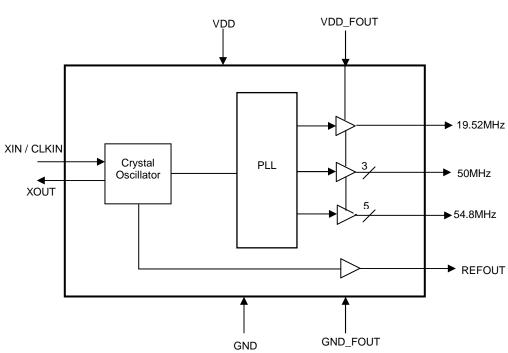
ASM3P2855D

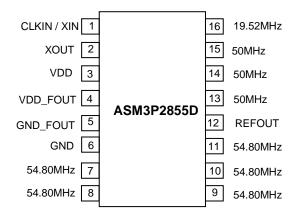
Custom Clock Generator for FAX System


Features

ON Semiconductor®

- Generates Custom Clocks for FAX system from an inexpensive 24MHz Crystal
- 3 x 50MHz synchronized clocks
- 5 x 54.8MHz synchronized clocks
- 1 x 19.52MHz clock for Scanner
- REFOUT Clock
- Supply Voltage 3.3 V ± 0.3V
- Available in 16L TSSOP, Green package

Product Description


ASM3P2855D is a custom clock generator for FAX system. ASM3P2855D realizes all the ten clocks required by the various components and subsystems of the FAX system. It uses an inexpensive 24MHz crystal as the input to generate five synchronized 54.8MHz clocks and three synchronized 50MHz PCI clocks that can be used by CPU, HDD, PCI Analyzer, ASIC2 and ASIC3, Ethernet, LAN PHY and for the CPU Timer, a 19.52MHz clock used by ASIC1 for Scanner. The custom clock generator ASM3P2855D works with a Supply Voltage of $3.3V \pm 0.3V$. The device is available in a 16L TSSOP Green package.

Block Diagram

ASM3P2855D

Pin Diagram

Pin Description

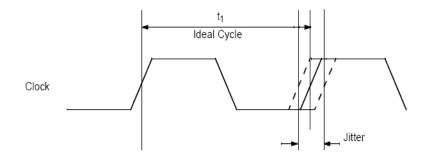
Pin#	Pin Name	Туре	Description
1	CLKIN / XIN	I	Crystal connection or external reference Clock input.
2	XOUT	0	Crystal connection. If using an external reference, this pin must be left unconnected.
3	VDD	Р	Power supply for the core
4	VDD_FOUT	Р	Power supply for the output buffers.
5	GND_FOUT	Р	Ground connection for the output buffers
6	GND	Р	Ground connection
7	54.80MHz	0	Synchronous 54.80MHz Clock Output
8	54.80MHz	0	Synchronous 54.80MHz Clock Output
9	54.80MHz	0	Synchronous 54.80MHz Clock Output
10	54.80MHz	0	Synchronous 54.80MHz Clock Output
11	54.80MHz	0	Synchronous 54.80MHz Clock Output
12	REFOUT	0	24MHz Reference Clock Output
13	50MHz	0	Synchronous 50MHz Clock Output
14	50MHz	0	Synchronous 50MHz Clock Output
15	50MHz	0	Synchronous 50MHz Clock Output
16	19.52MHz	0	19.52MHz Clock Output

Symbol	Parameter	Rating	Unit		
VDD, VDD_FOUT	Power Supply Voltage relative to GND	-0.5 to +4.6	V		
V _{IN}	Input Voltage relative to GND (Input Pins)	-0.5 to VDD+0.5	v		
T _{STG}	Storage temperature	-65 to +125	C		
Ts	Max. Soldering Temperature (10 sec)	260	C		
TJ	Junction Temperature	150	C		
T _{DV}	Static Discharge Voltage	2	кv		
. 57	(As per JEDEC STD22- A114-B)	-			
Note: These are stress ratings only and are not implied for functional use. Exposure to absolute maximum ratings for prolonged periods of time may affect device reliability.					

