September 2006

ASM3P2590A

Low Power Peak EMI Reducing Solution

Features

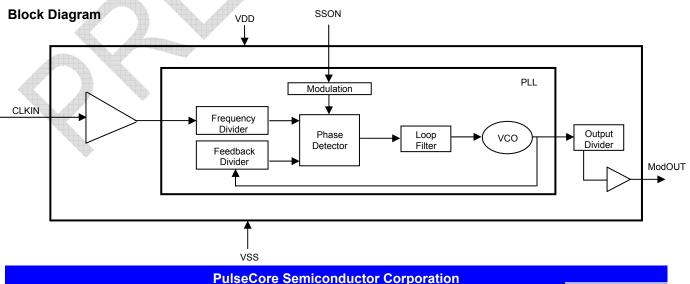
rev 0.4

- Generates a 1X low EMI optimized clock signal at the output.
- Integrated loop filter components.
- Operates with a 3.3 / 2.5V Supply.
- Operating current less than 5mA.
- Low power CMOS design.
- Input frequency range
 60MHz to 120MHz for 2.5V
 60MHz to 120MHz for 3.3V
- Frequency deviation: ±0.75% (Typ) @85MHz Output frequency.
- Available in 6-pin TSOT-23 Package.

Product Description

The ASM3P2590A is a versatile spread spectrum frequency modulator designed specifically for a wide range of clock frequencies. The ASM3P2590A reduces electromagnetic interference (EMI) at the clock source, allowing system wide reduction of EMI of all clock dependent signals. The ASM3P2590A allows significant system cost savings by reducing the number of circuit board layers ferrite beads, shielding that are traditionally required to pass EMI regulations.

The ASM3P2590A uses the most efficient and optimized modulation profile approved by the FCC and is implemented by using a proprietary all digital method.


The ASM3P2590A modulates the output of a single PLL in order to "spread" the bandwidth of a synthesized clock, and more importantly, decreases the peak amplitudes of its harmonics. This results in significantly lower system EMI compared to the typical narrow band signal produced by oscillators and most frequency generators. Lowering EMI by increasing a signal's bandwidth is called 'spread spectrum clock generation'.

Applications

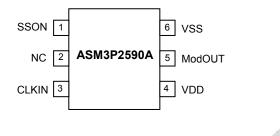
The ASM3P2590A is targeted towards all portable devices with very low power requirements like MP3 players,MFP, LCD Panel Module and digital still cameras.

Key Specifications

Description	Specification
Supply voltages	VDD = 3.3V / 2.5V
Cycle-to-Cycle Jitter	360pS (Typ)
Output Duty Cycle	45/55%
Modulation Rate Equation	F _{IN} /2560
Frequency Deviation	±0.75% (Typ) @85MHz Output

1715 S. Bascom Ave Suite 200 Campbell, CA 95008 • Tel: 408-879-9077 • Fax: 408-WWW.DataSheet4U.com www.pulsecoresemi.com

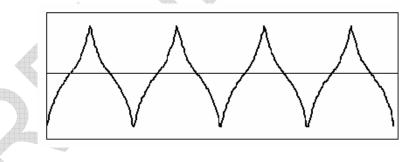
Notice: The information in this document is subject to change without notice.



ASM3P2590A

September 2006

rev 0.4


Pin Configuration (6-pin TSOT- 23 Package)

Pin Description

Pin Name	Туре	Description
SSON	Ι	When SSON is HIGH, the spread spectrum is enabled and when LOW, it turns off the spread spectrum. Connect the pin to ground When Spread Spectrum feature is not required.
NC	-	No Connect
CLKIN	I	Clock Input
VDD	Р	Power supply for the entire chip.
ModOUT	0	Spread spectrum clock output.
VSS	Р	Ground connection.
	SSON NC CLKIN VDD ModOUT	SSON I NC - CLKIN I VDD P ModOUT O

Modulation Profile

Specifications

Description		Specification
	For 2.5V Supply	60MHz < CLKIN < 120MHz
Frequency Range	For 3.3V Supply	60MHz < CLKIN < 120MHz
Modulation Equation		F _{IN} /2560
Frequency Deviation		±0.75% (Typ) @ 85MHz Output

Low Power Peak EMI Reducing Solution

September 2006

ASM3P2590A

rev 0.4

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit		
VDD,V_{IN}	Voltage on any pin with respect to Ground	-0.5 to +4.6	V		
T _{STG}	Storage temperature	-65 to +125	°C		
T _A	Operating temperature	-40 to +85	°C		
Ts	Max. Soldering Temperature (10 sec)	260	°C		
TJ	Junction Temperature	150	°C		
T_{DV}	Static Discharge Voltage (As per JEDEC STD22- A114-B)	2	κv		
Note: These are stress ratings only and are not implied for functional use. Exposure to absolute maximum ratings for prolonged periods of time may affect device reliability.					

DC Electrical Characteristics for 2.5V Supply

Symbol	Parameter	Min	Тур	Max	Unit
VIL	Input low voltage	VSS - 0.3	-	0.8	V
VIH	Input high voltage	2.0	₩ _	VDD + 0.3	V
IIL	Input low current	-	_	-35	μA
I _{IH}	Input high current	-	_	35	μA
V _{OL}	Output low voltage (VDD = 2.5V, I _{OL} = 8 mA)		_	0.6	V
V _{OH}	Output high voltage (VDD = 2.5V, I _{OH} = 8 mA)	1.8	_	_	V
IDD	Static supply current*	_	1.8	_	mA
Icc	Dynamic supply current (2.5V, 85MHz and no load)	_	4.0	-	mA
VDD	Operating voltage	2.375	2.5	2.625	V
t _{on}	Power-up time (first locked cycle after power-up)	_	_	5	mS
Z _{OUT}	Output impedance	_	50	_	Ω

AC Electrical Characteristics for 2.5V Supply

Symbol	Pa	Min	Тур	Max	Unit		
CLKIN	Input frequency		60	-	120	MHz	
ModOUT	Output frequency		60	-	120	MHz	
s and a second s		Input Frequency = 60MHz	-	±0.85	-	%	
Id	f _d Frequency Deviation	Input Frequency = 120MHz	-	±0.60	-	70	
t∟∺*	Output rise time (measured from 0.7V to 1.7V)		0.7	1.8	2.6	nS	
t _{HL} *	Output fall time (measured from 1.7V to 0.7V)		0.4	0.9	1.1	nS	
t _{JC}	Jitter (Cycle to cycle)		-	360	-	pS	
t _D	Output duty cycle		45	50	55	%	
* t_{LH} and t_{HL} are mea	* t _{i H} and t _{HI} are measured into a capacitive load of 15pF						

Low Power Peak EMI Reducing Solution

ASM3P2590A

September 2006

rev 0.4

DC Electrical Characteristics for 3.3V Supply

Symbol	Parameter	Min	Тур	Max	Unit
VIL	Input low voltage	VSS - 0.3	-	0.8	V
V _{IH}	Input high voltage	2.0	-	VDD + 0.3	V
IIL	Input low current	-	-	-35	μA
I _{IH}	Input high current	-		35	μA
V _{OL}	Output low voltage (VDD = 3.3V, I _{OL} = 8 mA)	-		0.4	V
V _{OH}	Output high voltage (VDD = 3.3V, I _{OH} = 8 mA)	2.5	-		v
IDD	Static supply current*	-	2.2	-	mA
Icc	Dynamic supply current (3.3V, 85MHz and no load)	-	4.5		mA
VDD	Operating voltage	3.0	3.3	3.6	V
t _{ON}	Power-up time (first locked cycle after power-up)	-		5	mS
Zout	Output impedance		45	-	Ω
* CLKIN pin is	s pulled low				

AC Electrical Characteristics for 3.3V Supply

Symbol		Parameter			Мах	Unit
CLKIN	Input frequency		60	-	120	MHz
ModOUT	Output frequency		60	_	120	MHz
£	Fraguency Deviation	Input Frequency = 60MHz	_	±0.85	_	- %
f _d	Frequency Deviation	Input Frequency = 120MHz	-	±0.60	-	
t _{LH} *	Output rise time (measu	Output rise time (measured from 0.8 to 2.0V)		1.2	1.8	nS
t _{HL} *	Output fall time (measu	Output fall time (measured at 2.0V to 0.8V)		0.8	1.1	nS
t _{JC}	Jitter (cycle to cycle)	Jitter (cycle to cycle)		360	_	pS
t _D	Output duty cycle		45	50	55	%

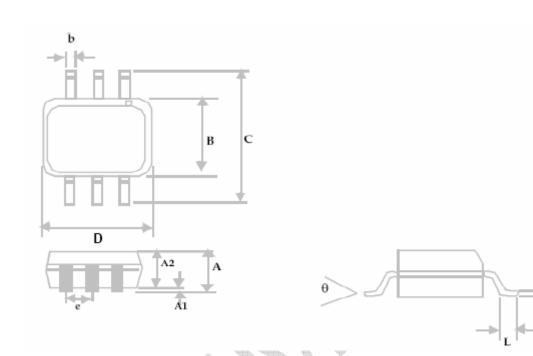
 $_{\text{LH}}$ and t_{HL} are measured into a capacitive load of 15

Low Power Peak EMI Reducing Solution

6

н

ASM3P2590A


A

September 2006

rev 0.4

Package Information

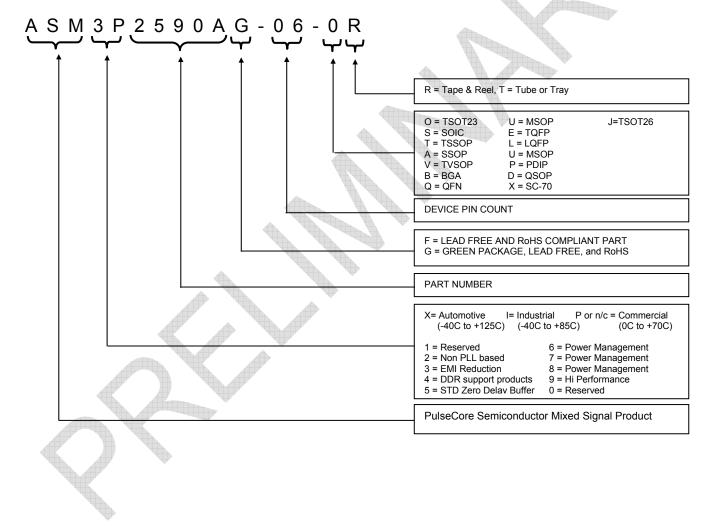
6-pin TSOT-23 Package

		Dimensions				
Symbol	Inc	Inches		neters		
4	Min	Мах	Min	Мах		
A		0.04		1.00		
A1	0.00	0.004	0.00	0.10		
A2	0.033	0.036	0.84	0.90		
b	0.012	0.02	0.30	0.50		
н	0.005	BSC	0.127	BSC		
D	0.114 BSC		2.90	BSC		
В	0.06 BSC		1.60 BSC			
е	0.0374 BSC		0.950 BSC			
С	0.11 BSC		2.80	BSC		
L	0.0118	0.02	0.30	0.50		
θ	0°	4°	0°	4°		

Low Power Peak EMI Reducing Solution

www.DataSheet4U.com

Notice: The information in this document is subject to change without notice.



rev 0.4

Ordering Information

Part Number	Marking	Package Type	Temperature
ASM3P2590AF-06-OR	Y4	6-Pin TSOT-23, TAPE & REEL, Pb Free	Commercial
ASM3P2590AG-06-OR	Y3	6-Pin TSOT-23, TAPE & REEL, Green	Commercial
ASM3I2590AF-06-OR	Y5	6-Pin TSOT-23, TAPE & REEL, Pb Free	Industrial
ASM3I2590AG-06-OR	Y6	6-Pin TSOT-23, TAPE & REEL, Green	Industrial

Device Ordering Information

Licensed under U.S Patent Nos 5,488,627 and 5,631,921

Low Power Peak EMI Reducing Solution

www.DataSheet4U.com

September 2006

rev 0.4

PulseCore Semiconductor Corporation 1715 S. Bascom Ave Suite 200 Campbell, CA 95008 Tel: 408-879-9077 Fax: 408-879-9018 www.pulsecoresemi.com Copyright © PulseCore Semiconductor All Rights Reserved Part Number: ASM3P2590A Document Version: 0.4

Note: This product utilizes US Patent # 6,646,463 Impedance Emulator Patent issued to PulseCore Semiconductor, dated 11-11-2003

© Copyright 2006 PulseCore Semiconductor Corporation. All rights reserved. Our logo and name are trademarks or registered trademarks of PulseCore Semiconductor. All other brand and product names may be the trademarks of their respective companies. PulseCore reserves the right to make changes to this document and its products at any time without notice. PulseCore assumes no responsibility for any errors that may appear in this document. The data contained herein represents PulseCore's best data and/or estimates at the time of issuance. PulseCore reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. PulseCore does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of PulseCore products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in PulseCore's Terms and Conditions of Sale (which are available from PulseCore). All sales of PulseCore products are made exclusively according to PulseCore's Terms and Conditions of Sale. The purchase of products from PulseCore does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of PulseCore or third parties. PulseCore does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of PulseCore products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify PulseCore against all claims arising from such use.

Low Power Peak EMI Reducing Solution

www.DataSheet4U.com

Notice: The information in this document is subject to change without notice.