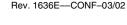
Features

- EE Programmable 65,536 x 1-, 131,072 x 1-, and 262,144 x 1-bit Serial Memories
 Designed to Store Configuration Programs for Field Programmable Gate
 Arrays (FPGAs)
- In-System Programmable (ISP) via 2-wire Bus
- Simple Interface to SRAM FPGAs
- Compatible with Atmel AT6000, AT40K and AT94K Devices, Altera FLEX[®], APEX[™] Devices, Lucent ORCA[®] FPGAs, Xilinx XC3000[™], XC4000[™], XC5200[™], Spartan[®], Virtex[™] FPGAs, Motorola MPA1000 FPGAs
- Cascadable Read-back to Support Additional Configurations or Higher-density Arrays
- Low-power CMOS EEPROM Process
- Programmable Reset Polarity
- Available in 6 mm x 6 mm x 1 mm 8-lead LAP (Pin-compatible with 8-lead SOIC/VOIC Packages), 8-lead PDIP, 8-lead SOIC and 20-lead PLCC Packages (Pin Compatible Across Product Family)
- Emulation of Atmel's AT24CXXX Serial EEPROMs
- Available in 3.3V ± 10% LV and 5V ± 5% C Versions
- Low-power Standby Mode

Description

The AT17C65/128/256 and AT17LV65/128/256 (low-density AT17 Series) FPGA configuration EEPROMs (Configurators) provide an easy-to-use, cost-effective configuration memory for Field Programmable Gate Arrays. The low-density AT17 Series is packaged in the 8-lead LAP, the 8-lead PDIP, the 8-lead SOIC and the popular 20-lead PLCC. The AT17 Series uses a simple serial-access procedure to configure one or more FPGA devices. The user can select the polarity of the reset function by programming four EEPROM bytes. These devices also support a write-protection mechanism within its programming mode.

The AT17 Series Configurators can be programmed with industry-standard programmers, Atmel's ATDH2200E Programming Kit or Atmel's ATDH2225 ISP Cable.

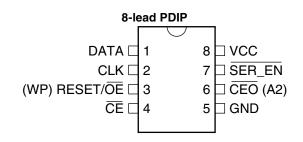


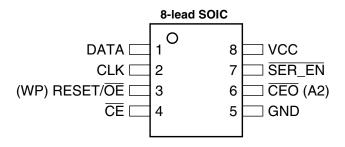
FPGA Configuration EEPROM Memory

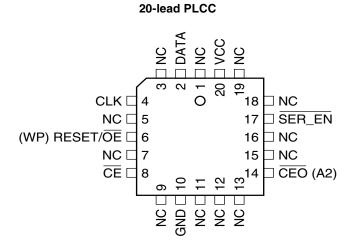
64-kilobit, 128-kilobit

and 256-kilobit

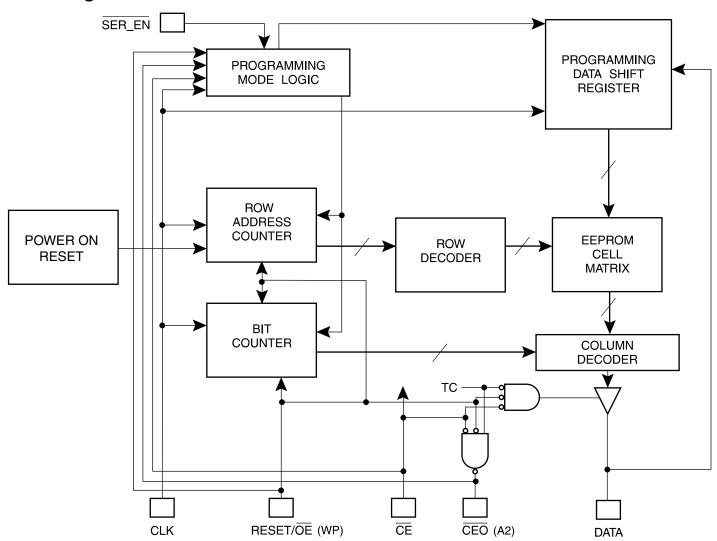
AT17C65 AT17LV65 AT17C128 AT17LV128 AT17C256 AT17LV256







Pin Configurations



Block Diagram

Device Description

The control signals for the configuration EEPROM ($\overline{\text{CE}}$, RESET/ $\overline{\text{OE}}$ and CCLK) interface directly with the FPGA device control signals. All FPGA devices can control the entire configuration process and retrieve data from the configuration EEPROM without requiring an external intelligent controller.

The configuration EEPROM RESET/ \overline{OE} and \overline{CE} pins control the tri-state buffer on the DATA output pin and enable the address counter. When RESET/ \overline{OE} is driven High, the configuration EEPROM resets its address counter and tri-states its DATA pin. The \overline{CE} pin also controls the output of the AT17 Series Configurator. If \overline{CE} is held High after the RESET/ \overline{OE} reset pulse, the counter is disabled and the DATA output pin is tri-stated. When \overline{OE} is subsequently driven Low, the counter and the DATA output pin are enabled. When RESET/ \overline{OE} is driven High again, the address counter is reset and the DATA output pin is tri-stated, regardless of the state of \overline{CE} .

When the configurator has driven out all of its data and $\overline{\text{CEO}}$ is driven Low, the device tri-states the DATA pin to avoid contention with other configurators. Upon power-up, the address counter is automatically reset.

This is the default setting for the device. Since almost all FPGAs use RESET Low and OE High, this document will describe RESET/OE.

Pin Description

8 DIP/ LAP/ SOIC Pin	20 PLCC Pin	Name	I/O	Description
1	2	DATA	I/O	Three-state DATA output for configuration. Open-collector bi-directional pin for programming.
2	4	CLK	I	Clock input. Used to increment the internal address and bit counter for reading and programming.
3	6	RESET/OE	I	Output Enable (active High) and RESET (active Low) when SER_EN is High. A Low level on RESET/OE resets both the address and bit counters. A High level (with CE Low) enables the data output driver. The logic polarity of this input is programmable as either RESET/OE or RESET/OE. For most applications, RESET should be programmed active Low. This document describes the pin as RESET/OE.
		WP ⁽¹⁾	I	Write protect (WP) input (when \overline{CE} is Low) during programming only (\overline{SER}_{EN} Low). When WP is Low, the entire memory can be written. When WP is enabled (High), the lowest block of the memory cannot be written.
4	8	CE	I	Chip Enable input (active Low). A Low level (with OE High) allows DCLK to increment the address counter and enables the data output driver. A High level on $\overline{\text{CE}}$ disables both the address and bit counters and forces the device into a low-power standby mode. Note that this pin will <i>not</i> enable/disable the device in the 2-wire Serial Programming mode ($\overline{\text{SER}}$ _EN Low).
5	10	GND		Ground pin. A 0.2 μF decoupling capacitor between V_{CC} and GND is recommended.
6	14	CEO	0	Chip Enable Output (active Low). This output goes Low when the address counter has reached its maximum value. In a daisy chain of AT17 Series devices, the $\overline{\text{CEO}}$ pin of one device must be connected to the $\overline{\text{CE}}$ input of the next device in the chain. It will stay Low as long as $\overline{\text{CE}}$ is Low and OE is High. It will then follow CE until OE goes Low; thereafter, $\overline{\text{CEO}}$ will stay High until the entire EEPROM is read again.
		A2	I	Device selection input, A2. This is used to enable (or select) the device during programming (i.e., when SER_EN is Low). A2 has an internal pull-down resistor.
7	17	SER_EN	I	Serial enable must be held High during FPGA loading operations. Bringing SER_EN Low enables the 2-wire Serial Programming Mode. For non-ISP applications, SER_EN should be tied to V _{CC} .
8	20	V _{CC}		+3.3V/+5V power supply pin.

Note: 1. This pin is not available for the LAP package.

FPGA Master Serial Mode Summary

The I/O and logic functions of any SRAM-based FPGA are established by a configuration program. The program is loaded either automatically upon power-up, or on command, depending on the state of the FPGA mode pins. In Master mode, the FPGA automatically loads the configuration program from an external memory. The AT17 Serial Configuration EEPROM has been designed for compatibility with the Master Serial mode.

This document discusses the Atmel AT40K, AT40KAL and AT94KAL applications as well as Xilinx applications.

Control of Configuration

Most connections between the FPGA device and the AT17 Serial EEPROM are simple and self-explanatory.

