

AP1015BEN 10.5V 1ch H-Bridge Motor Driver IC

1. Overview

The AP1015BEN has four drive mode of forward, reverse, brake and standby by 1 channel H-bridge Motor Driver corresponding to operating voltage 10.5V. The AP1015BEN layouts P-channel MOSFET for high side and N-channel LDMOSFET for low side in output circuit. This realizes a small package and less external parts. Under voltage detection and thermal shut down circuits are implemented. It is suitable for driving various small motors.

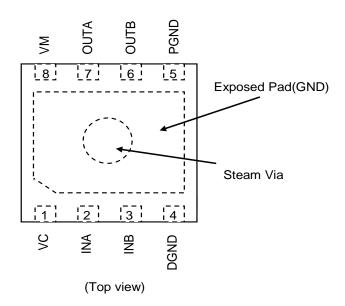

2. Features

- Control Supply Voltage 2.7V to 5.5V
- Wide Motor Drive Operating Voltage 2.2V to 10.5V
- Maximum Output Current (DC) 1.1A @Ta=25°C, 0.8A @Ta=85°C
- Maximum Output Current (Peak) 1.4A (Ta=25°C, within 10ms in 100ms or within 20ms in 200ms)
- Maximum Output Current (Peak) 2.0A (Ta=25°C, 100ms within 5ms or within 10ms in 200ms)
- H-Bridge On Resistance RON(TOP+BOT)= 0.5Ω (typ) @Ta= 25° C
- Built-in Under Voltage Detection Circuit
- Built-in Thermal Shut Down Circuit (Tj)
- Detect VC supply voltage under 2.2V(typ) 175°C (typ)
- Junction Temperature 150°C (max)
- Package 8-pin SON

3. Table of Contents

1.	Overview	. 1
2.	Features	. 1
3.	Table of Contents	. 2
4.	Block Diagram	. 3
5.	Ordering Guide	. 3
6.	Pin Configuration and Functions	. 4
	Pin Configuration	
	Pin Functions	
	Terminal Equivalent Circuit	. 5
7.	Absolute Maximum Ratings	. 6
8.	Recommended Operation Conditions	. 6
9.	Electric Characteristics	
10.	Control Logic	. 9
11.	Recommended External Circuit	11
	Package 1	12
	Outline Dimentions	12
	Marking 1	12
13.	Revise History	13
	IMPORTANT NOTICE	14

4. Block Diagram



	5.	Ordering Guide	
AP1015BEN	-30°C ∼+85°C	8-pin SON	

6. Pin Configuration and Functions

■ Pin Configuration

■ Pin Functions

Pin No.	Pin Name	I/O (Note 1)	Function	Description
1	VC	Р	Control Power Supply	
2	INA	Ι	Control Signal Input Terminal	$100 \mathrm{k}\Omega$ pull-down
3	INB	Ι	Control Signal Input Terminal	$100 \mathrm{k}\Omega$ pull-down
4	DGND	Р	Ground Terminal	
5	PGND	Р	Power Ground Terminal	
6	OUTB	0	Motor Driver Output Terminal	
7	OUTA	0	Motor Driver Output Terminal	
8	VM	Р	Motor Driver Output Supply	
Exposed Pad	EP	-	Exposed Pad	(Note 2)

Note 1. I (Input terminal), O (Output terminal), P(Power terminal) Note 2. EP is Power Ground. EP is necessary soldered to GND.

■ Terminal Equivalent Circuit

Pin name	Name	Functions	Equivalent Circuit
1	VC	Control Power Supply	VC/VM ~
8	VM	Motor driver power supply	
2	INA	Logic Input	INA/INB 2k 2k
3	INB		
7	OUTA	Motor Driver Output	ې ∨M
6	OUTB		
4	DGND	Ground Terminal	DGND PGND
5	PGND	Power Ground Terminal	
EP	EP	Exposed Pad	-

