

ASR8600

Ambient Light, Solar-UV, IR and Proximity Sensor

Preliminary

with I2C digital interface

Document Title

Ambient Light, Solar-UV, IR and Proximity Sensor with I2C digital interface

Revision History

<u>Rev. No.</u>	<u>History</u>	Issue Date	<u>Remark</u>
0.0	Initial issue	March 4, 2015	Preliminary

ASR8600

with I2C digital interface

Ambient Light, Solar-UV, IR and Proximity Sensor

Preliminary

General Description

The ASR8600 is an integrated sensor of ambient light (ALS), Infrared light (IR), Solar-UV, and proximity sensing (PS). It provides innovative algorithms which can be friendly in application. ASR8600 is a perfect solution in application for light and PS sensing.

ASR8600 ALS/IR sensing offers ASC (Auto Scale Control) mode other than traditional manual mode which needs user to manually set sensing time and gain to get proper resolution according to light intensity. With ASC mode, ASR8600 could automatically adjust the sensing time and gain to the best resolution for various light intensity. User just needs simply to read the measured light data in accuracy without any other setting. The ASC output data is in dynamic range of 16 bits up to 64K lux. The Solar-UV sensing adopts only ASC mode without manual mode option.

User can combine ASR8600 with LED or LD (Laser Diode) to do PS sensing, detecting the presence of nearby object to avoid any physical contact. The spectrum of LED/LD light source could be IR or Green selected by customer using user command. The driving current and pulse time of LED/LD is widely optional according to the distance to be detected.

To cancel the PS optical crosstalk from overlay reflection, ASR8600 offers PS Offset cancellation function. The PS Offset function can cancel the system internal reflection but still keep full dynamic range of 8 bits (256 steps) of PS output so that user has no need to modify the PS threshold setting when applying the PS Offset function.

ASR8600 also offers PS Auto Trim function if user requires a precise proximity distance to be detected in application. The PS Auto Trim function can automatically set optimized gain value in chip according to the distance between the preset object and chip, and the PS Trim value could be easily read out through user command, once the trim operation is done.

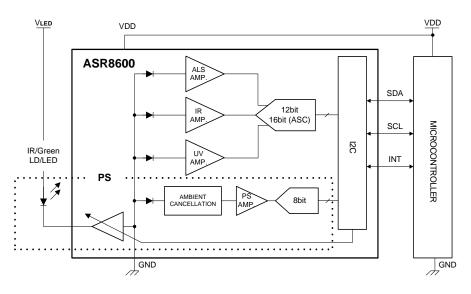
Applications

- Notebook / Monitor
- Smart phone (touch screen disable and backlight control)
- LCD display (backlight control)
- Table PC
- PDA
- Presence Detection
- Industrial sensor

Features

- Ambient Light, Solar-UV, IR and Proximity Sensor
- Ambient Light (ALS) / IR Sensing
 - ALS closes to human-eye response (UV/IR rejection)
 - IR detecting spectrum in range of near Infrared
 - 12 bits resolution with gain and integration time setting
 - ASC mode optional with 16 bits dynamic range
 - Detected dynamic rang up to 64K lux
 - Programmable high/low threshold interrupt
- Solar-UV Sensing
 - CIE Erythemal Action Spectrum weighted
 - 11 indexes calculated by 16 bits dynamic output data
- Proximity Sensing (PS)
 - Selectable light source of IR or Green
 - Wide range driving current of LED/LD, 2.5mA~300mA
 - Changeable PS pulse time from 0.1ms to 1.28ms
 - 8 bits effective counts
 - Programmable high/low threshold interrupt
 - PS Offset to cancel crosstalk without dynamic range loss
 PS Auto Trim function for precise distance detection
- User trimming capable for overlay or environment correction
- I2C digital Interface up to 400KHz with Interrupt Pin
- Wait-time range from 0 to 5 seconds to save power
- 50/60Hz flicker noise rejection
- VDD = 2.5V to 3.6V
- Temperature compensation : -40°C to +85°C
- Low Power consumption
- Package option
- 6-pin OCDFN (2mm x 2.5mm x 0.8mm)
- All Pb-free (Lead-free) Products are RoHS2.0 Compliant

