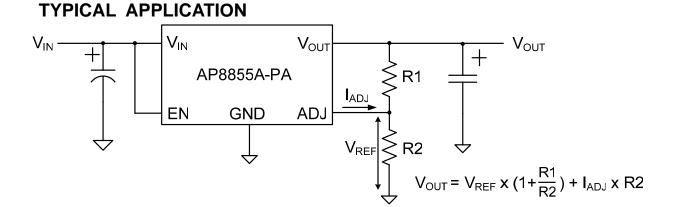
500mA LDO Linear Regulator with ON/OFF Control

GENERAL DESCRIPTION

The AP8855A is a low-dropout linear regulator that operations in the input voltage range from +2.5V to +9.0V and delivers 500mA output current.

The output voltages range of the adjustable type is from 1.22V to 5.0V.

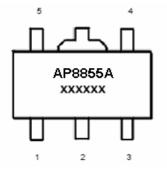

The AP8855A consists of a 1.22V bandgap reference, an error amplifier, and a P-channel pass transistor. Other features include short-circuit protection and thermal shutdown protection. The AP8855A devices are available in SOT89 packages

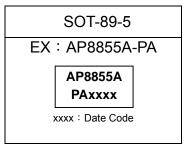
FEATURES

- Low dropout voltage 600mV at 500mA (Typ.)
- Low 40µA current consumption (Typ.) at Vin=5V
- Small output capacitor
- Output current limit
- Short circuit current limit protection
- Thermal overload shutdown protection
- ON/OFF Control Function
- SOT-89 Package
- RoHS Compliant and 100% Lead (Pb)-Free

APPLICATION

- Battery-Powered Devices
- Personal Communication Devices
- Home Electric/Electronic Appliances


ORDERING INFORMATION


Anwell Semiconductor Corp.

PIN CONFIGURATIONS

Part No.	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5
AP8855A -xA	ADJ	GND	EN	IN	OUT

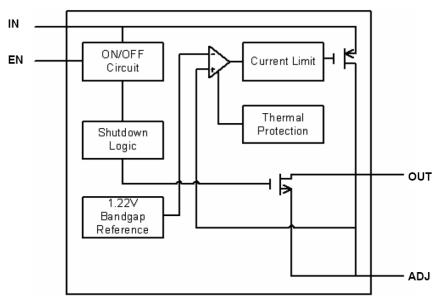
PACKAGE MARKING INFORMATION

PIN DESCRIPTION

Part NO.	Symbol	Description	
	GND	Ground pin.	
	IN	Regulator input pin.	
AP8855A-PA	OUT	Regulator output pin.	
	ADJ	Adjust terminal pin,	
	EN	Chip enable pin.	

 $I\!N$ is the regulator input pin. Supply voltage can range from 2.5V to 9.0V. Bypass with a 1µF capacitor to GND.

OUT is the output voltage pin. Sources up to 300mA. Bypass with a 3.3µF capacitor to GND.


GND provides the reference for all voltages.

ADJ provides $V_{\text{REF}}\text{=}1.22V~(\text{Typ.})$ for adjustable output voltage.

EN is output voltage ON/OFF control pin. EN pin input voltage must be less than the input voltage at IN pin.

500mA LDO Linear Regulator with ON/OFF Control

FUNCTIONAL BLOCK DIAGRAM

Adjustable Voltage

ABSOLUTE MAXIMUM RATINGS

Input voltage VIN to GND	
SOT-89-5	0.95W
* The power dissipation values are based on the condition that junction temperature T _J and an temperature T _A difference is 100°C.	nbient
Junction Temperature, T _J	+155°C
Storage temperature range, TSTG	-150°C
Operating junction temperature range40°C to -	+125°C
Lead temperature (soldering, 10sec)	260°C

* Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and function operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

500mA LDO Linear Regulator with ON/OFF Control

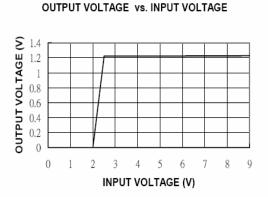
Anwell Semiconductor Corp.

ELECTRICAL CHARACTERISTICS

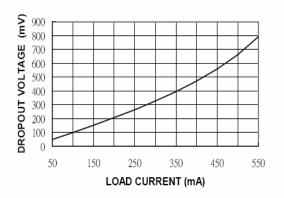
(TA=25°C, unless otherwise noted.)

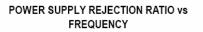
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{IN}	Input Voltage		2.5		9.0	V
V _{OUT}	Output Voltage	Adjustable Voltage Type V _{IN} =V _{OUT} +1.5V, I _{OUT} =1mA	-2%	V _{OUT}	+2%	V
I _{MAX}	Output Current (*1)	V_{OUT} +1.5 \leq V_{IN} \leq 9V	500			mA
V _{DROP}	Dropout Voltage	I _{OUT} =500mA		600	800	mV
ΔV_{LINE}	Line Regulation	V_{OUT} +1.5V \leq V _{IN} \leq 9V, I _{OUT} =1mA		0.2	0.3	%/V
ΔV_{LOAD}	Load Regulation	$V_{IN}=V_{OUT}+1.5V$, $10\mu A \leq I_{OUT} \leq 500 mA$		0.02	0.03	%/mA
I _Q (Ground Pin Current	V _{IN} =5V, ON/OFF Pin=ON, No Load		40	60	μA
		V _{IN} =9V, ON/OFF Pin=ON, No Load		60	100	μA
I _{SD}	Shutdown Current	V _{IN} =V _{OUT} +1V, EN Pin=OFF, No Load		0.1	1.0	μA
V _{IH}	EN Pin Input Voltage "H"	(see note *2)	2.0			V
V _{IL}	EN Pin Input Voltage "L"	(see note *2)			0.5	V
R_{EN}	EN Pin Pull Low Resistance	V _{EN} <0.5V		100	300	KΩ
I _{SC}	Short Current Limit			350		mA
PSRR	Ripple Rejection	V _{IN} =VOUT+1V, F=100Hz, Vripple=1Vp-p, I _{OUT} =30mA		60		dB
T_{SD}	Thermal Shutdown Temperature			155		°C
T _{HYS}	Thermal Shutdown Hysteresis			20		°C
θ_{JA}	Thermal Resistance	SOT-89-5			150	°C/W

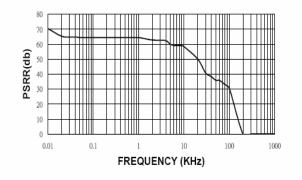
Note :

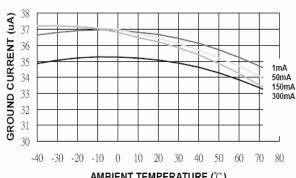

(*1) Measured using a double sided board with 1" x 2" square inches of copper area connected to the GND pins for "heat spreading".

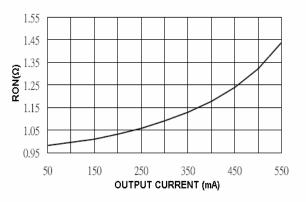
(*2)EN pin input voltage must be always less than or equal to input voltage.

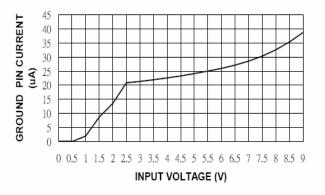

500mA LDO Linear Regulator with ON/OFF Control


TYPICAL OPERATING CHARACTERISTICS


(C_IN=1 μF , C_OUT=3.3 μF , TA=+25 $^\circ C$, unless otherwise noted.)

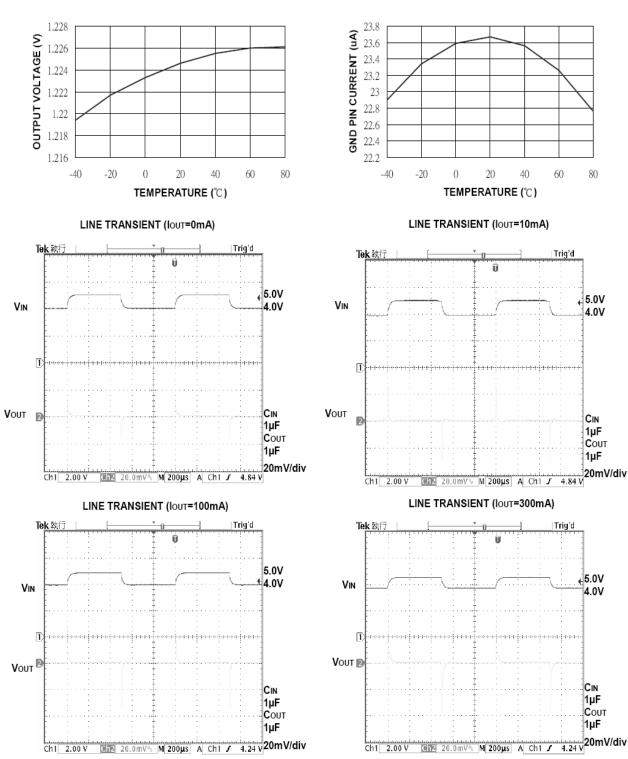

DROPOUT VOLTAGE v.s LOAD CURRENT



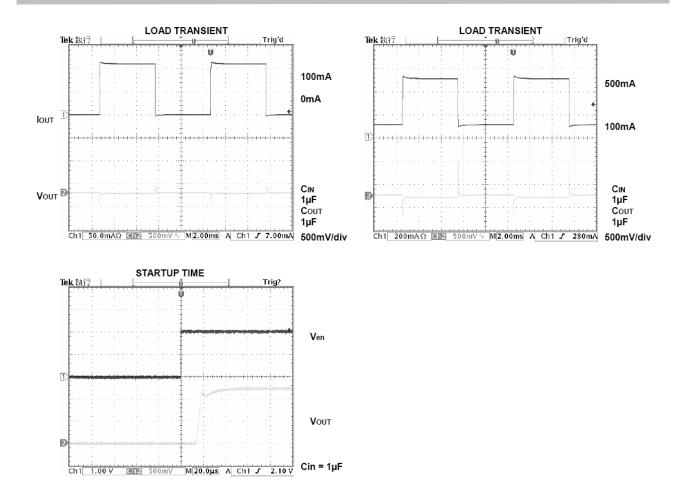

GROUND CURRENT vs. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE (°C)

OUTPUT CURRENT v.s RON



AP8855A Series 500mA LDO Linear Regulator with ON/OFF Control



OUTPUT VOLTAGE vs. TEMPERATURE

GND PIN CURRENT vs. TEMPERATURE

500mA LDO Linear Regulator with ON/OFF Control

Anwell Semiconductor Corp.

500mA LDO Linear Regulator with ON/OFF Control

DETAIL DESCRIPTION

The AP8855A is a low-dropout linear regulator. As illustrated in function block diagram, it consists of a 1.22V reference, error amplifier, a P-channel pass transistor, an ON/OFF control logic, and an internal feedback voltage divider.

The 1.22V bandgap reference is connected to the error amplifier, which compares this reference with the feedback voltage and amplifies the voltage difference. If the feedback voltage is lower than the reference voltage, the pass-transistor gate is pulled lower, which allows more current to pass to the output pin and increases the output voltage. If the feedback voltage is too high, the pass-transistor gate is pulled up to decrease the output voltage.

The output voltage is feed back through an external resistive divider connected to OUT pin. Additional blocks include an output current limiter, thermal sensor, and shutdown logic.

Internal P-channel Pass Transistor

The AP8855A features a P-channel MOSFET pass transistor. Unlike similar designs using PNP pass transistors, P-channel MOSFETs require no base drive, which reduces quiescent current. PNP-based regulators also waste considerable current in dropout when the pass transistor saturates, and use high base-drive currents under large loads. The AP8855A does not suffer from these problems and consumes only 40µA (Typ.) of current consumption under heavy loads as well as in dropout conditions.

Enable Function

EN pin starts and stops the regulator. When the EN pin is switched to the power off level, the operation of all internal circuit stops, the build-in P-channel MOSFET output transistor between pins V_{IN} and V_{OUT} is switched off, allowing current consumption to be drastically reduced. The V_{OUT} pin enters the GND level due to the several M Ω resistance of the feedback voltage divider between V_{OUT} and GND pins.

