Chipown

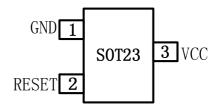
3-Pin Microprocessor Reset Circuits

Description

The AP0809 microprocessor supervisory circuit can be used to monitor the power supplies in microprocessor and digital systems. It provides a reset to the microprocessor during power-up, power-down, and brown-out conditions.

The function of the AP0809 is to monitor the $V_{\rm CC}$ supply voltage, and assert a reset signal whenever this voltage declines below the factory-programmed reset threshold. The reset signal remains asserted for 250ms after $V_{\rm CC}$ rises above the threshold. The AP0809 has an active-low \overline{RESET} output.

With a low supply current of only $2\mu A$ (Typ.), the AP0809 are ideal for use in portable equipment. The AP0809 is available in the 3-pin SOT23 package.


Applications

- Microprocessor Systems
- Computers
- Controllers
- Intelligent Instruments
- Portable/Battery-Powered Equipment
- Automotive

Features

- Precise monitoring of 2.7V, 3.0V, 3.3V and 5.0V supplies
- 140 ms min. Power-On Reset pulse width, 250ms typical, has an active-low RESET Output
- Guaranteed \overline{RESET} Output valid for $V_{CC} \ge 1.1 \text{ V}$
- Low Supply Current, 2μA Typ.
- Available in small SOT23 package
- No external components needed
- Specified over full temperature range -40°Cto+105°C

Package

Typical Application

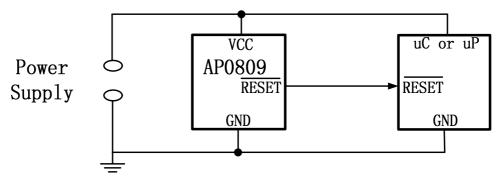


Figure 2 Typical Application

Function Diagram

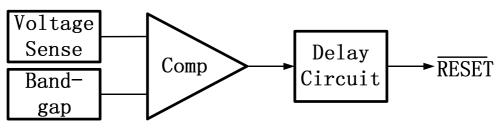


Figure 3 Function Digram

Chipown

PIN Description

Pin No.	Pin Name	Description
1	GND	Ground reference
2	RESET	Active-low output. \overline{RESET} remains low while V_{CC} is below the reset threshold, and for 250ms after V_{CC} rises above the reset threshold.
3	V _{CC}	Supply Voltage

Absolute Maximum Ratings

V _{CC}	0.3V to 6.0V	Power Dissipation ($T_A = 70^{\circ}C$)
RESET		(Derate 4mW/°C above 70°C)
Input Current at V _{CC}	20mÁ	Operating Temperature Range40°C to 105°C
Output Current: RESET		Storage Temperature Range65°C to 160°C
Rate of Rise at V _{CC}		Lead Temperature (soldering, 10 sec) 300°C

These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability

Electrical Characteristics

Unless otherwise noted V_{CC} is over the full voltage range, $T_A = -40^{\circ}C$ to 105°C. Typical values at $T_A = 25^{\circ}C$, $V_{CC} = 5V$ for L/M/J devices, $V_{CC} = 3.3V$ for T/S devices and $V_{CC} = 3V$ for R devices.

