5.8	A			
Pulsed Drain Current ^B		I _{DM}	30				
	T _A =25°C	D	2	10/			
Power Dissipation	T _A =70°C	– P _D –	1.44	W			
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C			

Thermal Characteristics									
Parameter	Symbol	Тур	Max	Units					
Maximum Junction-to-Ambient ^A	t ≤ 10s	R _{0JA}	50	62.5	°C/W				
Maximum Junction-to-Ambient ^A	Steady-State	Γ _θ JA	82	110	°C/W				
Maximum Junction-to-Lead ^c	Steady-State	$R_{ ext{ heta}JL}$	41	50	°C/W				

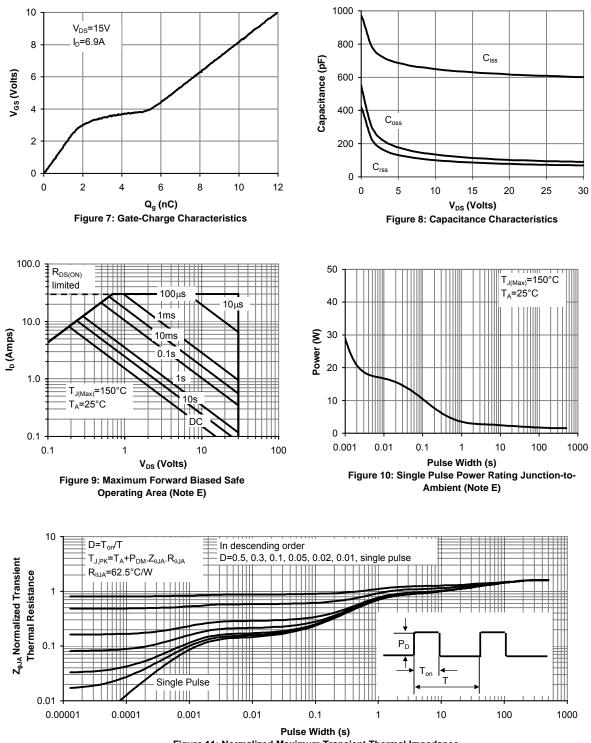
Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Parameter Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =24V, V _{GS} =0V T _J =55°C			0.004	1	μΑ
						5	
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V				100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS}$ I _D =250 μ A		1	1.8	3	V
I _{D(ON)}	On state drain current	V _{GS} =4.5V, V _{DS} =5V		20			Α
R _{DS(ON)}		V _{GS} =10V, I _D =6.9A			19	28	mΩ
	Static Drain-Source On-Resistance		T _J =125°C		24	30	
		V _{GS} =4.5V, I _D =5A			28	42	mΩ
g _{FS}	Forward Transconductance	V _{DS} =5V, I _D =6.9A		10	24		S
V _{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.77	1	V
ls	Maximum Body-Diode Continuous Curr	Diode Continuous Current				4.3	Α
DYNAMI	C PARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz			621	820	pF
C _{oss}	Output Capacitance				118		pF
C _{rss}	Reverse Transfer Capacitance				85		pF
R _g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz			0.8	1.5	Ω
SWITCHI	NG PARAMETERS						
Q _g (10V)	Total Gate Charge	V _{GS} =10V, V _{DS} =15V, I _D =6.9A			11.3	17	nC
Q _g (4.5V)	Total Gate Charge				5.7	8	nC
Q _{gs}	Gate Source Charge				2.1		nC
Q_{gd}	Gate Drain Charge				3		nC
t _{D(on)}	Turn-On DelayTime	V _{GS} =10V, V _{DS} =15V, R _L =2.2Ω, R _{GEN} =3Ω			4.5	6.5	ns
t _r	Turn-On Rise Time				3.1	5	ns
t _{D(off)}	Turn-Off DelayTime				15.1	23	ns
t _f	Turn-Off Fall Time				2.7	5	ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =6.9A, dI/dt=100A/μs			15.5	20	ns
Q _{rr}	Body Diode Reverse Recovery Charge	e I _F =6.9A, dI/dt=100A/μs			7.1	10	nC

A: The value of R_{BUA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}C$. The value in any given application depends on the user's specific board design. The current rating is based on the t \leq 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature.


C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using 80 µs pulses, duty cycle 0.5% max.


E. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}$ C. The SOA curve provides a single pulse rating.

Rev 0: December 2005

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 11: Normalized Maximum Transient Thermal Impedance