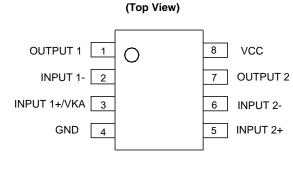


DUAL OP AMP AND VOLTAGE REFERENCE

Description

The AP4310E is a monolithic IC specifically designed to regulate the output current and voltage levels of switching battery chargers and power supplies


The device contains two Op Amps and a 2.5V precision shunt voltage reference. Op Amp 1 is designed for voltage control with its non-inverting input internally connected to the output of the shunt regulator. Op Amp 2 is for current control with both inputs uncommitted. The IC offers the power converter designer a control solution that features increased precision with a corresponding reduction in system complexity and cost. AP4310E has more stringent reference voltage tolerance and offset.

The AP4310E is available in standard package of SO-8.

Applications

- Battery Charger
- Switching Power Supply

Pin Assignments

SO-8

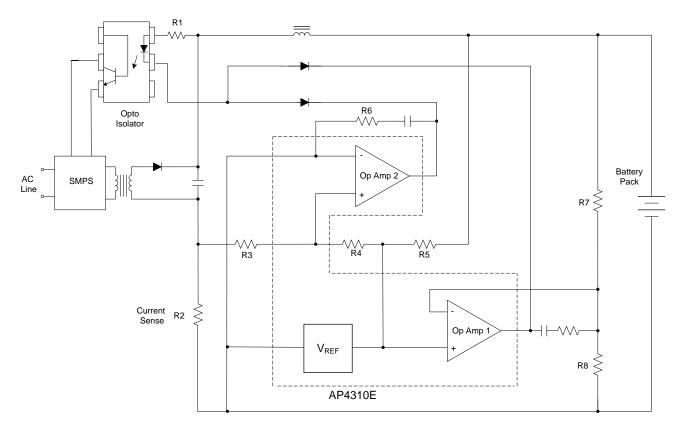
Features

OP Amp

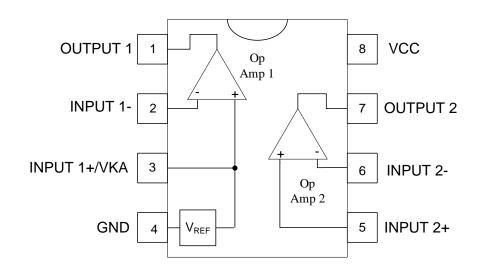
- Input Offset Voltage: 0.5mV
- Supply Current: 75µA per OP Amp at 5.0V Supply Voltage
- Unity Gain Bandwidth:1MHz
- Output Voltage Swing: 0 to V_{CC}-1.5V
- Power Supply Range: 3 to 36V

Voltage Reference

- Fixed Output Voltage Reference: 2.5V
- Reference Voltage Tolerance: ±0.4%
- Sink Current Capability: 0.05 to 80mA
- Typical Output Impedance: 0.2Ω
- Totally Lead-free & Fully RoHS Compliant (Notes1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)


Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.
- See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.



Typical Applications Circuit

Application of AP4310E in a Constant Current and Constant Voltage Charger

Functional Block Diagram

Absolute Maximum Ratings (Note 4)

Symbol	Parameter	Rating	Unit
V _{CC}	Power Supply Voltage (VCC to GND)	40	V
VIN	Op Amp1 and 2 Input Voltage Range (Pins 2, 5, 6)	-0.3 to V _{CC} +0.3	V
VID	Op Amp 2 Input Differential Voltage (Pins 5, 6)	40	V
Ιĸ	Voltage Reference Cathode Current (Pin 3)	100	mA
PD	Power Dissipation (T _A =+25°C)	500	mW
TJ	Operating Junction Temperature	+150	°C
T _{STG}	Storage Temperature Range	-65 to +150	°C
T _{LEAD}	Lead Temperature (Soldering 10sec)	+260	°C

Note 4: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

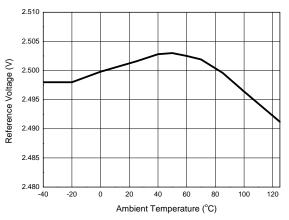
Recommended Operating Conditions (Note 5)

Parameter	Min	Мах	Unit
Supply Voltage	3	36	V
Ambient Temperature	-40	+105	°C

Note 5: Qualified for SMD on the underside of a PCB by processing the PCB through a wave soldering operation.

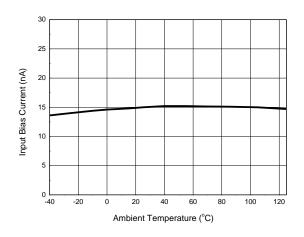
Electrical Characteristics (@V_{CC}=5V, T_A=+25°C, unless otherwise specified.)

Parameters	Conditions		Min	Тур	Max	Unit
Total Supply Current, excluding Current in	V _{CC} =5V, no load, -40°C≤T _A ≤+105°C		-	0.15	0.25	mA
Voltage Reference	V _{CC} =30V, no load, -40°C≤T _A ≤+105°C		_	0.20	0.30	
Voltage Reference Section						
	I _K =10mA	T _A =+25°C	2.49	2.50	2.51	- v
Reference Voltage		-40°C≤T _A ≤+105°C	2.48	2.50	2.52	
Reference Voltage Deviation over Full Temperature Range	I _K =10mA, T _A =-40°C to +105°C		_	5	24	mV
Minimum Cathode Current for Regulation	-		-	0.01	0.05	mA
Dynamic Impedance	I _K =1mA to 80mA, f<1kHz		-	0.2	0.5	Ω
Op Amp 1 Section (V_{CC} =5V, V_{O} =1.4V, T_{A} =	+25°C, unless o	therwise noted.)				
land Offerst Vieltere	T _A =+25°C		-	0.5	3	
Input Offset Voltage	T _A =-40°C to +105°C		-	_	5	mV
Input Offset Voltage Temperature Drift	T _A =-40°C to +	105°C	-	7	_	µV/°C
Input Bias Current (Inverting Input Only)	T _A =+25°C		-	20	150	nA
Large Signal Voltage Gain	V_{CC} =15V, R _L =2k Ω , V _O =1.4V to 11.4V		85	100	_	dB
Power Supply Rejection Ratio	V _{CC} =5V to 30V		70	90	_	dB

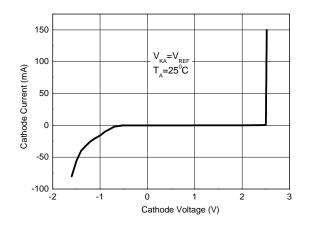

Electrical Characteristics (Cont.) (@V_{CC}=5V, T_A=+25°C, unless otherwise specified.)

Parameters		Conditions	Min	Тур	Мах	Unit	
Output Current	Source	$V_{CC} = 15V, V_{ID} = 1V, V_O = 2V$	_D =1V, V _O = 2V 20 40 -		-		
Sink		$V_{CC} = 15V, V_{ID} = -1V, V_O = 2V$	8	20	-	mA	
Output Voltage Sw	ing (High)	$V_{CC} = 30V, R_L = 10k\Omega, V_{ID} = 1V$	27	28	-	V	
Output Voltage Sw	ing (Low)	$V_{CC} = 30V, R_L = 10k\Omega, V_{ID} = -1V$ – 17		17	100	mV	
Slew Rate		$V_{CC} = 18V, R_L = 2k\Omega, A_V = 1,$ $V_{IN} = 0.5V \text{ to } 2V, C_L = 100 \text{pF}$	0.2	0.5	-	V/µs	
Unity Gain Bandwid	dth	$V_{CC}=30V,\ R_L=2k\Omega,\ C_L=100pF$	0.7	1.0	-	MHz	
Op Amp 2 Section	n (V _{CC} = 5V, V _O =1.4V, 7	$T_A = +25^{\circ}C$, unless otherwise noted.)					
		$T_A = +25^{\circ}C, V_{CC} = 5V \text{ or } 20V$	-	0.5	2	m)/	
Input Offset Voltage (Note 6)		$T_A = -40^{\circ}C \text{ to } +105^{\circ}C, V_{CC} = 5V \text{ or } 20V$	-	-	3	mV	
Input Offset Voltage Temperature Drift		$T_{A} = -40^{\circ}C \text{ to } +105^{\circ}C$	_	7	-	µV/°C	
Input Offset Current		T _A = +25°C	_	- 2 30		nA	
Input Bias Current		$T_A = +25^{\circ}C$	_	20	150	nA	
Input Voltage Rang	je	V _{CC} = 0 to 36V	0 –		Vcc-1.5	V	
Common Mode Re	jection Ratio	$T_A = +25^{\circ}C, V_{CM} = 0 \text{ to } 3.5V$	°C, V _{CM} = 0 to 3.5V 70 85		_	dB	
Large Signal Voltage Gain		$V_{CC} = 15V, R_L = 2k\Omega, V_O = 1.4V \text{ to } 11.4V$	V 85 100 ·		_	dB	
Power Supply Reje	ection Ratio	$V_{CC} = 5V$ to 30V	70	90	_	dB	
	Source	$V_{CC} = 15V, V_{ID} = 1V, V_{O} = 2V$	20	40	_		
Output Current	Sink	$V_{CC} = 15V, V_{ID} = -1V, V_O = 2V$	8	20	-	mA	
Output Voltage Swing (High)		$V_{CC} = 30V, R_L = 10k\Omega, V_{ID} = 1V$ 27 28		28	-	V	
Output Voltage Swing (Low)		$V_{CC} = 30V, R_L = 10k\Omega, V_{ID} = -1V$	-	17	100	mV	
Slew Rate		$V_{CC} = 18V, R_L = 2k\Omega, A_V = 1,$ $V_{IN} = 0.5V \text{ to } 2V, C_L = 100 \text{pF}$	0.2	0.5	-	V/µs	
Unity Gain Bandwid	dth	$V_{CC} = 30V, R_L = 2k\Omega, C_L = 100pF$	0.7	1.0	-	MHz	

