

General Description

The AOZ7100 is a USB Type-C controller that supports to Power Delivery 2.0/3.0. It has a built-in 32-bit MCU, GPIOs, I2C interface and 10bits ADC unit for fulfilling power control and protection on charger and adapter applications. It is available in 28-pin WQFN package.

Features

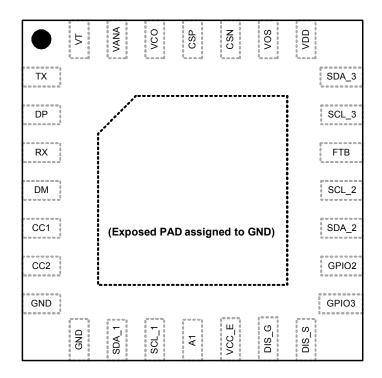
- Support USB PD 2.0/3.0 via CC1 & CC2 pins
- Support BC 1.2 via DP & DM pins
- Discharge MOS control and cold-socket detection
- CC1/CC2 with high noise immunity
- Support over voltage detection for CC1/CC2
- Support external NTC over temperature Detection
- Support under voltage protection (UVP)
- One high accuracy 10bit-SAR ADC for Voltage and low-side Current monitors
- Built-in 32-bit MCU
- Built-in 16 KB SRAM
- Built-in 32 KB EEPROM

Applications

- USB Type-C PD Charger
- Smart Charger
- Expose PAD

Drain DFT VO CSN C Source Drain GND CSSECN DIS_S Source CSSECF CPG AOZ7100 AOZ76x5 CC. CS CPS CC2 DP DM A0776x8 VDD FE RXN RXP TXN SDA PRO TR Ī Ī lγr

Typical Application


Ordering Information

Part Number	Ambient Temperature Range	Package	Environmental		
AOZ7100QI	-40°C to +85°C	WQFN 4X4-28L	Green Product		

AOS Green Products use reduced levels of Halogens, and are also RoHS compliant.

Green

Pin Configuration

QFN 4mm x 4mm 28-pin (Top View)

Pin Description

Pin Number	Pin Name	Pin Function
1	ТХ	GPIO/ UART_TX
2	DP	USB D+ Channel
3	RX	GPIO/ UART_RX
4	DM	USB D- Channel
5	CC1	Configuration Channel 1 of Type C
6	CC2	Configuration Channel 1 of Type C
7	GND	Ground
8	GND	Ground
9	SDA_1	I2C slave SDA of built-in EEPROM:
10	SCL_1	I2C slave SCL of built-in EEPROM:
11	A1	Slave I2C: device address pin of built-in EEPROM:
12	VCC_E	EEPROM power input
13	DIS_G	VBUS Discharge Function: to NMOS gate terminal
14	DIS_S	VBUS Discharge Function: to NMOS source terminal / VBUS monitor
15	GPIO3	General Purpose I/O
16	GPIO2	General Purpose I/O
17	SDA_2	General Purpose I/O: Specific master SDA to AOZ-76x8
18	SCL_2	General Purpose I/O: Specific master SCL to AOZ-76x8
19	FTB	Fault Interrupt Channel
20	SCL_3	I2C Master SCL to external slave device or built-in EEPROM
21	SDA_3	I2C Master SDA to external slave device or built-in EEPROM
22	VDD	Power Input
23	VOS	Output Voltage detection
24	CSN	Low-side current sense Input-negative
25	CSP	Low-side Current Sense Input-positive
26	VCO	LDO output 1.2V for MCU Core
27	VANA	LDO output 3.3V for built-in analog device
28	VT	Temperature sense pin (Need External NTC Resistor)& RESET PIN input
Expose PAD		Ground

Absolute Maximum Ratings

Exceeding the Absolute Maximum Ratings may damage the device.