Pin Assignment


1	VDD Power	4	Interrupt
2	Ground	5	I2C Clock
3	LED Driving Port	6	I2C Data

Ordering Information

Part Number	Temp. Range	Package & Size	Packing	Lead-Free/RoHS	
ASR8600	-40°C ~ +85°C	6pin OCDFN (2mm x 2.5mm x 0.8mm)	Tape and Reel	Compliant	

AMIC

Absolute Maximum Ratings*

Notes:

- 1. Compliant with JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assembly). For wave solder process, IC could meet 265°C, 5secs.
- 2. JEDEC Std JESD22-A114A (C1=100 pF, R1=1500Ω, R2=500Ω)

*Comments

Stressing the device above the rating listed in the Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
V _{cc}	Supply Voltage		2.5		3.6	V
T _A	Operating Temperature		-40		85	°C
ILI	Input Leakage Current				± 2	μA
I _{LO}	Output Leakage Current				± 2	μA
VIL	Input Low Voltage		-0.5		$0.3V_{CC}$	V
VIH	Input High Voltage		$0.7V_{CC}$		V _{CC} +0.4	V
V _{OL}	Output Low Voltage	I _{SINK} = 6mA			0.4	V
I _{CC1}	Standby Current	No I2C activity		5	15	μA
		ALS only				μA
	Operating Current	IR only				μA
I _{CC2}	Operating Current (@Wait Time=mS)	PS only				μA
		PS only (LED pulse off)				μA
		Solar UV only				μA

Electrical Characteristics

Optical Characteristics

ALS/IR Characteristics

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
λ p_als	Peak Sensitivity Wavelength for ALS			550		nm
λ _{P_IR}	Peak Sensitivity Wavelength for IR					nm
Data _{AI_F}	Full Scale ALS/IR Count		0		65535	Count
Data _{AI_O}	Dark ALS/IR Count			0	1	Count
-	Detecting Intensity		0.125		65535	Lux
-	ALS/IR Sensing Tolerance				±10	%

PS Characteristics

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
λ p_ps	Peak Sensitivity Wavelength			850		nm
Data _{PS_F}	Full Scale PS Count				255	Count
Data _{PS_0}	PS Count w/o Object in Path			0	1	Count
			2.5/5	25	50	
	LED Sink Current		5/10	50	100	mA
I _{LED}			10/20	100	200	
			15/30	150	300	
t _{LED_P}	LED Pulse Period			10		μs
t _{LED_ON}	LED On Time			5		μs

Solar UV Characteristics

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
λ P_SUV	Peak Sensitivity Wavelength for Solar UV					nm
Data _{SUV_F}	Full Scale Solar UV Count		0		65535	Count
Data _{SUV_O}	Dark Solar UV Count			0	1	Count
-	Detecting Intensity		0.125		65535	Lux
-	Solar UV Sensing Tolerance				±15	%

Function Description

Light Sensor

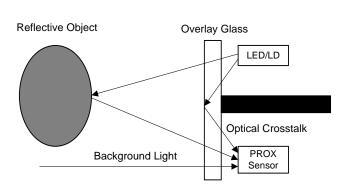
The ASR8600 converts light intensity of ambient light (ALS), Infrared light (IR) or Solar-UV to digital signal through I2C interface by various photodiodes and ADC circuit. The I2C interface follows PhilipTM I2C specification with an open drain active Interrupt pin.

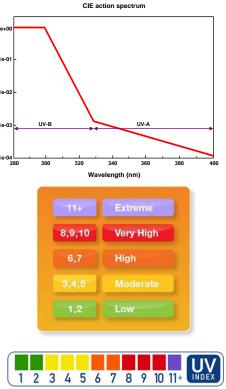
The built-in ADC has 12 bits resolution. ASR8600 offers user flexibility selection in integration time or gain for different specific light detection range. If the light detection is in general purpose, the user can use ASC (Auto Scale Control) mode which can automatically adjust integration time and gain to the best resolution for various light intensity. The user has no need manually to set the integration time or gain. With ASC mode, the output data is in dynamic range of 16 bits. The Solar-UV sensing adopts only ASC mode internally without manual mode option.