Absolute Maximum Ratings

Recommended Operating Conditions

Symbol	Symbol Parameter		Тур	Max	Units
T _A Operating Temperature		0		+70	C
VDD	Output Core Voltage	+3.0	+3.3	+3.6	V
VDD_FOUT	Output Buffer Voltage	+3.0	+3.3	+3.6	V

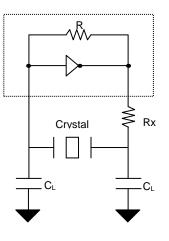

DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Unit		
VIL	Input low voltage	GND-0.3		0.8	V		
VIH	Input high voltage	2.0		VDD+0.3	V		
I _{IL}	Input low current			-35	μA		
I _{IH}	Input high current			35	μA		
I _{XOL}	XOUT output low current (V _{XOL} @ 0.4V, VDD = 3.3 V)		3		mA		
I _{XOH}	XOUT output high current (V_{XOH} @ 2.5V, VDD = 3.3V)		3		mA		
V _{OL}	Output low voltage (VDD = 3.3V, I _{OL} = 10mA)			0.4	V		
V _{OH}	Output high voltage (VDD = 3.3V, I _{OH} = -10mA)	2.5			V		
I _{DD}	Static supply current ¹			12	mA		
I _{CC}	Dynamic supply current (VDD = 3.3V,Unloaded Outputs)		32		mA		
VDD	Operating Core Voltage	3.0	3.3	3.6	V		
VDD_FOUT	Operating Buffer Voltage	3.0	3.3	3.6	V		
t _{ON}	Power-up time (first locked cycle after power-up) ²			5	mS		
Zo	Output impedance		30		Ω		
	Notes: 1. CLKIN / XIN is pulled to GND. 2. VDD and CLKIN inputs are stable.						

AC Electrical Characteristics

Symbol	Pa	Min	Тур	Max	Unit	
XIN / CLKIN	Input frequency	Input frequency				MHz
		At Pin 12		24		MHz
F	Output frequency	At Pins 7,8,9,10,11		54.80		
Fout		At Pins 13,14,15		50		IVITIZ
		At Pin 16		19.52		
t _{LH} 1	Output rise time (measur		1.0		nS	
t _{HL} 1	Output fall time (measure	Output fall time (measured from 80% to 20%)				nS
t _D	Output duty cycle		45	50	55	%
t _{JP}	Period Jitter (Unloaded C			±275	pS	
Note: 1. t _{LH} and t _{HL} are measured into a capacitive load of 15pF.						

Period Jitter

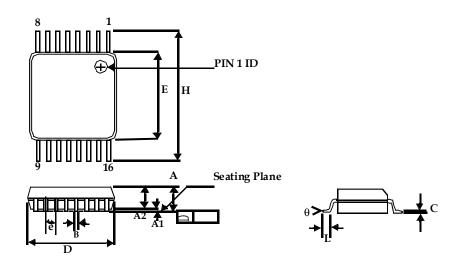


Typical Crystal Specifications

Fundamental AT cut parallel resonant crystal				
Nominal frequency	24MHz			
Frequency tolerance	± 50 ppm or better at 25℃			
Operating temperature range	-25℃ to +85℃			
Storage temperature	-40℃ to +85℃			
Load capacitance(C _P)	18pF			
Shunt capacitance	7pF maximum			
ESR	25 Ω			

Note: Note: CL is Load Capacitance and Rx is used to prevent oscillations at overtone frequency of the Fundamental frequency.

Typical Crystal Interface Circuit



$$\label{eq:C_L} \begin{split} C_L &= 2^*(C_P - C_S), \\ Where \ C_P &= Load \ capacitance \ of \ crystal \end{split}$$

 C_{S} = Stray capacitance due to C_{IN} , PCB, Trace etc.

Package Information

16-lead Thin Shrunk Small Outline Package (4.40-MM Body)

	Dimensions					
Symbol	Inch	nes	Millimeters			
	Min Max		Min	Мах		
А		0.043		1.20		
A1	0.002	0.006	0.05	0.15		
A2	0.031	0.041	0.80	1.05		
В	0.007	0.012	0.19	0.30		
С	0.004	0.008	0.09	0.20		
D	0.193	0.201	4.90	5.10		
Е	0.169	0.177	4.30	4.50		
е	0.026 BSC		0.65 BSC			
н	0.252 BSC		6.40 BSC			
L	0.020	0.030	0.50	0.75		
θ	0°	8°	0°	8°		

ASM3P2855D

Ordering Code

Ordering Code	Marking	Package Type	Operating Range
ASM3P2855DG-16TR	3P28	16-pin 4.4-mm TSSOP - TAPE & REEL, Green	0℃ to +7 0℃
	55D		

A "microdot" placed at the end of last row of marking or just below the last row toward the center of package indicates Pb-free.

Licensed under U.S Patent #5,488,627 and #5,631,921.

Note: This product utilizes US Patent #6,646,463 Impedance Emulator Patent issued to PulseCore Semiconductor, dated 11-11-2003.

ON Semiconductor and ^(IIII) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. U.S Patent Pending; Timing-Safe and Active Bead are trademarks of PulseCore Semiconductor, a wholly owned subsidiary of ON Semiconductor. This literature is subject to all applicable cop

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone:** 303-675-2175 or 800-344-3860 Toll Free USA/Canada **Fax:** 303-675-2176 or 800-344-3867 Toll Free USA/Canada **Email:** orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative