

Chipown

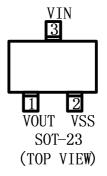
Ultra-Small Package High-Precision Voltage Detector

General Description

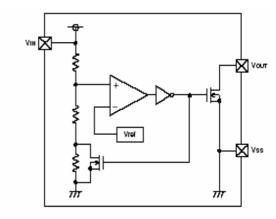
The AP061C series is a series of high-precision voltage detectors developed using CMOS process. The detection voltage is fixed internally with an accuracy of $\pm 2.0\%$. Two output forms, Nch open-drain and CMOS output, are available. Ultra-low current consumption and miniature package lineup can meet demand from the portable device applications.

Applications

• Battery checkers


Block Diagrams

- Power failure detectors
- Power monitor for portable equipments such as pagers, calculators, electronic notebooks and remote controllers.
- Constant voltage power monitor for cameras, video equipments and communication devices.
- Power monitor for microcomputers and reset for CPUs.


Features

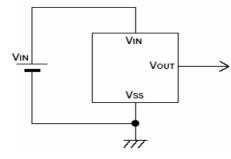
- Ultra-low current consumption 0.8 μA typ. (Vin=1.5V)
- High-precision detection voltage ±2.0 %
- Operating voltage range 0.7 V to 8 V
- Detection voltage 1.5 V to 6.0 V (0.1 V step)
- Output form Nch open-drain output (Active Low) or CMOS output (Active Low)
- Small package: SOT23-3

Package

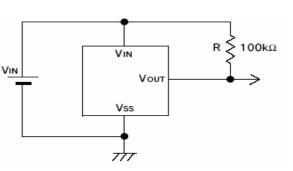
(2) Nch Open-drain Output Products

(1) CMOS Output Products

Order Information


Part Number	Top Mark	Package	Description					
AP061CC2502MR	AKXY	SOT23-3L	2.5V CMOS output					
AP061CC2702MR	AMXY	SOT23-3L	2.7V CMOS output					
AP061CC2802MR	ANXY	SOT23-3L	2.8V CMOS output					
AP061CC3302MR	ASXY	SOT23-3L	3.3V CMOS output					
AP061CC4302MR	AcXY	SOT23-3L	4.3V CMOS output					

AP061C


AP061CN3302MR	BSXY	SOT23-3L	3.3V Nch Open-Drain output
AP061CN3002MR	BPXY	SOT23-3L	3.0V Nch Open-Drain output
AP061CN2502MR	BKXY	SOT23-3L	2.5V Nch Open-Drain output
AP061CN2702MR	BMXY	SOT23-3L	2.7V Nch Open-Drain output
AP061CN3602MR	BVXY	SOT23-3L	3.6V Nch Open-Drain output
AP061CN4202MR	BbXY	SOT23-3L	4.2V Nch Open-Drain output

Typical Application Circuit

CMOS Output

Absolute Maximum Ratings

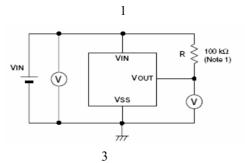
Nch Open-drain Output

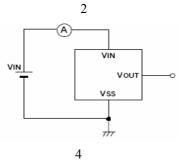
VDF (T) = 1.6 to $6.0V \pm 2\%$

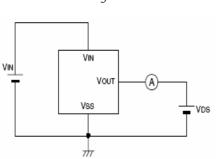
Ta=25℃

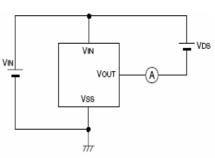
Thosofute Inte	Annum Katings	1a 25 C				
Item		Symbol	Absolute maximum ratings	unit		
Power supply voltage		Vin	8	V		
Output current		Iout	50	mA		
Output	CMOS	Vout	Vss-0.3~Vin+0.3	V		
voltage	N-ch		Vss-0.3~8			
	SOT23-3		150			
Power	SOT89-3	Pd	500	mW		
dissipation	SSOT-24		150			
	TO-92		300			
Operating ambient temperature		Topr	-40~+85	°C		

Electrical Characteristics

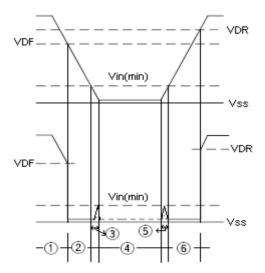

Item	Symbol	Condition		Min.	Тур.	Max.	unit	Test circuit
Detection voltage	VDF			VDF	VDF	VDF x1.02	V	1
				x0.98				
Release voltage	VHYS			VDF	VDF x0.05	VDF x0.08	V	1
				x0.02				
		Vin=1.5V			0.8	2.4		
		=2.0V			0.9	2.8	uA	2
Current	Iss	=3.0V			1.0	3.1		
consumption		=4.0V =5.0V			1.1	3.3		
					1.2	3.7		
Operating voltage	Vin	VDF=1.60~6.0V		0.7		8	V	1
		Nch	Vin=1.0V	1.0	2.2			