If the sensor will be under an overlay that is not 100% transmissive to light source, the light data can be trimmed back to the correct one. Please contact AMIC for more information on adjusting these offset.

Proximity Sensor

Proximity sensing uses an external light source (generally an infrared emitter) to emit light, which is then viewed by the integrated light detector to measure the amount of reflected light when an object is in the light path. The amount of light detected from a reflected surface can then be used to determine an object's proximity to the sensor. The spectrum of external LED/LD light source can be IR or Green selected by customer using user command.


When the proximity sensing is enabled, the external LED/LD is driven by the built-in driver through the LDR pin. The driving current of LED/LD is widely optional with range from 2.5mA to 300mA, and the pulse time is also changeable from 0.1ms to 12.8ms. These optional settings are according to the distance to be detected in application.


The ADC resolution of PS sensing is 8 bits with PS Offset function to cancel the PS optical crosstalk from overlay reflection. The PS offset value can be measured by PS function without any object in front of the overlay, and set by 0xA5 user command of PS offset. The ASR8600 PS Offset function can cancel the system internal reflection but still keep full dynamic range of 8 bits (256 steps) of PS output, so that the user is no need to modify the PS threshold setting when applying PS Offset function.

ASR8600 also offers PS Auto Trim function if user requires precise proximity distance to be detected in application. The PS Auto Trim function can automatically set optimized gain value in chip according to the preset object distance in front of chip, and the value could be easily read out through user command once the trim operation is done.

Solar Ultraviolet (Solar_UV) Index

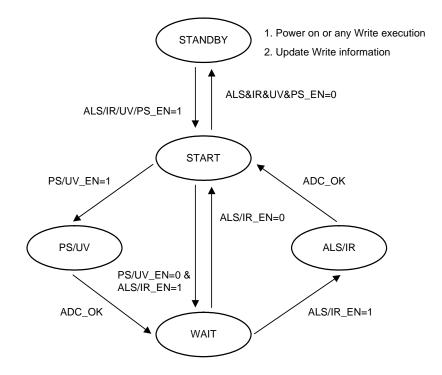
The Solar_UV Index is a number linearly related to the intensity of sunlight reaching the earth and is weighted according to the CIE Erythemal Action Spectrum. This weighting is a standardized measure of human skin's response to different wavelengths of sunlight from UVB to UVA. The UV Index has been standardized by the World Health Organization and includes a simplified consumer UV exposure level. ASR8600 can sense Solar_UV with 16 bits output data, and user can divide it by 100 times magnitude to get Solar_UV index.

CIE Erythemal Action Spectrum and UV Index Scale

Interrupt Function

The ASR8600 has an intelligent interrupt scheme designed for light and PS sensing. The active low interrupt pin is an open drain pull-down configuration. The interrupt pin serves as an alarm or monitoring function to determine whether the ambient light or PS data exceeds the upper threshold or goes below the lower threshold. The user can also configure the persistency for the interrupt to eliminate any false triggers, such as noise or sudden spikes in ambient light conditions. The user uses 0x00[3:0] to identify which interrupt status, light sensing or PS one, is raised.

System Operation State


The ASR8600 provides control of ambient light (ALS), IR light, Solar-UV, proximity sensing (PS) detection, and power management through an internal state machine. After a power on reset, the device is in standby mode. As soon as any of light or PS sensing bit is enable, the device will move to the start state, and then it will continue through PS/UV, wait, and ALS/IR states.

If any Write command is executed during sensing in operation, then the device will interrupt the sensing process and move back to standby stage. It will then restart the process according the new writing conditions.

Regarding the enable setting of PS/UV and ALS/IR, customer can refer to the register 0x01 configuration.