7. Absolute Maximum Ratings							
			(Ta = 25°	[°] C unless otherwise specified.)		
Parameter	Symbol	min	max	Unit	Condition		
Control Supply Voltage	VC	-0.5	6	V			
Motor Driver Supply Voltage	VM	-0.5	12	V			
Input Terminal Voltage(INA, INB)	Vterminal	-0.5	5.5	V			
Maximum DC Output Current	Iout1	-	1.1	А	Ta=25°C, OUTA and OUTB terminal		
Maximum DC Output Current	Iouti	-	0.8	А	Ta=85°C, OUTA and OUTB terminal		
Maximum Peak Output Current	Iout2	-	1.4	А	OUTA and OUTB terminal within 20ms in 200ms		
		-	2.0	А	OUTA,OUTB端子 within 10ms in 200ms		
Power Dissinction	DD	-	1250	mW	(Note 4) Ta=25°C		
Power Dissipation	PD	-	650	mW	(Note 4) Ta=85°C		
Operating Temperature Range	Tj	-	150	°C			
Storage Temperature	Tstg	-65	150	°C			

Note 3. All above voltage is defined to VSS (DGND/PGND terminal voltage)

Note 4. This is calculated as $R\theta J=100 \text{ °C} /W$. EP terminal is connected ground.

Note 5. The each power supply of VC and VM is sequence-free.

8.

WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes.

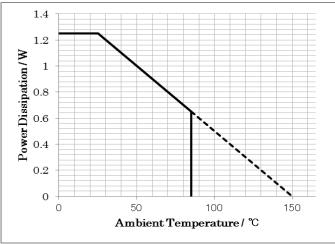
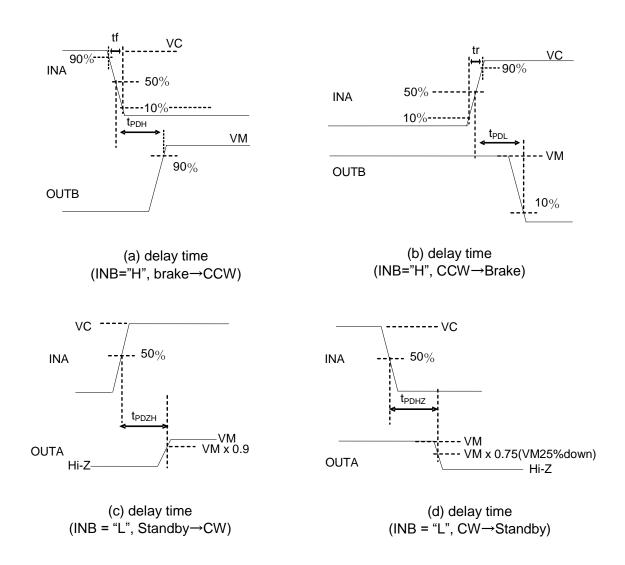
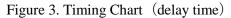


Figure 2. Power Dissipation

Recommended Operation Conditions

Parameter	Symbol	min	typ	max	Unit	Condition
Control Supply Voltage	VC	2.7	3.3	5.5	V	
Motor Driver Supply Voltage	VM	2.2	-	10.5	V	
Input Frequency Range	Fin	-	-	200	kHz	50% duty
Operating Temperature Range	Та	-30	-	85	°C	


9. Electric Characteristics							
$(Ta = 25^{\circ}C, VM=7.2V, VC = 3.3V \text{ unless otherwise specified.})$							
Parameter	Symbol	Condition	min	typ	max	Unit	
UVLO			_	-		-	
VC under voltage detect voltage	VC _{UV}		1.9	2.2	2.5	V	
TSD							
Thermal shut down temperature (Note 6)	T_{TSD}		150	175	200	°C	
Temperature hysteresis(Note 6)	T _{TSDHYS}		20	30	40	°C	
Quiescent Current							
VM quiescent current at standby	I _{VMPS}	INA="L", INB= "L"	-	-	1.0	μA	
VC quiescent current at standby	I _{VCPS}	INA=""L", INB= "L"	-	-	1.0	μA	
VM quiescent current at brake	I _{VM}	INA="H", INB= "H"	-	100	200	μA	
VC quiescent current at brake	I _{VC}	INA="H", INB= "H"	-	100	150	μA	
VC quiescent current at PWM operation	I _{VCPWM}	INA=200kHz, INB="H"	-	200	300	μΑ	
Motor Driver			•				
Driver on resistance (High side + Low side)	R _{ON1}	VC=3.3V, Iout=100mA Ta=25°C	-	0.5	0.8	Ω	
Driver on resistance (High side + Low side) (Note 6)	R _{ON2}	VC=3.3V, Iout=1.1A Ta=25°C	-	0.65	0.9	Ω	
Driver on resistance (High side + Low side) (Note 6)	R _{ON3}	VC=3.3V, Iout=0.8A Ta=85°C	-	0.75	1.0	Ω	
Body diode forward voltage	V _F	I _F =100mA	-	0.8	1.2	V	
H-Bridge propagation delay time (Standby→CW or CCW)	t _{PDZH}	tr=tf=10ns (OUTB. Note 8,Figure 3)	-	0.5	1.0	μs	
H-Bridge propagation delay time (brake→CW or CCW)	t _{PDH}	tr=tf=10ns (Note 7,Figure 3)	-	0.2	1.0	μs	
H-Bridge propagation delay time (CW or CCW→Standby)	t _{PDHZ}	tr=tf=10ns (OUTB. Note 8,Figure 3)	-	0.1	1.0	μs	
H-Bridge propagation delay time (CW or CCW→Brake)	t _{PDL}	tr=tf=10ns (Note 7,Figure 3)	-	0.15	1.0	μs	
Control Logic			-				
Input "H" level voltage (INA, INB)	V_{IH}	VC=2.7 to 5.5V	0.7 \times VC	-	-	v	
Input "L" level voltage (INA, INB)	V _{IL}	VC=2.7 to 5.5V	-	-	0.3× VC	V	
Input "H" level current (INA, INB)	I _{IH}	Vterminal=3.3V	20	33	46	μΑ	
Input "L" level current (INA, INB)	I_{IL}	VC=2.7 to 5.5V	-1.0	-	-	μΑ	


Note 6. Not tested under mass-production.

Note 7. Connect $1k\Omega$ between OUTA and OUTB.

Note 8. Connect $1k\Omega$ between VM and OUTA/B, and OUTA/B and GND.

[AP1015BEN]

015010606-E-00

2015/08

10. Control Logic

The AP1015BEN is suitable to drive DC motor and voice coil motor. If the input signals are fed to INA and INB, the output signals, OUTA and OUTB are decided as Table 1. The AP1015BEN includes Under Voltage Lock Out (UVLO) and Thermal Shut Down (TSD) circuits. The UVLO circuit monitors the control voltage (VC). If the VC is less than the specified voltage, the output of the H-bridge goes to high impedance. The TSD circuit monitors the chip temperature. If the temperature of the chip exceeds specified temperature, the output of the H-bridge goes to high impedance. UVLO circuit and TSD circuit have hysteresis levels.

Table 1. Control Logic	Table	e 1	. C	ontr	ol I	Logic
------------------------	-------	-----	-----	------	------	-------

Inj	put	Out	tput	Operation
INA	INB	OUTA	OUTB	Operation
L	L	Z	Z	Standby(Coast)(Note 9)
L	Н	L	Н	Reverse (CCW)
Н	L	Н	L	Forward (CW)
Н	Н	L	L	Brake

Note 9. In standby mode, all the circuits include the TSD circuit are stopped.

The TSD circuit may not operate in the PWM operation which repeats $CW(CCW) \rightarrow standby$. It is recommended to use PWM operation with $CW(CCW) \rightarrow brake$.