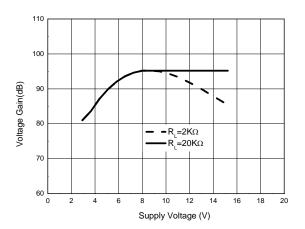
Note 6: The full temperature feature is guaranteed by design.



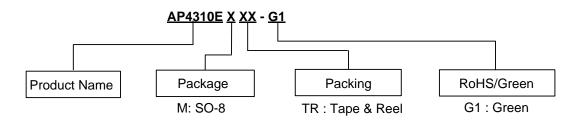
Performance Characteristics



Reference Voltage vs. Ambient Temperature


Input Bias Current vs. Ambient Temperature

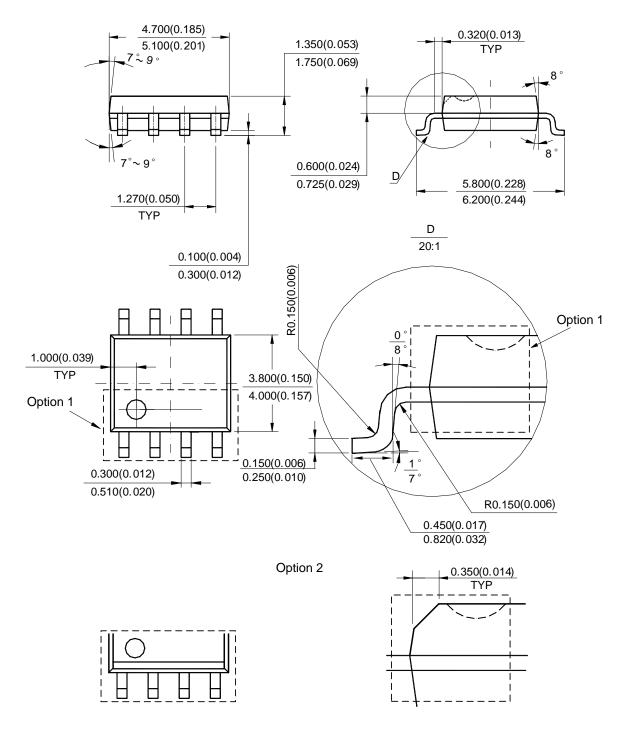
Cathode Current vs. Cathode Voltage


Op Amp Voltage Gain

Ordering Information

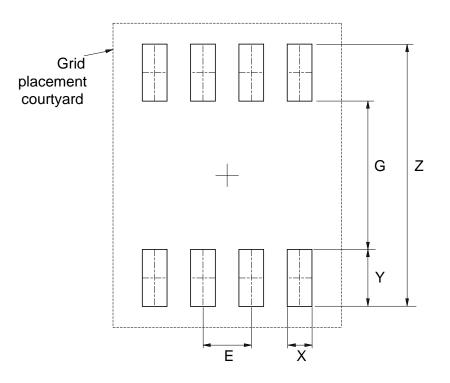
Package	Temperature Range	Reference Voltage	Voltage Tolerance	Part Number	Marking ID	Packing
SO-8	-40 to +105°C	2.5V	±0.4%	AP4310EMTR-G1	AP4310EM-G1	4000/Tape & Reel

Marking Information


First and Second Lines: Logo and Marking ID Third Line: Date Code Y: Year WW: Work Week of Molding A: Assembly House Code XX: 7th and 8th Digits of Batch No.

Package Outline Dimensions (All dimensions in mm (inch).)

(1) Package Type: SO-8


Note: Eject hole, oriented hole and mold mark is optional.

Suggested Pad Layout

(1) Package Type: SO-8

Dimensions	Z	G	X	Y	E
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	6.900/0.272	3.900/0.154	0.650/0.026	1.500/0.059	1.270/0.050

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2014, Diodes Incorporated

www.diodes.com