VDD Power-up and Power Supply Considerations

Upon power-up, a VDD slew rate of 0.5V/ms or greater is preferable. After power-up, or if the user's power supply is temporarily fluctuated by unknown noise causing system abnormal, AMIC recommends the user to issue a soft reset command 0x5B with data 0xB5, and then rewrite all registers to the desired values. If the user prefers a hardware reset method instead of soft reset, please set VDD = 0V for 1 second or more, and then power up at the required slew rate.

I2C Protocol

The bus interface and control are accomplished through an I2C compatible, 2-wire serial interface consisting of a serial-data line (SDA) and a serial-clock line (SCL). SDA and SCL facilitate communication between the IC and the master at clock rate up to 400k Hz. The devices support the 7-bit I2C addressing protocol and 8-bit register address and data byte.

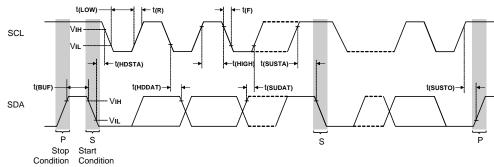
The I2C standard provides for three types of bus transaction: read, write, and a combined protocol.

During a write operation, after (slave_address + R/W) byte, the first byte written is a register address followed by data

I2C Protocols

1	7	1 1	8	1	8	1 1
S	Slave Address	WΑ	Register Address	A	Data Byte	ΑΡ
			I2C Write Protocol			
1	7	1 1	8	1	8	1 1
S	Slave Address	R A	Data Byte	A	Data Byte	ΑΡ
			I2C Read Protocol			
1	7	1 1	8	1	7	1 1
S	Slave Address	WΑ	Register Address	A SR	Slave Address	RA
	8	1	8	1	8	1 1
	Data Byte	Α…	Data Byte	A	Data Byte	NP

I2C Read Protocol - Combined Format


byte. If a read command is issued, the register address from the previous command will be used for data access. In a combined protocol, the first byte written is the register address followed by reading a series of data bytes.

ASR8600 slave address is 1001010X, which 0x94 is Write to ASR8600, and 0x95 is Read from ASR8600.

The I2C bus protocol follows Philip[™] (now NXP company) I2C specification. For a complete description of I2C protocol, please refer to NXP I2C design specification.

- A Acknowledge (0)
- N Not Acknowledge (1)
- P Stop Condition
- R Read (1)
- S Start Condition
- SR Repeated Start Condition
- W Write (0)
- ··· Condition of protocol
- Master-to-Slave

Timing Diagrams

I2C Bus Timing Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit
f _(SCL)	Serial-Clock Frequency	0		400	KHz
t _(HIGH)	Clock High Period	0.6			μs
t _(LOW)	Clock Low Period	1.3			μs
T _(R)	Clock/Data Rise Time		100		ns
T _(F)	Clock/Data Fall Time		100		ns
$t_{(SUDAT)}$	Data Setup Time	0.1			μs
t _(HDDAT)	Data Hold Time	0			μs
$t_{(BUF)}$	Bus Free Time Between STOP and START	1.3			μs
$t_{(HDSTA)}$	Hold Time (Repeated) Start Condition	0.6			μs
$t_{(SUSTA)}$	Repeated Start Condition Setup Time	0.6			μs
t _(SUSTO)	Stop Condition Setup Time	0.6			μs
$t_{(SP)}$	Pulse Width of Suppressed Spike	0		50	ns

ASR8600 Register Map

ASR8600 slave address is 1001010X, which 0x94 is Write to ASR8600, and 0x95 is Read from ASR8600

System Registers

ADDR	R/W	Function	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default
0x5B	W	Soft Reset		0xB5							
0xE3	R	Device ID		0x37							

Status Bits and Operation Command Registers

0x00	R	Data Ready & Interrupt Status Bits	ALS/ IR_RDY	PS_RDY	Solar_UV/ UV_RDY		ALS/ IR_INTS	PS_Hi_ INTS	PS_Lo_ INTS	(PS_Auto Trim_INTS)	0x00
0x01	R/W	Operation Control		WT [2:0]		ALS/IR_	_EN[1:0]	PS/Solar_ EN[(PS_Auto_ Trim_EN)	0x00

ALS/IR Registers

0x02	R/W	ALS/IR Command	ASC	ALS/IR_IT [2:0]	ALS/IR_GAIN [1:0]	ALS/IR_PRST [1:0]	0x00		
0x03	R	Data Low Byte		ALS/IR_Data_Lo_Byte [7:0]					
0x04	R	Data High Byte		ALS/IR_Data_Hi_Byte [11:8], ASC mode [15:8]					
0x05	R/W	High Threshold Low Byte		ALS/IR_HiTH_Lo_Byte [7:0]					
0x06	R/W	High Threshold High Byte		ALS/IR_HiTH_Hi_Byte [11:8], ASC mode [15:8]					
0x07	R/W	Low Threshold Low Byte		ALS/IR_LoTH_Lo_Byte [7:0]					
0x08	R/W	Low Threshold High Byte		ALS/IR_LoTH_Hi_Byte [11:8], ASC mode [15:8]					

PS Registers

0x09	R/W	PS Command		PS_PT [2:0]	PS_I [1:0]	PS_PRST [1:0]	0x00			
0x0A	R	Data	PS_Data [7:0]							
0x0B	R/W	High Threshold		PS_Hi_TH [7:0]						
0x0C	R/W	Low Threshold		PS_Lo_	TH [7:0]		0x00			
0x0D	R/W	PS Light Source	PS Drivi	ng Current Magnification [3:0]	PS Light Type (PS Light Type (IR/Green) [3:0]				

UV Registers

0x0E	R	Data Low Byte		Solar_UV (or UV) _Data_Lo_Byte [7:0]						
0x0F	R	Data High Byte		Solar_UV (or UV) _Data_Hi_Byte [15:8]						
0x10	R/W	Solar_UV/UV Command (Reserved)	UV_ASC#	UV_IT [2:0]	UV_GAIN [1:0]	Pre_Amp _Range[1:0]	0x00			

Trim Registers

0xA0	R/W	ALS Trim-Time	ALS Trim-Time [7:0]	0x40
0xA1	R/W	IR Trim-Time	IR Trim-Time [7:0]	0x40
0xA2	R/W	ALS Trim-Gain	ALS Trim-Gain [7:0]	0x20
0xA3	R/W	IR Trim-Gain	IR Trim-Gain [7:0]	0x20
0xA4	R/W	PS Trim	PS Trim [7:0]	0xC8
0xA5	R/W	PS Offset	PS Offset [7:0]	0x00
0xA6	R/W	Solar_UV Trim-Time	Solar_UV Trim-Time [7:0]	0x40
0xA7	R/W	Solar_UV Trim-Gain	Solar_UV Trim-Gain [7:0]	0x20
0xA8	R/W	UV Trim-Time	UV Trim-Time [7:0]	0x40
0xA9	R/W	UV Trim-Gain	UV Trim-Gain [7:0]	0x20

Status Bits and Operation Command Registers

Register 0x00 (Data Ready & Interrupt Status Bits)

ADDR	R/W	Fu	nction		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default	
0x00	R	Data Interrup	Ready t Status		ALS/ IR_RDY	PS_RDY	Solar_UV/ UV_RDY		ALS/ IR_INTS	PS_Hi_ INTS	PS_Lo_ INTS	(PS_Auto Trim_INTS)	0x00	
Bit	Na	me		Function Description										
			Data_	ta_Ready Status Bit ([7]=ALS/IR_RDY, [6]=PS_RDY, [5]=Solar_UV/UV_RDY)										
7:5	Data Ready Status		0	Data	is NOT ava	ilable to be	used since	power-on	or last "clea	ır".				
	Sta	tus	1	The data is available after enable. Once this bit is set, the only 2 ways to clear it to 0 are to read this register or set such sensing disable.										
			Interru	nterrupt Status Bits ([3]=ALS/IR_INTS, [2]=PS_Hi_INTS, [1]=PS_Lo_INTS)										
		-	0	No interrupt event has occurred since power-on or last "clear".										
3:1	Interrup	t Status	1	The data has exceeded the designated window limits defined by Threshold registers, and persi is equal to the set Persist count. Once this bit is set, the only 2 ways to clear it to 0 are to register or set such sensing disable.										
		PS_Auto_Trim Interrupt Status Bit												
0	0 PS_Auto_ Trim Interrupt Status		0	No P	S_Auto_Tri	m interrupt	event has o	occurred si	nce power-o	on or last "o	clear".			
			1				s has finish _Auto_Trim_			et, the only	/ 2 ways t	o clear it to	0 are to	

Register 0x01 (Operation Control)

ADDR	R/W	Fui	nction		Bit7	Bit6	Bit5	Bit4		Bit3	Bit2	Bit1	Bit0	Default		
0x01	R/W	Operati	ion Con	ntrol		WT [2:0]		ALS/IF	ALS/IR_EN[1:0] PS/Solar_UV/UV_ (PS_Auto EN[1:0] Trim_EN)					0x00		
Bit	Na	me					Fu	Inction D	ction Description							
			Wait T	ait Time Setting for power consumption control												
			000	40ms x1 = 40ms					4	40ms x32	= 1280ms	= 1.28s				
7:5	Wait	Time	001	40ms x4 = 160ms				101	4	40ms x64 = 2560ms = 2.56s						
			010	40ms x8 = 320ms					4	40ms x12	8 = 5120m	s = 5.12s				
			011	40ms x16 = 640ms				111	R	Reserved	to NO wai	t time				
			ALS/IF	R Sensing	g enable	•		_								
4:3	ALS/IR	_Enable	00	ALS/IR sensing disable				10	IF	IR sensing enable						
			01	ALS ser	nsing en	able		11	Reserved							
	DO/0-1		PS/So	olar_UV/U	IV Sens	ing enable										
2:1		ar_UV/ nable	00 PS/Solar_UV/UV sensing disable					10	S	Solar UV s	sensing en	able				
			01 PS sensing enable					11	UV sensing enable							
	PS_A	Auto_	PS Au	PS Auto Trimming enable												
0	0 Trim_Enable		0	PS auto	trimmir	ig disable		1	Ρ	PS auto trimming enable						

ALS/IR Registers

Register 0x02 (ALS/IR Command Set)

ADDR	R/W	Fu	nction	l	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default	
0x02	R/W	ALS/IR	Comm	and	ASC	A	ALS/IR_IT [2:0]			ALS/IR_Gain [1:0]		ALS/IR_PRST [1:0]		
Bit	Na	me					Fu	Inction D	escriptio	n				
			Auto S	Scale C	control of A	SL/IR mod	de							
	Auto	Scale	0	ASL/I	R_IT and <i>i</i>	ASL/IR-Ga	in are cont	olled by re	gister 0x02	2[6:4] and 0	x02[3:2].			
7	Control (ASC mode)		1	ASL/I	R_IT and	ALS/IR_G	—	e read as				/ internal o LS/IR Data		
				ntegrati	ntegration Time Setting for sensitivity range selection									
6:4	ALS/	ір іт	000	40ms	x1 = 40m	8		011	40ms x8	40ms x8 = 320ms				
0.4	AL3/	IK_11	001	40ms	x2 = 80m	8	100		40ms x16 = 640ms					
			010	0 40ms x4 = 160ms										
			ALS/I	R Gain	Setting for	⁻ sensitivity	range sele	ection						
3:2	ALS/IF	R_Gain	00	x1 Ga	ain			10) x4 Gain					
			01	x2 Ga	ain			11	11 x8 Gain					
			ALS/I	R Persi	st Setting	for consec	utive count	of data va	ue out of th	nreshold ra	nge			
1:0	ALS/IR	_PRST	00	1 cou	nt			10	0 4 counts					
			01	2 cou	nts			11	11 8 counts					

Register 0x03/04/05/06/07/08 (ALS/IR Data and Hi/Lo Threshold)

ADDR	Name	Function Description					
0x03	ALS/IR Data Low Byte [7:0]						
0x04	ALS/IR Data High Byte [11:8], ASC mode = [15:8]	Read ALS/IR_Data 12 bits of [11:0]. If ASC mode is active, the data is auto scaled as 16 bits of [15:0].					
0x05	ALS/IR_HiTH Low Byte [7:0]	The ALS/IR High Threshold registers provide the values to be used as the high trigger					
0x06	ALS/IR_HiTH High Byte [11:8], ASC mode = [15:8]	point for interrupt generation. An interrupt is generated when the value of ALS/IR conversion is greater than the high threshold. If ASC mode is active, the data is defined as 16 bits of [15:0].					
0x07	ALS/IR_LoTH Low Byte [7:0]	The ALS/IR Low Threshold registers provide the values to be used as the low trigger					
0x08	ALS/IR_LoTH High Byte [11:8], ASC mode = [15:8]	point for interrupt generation. An interrupt is generated when the value of ALS/ conversion is lower than the low threshold. If ASC mode is active, the data is defined 16 bits of [15:0].					

PS Registers

Register 0x09 (PS Command Set)

ADDR	R/W		Functio	on	Bit7	Bi	it6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default		
0x09	R/W	P	S Comm	nand			Р	S_PT [2:0		PS_I [1:0]			PS_PRST [1:0]			
Bit	Nan	ne						Fun	tion Des	ion Description						
7	Rese	rved	Reser	ved, defa	ult=0											
			PS Lig	ht Pulse	Time Sett	ing										
			000	0.1ms x1 = 0.1ms					100	0.1ms x16 = 1.6ms						
6:4	6:4 PS_PT		001	0.1ms x2 = 0.2ms					101	0.1ms x3	2 = 3.2ms					
			010	0.1ms x4 = 0.4ms					110	0.1ms x6	4 = 6.4ms					
			011	0.1ms x8 = 0.8ms					111	0.1ms x128 = 12.8ms						
3:2	PS.		PS Lig	ht Driving	g Current	Setting	, the c	urrent can	be magni	fied as x1,	x2, x10, x2	0 times by	/ 0x0D[7:4]			
3.2	гэ <u></u>	_1	00	2.5mA		01	5m/	٩	10	10mA		11	15mA			
			PS Persist Setting for consecutive count of data value out of threshold range													
1:0	1:0 PS_PRST			1 count	1 count				10	3 counts						
			01	2 counts					11	4 counts						

Register 0x0A/0B/0C (PS Data and Hi/Lo Threshold)

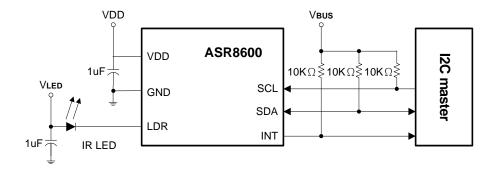
ADDR	Name	Function Description
0x0A	PS Data	Read the PS_Data 8 bits of [7:0].
0x0B	PS Hi_THreshold	The PS Hi_THreshold registers provide the values to be used as the high trigger point for interrupt generation. An interrupt is generated when the value of proximity conversion is higher than the threshold.
0x0C	PS Lo_THreshold	The PS Lo_THreshold registers provide the values to be used as the low trigger point for interrupt generation. An interrupt is generated when the value of proximity conversion is lower than the threshold.

Register 0x0D (PS Driving Current Magnification and Light Type Selection)

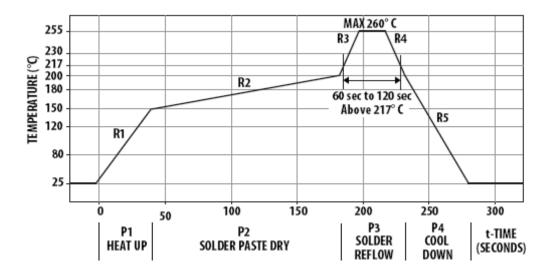
ADDR	R/W	F	unctio	on	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default
0x0D	R/W	PS	Light S	ource	PS Driving Current Magnification PS Light Type (IR/Green)							า)	0x00
Bit	Nan	ne		Function Description									
	PS Li	iaht	PS Dri	S Driving Current Magnification of PS_I 0x09[3:2]									
7:4	Curre	•	0000	x1 curre	nt			0101	x10 currei	nt			
	Magnifi	cation	1000	x2 curre	nt			1101	x20 currei	nt			
2.0		4 T. m a		ght Type (IR/Green)									
3:0	PS Light Type		0000	IR Light	t				Green Light				

UV Registers

Register 0x0E/0F (UV Data)


	•	
ADDR	Name	Function Description
0x0E	UV Data Low Byte [7:0]	
0x0F	UV Data High Byte [15:8]	Read Solar_UV (or UV)_Data 16 bits of [15:0].

