

Description

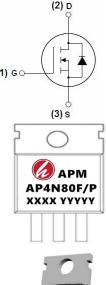
The AP4N80F/P series are from the innovated design and silicon process technology to achieve the lowest possible on-resistance and fast switching performance

General Features

VDS =800V,ID =4A

RDS(ON) <2.5 \@ VGS=10V

Application


100% UIS Test

Simple Drive Requirement

Fast Switching Characteristic

RoHS Compliant & Halogen-Free

Package Marking and Ordering Information

· actuage marriang and cracing mornion					
Product ID	Pack	Marking	Qty(PCS)		
AP4N80F	TO-220F-3L	AP4N80F XXX YYYY	1000		
AP4N80P	TO-220-3L	AP4N80P XXX YYYY	1000		

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Symbol	Parameter	Rating	Units	
VDS	Drain-Source Voltage 800		V	
VGS	Gate-Source Voltage	<u>+</u> 30	V	
I _D @T _C =25°C	Drain Current, V _{GS} @ 10V ³	4	А	
IDM	Pulsed Drain Current ¹	16	А	
P _D @T _C =25°C	Total Power Dissipation	32.9	W	
PD@TA=25°C	Total Power Dissipation	1.92	W	
Eas	Single Pulse Avalanche Energy ⁴	8	mJ	
TSTG	Storage Temperature Range	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	°C	
Rthj-c	Maximum Thermal Resistance, Junction-case	3.8	°C/W	
Rthj-a	Maximum Thermal Resistance, Junction-ambient	65	°C/W	

Absolute Maximum Ratings@T_j=25°C(unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	800	-	-	V
RDS(ON)	Static Drain-Source On-Resistance ²	V _{GS} =10V, I _D =2A	-	-	2.5	Ω
VGS(th)	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =250uA	2.5	-	4.5	V
G fs	Forward Transconductance	V _{DS} =20V, I _D =2A	-	5.3	-	S
IDSS	Drain-Source Leakage Current	V _{DS} =640V, V _{GS} =0V	-	-	100	uA
IGSS	Gate-Source Leakage	V _{GS} = <u>+</u> 30V, V _{DS} =0V	-	-	<u>+</u> 1	uA
Qg	Total Gate Charge	I _D =4A	-	27	43.2	nC
Q _{gs}	Gate-Source Charge	V _{DS} =640V	-	4	-	nC
Q_gd	Gate-Drain ("Miller") Charge	V _{GS} =10V	-	15	-	nC
td(on)	Turn-on Delay Time	V _{DD} =400V	-	14	-	ns
t _r	Rise Time	I _D =4A	-	30	-	ns
td(off)	Turn-off Delay Time	R _G =25Ω	-	69	-	ns
t _f	Fall Time	V _{GS} =10V	-	34	-	ns
Ciss	Input Capacitance	V _{GS} =0V	-	680	1088	pF
Coss	Output Capacitance	V _{DS} =100V f=1.0MHz.	-	40	-	pF
Crss	Reverse Transfer Capacitance		-	10	-	pF
Rg	Gate Resistance	f=1.0MHz	-	3.7	7.4	Ω
VSD	Forward On Voltage ²	I _S =4A, V _{GS} =0V	-	-	1.5	V
trr	Reverse Recovery Time	I _S =4A, V _{GS} =0V dI/dt=100A/μs	-	430	-	ns
Qrr	Reverse Recovery Charge		-	1.9	-	uC

Notes

^{1.}Pulse width limited by max. junction temperature.

^{2.}Pulse test

^{3.}Ensure that the junction temperature does not exceed $T_{\mbox{\scriptsize Jmax.}}$

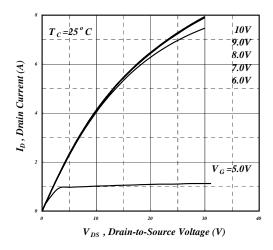


Fig 1. Typical Output Characteristics

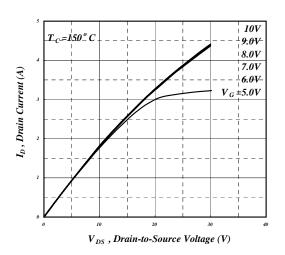


Fig 2. Typical Output Characteristics

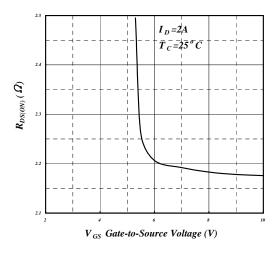


Fig 3. On-Resistance v.s. Gate Voltage

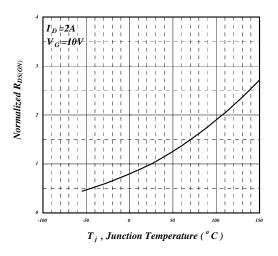


Fig 4. Normalized On-Resistance v.s. Junction Temperature

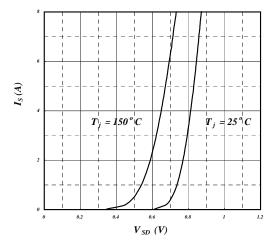


Fig 5. Forward Characteristic of Reverse Diode

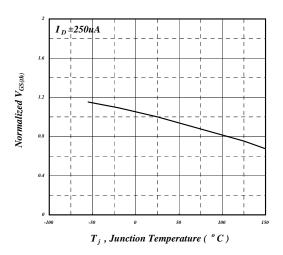


Fig 6. Gate Threshold Voltage v.s.
Junction Temperature

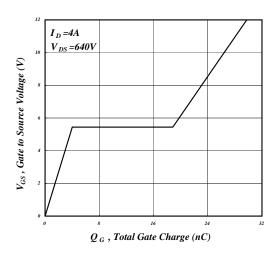


Fig 7. Gate Charge Characteristics

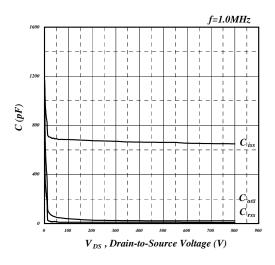


Fig 8. Typical Capacitance Characteristics

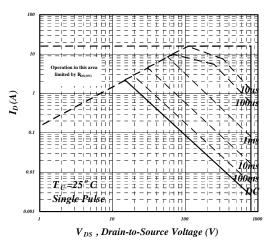


Fig 9. Maximum Safe Operating Area

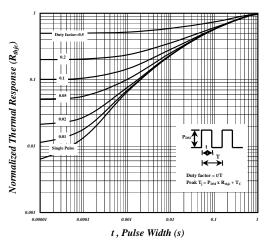


Fig10. Effective Transient Thermal Impedance

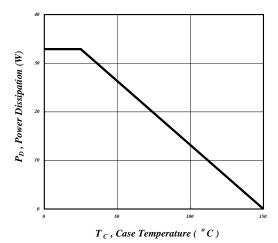
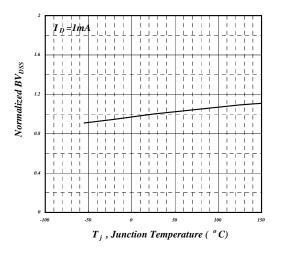
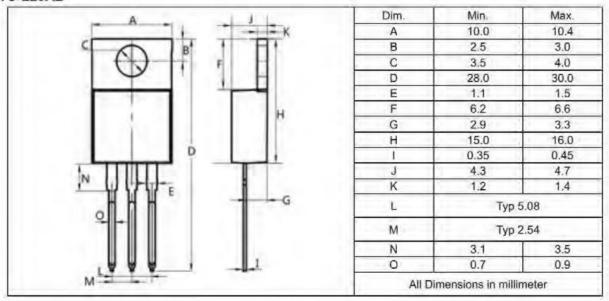
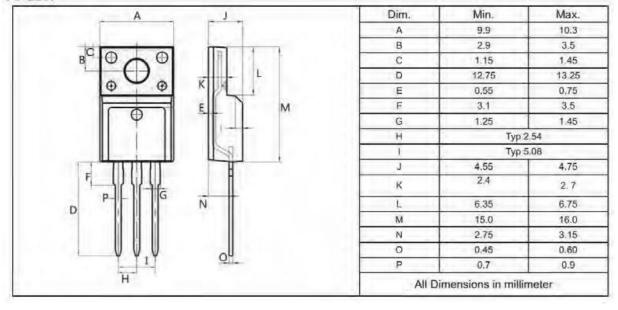



Fig 11. Total Power Dissipation



 $\label{eq:posterior} \mbox{Fig 12. Normalized BV}_{DSS} \ \ v.s. \ \mbox{Junction}$ $\mbox{Temperature}$



TO-220AB

TO-220F

800V N-Plance Enhancement Mode MOSFET Attention

- 1,Any and all APM Microelectronics products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your APM Microelectronics representative nearest you before using any APM Microelectronics products described or contained herein in such applications.
- 2,APM Microelectronics assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all APM Microelectronics products described or contained herein.
- 3, Specifications of any and all APM Microelectronics products described or contained here instipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- 4, APM Microelectronics Semiconductor CO., LTD. strives to supply high quality high reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- 5,In the event that any or all APM Microelectronics products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- 6, No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of APM Microelectronics Semiconductor CO., LTD.
- 7, Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. APM Microelectronics believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- 8, Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the APM Microelectronics product that you Intend to use.
- 9, this catalog provides information as of Sep.2014. Specifications and information herein are subject to change without notice