Current Limit

The AP8855A also includes a fold back current limiter. It monitors and controls the pass transistor's gate voltage, estimates the output

All reserved by AnSC © 2007

current, and limits the output current within 0.6A.

Thermal Overload Protection

Thermal overload protection limits total power dissipation in the AP8855A. When the junction temperature exceeds $T_J = +155^{\circ}C$, a thermal sensor turns off the pass transistor, allowing the IC to cool down. The thermal sensor turns the pass transistor on again after the junction temperature cools down by 20°C, resulting in a pulsed output during continuous thermal overload conditions.

Thermal overload protection is designed to protect the AP8855A in the event of fault conditions. For continuous operation, the absolute maximum operating junction temperature rating of T_J = +155°C should not be exceeded.

Operating Region and Power Dissipation

Maximum power dissipation of the AP8855A depends on the thermal resistance of the case and circuit board, the temperature difference between the die junction and ambient air, and the rate of airflow. The power dissipation across the devices is $P = I_{OUT} \times (V_{IN}-V_{OUT})$. The resulting maximum power dissipation is:

$$P_{MAX} = \frac{(T_J - T_A)}{\theta_{JC} + \theta_{CA}} = \frac{(T_J - T_A)}{\theta_{JA}}$$

Where (TJ-TA) is the temperature difference between the AP8855A die junction and the surrounding air, θ_{JC} is the thermal resistance of the package chosen, and θ_{CA} is the thermal resistance through the printed circuit board, copper traces and other materials to the surrounding air. For better heat-sinking, the copper area should be equally shared between the IN, OUT, and GND pins.

The thermal resistance θ_{JA} of AP8855A SOT-89-5 package is 150°C/W. Based on a maximum operating junction temperature 155°C with an ambient of 25°C, the maximum power dissipation will be:

$$P_{MAX} = \frac{(T_J - T_A)}{\theta_{JC} + \theta_{CA}} = \frac{(155 - 25)}{150} = 0.8667W$$

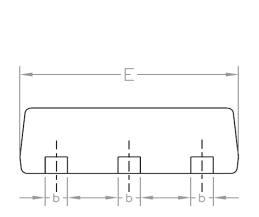
500mA LDO Linear Regulator with ON/OFF Control

Thermal characteristics were measured using a double sided board with $1^{"} \times 2^{"}$ square inches of copper area connected to the GND pin for "heat spreading".

Input-Output Voltage

A regulator's minimum input-output voltage differential, or dropout voltage, determines the lowest usable supply voltage. In battery-powered systems, this will determine the useful end-of-life

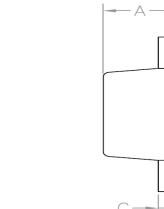
> E2-E3-

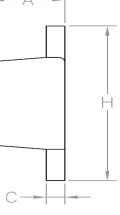

> > T

e

PACKAGE OUTLINE

e


A) SOT-89-5



ΛnSC
Anwell Semiconductor Corp.

battery voltage. The AP8855A uses a P-channel MOSFET pass transistor, its dropout voltage is a function of drain-to-source on-resistance (RDS(ON)) multiplied by the load current.

 $V_{\text{DROPOUT}} = V_{\text{IN}} V_{\text{OUT}} = R_{\text{DS(ON)}} x I_{\text{OUT}}$

SYMBOL	MILLIMETERS		INCHES		
SIMBUL	MIN	MAX	MIN	MAX	
A	1.450	1.550	0.057	0.061	
b	0.440	0.480	0.017	0.019	
С	0.360	0.400	0.014	0.016	
D	2.450	2.550	0.096	0.100	
E	4.450	4.550	0.175	0.179	
E2	1.500	1.700	0.059	0.067	
E3	1.400	Ref	0.055	Ref	
е	1.500	BSC	0.059	BSC	
Н	4.150	4.250	0.163	0.167	
L	0.800	0.950	0.032	0.038	

All reserved by AnSC © 2007

2007/8/1