

500V, 51A, 0.075Ω Max, $t_{rr} \le 310ns$

N-Channel FREDFET

Power MOS 8^{TM} is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{rr} , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of $C_{\text{rss}}/C_{\text{iss}}$ result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- Ultra low C_{rss} for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- · ZVS phase shifted and other full bridge
- Half bridge
- PFC and other boost converter
- Buck converter
- · Single and two switch forward
- Flyback

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
I_	Continuous Drain Current @ T _C = 25°C	51	
'D	Continuous Drain Current @ T _C = 100°C	32	А
I _{DM}	Pulsed Drain Current ^①	230	
V _{GS}	Gate-Source Voltage	±30	V
E _{AS}	Single Pulse Avalanche Energy ©	1580	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	37	Α

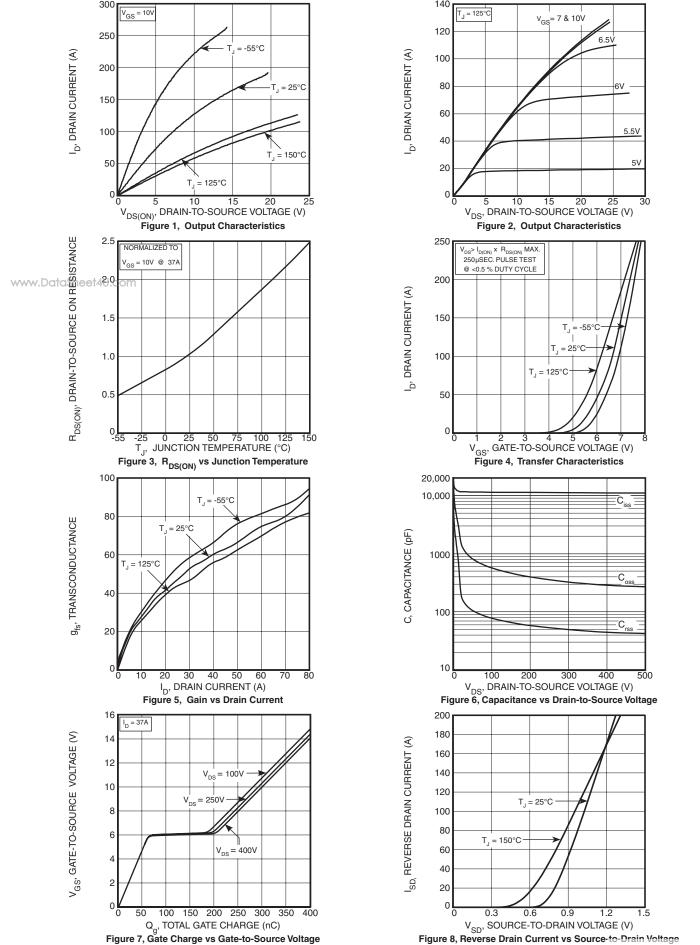
Thermal and Mechanical Characteristics

Thermal and Mechanical Characteristics					
Symbol	Characteristic	Min	Тур	Max	Unit
P_{D}	Total Power Dissipation @ T _C = 25°C			480	W
$R_{\theta JC}$	Junction to Case Thermal Resistance			0.26 °C/W	
$R_{\theta CS}$	Case to Sink Thermal Resistance, Flat, Greased Surface	0.15		C/VV	
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55		150	°C
V _{Isolation}	RMS Voltage (50-60hHz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)	2500			V
W _T	Package Weight		1.03		OZ
			29.2		g
Torque	Terminals and Mounting Screws.			10	in∙lbf
				1.1	N⋅m

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250\mu A$		500			V
$\Delta V_{BR(DSS)}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, $I_D = 250\mu A$			0.60		V/°C
R _{DS(on)}	Drain-Source On Resistance®	V _{GS} = 10V, I _D = 37A			0.064	0.075	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 2.5 mA$		2.5	4	5	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Threshold Voltage Temperature Coefficient				-10		mV/°C
	Zero Gate Voltage Drain Current	V _{DS} = 500V	T _J = 25°C			250	μA
DSS		$V_{GS} = 0V$	T _J = 125°C			1000	μΑ
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V				±100	nA

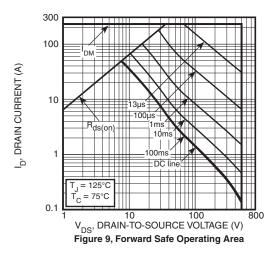
Dvnamic Characteristics

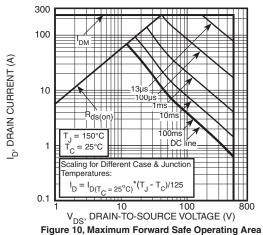
WWW.


T_{.1} = 25°C unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
9 _{fs}	Forward Transconductance	$V_{DS} = 50V, I_{D} = 37A$		55		S
C _{iss}	Input Capacitance	V 0V V 0FV		11600		
C _{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		160		
ataS Ass t4U.	Output Capacitance			1250		
C _{o(cr)} ④	Effective Output Capacitance, Charge Related	V = 0V V = 0V to 222V		725		pF
C _{o(er)} ⑤	Effective Output Capacitance, Energy Related	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 333V$		365		
Q_g	Total Gate Charge	V 0 1 10V 1 07A		290		
Q_{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 37A,$ $V_{DS} = 250V$		65		nC
Q_{gd}	Gate-Drain Charge	V _{DS} = 250V		130		
t _{d(on)}	Turn-On Delay Time	Resistive Switching		45		
t _r	Current Rise Time	V _{DD} = 333V, I _D = 37A		55		ns
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 2.2\Omega^{\textcircled{6}}, V_{GG} = 15V$		120		115
t _f	Current Fall Time			39		

Source-Drain Diode Characteristics


Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
I _s	Continuous Source Current (Body Diode)	MOSFET symbol showing the			51	А
I _{SM}	Pulsed Source Current (Body Diode) ^①	integral reverse p-n junction diode (body diode)	s		230	A
V _{SD}	Diode Forward Voltage	$I_{SD} = 37A, T_{J} = 25^{\circ}C, V_{GS} = 0$	/		1.0	V
t _{rr}	Reverse Recovery Time	T _J = 25°C			310	ns
rr	Theverse riecovery fillie	T _J = 125°C			570	110
Q _{rr}	Reverse Recovery Charge	$I_{SD} = 37A^{\textcircled{3}}$ $T_{J} = 25^{\circ}C$		1.48		μC
- rr		$V_{DD} = 100V$ $T_{J} = 125^{\circ}C$		3.85		μΟ
	Reverse Recovery Current	$di_{SD}/dt = 100A/\mu s$ $T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$		11.3		Α
'rrm				16.6		_ ^
dv/dt	Peak Recovery dv/dt	$I_{SD} \le 37A$, di/dt $\le 1000A/\mu s$, $V_{DD} = 333$ $T_{J} = 125^{\circ}C$	3V,		20	V/ns


- (1) Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- ② Starting at $T_J = 25^{\circ}C$, L = 2.31 mH, $R_G = 25\Omega$, $I_{AS} = 37A$.
- ③ Pulse test: Pulse Width < 380μs, duty cycle < 2%.
- (4) $C_{o(cr)}$ is defined as a fixed capacitance with the same stored charge as C_{OSS} with $V_{DS} = 67\%$ of $V_{(BR)DSS}$. (5) $C_{o(er)}$ is defined as a fixed capacitance with the same stored energy as C_{OSS} with $V_{DS} = 67\%$ of $V_{(BR)DSS}$. To calculate $C_{o(er)}$ for any value of V_{DS} less than $V_{(BR)DSS}$, use this equation: $C_{o(er)} = -1.65E-7/V_{DS}^2 + 5.51E-8/V_{DS} + 2.03E-10$.
- ⑥ R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

GE (V) 27 -to-Drain Voltage 8 www.DataSheet4U.con

05-2009

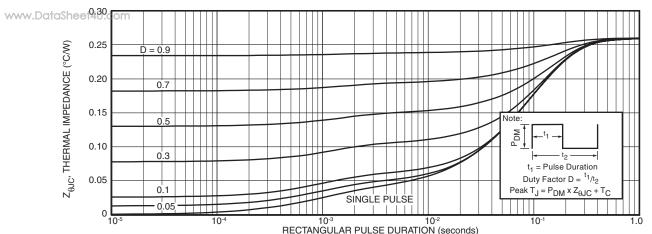
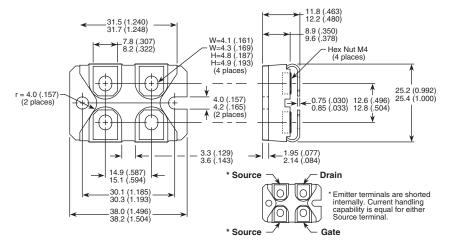



Figure 11. Maximum Effective Transient Thermal Impedance Junction-to-Case vs Pulse Duration

SOT-227 (ISOTOP®) Package Outline