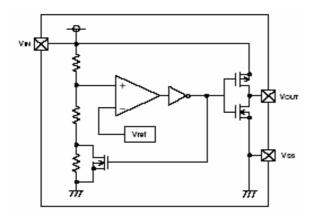



Chipown


		Vds=	Vin=2.0V	3.0	7.7			
Output current	Iout	0.5V	Vin=3.0V	5.0	10.1		mA	3
			Vin=4.0V	6.0	11.5			
			Vin=5.0V	7.0	13.0			
		Pch vds=2.1 vin=8.0			-10	-2		4
temperature		-40∼+85°C			±100		ppm/°C	
coefficient								

Test circuit



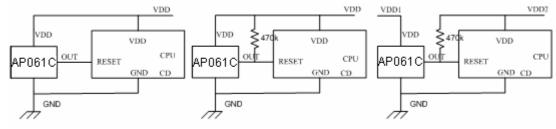

Timing Chart

Operation

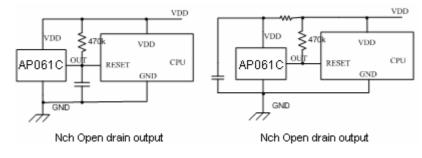
Chipown

1-1. When the power supply voltage (VDD) is higher than the release voltage (VDF), the Nch transistor is OFF and the Pch transistor is ON to provide VDD (high) at the output.

1-2. When the power supply voltage (VDD) is lower than the release voltage (VDF), the Nch transistor is ON and the Pch transistor is OFF to provide VSS (low) at the output.

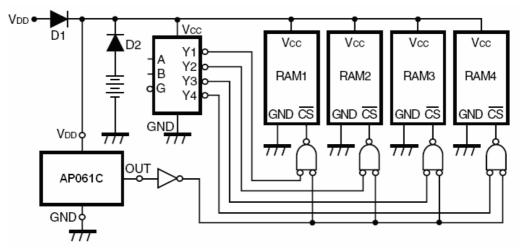

1-3. When the VDD falls below the minimum operating voltage, the output becomes undefined, or goes to the VDD when the output is pulled up to the VDD.

1-4. The VSS level appears when the VDD is VSS level.

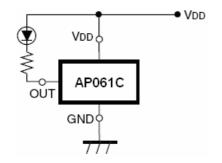

1-5. The VSS level appears when the VDD rises above the minimum operating voltage. The VSS level still appears even when the VDD surpasses – VDF, as long as it does not exceed the release voltage + VDF.
1-6. When the VDD rises above + VDF the Nch transistor becomes OFF and the Pch transistor becomes ON to provide VDD level at the output.

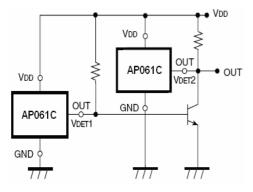
Application Circuit Examples

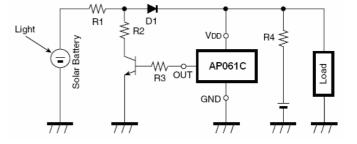
• Microcomputer Reset Circuits


• Power-on Reset Circuit

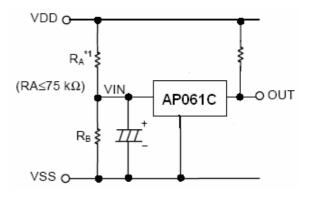
• Mermory back-up circuit



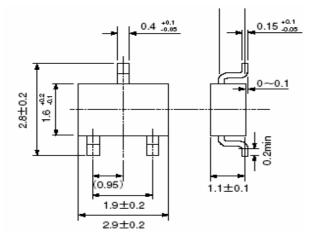



• Overcharge protect circuit

• Power failure detectors



•Window Comparator Circuit


• Detector Adjustable Circuit

APO61C

Chipown

PACKAGE INFORMATION SOT23-3L

IMPORTANT NOTICE

Chipown Microelectronics Co. Ltd. reserves the right to make changes without further notice to any products or specifications herein. Chipown Microelectronics Co. Ltd. does not assume any responsibility for use of any its products for any particular purpose, nor does Chipown Microelectronics Co. Ltd assume any liability arising out of the application or use of any its products or circuits. Chipown Microelectronics Co. Ltd does not convey any license under its patent rights or other rights nor the rights of others.