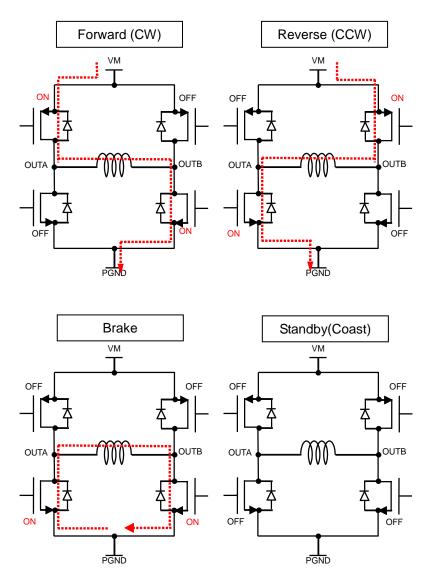


Figure 4. Direction of current

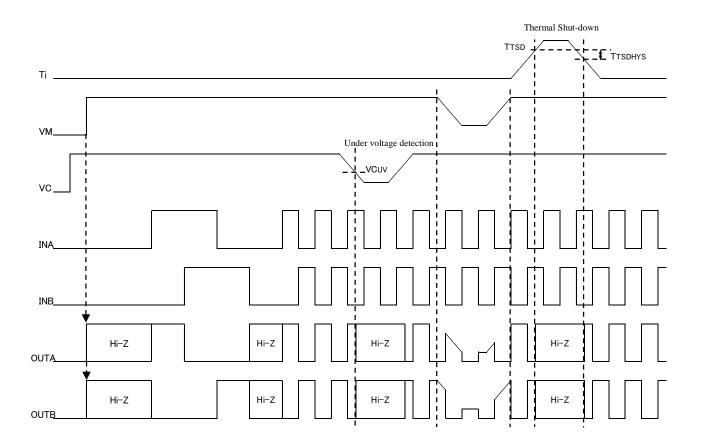


Figure 5. Timing Chart

11. Recommended External Circuit

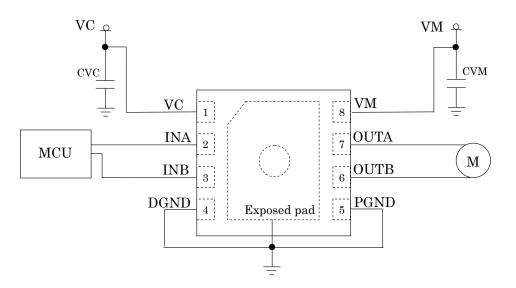
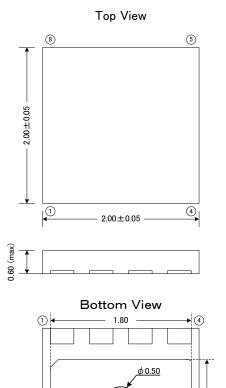
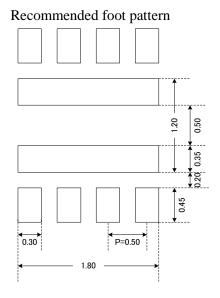


Figure 6. Recommended External Circuit(Top view)

Table 2. Parts List

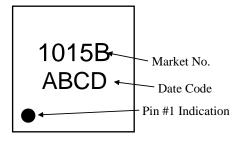

Parameter	Symbol	min	typ	max	Unit	Notes
Motor driver power supply (decoupling capacitor)	CVM	1.0	10.0	-	μF	(Note 10)
Control power supply (decoupling capacitor)	CVC	0.1	1.0	-	μF	(Note 10)


Note 10. CVM and CVC should be near terminals. Please adjusts the connecting capacitor of CVM and CVC depending on the load current profile, the load capacitance, the line resistance and etc. with each application boards.

12. Package

Outline Dimentions

• 8-pin SON (Unit : mm)


Note) The Exposed Pad is Power Ground. The Exposed Pad is necessary soldered to PCB. Please layout the foot pattern of Exposed Pad not to surround the steam via of the IC.

Marking

8

0.30

20

5

▼=0.50

0.20

ABCD: Date code (4 digit) A: Year code (last 1 digit) BC: Week code D: Management code 15/08/12

00

-

			13.	Revise History
	•		T	
Date (YY/MM/DD)	Revision	Page		Contents

First Edition

IMPORTANT NOTICE

- 0. Asahi Kasei Microdevices Corporation ("AKM") reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document ("Product"), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products.
- 1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.
- 2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing.
- 3. Though AKM works continually to improve the Product's quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption.
- 4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.
- 6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM.
- 7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM.