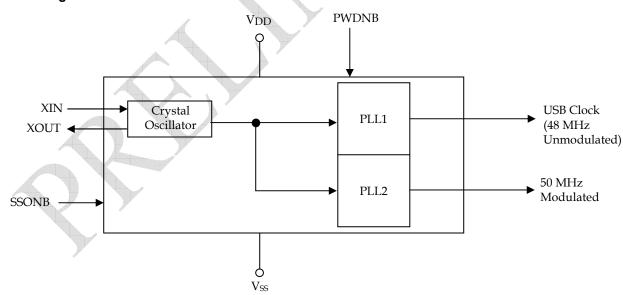
rev 0.7

ASM3P2853A

Peak EMI Reducing Solution

Features

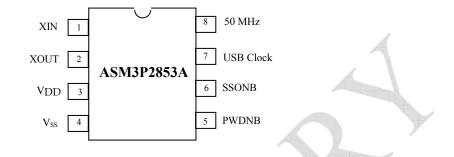
- Generates an EMI optimized clock signal at output.
- Input frequency: 25 MHz.
- Frequency outputs:
 - USB Clock (48 MHz unmodulated)
 - 50 MHz (modulated), ±1% centre spread
- Modulation rate: 39 KHz.
- Spread Spectrum ON/OFF control
- Supply voltage range 2.5V ± 5%.
- Available in 8-pin SOIC package.
- Commercial Temperature range.


Product Description

The ASM3P2853A is a versatile spread spectrum frequency modulator. The ASM3P2853A reduces electromagnetic interference (EMI) at the clock source. The ASM3P2853A allows significant system cost savings by reducing the number of circuit board layers and

shielding that are required to pass EMI regulations. The ASM3P2853A modulates the output of PLL in order to spread the bandwidth of a synthesized clock, thereby decreasing the peak amplitudes of its harmonics. This results in significantly lower system EMI compared to the typical narrow band signal produced by oscillators and most clock generators. Lowering EMI by increasing a signal's bandwidth is called spread spectrum clock generation.

Applications


ASM3P2853A is targeted towards EMI management for high speed digital applications such as PC peripheral devices, consumer electronics and embedded controller systems.

Block Diagram

rev 0.7

Pin Configuration

ASM3P2853A

Pin Description

Pin Name	Туре	Description		
XIN	Ι	Connection to crystal or external reference frequency input. This pin has dual functions. It can be connected either to an external crystal or an external reference clock.		
XOUT	0	Connection to crystal. If using an external reference clock, this pin must be left unconnected.		
V _{DD}	Р	Power supply for the analog and digital blocks		
V _{SS}	Р	Ground to entire chip.		
PWDNB		Power-down control pin. Pull low to enable the power-down mode. Connect to VDD, if not used.		
SSONB		Digital logic input used to enable spread spectrum function (Active LOW). Spread spectrum is enabled when LOW, disabled when HIGH.		
USB Clock	0	Clock output -1 (48 MHz unmodulated)		
50 MHz	0	Clock output -2 (50 MHz modulated)		

ASM3P2853A

rev 0.7

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit	
V_{DD}	Supply voltage, DC	$(V_{SS} - 0.5)$ to 7	V	
VI	Input voltage, DC	(V _{SS} -0.5) to (V _{DD} +0.5)	V	
Vo	Output voltage, DC	(V _{SS} -0.5) to (V _{DD} + 0.5)	V	
I _{IK}	Input clamp current (VI<0 or VI>VDD)	-50 to +50	mA	
I _{OK}	Output clamp current (VI<0 or VI>VDD)	-50 to +50	mA	
ТJ	Junction temperature	150	°C	
	Lead temperature (soldering 10 sec)	260	°C	
	Input static discharge voltage protection			
	(MIL –STD 883E, Method 3015.7)	2	kV	

Note: These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Operating Conditions

Parameter	Symbol	Condition / Description	Min	Тур	Max	Unit
Supply Voltage	V _{DD}	2.5V ± 5%	2.375	2.5	2.625	V
Ambient Operating	T _A		0	-	+70	°C
Temperature Range						
Crystal Resonator Frequency	F _{XIN}			25		MHz
Output Driver Load	CL		-	-	15	pF
Capacitance						

Crystal Specifications

Fundamental AT cut parallel resonant crystal				
Nominal frequency	25 MHz			
Frequency tolerance	± 50 ppm or better at 25°C			
Operating temperature range	-25°C to +85°C			
Storage temperature	-40°C to +85°C			
Load capacitance	18pF			
Shunt capacitance	7pF maximum			
ESR	25 Ω			

rev 0.7

DC Electrical Characteristics

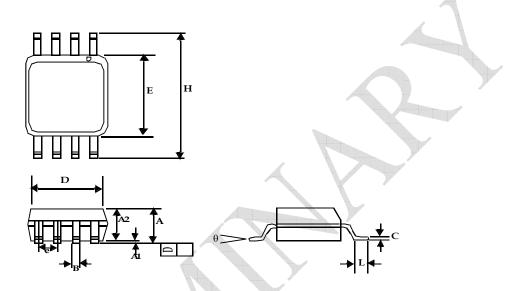
Parameter	Symbol	Conditions / Description	Min	Тур	Max	Unit
Overall						
Supply Current, Dynamic	I _{DD}	V_{DD} =2.5V, F_{XIN} =25MHz, C_L =15pF	15	20	25	mA
Supply Current, Static	I _{DDL}	V _{DD} = 2.5V, X _{IN} = 0, PWDNB =0	-	1.5	-	mA
All input pins						
High-Level Input Voltage	V _{IH}	V _{DD} =2.5V	1.7	(\cdot)	-	v
Low-Level Input Voltage	VIL	V _{DD} =2.5V	-	X	0.7	V
High-Level Input Current	I _{IH}				25	μa
Low-Level Input Current (pull-up)	I⊫		_	, -	-25	μΑ
Clock Outputs						
High-Level Output Source Current	I _{xOH}	V_{DD} = 2.5V , $V(X_{IN})$ = 0, V_{O} =2V	-10	-12	-15	mA
Low-Level Output Sink Current	I _{xOL}	V _{DD} = V(X _{IN}) =2.5V, V _O =0.4V	10	12	15	mA
High-Level Output Source Current	I _{OH}	V ₀ =2V	-	8	-	mA
Low-Level Output Sink Current	I _{OL}	V ₀ =0.4V	-	8	-	mA
Output Impedance	Zo		-	42	-	Ω

ASM3P2853A

rev 0.7

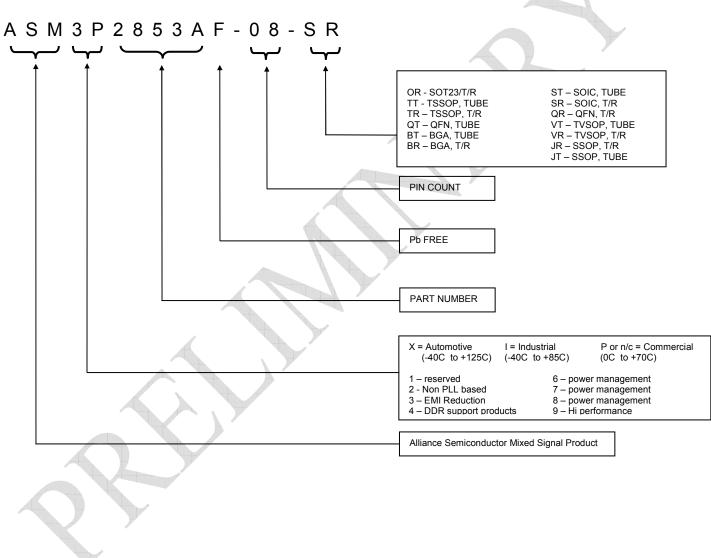
AC Electrical Characteristics

Symbol	Conditions/ Description	Min	Тур	Max	Unit
tr	Measured from 20% to 80% of the signal level	-	2	-	nS
t _f	Measured from 80% to 20% of the signal level	-	1.2		nS
t _{jc}		-		200	pS
t _p		1	175	-	pS
t _d	Ratio of pulse width (as measured from rising edge to next falling edge at VDD/2) to one clock period	45	50	55	%
	t _r t _f t _{jc} t _p	tr Measured from 20% to 80% of the signal level tr Measured from 80% to 20% of the signal level tr Measured from 80% to 20% of the signal level tr Itevel tr Ratio of pulse width (as measured from rising edge to next falling edge at VDD/2) to	tr Measured from 20% to 80% of the signal level - tr Measured from 80% to 20% of the signal level - tr Measured from 80% to 20% of the signal level - tr Ievel - tr Ratio of pulse width (as measured from rising edge to next falling edge at VDD/2) to 45	trMeasured from 20% to 80% of the signal level-2trMeasured from 80% to 20% of the signal level-1.2trMeasured from 80% to 20% of the signal level-1.2trIvel-1.2tipIvel-1.2tpIvel-1.75tpRatio of pulse width (as measured from rising edge to next falling edge at VDD/2) to4550	t_r Measured from 20% to 80% of the signal level-2- t_r Measured from 80% to 20% of the signal level-1.2- t_f Measured from 80% to 20% of the signal level-1.2- t_{jc} Measured from 80% to 20% of the signal level-1.2- t_{jc} Image: the signal level-1.2- t_{jc} Image: the signal level-



rev 0.7 Package Information

		A second second a	Ψ.			
	Dimensions					
Symbol	Inc	hes	Millimeters			
	Min	Мах	Min	Мах		
A1	0.004	0.010	0.10	0.25		
А	0.053	0.069	1.35	1.75		
A2	0.049	0.059	1.25	1.50		
В	0.012	0.020	0.31	0.51		
С	0.007	0.010	0.18	0.25		
D	0.193 BSC		4.90 BSC			
E	0.154 BSC		3.91 BSC			
е	0.050 BSC		1.27 BSC			
н	0.236 BSC		6.00 BSC			
L	0.016	0.050	0.41	1.27		
θ	0°	8°	0°	8°		


ASM3P2853A

rev 0.7

Ordering Codes

Part number	Package Configuration	Temperature Range
ASM3P2853AF-08-ST	8-pin SOIC ,TUBE	Commercial
ASM3P2853AF-08-SR	8-pin SOIC, TAPE & REEL	Commercial

Ordering Information

Licensed under US patent #5,488,627, #6,646,463 and #5,631,920.

rev 0.7

Alliance Semiconductor Corporation 2575, Augustine Drive, Santa Clara, CA 95054 Tel# 408-855-4900 Fax: 408-855-4999 www.alsc.com

Copyright © Alliance Semiconductor All Rights Reserved Preliminary Information Part Number: ASM3P2853A Document Version: v0.7

Note: This product utilizes US Patent # 6,646,463 Impedance Emulator Patent issued to Alliance Semiconductor, dated 11-11-2003

© Copyright 2003 Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.