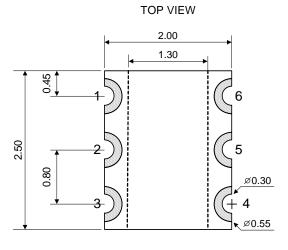
Register 0x10 (UV Command Set - Reserved)

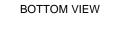

ADDR	R/W	Function	1	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default		
0x10	R/W	Solar_UV/UV Co (Reserved		UV_ASC#	UV_IT [2:0]			UV_GA	UV_GAIN [1:0] Pre_Am _Gain_Rang			0x00		
Bit		Name				F	unction	Descript	ion					
			Auto S	uto Scale Control of Solar_UV/UV mode										
7	ι	JV_ASC#	0	UV_IT and	ASC mode is active; UV_IT and UV-G are automatically scaled by internal circuit. T UV_IT and UV_G can only be read as the internal scaled ones, and UV Data would defined as 16 bits of [15:0].									
			1	UV_IT and	UV-Gain	are contro	lled by reg	ister 0x10	[6:4] and 0	x10[3:2].				
			Solar_UV Integration Time Setting					UV In	tegration T	ime Setting	9			
			000	40ms x1 = 40ms					0.32s x1 = 0.32s					
6:4		UV_IT [2:0]		40ms x2 =			0.32s	x2 = 0.64s	5					
0.4	U			40ms x4 = 160ms				0.32s	x4 = 1.28s	5				
			011	40ms x8 =			0.32s	0.32s x8 = 2.56s						
			100	40ms x16 = 640ms					0.32s x16 = 5.12s					
			UV Ga	in Setting fo	r sensitivi	ity range se	lection							
3:2	UV	_GAIN [1:0]	00	x1 Gain				10	10 x4 Gain					
			01	01 x2 Gain					11 x8 Gain					
			Pre_Amp Gain Range of All Sensing											
				Pre_Amp (Gain Rang	ge by defau	It value of	each sens	sing					
1:0		mp_Range[1:0] Reserved)	01	Pre_Amp Gain Range of x2 ~x6										
	(10	0 Pre_Amp Gain Range of x5 ~x9										
				1 Pre_Amp Gain Range of x9 ~x13										

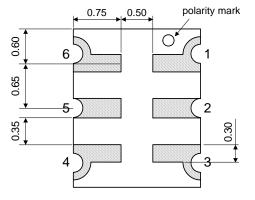
Application Circuit Reference

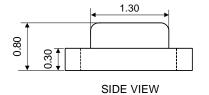
Recommended Reflow Profile

Process Zone	Symbol	∆T	Maximum △T/ ∆time or Duration	
Heat Up	P1, R1	25°C to 150°C	3°C/s	
Solder Paste Dry	P2, R2	150°C to 200°C	100s to 180s	
Solder Reflow	P3, R3	200°C to 260°C	3°C/s	
	P3, R4	260°C to 200°C	-6°C/s	
Cool Down	P4, R5	200°C to 25°C -6°C/s		
Time maintained above liquidu	s point, 217°C	> 217°C 60s to 120s		
Peak Temperature		260°C	-	
Time within 5°C of actual Peak Temperature		> 255°C	20s to 40s	
Time 25°C to Peak Temperature		25°C to 260°C	8 mins	




Package Information


OCDFN 6L (2mm x 2.5mm x 0.8mm) Outline Dimensions


unit:

1	VDD Power	4	Interrupt
2	Ground	5	I2C Clock
3	LED Driving Port	6	I2C Data