Parameter	Rating
VDD	0V to 6.0V
V _{SDA} , V _{SCL} ,V _{FTB}	0V to 6.0V
	-0.3V to +6.0V
VANA	-0.3V to +3.6V
VCO	-0.3V to +1.3V
GND	-0.3V to +0.3V
Package Power Dissipation	2.9W
Junction Temperature (T _J)	+150°C
Storage Temperature (T _S)	-65°C to +150°C
ESD HBM ⁽¹⁾	4kV
ESD CDM ⁽¹⁾	250V

Notes:

1. Devices are inherently ESD sensitive, handling precautions are required. Human body model rating: $1.5k\Omega$ in series with 100pF.

Electrical Characteristics

 V_O =5V, T_A = -25°C to 85°C, unless otherwise specified.

Symbol	Parameter	Parameter Conditions		Тур	Max	Units			
VDD Supply Input									
V _{DD_ON}	Power On Threshold		2.9	3	3.1	V			
I _{VDD}	Operating Average Current	V _{VDD} =5V		2.5		mA			
V _{VDD_th}	Threshold Voltage of UVLO		2.7	2.8	2.9	V			
P _{AVDD_PSC}	Power Saving Current	V _{VDD} =5V, Enter sleep mode	500	600		μA			
VANA LDO									
V _{VANA}	LDO Voltage to Peripheral Units	C_VANA =1uF	2.9	3.1	3.6	V			
VCO LDO									
V _{CO}	LDO Voltage to MCU Core	C_VCO =1uF	1.1	1.2	1.3	V			
V _{reset_vco}	Power-On Reset Voltage	Vary by Firmware design		0.4		V			
GPIOs									
V _{GPIO}	VGPIO_ABS	Maximum Voltage per GPIO	2.9	3.1	3.5	V			
I _{GPIO}	IGPIO_ABS	Maximum Current per GPIO	2.0	2.5	3.0	mA			
GPIO_INH	"H" Level	Threshold to Logical "1"	2.0	2.2		V			
GPIO_INL	"H" Level	Threshold to Logical "0"		0.4	0.6	V			

Recommended Operating Conditions

The device is not guaranteed to operate beyond the Maximum Recommended Operating Conditions.

Parameter	Rating
Supply Voltage (VDD)	3.3V to 5.5V
Ambient Temperature (T _A)	-40°C to +105°C
Package Thermal Resistance (θ_{JA}) (θ_{JC})	42°C/W 9 °C/W

Electrical Characteristics (Continued)

 V_O =5V, T_A = -25°C to 85°C, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Fault Bar (F	TB Pin)				1	1
V _{FTBL}	Low Level Threshold Voltage				0.6	V
V _{FTBH}	High Level Threshold Voltage		1.8			V
V _{FTBHYS}	Hysteresis of Schmitt Trigger Inputs		0.1			V
V _{FTBOL}	Low Level Output Voltage	Open drain, 3mA sink			0.4	V
V _{FPO}	Output Level			V _{ANA-0.1}		V
EXTERNAL	OTP (VT)	·				
I _{OTP}	OTP Detect Source Current	Vary by Firmware design	18	20	22	μA
V _{OTP}	OTP Enable Level	VT pin connect with (100k NTC+ $8k\Omega$ resistor) to GND (Vary by Firmware design)		0.8		v
V _{OTPHYS}	Hysteresis Voltage	100kΩ NTC+ 8kΩ resistor (Vary by Firmware design)		100		mV
t _{OTP}	Debounce Time	100k Ω NTC+ 8k Ω resistor (Vary by Firmware design)		60		mSec
V _{reset_VT}	Power on Reset Voltage	(Vary by Firmware design)		0.4		V
VBUS Moni	itor (DIS_S Pin)					
V _{BUSM_L}	Input Low Threshold	VBUS=5V, R _{DIS_1} =10kΩ, R _{DIS_2} =1.2kΩ		0.15		V
V _{BUSM_H}	Input High Threshold	VBUS=5V, R_{DIS_1} =10k Ω , R_{DIS_2} =1.2k Ω		0.3		V
t _{BUSM_de}	Denounce Timer	Programmable parameter	0.1		1	mSec
DP and DM	Pins					
V _{O_DP} V _{O_DM}	Line Output Voltage	V _{VANA} =2.9~3.6V		2.7		V
	very PHY Interface			<u> </u>	1	<u>.</u>
I _{CC_Default}	Default Current	VDD =5V, Detach	64	80	96	μA
R _{d_1.5A}	Pull-Down Resister		4.6	5.1	5.6	kΩ
CC _{CLP}	Clamp Voltage to CC1/2		3.0	3.3	3.5	V
I2C PHY Int	terface	·				
V _{IL}	Low Level Threshold Voltage				0.6	V
V _{IH}	High Level Threshold Voltage		1.8			V
V _{HYS}	Hysteresis of Schmitt Trigger Inputs		0.1			V
V _{OL}	Low Level Output Voltage	Open Drain, 3mA Sink Current			0.4	V
t _{SP}	Pulse Width of Spikes Suppressed by Input Filter		32			ns
f _{SCL}	SCL Clock Frequency		100		400	kHz
t _{HD:STA}	Hold Time (repeated) START Condition		0.6			μS

Electrical Characteristics (Continued)

 V_O =5V, T_A = -25°C to 85°C, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Мах	Units
t _{LOW}	Low Period of SCL Clock		1.3			μS
t _{HIGH}	High Period of SCL Clock		0.6			μS
t _{SU:STA}	Set-up Time for a Repeated START Condition		0.6			μS
t _{HD:DAT}	Data Hold Time		50		900	nS
t _{SU:DAT}	Data Set-up Time		100			nS
t _{R2}	Rising Time (SDA or SCL)		20+0.1 Cb*		300	nS
t _{F2}	Falling Time (SDA or SCL)		20+0.1 Cb*		300	nS
t _{SU:STO}	Set-up Time for STOP Condition		0.6			μS
t _{BUF}	Bus Free Time between STOP & START Condition		1.3			μS
Cb	Capacitive Load of Each Bus Line				400	pF

Notes:

2. Guaranteed by design.

3. Refer to Figure 1 for I2C Timing Definitions.

4. Cb= capacitance for bus line in pF.

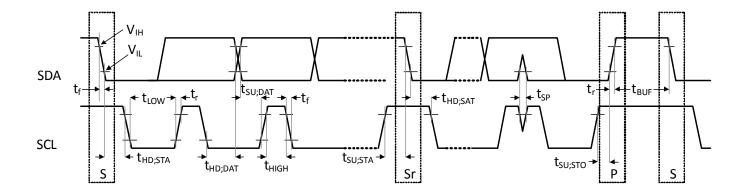
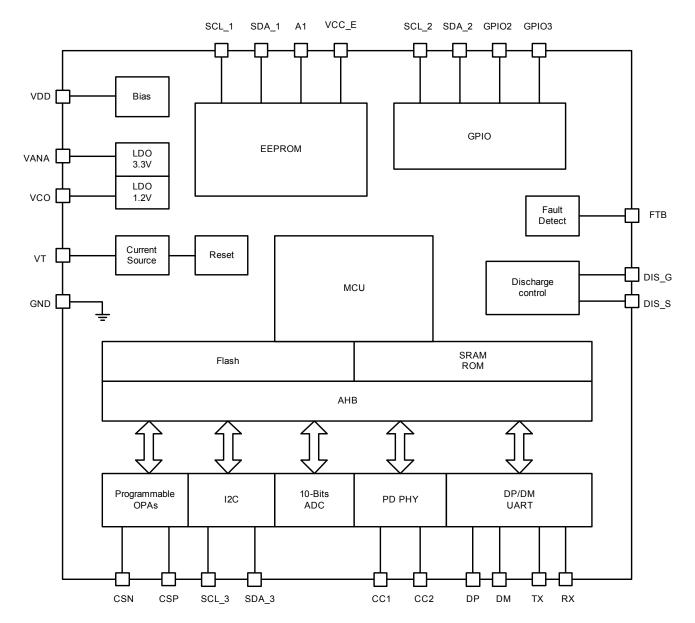



Figure 1. I²C Timing Definitions (reproduced from Phillips I²C specification version 1.1)

Functional Block Diagram

Detailed Description

USB Implementers Forum (USB-IF) released USB Power Delivery (PD) 2.0/3.0 Specifications for intelligent and flexible system level management of power. Both power provider and power consumer would need Power Delivery interface to negotiate and share the message such as VBUS and protection method. Existing PD interface of AOZ7100 could fulfill Dual Role Port application for power provider and consumer. An I2C master interface is adapted for power management and expanding peripheral control mechanism.

Start Up Via Pin VDD

Using external device's LDO or possible source, AO7100 can be powered to start up. AOZ7100 is designed to operate with low supply voltages down to 2.9V. Two internal LDOs of AOZ7100 operate to provide individual power to MCU core, comparators and built-in ADCs. It is recommended to add over 1uF ceramic capacitor to VANA and VCO output pin respectively.

I2C Master Interface

AOZ7100 has two I2C master Interface to fulfill design flexibility and expand digital control mechanism. Two pull-up resistors are built into AOZ7100 for minimizing external component.

Configuration Channel CC1/CC2

CC channels are used for connection detect, PD interface configuration and message sending/receiving.

GPIOs Device

GPIOs can be utilized to control other switch component or sense specific digital signal. Additionally, firmware hardware of MASK ROM can be selectable by status of the GPIOs.

Mask-ROM (Option)

High reliability built-in Mask-ROM can be merged into AOZ7100 to store the boot-loader or customized firmware. Additional, Multi Mask-ROM providing different firmware version is adapted in advance to ensure design selection. For the product development or validation period, it is recommended to use built-in I2C-EEPROM to store the boot-loader or firmware.

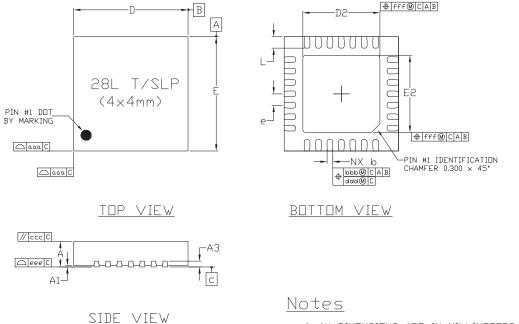
32kB EEPROM

An EEPROM device is integrated into AOZ7100 for customized development period or final product. Microcontroller of AOZ7100 could be programmed by downloading firmware of EEPROM. Pin SDA(S) and SCL(S) could be used to implement update or download firmware. Pin A1 is device address input that would be internally pulled down to GND. Therefore, EEPROM provides design flexibility to fulfill system function.

VBUS Voltage Monitor Pin VOS

VOS could monitor VBUS level via divided resistors. Firmware can set individual OVP level to corresponding Power Data Object (PDO). Once built-in OVP is triggered, AOZ7100 could turn off load switch and set VBUS back to default 5V.

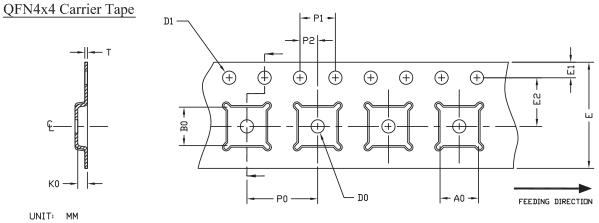
VBUS Current Monitor Pin CSP & CSN


Pin CSP and CSN are used to sense load current. Firmware can set individual OCP level to corresponding Power Data Object (PDO). Under overload conditions, AOZ7100 could take Current Fold-Back mechanism to reduce the power dissipation within safe operating area.