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Input Voltage	nput Voltage Vcc $T_A = 0^{\circ}C$ to $70^{\circ}C$		1.1		5.5	V
(V _{CC}) Range		$T_A = -40$ °C to 105 °C	1.2		5.5	
Supply Current	Icc	$T_A = -40$ °C to 85°C VCC < 5.5V, L/M/J		2.5	5	uA
		$T_A = -40$ °C to 85°C VCC < 3.6V, R/S/T		1.5	4	
		$T_A = 85$ °C to 105°C VCC < 5.5V, L/M/J			10	
		$T_A = 85$ °C to 105°C VCC < 3.6V, R/S/T			8	
Reset Threshold	V_{TH}	L devices $T_A = 25$ °C	4.56	4.63	4.70	V
		$T_A = -40^{\circ}$ C to 85°C	4.50		4.75	
		$T_A = 85^{\circ}C$ to $105^{\circ}C$	4.4		4.86	
		M devices $T_A = 25^{\circ}C$	4.31	4.38	4.45	
		$T_A = -40$ °C to 85°C	4.25		4.50	
		$T_A = 85^{\circ}C$ to $105^{\circ}C$	4.16		4.56	
		J devices $T_A = 25^{\circ}C$	3.93	4.00	4.06	
		$T_A = -40$ °C to 85°C	3.89		4.10	
		$T_A = 85^{\circ}C$ to $105^{\circ}C$	3.80		4.20	
		T devices $T_A = 25^{\circ}C$	3.04	3.08	3.11	
		$T_A = -40$ °C to 85°C	3.00		3.15	
		$T_A = 85^{\circ}C$ to $105^{\circ}C$	2.92		3.23	
		S devices $T_A = 25^{\circ}C$	2.89	2.93	2.96	
		$T_A = -40^{\circ} \text{C to } 85^{\circ} \text{C}$	2.85		3.00	
		$T_A = 85^{\circ}C$ to $105^{\circ}C$	2.78		3.08	
		R devices $T_A = 25^{\circ}C$	2.59	2.63	2.66	
		$T_A = -40$ °C to 85°C	2.55		2.70	
		$T_A = 85^{\circ}C$ to $105^{\circ}C$	2.50		2.76	
Reset Threshold				30		ppm/°C
Stability						
V _{CC} to Reset		$V_{CC} = V_{TH}$ to $(V_{TH} - 100 \text{mV})$		20		uS
Delay						
Reset Active	T_{OL}	$T_A = -40$ °C to 85°C	140	250	560	mS
Timeout Period		$T_A = 85$ °C to 105 °C	100	1	840	
RESET Output V_{OL} $V_{CC}=V_{TH}$ min., $I_{SINK}=1.2$ mA, R/S/T				0.1	V	
Voltage Low	-	$V_{CC}=V_{TH}$ min., $I_{SINK}=3.2$ mA, $L/M/J$			0.2	
-		$V_{CC} > 1.1 \text{V}, I_{SINK} = 50 \mu \text{A}$		1	0.1	
RESET Output	V_{OH}	V _{CC} =V _{TH} max, Isource=500uA, R/S/T	0.9Vcc			V
Voltage High		V _{CC} =V _{TH} max, Isource=800uA, L/M/J	Vcc-1.5			

Chipown

Detailed Descriptions

Reset Timing

The reset signal is asserted–low for the AP0809–when the $V_{\rm CC}$ signal falls below the threshold trip voltage and remains asserted for 140ms minimum after the VCC has risen above the threshold.

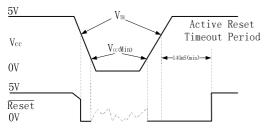


Figure 4 Reset Timing Diagram

Negative V_{CC} Transients

The AP0809 protects μPs from brownouts and low V_{CC} . Short duration transients of 100mV amplitude and 20 μs or less duration typically do not cause a false RESET.

Valid Reset with V_{CC} under 1.1V

To ensure logic inputs connected to the AP0809 RESET pin are in a known state when V_{CC} is under 1.1V, a $100k\Omega$ pull-down resistor at RESET is needed. The value is not critical.

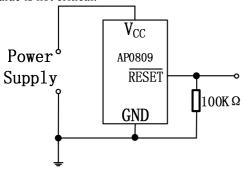
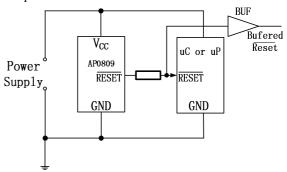
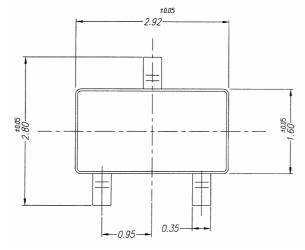


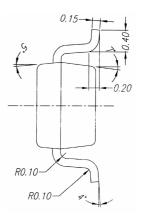
Figure 5 RESET Valid with V_{CC} Under 1.1V

Bi-directional Reset Pin Interfacing

The AP0809 can interface with $\mu P/\mu C$ bi-directional reset pins by connecting a 4.7k Ω resistor in series with the AP0809 reset output and the $\mu P/\mu C$ bi-directional reset pin.




Figure 6 Bi-directional Reset Pin Interfacing


Order Information

Part Number	Top Mark	Package	Description
AP0809ES3-R	09R	S0T23-3	2. 63V
AP0809ES3-S	09S	S0T23-3	2. 93V
AP0809ES3-T	09T	S0T23-3	3. 08V
AP0809ES3-M	09M	S0T23-3	4. 38V

Chipown

Packaging Information

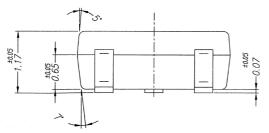


Figure 7 SOT23-3

Unit: mm

IMPORTANT NOTICE

Chipown Microelectronics Co. Ltd. reserves the right to make changes without further notice to any products or specifications herein. Chipown Microelectronics Co. Ltd. does not assume any responsibility for use of any its products for any particular purpose, nor does Chipown Microelectronics Co. Ltd assume any liability arising out of the application or use of any its products or circuits. Chipown Microelectronics Co. Ltd does not convey any license under its patent rights or other rights nor the rights of others.