2.5V or 3.3V, 200 MHz, 11 Output Zero Delay Buffer

Features

Output frequency range: 25MHz to 200MHz

Output frequency range: 16.67MHz to 200MHz

Input frequency range: 16.67MHz to 200MHz

2.5V or 3.3V operation

Split 2.5V/3.3V outputs

± 2% max Output duty cycle variation

11 Clock outputs: Drive up to 22 clock lines

LVCMOS reference clock input

125-pS max output-output skew

PLL bypass mode

Spread AwareTM

Output enable/disable

Pin compatible with MPC9352 and MPC952

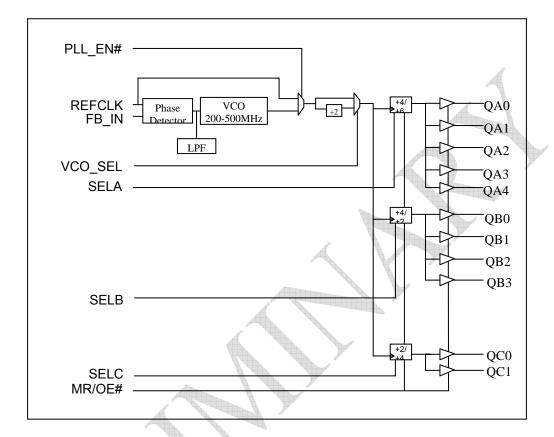
Industrial temperature range: –40°C to +85°C

32-Pin 1.0mm TQFP & LQFP Packages

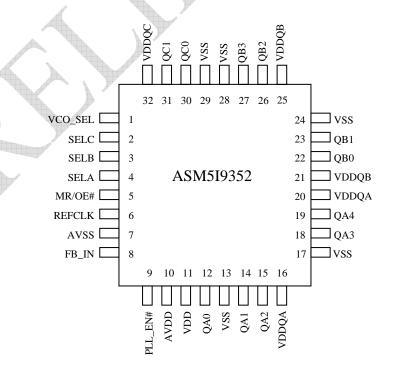
Functional Description

The ASM5I9352 is a low voltage high performance 200MHz PLL-based zero delay buffer designed for high speed clock distribution applications.

The ASM5I9352 features an LVCMOS reference clock input and provides 11 outputs partitioned in 3 banks of 5, 4, and 2 outputs. Bank A divides the VCO output by 4 or 6 while Bank B divides by 4 and 2 and Bank C divides by 2 and 4 per SEL(A:C) settings, see Table 2. These dividers allow output to input ratios of 3:1, 2:1, 3:2, 1:1, 2:3, 1:2, and 1:3. Each LVCMOS compatible output can drive 50Ω series or parallel terminated transmission lines. For series terminated transmission lines, each output can drive one or two traces giving the device an effective fanout of 1:22.


The PLL is ensured stable given that the VCO is configured to run between 200 MHz to 500 MHz. This allows a wide range of output frequencies from 16.67 MHz to 200 MHz. For normal operation, the external feedback input, FB_IN, is connected to one of the outputs. The internal VCO is running at multiples of the input reference clock set by the feedback divider, see Table 1.

When PLL_EN# is HIGH, PLL is bypassed and the reference clock directly feeds the output dividers. This mode is fully static and the minimum input clock frequency specification does not apply.


Notice: The information in this document is subject to change without notice.

rev 0.2

Block Diagram

Pin Configuration

Pin Configuration¹

•	Pin	Name	I/O	Туре	Description
	6	REFCLK	I, PD	LVCMOS	Reference clock input.
	12, 14, 15, 18, 19	QA(0:4)	0	LVCMOS	Clock output bank A.
	22, 23, 26, 27	QB(0:3)	0	LVCMOS	Clock output bank B.
	30, 31	QC(0,1)	0	LVCMOS	Clock output bank C.
www.DataSheet	4U.com 8	FB_IN	I, PD	LVCMOS	Feedback clock input . Connect to an output for normal operation. This input should be at the same voltage rail as input reference clock. See <i>Table 1</i> .
	1	VCO_SEL	I, PD	LVCMOS	VCO divider select input. See Table 2.
	5	MR/OE#	I, PD	LVCMOS	Master reset/output enable/disable input. See Table 2.
	9	PLL_EN#	I, PD	LVCMOS	PLL enable/disable input. See Table 2.
	2, 3, 4	SEL(A:C)	I, PD	LVCMOS	Frequency select input, Bank (A:C). See Table 2.
	16, 20	VDDQA	Supply	Vdd	2.5V or 3.3V power supply for bank A output clocks ^{2,3} .
	21, 25	VDDQB	Supply	Vdd	2.5V or 3.3V power supply for bank B output clocks. ^{2,3}
	32	VDDQC	Supply	Vdd	2.5V or 3.3V power supply for bank C output clocks. ^{2,3}
	10	AVDD	Supply	Vdd	2.5V or 3.3V power supply for PLL. 2,3
	11	VDD	Supply	VDD	2.5V or 3.3V power supply for core and inputs. ^{2,3}
	7	AVss	Supply	Ground	Analog ground.
	13, 17, 24, 28, 29	Vss	Supply	Ground	Common ground.

Note: 1. PD = Internal pull-down.

2.A 0.1µF bypass capacitor should be placed as close as possible to each positive power pin (<0.2"). If these bypass capacitors are not close to the pins their high frequency filtering characteristics will be cancelled by the lead inductance of the traces.

3.AVDD and VDD pins must be connected to a power supply level that is at least equal or higher than that of VDDQB, VDDQC, and VDDQD output

supply pins.

Table 1: Frequency Table

VCO_SEL	Feedback Output Divider	vco	Input Frequency Range (AVDD = 3.3V)	Input Frequency Range (AVDD = 2.5V)
0	÷2	Input Clock * 2	100 MHz to 200 MHz	100 MHz to 200 MHz
0	÷4	Input Clock * 4	50 MHz to 125 MHz	50 MHz to 100 MHz
0	÷6	Input Clock * 6	33.33 MHz to 83.33 MHz	33.33 MHz to 66.67 MHz
1	÷2	Input Clock * 4	50 MHz to 125 MHz	50 MHz to 100 MHz
1	÷4	Input Clock * 8	25 MHz to 62.5 MHz	25 MHz to 50 MHz
1 1411.com	÷6	Input Clock * 12	16.67 MHz to 41.67 MHz	16.67 MHz to 33.33 MHz

Table 2: Function Table

Control	Default	0	1
VCO_SEL	0	VCO	VCO ÷ 2
PLL_EN#	0	PLL enabled. The VCO output connects to the output dividers	Bypass mode, PLL disabled. The input clock connects to the output dividers
MR/OE#	0	Outputs enabled	Outputs disabled (three-state), VCO running at its minimum frequency
SELA	0	QA = VCO÷4	QA = VCO÷6
SELB	0	QB = VCO ÷4	QB = VCO÷2
SELC	0	QC = VCO÷2	QC = VCO÷4

Absolute Maximum Ratings

Parameter	Description	Condition	Min	Max	Unit
VDD	DC Supply Voltage		-0.3	5.5	V
VDD	DC Operating Voltage	Functional	2.375	3.465	V
VIN	DC Input Voltage	Relative to Vss	-0.3	VDD+ 0.3	V
Vout	DC Output Voltage	Relative to Vss	-0.3	VDD+ 0.3	V
VTT	Output termination Voltage			V _{DD} ÷2	V
LU	Latch Up Immunity	Functional	200		mA
Rps	Power Supply Ripple	Ripple Frequency < 100 kHz		150	mVp-p
Ts	Temperature, Storage	Non Functional	-65	+150	°C
TA	Temperature, Operating Ambient	Functional	-40	+85	°C
TJ	Temperature, Junction	Functional		155	°C
ØJC	Dissipation, Junction to Case	Functional		42	°C/W
ØJA	Dissipation, Junction to Ambient	Functional		105	°C/W
ESDH	ESD Protection (Human Body Model)		2000		Volts
FIT	Failure in Time	Manufacturing test		10	ppm

Note: These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

rev 0.2 **DC Electrical Specifications** (V_{DD} = 2.5V ± 5%, T_A = -40°C to +85°C)

Parameter	Description	Condition	Min	Тур	Max	Unit
VIL	Input Voltage, Low	LVCMOS			0.7	V
VIH	Input Voltage, High	LVCMOS	1.7		VDD+ 0.3	V
Vol	Output Voltage, Low ¹	IoL= 15 mA			0.6	٧
Vон	Output Voltage, High ¹	Iон= –15 mA	1.8			٧
IIL	Input Current, Low	VIL= VSS			-10	μA
IIH	Input Current, High ²	VIL= VDD		4	100	μA
IDDA	PLL Supply Current	AVDD only		5	10	mA
IDDQ	Quiescent Supply Current	All VDD pins except AVDD		3	5	mA
IDD	Dynamic Supply Current		A	170		mA
CIN	Input Pin Capacitance			4		pF
Zout	Output Impedance			17 – 20		Ω

Note:1.Driving one 50Ω parallel terminated transmission line to a termination voltage of V_{TT} . Alternatively, each output drives up to two $50~\Omega$ series terminated transmission lines.

DC Electrical Specifications (V_{DD} = 3.3V ± 5%, T_A = -40°C to +85°C)

Parameter	Description	Condition	Min	Тур	Max	Unit
VIL	Input Voltage, Low	LVCMOS	P		0.8	V
VIH	Input Voltage, High	LVCMOS	2.0		VDD + 0.3	V
Vol	Output Voltage, Low ¹	IoL= 24 mA			0.55	V
VOL Output voltage, Low		IoL= 12 mA			0.30	V
Vон	Output Voltage, High ¹	IOH= -24 mA	2.4			V
lı∟	Input Current, Low	VIL= VSS			-10	μΑ
Iн	Input Current, High ²	VIL= VDD			100	μΑ
IDDA	PLL Supply Current	AVDD only		5	10	mA
IDDQ	Quiescent Supply Current	All VDD pins except AVDD		3	5	mA
IDD	Dynamic Supply Current			240		mA
CIN	Input Pin Capacitance			4		pF
Zout	Output Impedance			14 – 17		Ω

Note:1.Driving one 50Ω parallel terminated transmission line to a termination voltage of V_T . Alternatively, each output drives up to two $50~\Omega$ series terminated transmission lines.
2.Inputs have pull-down resistors that affect the input current.

^{2.}Inputs have pull-down resistors that affect the input current.

rev 0.2

AC Electrical Specifications (V_{DD} = 2.5V ± 5%, T_A = -40°C to +85°C) ¹

Parameter	Description	Condition	Min	Тур	Max	Unit	
fvco	VCO Frequency	Condition	200	136	400	MHz	
1000	VCO Frequency	÷2 Feedback	100		200	IVITZ	
		÷4 Feedback	50		100		
		÷6 Feedback	33.33		66.67		
fin	Input Frequency	÷8 Feedback	25	4	50	MHz	
		÷12 Feedback	16.67	A	33.33		
MILoom		Bypass mode (PLL EN# = 1)	0		200		
frefDC	Input Duty Cycle	_ /	25		75	%	
tr, tf	TCLK Input Rise/FallTime	0.7V to 1.7V	A		1.0	nS	
		÷2 Output	100		200		
		÷4 Output	50		100		
fMAX	Maximum Output Frequency	÷6 Output	33.33		66.67	MHz	
		÷8 Output	25		50		
		÷12 Output	16.67		33.33	1	
D0	0.1.15.1.0.1.	fmax< 100 MHz	47		53	0/	
DC	Output Duty Cycle	fmax > 100 MHz	44		56	%	
tr, tf	Output Rise/Fall times	0.6V to 1.8V	0.1		1.0	nS	
t(φ)	Propagation Delay (static phase offset)	TCLK to FB_IN, same VDD, does not include jitter	-100		100	pS	
tsk(O)	Output-to-Output Skew	Skew within Bank			125	pS	
† 1 (D)	Bank-to-Bank Skew	Banks at same voltage, same frequency			175	20	
tsk(B)	Dalik-to-Balik Skew	Banks at same voltage, different frequency			225	pS	
tPLZ, HZ	Output Disable Time	7			8	nS	
tpzl, zh	Output Enable Time				10	nS	
		÷2 Feedback		2			
		÷4 Feedback		1 - 1.5			
BW	PLL Closed Loop Bandwidth (- 3dB)	÷6 Feedback		0.6		MHz	
4	CUS	÷8 Feedback		0.75			
		÷12 Feedback		0.5			
tJIT(CC)	Cycle-to-Cycle Jitter	Same frequency			100	pS	
UIT(CC)	Cycle-to-Cycle ditter	Multiple frequencies			300	ρο	
tJIT(PER)	Period Jitter	Same frequency			100	pS	
WII(FER)	1 Chou ditter	Multiple frequencies			150	50 PS	
tJIT(φ)	I/O Phase Jitter	VCO < 300 MHz		150		pS	
ωπ (ψ)	1/O I Hase sitter	VCO > 300 MHz		100		μο	
tLOCK	Maximum PLL Lock Time				1	mS	

Note:1.AC characteristics apply for parallel output termination of 50Ω to V_{TT} . Parameters are guaranteed by characterization and are not 100% tested.

rev 0.2 AC Electrical Specifications $(V_{DD} = 3.3V \pm 5\%, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)^{1}$

Parameter	Description	Condition	Min	Тур	Max	Unit	
fvco	VCO Frequency		200		500	MHz	
		÷2 Feedback	100		200	-	
		÷4 Feedback	50		125		
fin	Input Fraguency	÷6 Feedback	33.33		83.33	NALI-	
IIN	Input Frequency	÷8 Feedback	25		62.5	MHz	
		÷12 Feedback	16.67	4	41.67		
		Bypass mode (PLL_EN# = 1)	0		200		
frefDC	Input Duty Cycle		25		75	%	
tr, tf	TCLK Input Rise/FallTime	0.8V to 2.0V	A		1.0	nS	
		÷2 Output	100		200		
		÷4 Output	50		125		
fMAX	Maximum Output Frequency	÷6 Output	33.33		83.33	MHz	
		÷8 Output	25		62.5		
		÷12 Output	16.67	P	41.67		
D0	0.1.10.1.0.1.	fmax< 100 MHz	48		52	0/	
DC	Output Duty Cycle	fmax > 100 MHz	44		56	%	
tr, tf	Output Rise/Fall times	0.55V to 2.4V	0.1		1.0	nS	
t(φ)	Propagation Delay (static phase offset)	TCLK to FB_IN, same VDD, does not include jitter	-100		200	pS	
tsk(O)	Output-to-Output Skew	Skew within each Bank			125	pS	
		Banks at same voltage, same frequency			175	pS	
tsk(B)	Bank-to-Bank Skew	Banks at same voltage, different frequency			235		
		Banks at different voltage			425		
tplz, HZ	Output Disable Time				8	nS	
tpzl, zh	Output Enable Time				10	nS	
		÷2 Feedback		2			
		÷4 Feedback		1 – 1.5			
BW	PLL Closed Loop Bandwidth (-3dB)	÷6 Feedback		0.6		MHz	
	(odb)	÷8 Feedback		0.75			
		÷12 Feedback		0.5			
tur(oc)	Cycle-to-Cycle Jitter	Same frequency			100	20	
tJIT(CC)	Cycle-to-Cycle Sitter	Multiple frequencies			275	pS	
tur(DED)	Dariad litter	Same frequency			100	20	
tJIT(PER)	Period Jitter	Multiple frequencies			150	pS	
† UT(n)	I/O Phase litter	VCO < 300 MHz		150		20	
tJIT(φ)	I/O Phase Jitter	VCO > 300 MHz		100		pS	
tlock	Maximum PLL Lock Time				1	mS	

 $Note: \textbf{1.AC}\ characteristics\ apply\ for\ parallel\ output\ termination\ of\ 50\Omega\ to\ V_{TT}.\ Parameters\ are\ guaranteed\ by\ characterization\ and\ are\ not\ 100\%\ tested.$

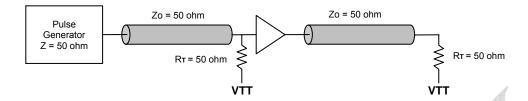


Figure 1. AC Test Reference for VDD = 3.3V / 2.5V

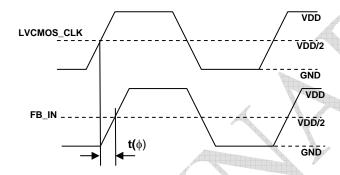


Figure 2. LVCMOS Propagation Delay t(φ), Static Phase Offset

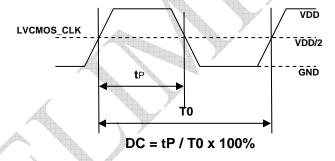


Figure 3. Output Duty Cycle (DC)

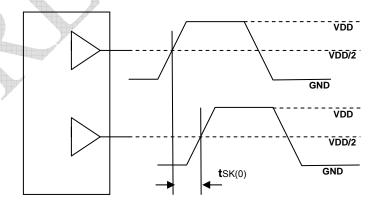
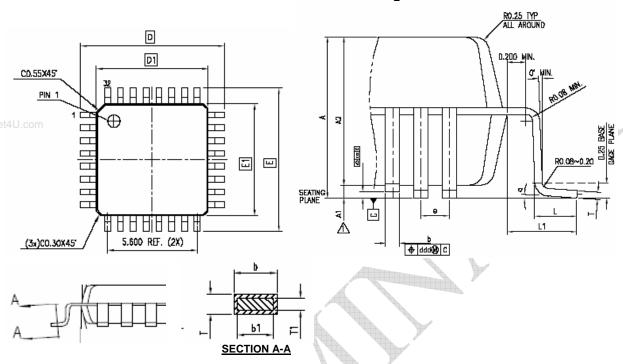
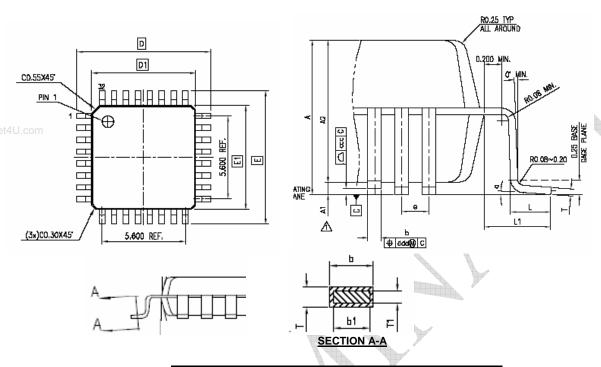



Figure 4. Output-to-Output Skew , tsk(O)

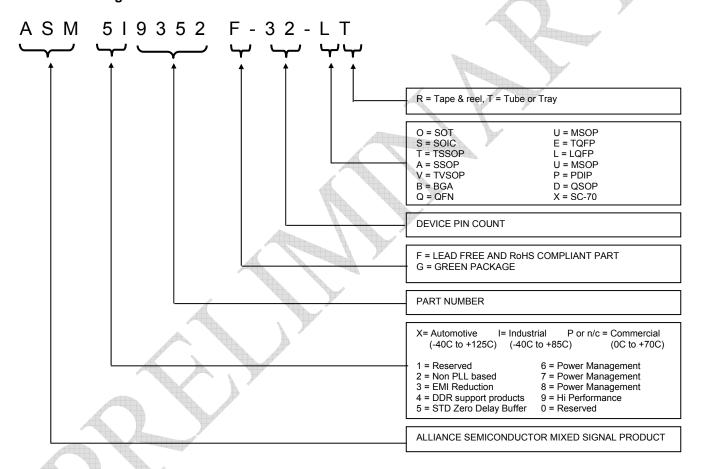
rev 0.2


Package Diagram

32-lead TQFP Package

	Dimensions				
Symbol	Inch	es	Millimeters		
	Min	Max	Min	Max	
Α	\	0.0472		1.2	
A1	0.0020	0.0059	0.05	0.15	
A2	0.0374	0.0413	0.95	1.05	
D	0.3465	0.3622	8.8	9.2	
D1	0.2717	0.2795	6.9	7.1	
E	0.3465	0.3622	8.8	9.2	
E1	0.2717	0.2795	6.9	7.1	
L	0.0177	0.0295	0.45	0.75	
L1	0.03937	7 REF	1.00	REF	
Т	0.0035	0.0079	0.09	0.2	
T1	0.0038	0.0062	0.097	0.157	
b	0.0118	0.0177	0.30	0.45	
b1	0.0118	0.0157	0.30	0.40	
R0	0.0031	0.0079	0.08	0.2	
а	0°	7°	0°	7°	
е	0.031 E	BASE	0.8 B	ASE	

32-lead LQFP Package



	Dimensions					
Symbol	Inch	es	Millimeters			
	Min	Max	Min	Max		
Α		0.0630		1.6		
A1	0.0020	0.0059	0.05	0.15		
A2	0.0531	0.0571	1.35	1.45		
D	0.3465	0.3622	8.8	9.2		
D1	0.2717	0.2795	6.9	7.1		
E	0.3465	0.3622	8.8	9.2		
E1	0.2717	0.2795	6.9	7.1		
L	0.0177	0.0295	0.45	0.75		
L1	0.03937	0.03937 REF		REF		
Т	0.0035	0.0079	0.09	0.2		
T1	0.0038	0.0062	0.097	0.157		
b	0.0118	0.0177	0.30	0.45		
b1	0.0118	0.0157	0.30	0.40		
R0	0.0031	0.0079	0.08	0.20		
е	0.031 E	BASE	0.8 BASE			
а	0°	7°	0°	7°		

Ordering Information

Part Number	Marking	Package Type	Temperature
ASM5I9352-32-ET	ASM5I9352	32-pin TQFP	Industrial
ASM5I9352-32-LT	ASM5I9352	32-pin LQFP –Tape and Reel	Industrial
ASM5I9352G-32-ET	ASM5I9352G	32-pin TQFP, Green	Industrial
ASM5I9352G-32-LT	ASM5I9352G	32-pin LQFP –Tape and Reel, Green	Industrial

Device Ordering Information

Licensed under US patent #5,488,627, #6,646,463 and #5,631,920.

ww.DataSheet4U.com

Alliance Semiconductor Corporation 2575, Augustine Drive, Santa Clara, CA 95054 Tel# 408-855-4900 Fax: 408-855-4999 www.alsc.com Copyright © Alliance Semiconductor All Rights Reserved Part Number: ASM5I9352 Document Version: 0.2

Note: This product utilizes US Patent #6,646,463 Impedance Emulator Patent issued to Alliance Semiconductor, dated 11-11-2003

© Copyright 2003 Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.