External Discharge Switch Control and Cold-Socket Detect

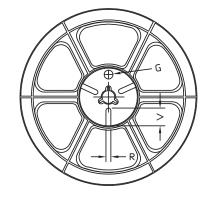
AOZ7100 provide gate driver pin DIS_G to control external discharge switch. Once receiving PD hard reset message or taking protection, external discharge switch would be used to discharge. In addition, AOZ7100 can check cold socket of receptacle via DIS_S with appropriate divided pull down resistor.

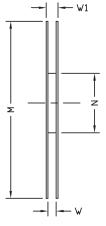
Packaging Dimensions WQFN4x4-28L

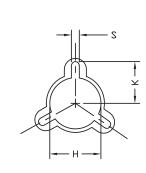


	Dimensional Ref.									
REF.	Min.	Nom.	Max.							
Α	0.700	0.750	0.800							
A1	0.000		0.050							
A 3	0	.203 Re	f.							
D	3.950	4.000	4.050							
E	3.950	4.000	4.050							
D2	2.650	2.700	2.750							
E2	2.650	2.700	2.750							
Ь	0.150	0.200	0.250							
L	0.350	0.400	0.450							
e	0	.400 BS)0 BSC							
Τc	<u>pl. of Fc</u>	rm&Po:	sition							
ааа		0.10								
ЬЬЬ	0.10									
ccc	0.10									
ddd	0.05									
eee		0.08								
fff		0.10								

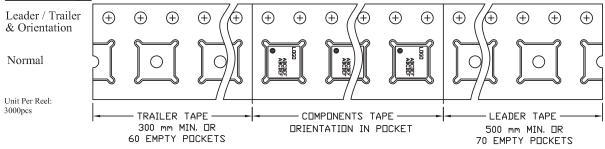
1. AU DIMENSIONS ARE IN MILLIMETERS.


2. DIMENSIONING AND TOLERANCING PER JEDEC MO-220.

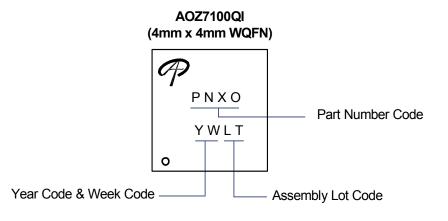

Tape and Reel, WQFN4x4-28L


PACKAGE	A0	BO	К0	DO	D1	E	E1	E2	P0	P1	P2	Т
QFN4x4 (12 mm)	4.35 ±0.10	4.35 ±0.10	1.10 ±0.10	1.50 MIN.	1.50 +0.1 -0.0	12.0 ±0.3	1.75 ±0.10	5.50 ±0.05	8.00 ±0.10	4.00 ±0.10	2.00 ±0.05	0.30 ±0.05

QFN4x4 Reel


ŀ

UNIT: MM


TAPE SIZE	REEL SIZE	м	N	W	W1	Н	к	S	G	R	V
12 mm	ø330	Ø330.0 ±2.0	ø79.0 ±1.0	12.4 +2.0 -0.0	17.0 +2.6 -1.2	ø13.0 ±0.5	10.5 ±0.2	2.0 ±0.5			

QFN4x4 Tape

Part Marking

Part No.	Description	Code
AOZ7100QI	Green Product	BU00

LEGAL DISCLAIMER

Applications or uses as critical components in life support devices or systems are not authorized. AOS does not assume any liability arising out of such applications or uses of its products. AOS reserves the right to make changes to product specifications without notice. It is the responsibility of the customer to evaluate suitability of the product for their intended application. Customer shall comply with applicable legal requirements, including all applicable export control rules, regulations and limitations.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms and conditions of sale

LIFE SUPPORT POLICY

ALPHA AND OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.