- The DATA output of the AT17 Series Configurator drives DIN of the FPGA devices.
- The master FPGA CCLK output drives the CLK input of the AT17 Series Configurator.
- The $\overline{\text{CEO}}$ output of any AT17 Series Configurator drives the $\overline{\text{CE}}$ input of the next Configurator in a cascade chain of EEPROMs.
- SER_EN must be connected to V_{CC} (except during ISP).

Cascading Serial Configuration EEPROMs

For multiple FPGAs configured as a daisy-chain, or for FPGAs requiring larger configuration memories, cascaded configurators provide additional memory.

After the last bit from the first configurator is read, the clock signal to the configurator asserts its $\overline{\text{CEO}}$ output low and disables its DATA line driver. The second configurator recognizes the low level on its $\overline{\text{CE}}$ input and enables its DATA output.

After configuration is complete, the address counters of all cascaded configurators are reset if the RESET/OE on each configurator is driven to its active (Low) level.

If the address counters are not to be reset upon completion, then the $\overline{\text{RESET}}/\text{OE}$ input can be tied to its inactive (High) level.

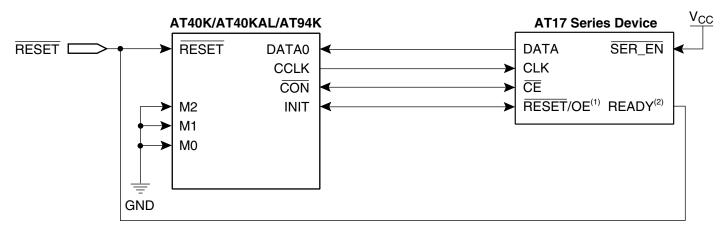
AT17 Series Reset Polarity

The AT17 Series Configurator allows the user to program the reset polarity as either RESET/OE or RESET/OE. This feature is supported by industry-standard programmer algorithms.

Programming Mode

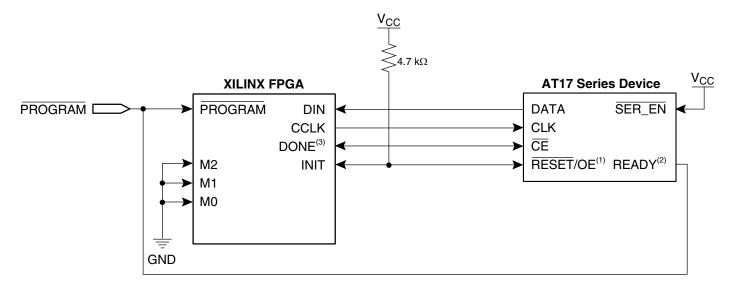
The programming mode is entered by bringing \overline{SER}_{EN} Low. In this mode the chip can be programmed by the 2-wire serial bus. The programming is done at V_{CC} supply only. Programming super voltages are generated inside the chip. The AT17C parts are read/write at 5V nominal. The AT17LV parts are read/write at 3.3V nominal.

Standby Mode


The AT17C/LV65/128/256 enters a low-power standby mode whenever $\overline{\text{CE}}$ is asserted High. In this mode, the configurator consumes less than 75 μA of current at 5.0V. The output remains in a high-impedance state regardless of the state of the $\overline{\text{OE}}$ input.

Example Circuits

Figure 1. AT17 Series Device for Programming PSLI Devices

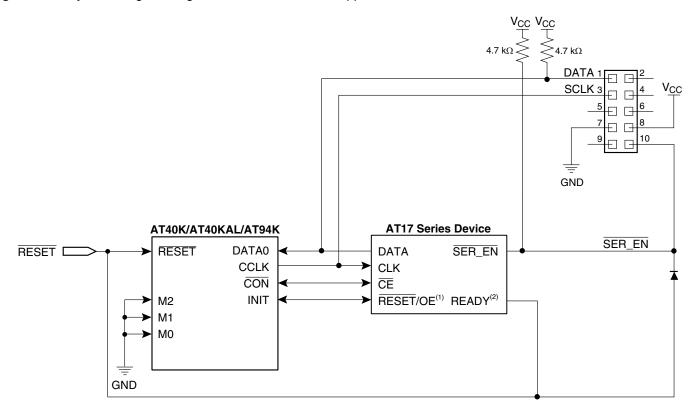


Notes: 1. Reset polarity must be set to active Low.

2. Use of the optional READY pin is not available on the AT17C/LV65/128/256 devices.

The FPGA CON/DONE output drives the CE input of the AT17 Series Configurator, while the RESET/OE input is driven by the FPGA INIT pin. This connection works under all normal circumstances, even when the user aborts the configuration before CON/DONE has gone High. A Low level on the RESET/OE input, during FPGA reset, clears the configurator's internal address pointer so that the reconfiguration starts at the beginning.

Figure 2. Drop-In Replacement of XC17/ATT17 PROMs for Xilinx/Lucent FPGA Applications



Notes: 1. Reset polarity must be set to active Low.

- 2. Use of the optional READY pin is not available on the AT17C/LV65/128/256 devices.
- 3. An internal pull-up resistor is enabled here for DONE.

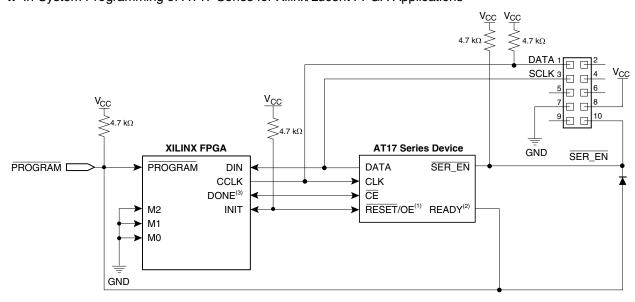

For details of ISP, please refer to the "Programming Specification for Atmel's AT17 and AT17A Series FPGA Configuration EEPROMs", available on the Atmel web site, at http://www.atmel.com/atmel/acrobat/doc0437.pdf.

Figure 3. In-System Programming of AT17 Series for PSLI Applications

- Notes: 1. Reset polarity must be set to active Low.
 - 2. Use of the optional READY pin is not available on the AT17C/LV65/128/256 devices.

Figure 4. In-System Programming of AT17 Series for Xilinx/Lucent FPGA Applications

Notes: 1. Reset polarity must be set to active Low.

- 2. Use of the optional READY pin is not available on the AT17C/LV65/128/256 devices.
- 3. An internal pull-up resistor is enabled here for DONE.

Absolute Maximum Ratings*

Operating Temperature55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground0.1V to V _{CC} +0.5V
Supply Voltage (V _{CC})0.5V to +7.0V
Maximum Soldering Temp. (10 sec. @ 1/16 in.)260°C
ESD (R _{ZAP} = 1.5K, C _{ZAP} = 100 pF)2000V

*NOTICE:

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those listed under operating conditions is not implied. Exposure to Absolute Maximum Rating conditions for extended periods of time may affect device reliability.

Operating Conditions

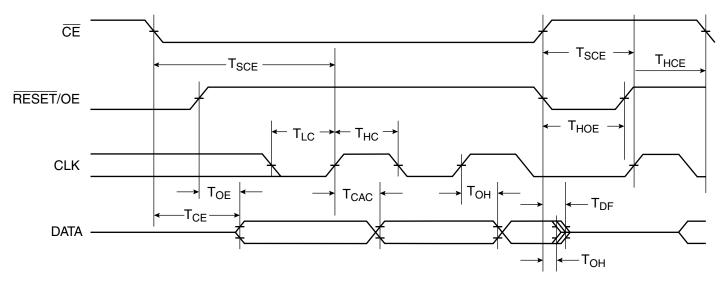
			AT17	СХХХ	AT17	LVXXX	
Symbol	Description		Min	Max	Min	Max	Units
	Commercial	Supply voltage relative to GND -0°C to +70°C	4.75	5.25	3.0	3.6	V
V_{CC}	Industrial	Supply voltage relative to GND -40°C to +85°C	4.5	5.5	3.0	3.6	V
	Military	Supply voltage relative to GND -55°C to +125°C	4.5	5.5	3.0	3.6	V

DC Characteristics

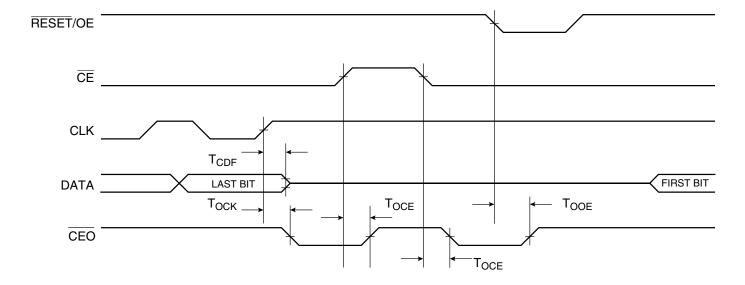
 V_{CC} = 5V ± 5% Commercial; V_{CC} = 5V ± 10% Industrial/Military

Symbol	Description		Min	Max	Units
V _{IH}	High-level Input Voltage		2.0	V _{CC}	V
V _{IL}	Low-level Input Voltage	0	0.8	V	
V _{OH}	High-level Output Voltage (I _{OH} = -4 mA)	-4 mA)			V
V _{OL}	Low-level Output Voltage (I _{OL} = +4 mA)	Commercial		0.32	V
V _{OH}	High-level Output Voltage (I _{OH} = -4 mA)	La alcontrila I	3.6		V
V _{OL}	Low-level Output Voltage (I _{OL} = +4 mA)	Industrial		0.37	V
V _{OH}	High-level Output Voltage (I _{OH} = -4 mA)	NATION	3.5		V
V _{OL}	Low-level Output Voltage (I _{OL} = +4 mA)	Military		0.4	V
I _{CCA}	Supply Current, Active Mode			10	mA
IL	Input or Output Leakage Current (V _{IN} = V _{CC} or GND)		-10	10	μΑ
	Complex Commands Chandles Made	Commercial		75	μΑ
I _{CCS}	Supply Current, Standby Mode	Industrial/Military		150	μΑ

DC Characteristics


 $V_{CC} = 3.3V \pm 10\%$

Symbol	ymbol Description			Max	Units
V _{IH}	High-level Input Voltage		2.0	V _{CC}	V
V_{IL}	Low-level Input Voltage		0	0.8	V
V _{OH}	High-level Output Voltage (I _{OH} = -2.5 mA)	Commonatal	2.4		V
V _{OL}	Low-level Output Voltage (I _{OL} = +3 mA)	Commercial		0.4	V
V _{OH}	High-level Output Voltage (I _{OH} = -2 mA)	lie di catri e l	2.4		V
V _{OL}	Low-level Output Voltage (I _{OL} = +3 mA)	Industrial		0.4	V
V _{OH}	High-level Output Voltage (I _{OH} = -2 mA)	NA:III.	2.4		V
V _{OL}	Low-level Output Voltage (I _{OL} = +2.5 mA)	Military		0.4	V
I _{CCA}	Supply Current, Active Mode			5	mA
IL	Input or Output Leakage Current (V _{IN} = V _{CC} or GND)		-10	10	μΑ
	County Courses Chandley Made	Commercial		50	μΑ
Iccs	Supply Current, Standby Mode	Industrial/Military		100	μΑ



AC Characteristics

AC Characteristics when Cascading

AC Characteristics for AT17C65/128/256

 $V_{CC} = 5V \pm 5\%$ Commercial; $V_{CC} = 5V \pm 10\%$ Industrial/Military

		Comn	Commercial		/Military ⁽¹⁾	
Symbol	Description	Min	Max	Min	Max	Units
T _{OE} ⁽²⁾	OE to Data Delay		30		35	ns
T _{CE} ⁽²⁾	CE to Data Delay		45		45	ns
T _{CAC} ⁽²⁾	CLK to Data Delay		50		55	ns
T _{OH}	Data Hold from $\overline{\text{CE}}$, OE, or CLK	0		0		ns
T _{DF} ⁽³⁾	CE or OE to Data Float Delay		50		50	ns
T _{LC}	CLK Low Time	20		20		ns
T _{HC}	CLK High Time	20		20		ns
T _{SCE}	CE Setup Time to CLK (to guarantee proper counting)	35		40		ns
T _{HCE}	CE Hold Time from CLK (to guarantee proper counting)	0		0		ns
T _{HOE}	OE High Time (guarantees counter is reset)	20		20		ns
F _{MAX}	Maximum Input Clock Frequency	12.5		12.5		MHz

- Notes: 1. Preliminary specifications for military operating range only.
 - 2. AC test load = 50 pF.
 - 3. Float delays are measured with 5 pF AC loads. Transition is measured ± 200 mV from steady-state active levels.

AC Characteristics for AT17C65/128/256 when Cascading

 V_{CC} = 5V ± 5% Commercial; V_{CC} = 5V ± 10% Industrial/Military

		Commercial		Industrial/Military ⁽¹⁾		
Symbol	Description	Min	Max	Min	Max	Units
T _{CDF} ⁽³⁾	CLK to Data Float Delay		50		50	ns
T _{OCK} ⁽²⁾	CLK to CEO Delay		35		40	ns
T _{OCE} ⁽²⁾	CE to CEO Delay		35		35	ns
T _{OOE} ⁽²⁾	RESET/OE to CEO Delay		30		35	ns
F _{MAX}	Maximum Input Clock Frequency	10		10		MHz

- Notes: 1. Preliminary specifications for military operating range only.
 - 2. AC test load = 50 pF.
 - 3. Float delays are measured with 5 pF AC loads. Transition is measured ± 200 mV from steady-state active levels.

AC Characteristics for AT17LV65/128/256

 $V_{CC} = 3.3V \pm 10\%$

		Comr	nercial	Industrial/Military ⁽¹⁾		
Symbol	Description	Min	Max	Min	Max	Units
T _{OE} ⁽²⁾	OE to Data Delay		50		55	ns
T _{CE} ⁽²⁾	CE to Data Delay		60		60	ns
T _{CAC} ⁽²⁾	CLK to Data Delay		75		80	ns
T _{OH}	Data Hold from CE, OE, or CLK	0		0		ns
T _{DF} ⁽³⁾	CE or OE to Data Float Delay		55		55	ns
T _{LC}	CLK Low Time	25		25		ns
T _{HC}	CLK High Time	25		25		ns
T _{SCE}	CE Setup Time to CLK (to guarantee proper counting)	35		60		ns
T _{HCE}	CE Hold Time from CLK (to guarantee proper counting)	0		0		ns
T _{HOE}	OE High Time (guarantees counter is reset)	25		25		ns
F _{MAX}	Maximum Input Clock Frequency	10		10		MHz

- Notes: 1. Preliminary specifications for military operating range only.
 - 2. AC test lead = 50 pF.
 - 3. Float delays are measured with 5 pF AC loads. Transition is measured ± 200 mV from steady-state active levels.

AC Characteristics for AT17LV65/128/256 when Cascading

 $V_{CC} = 3.3V \pm 10\%$

		Commercial		Industrial/Military ⁽¹⁾		
Symbol	Description	Min	Max	Min	Max	Units
T _{CDF} ⁽³⁾	CLK to Data Float Delay		60		60	ns
T _{OCK} ⁽²⁾	CLK to CEO Delay		55		60	ns
T _{OCE} ⁽²⁾	CE to CEO Delay		55		60	ns
T _{OOE} ⁽²⁾	RESET/OE to CEO Delay		40		45	ns
F _{MAX}	Maximum Input Clock Frequency	8		8		MHz

- Notes: 1. Preliminary specifications for military operating range only.
 - 2. AC test lead = 50 pF.
 - 3. Float delays are measured with 5 pF AC loads. Transition is measured ± 200 mV from steady-state active levels.

Thermal Resistance Coefficients⁽¹⁾

Package Type		θ _{JC} [°C/W]	θ _{JA} [°C/W] Airflow = 0 ft/min
Leadless Array Package (LAP)	8CN4	45	115.71
Plastic Dual Inline Package (PDIP)	8P3	37	107
Plastic Gull Wing Small Outline (SOIC)	8S1	45	150
Plastic Leaded Chip Carrier (PLCC)	20J	35	90

Note: 1. For more information refer to the "Thermal Characteristics of Atmel's Packages", available on the Atmel web site, at http://www.atmel.com/atmel/acrobat/doc0636.pdf.

Ordering Information – 5V Devices⁽¹⁾

Memory Size	Ordering Code	Package	Operation Range
64-Kbit	AT17C65-10CC	8CN4	Commercial
	AT17C65-10PC	8P3	(0°C to 70°C)
	AT17C65-10NC	8S1	,
	AT17C65-10JC	20J	
	AT17C65-10CI	8CN4	Industrial
	AT17C65-10PI	8P3	(-40°C to 85°C)
	AT17C65-10NI	8S1	(10 0 10 00 0)
	AT17C65-10JI	20J	
128-Kbit	AT17C128-10CC	8CN4	Commercial
	AT17C128-10PC	8P3	(0°C to 70°C)
	AT17C128-10NC	8S1	(6 6 15 7 6 6)
	AT17C128-10JC	20J	
	AT17C128-10CI	8CN4	Industrial
	AT17C128-10PI	8P3	(-40°C to 85°C)
	AT17C128-10NI	8S1	(10 0 10 00 0)
	AT17C128-10JI	20J	
256-Kbit	AT17C256-10CC	8CN4	Commercial
	AT17C256-10PC	8P3	(0°C to 70°C)
	AT17C256-10NC	8S1	(8 8 18 78 8)
	AT17C256-10JC	20J	
	AT17C256-10CI	8CN4	Industrial
	AT17C256-10PI	8P3	(-40°C to 85°C)
	AT17C256-10NI	8S1	(40 0 10 00 0)
	AT17C256-10JI	20J	

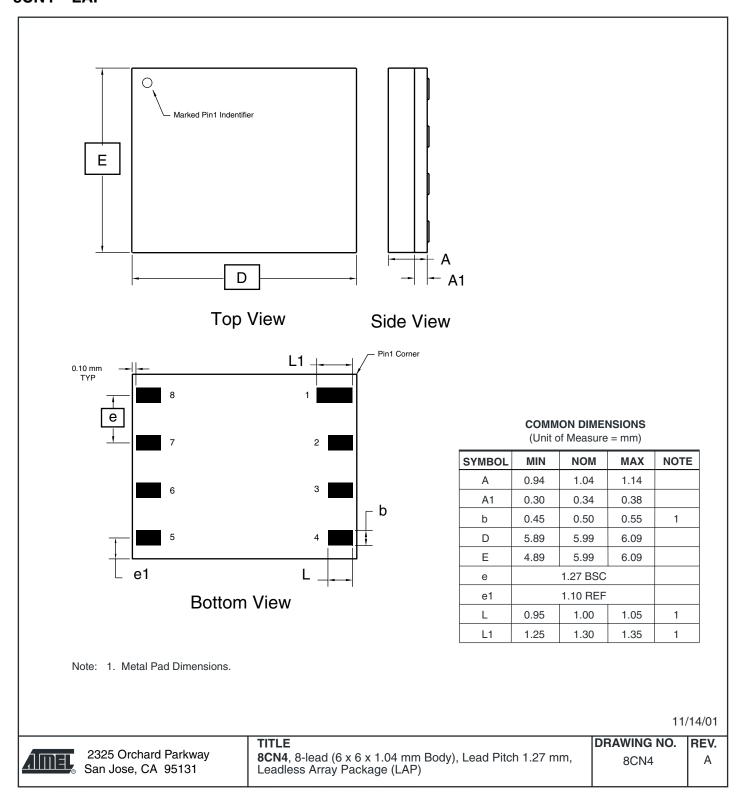
Note:
1. Currently there are two types of low-density configurators. The new version will be identified by a "B" after the date code.
Only the "B" version is available in the 8-lead SOIC devices. The "B" version is fully backward-compatible with the original devices so existing customers will not be affected. The new parts no longer require a mux for ISP. See the programming specification for more details.

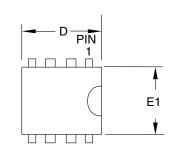
	Package Type
8CN4	8-lead, 6 mm x 6 mm x 1 mm, Leadless Array Package (LAP) – Pin-compatible with 8-lead SOIC/VOID Packages
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
8S1	8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)
20J	20-lead, Plastic J-leaded Chip Carrier (PLCC)

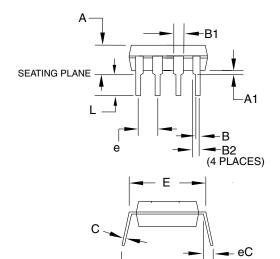
Ordering Information – 3.3V Devices⁽¹⁾

Memory Size	Ordering Code	Package	Operation Range
64-Kbit	AT17LV65-10CC	8CN4	Commercial
	AT17LV65-10PC	8P3	(0°C to 70°C)
	AT17LV65-10NC	8S1	(======
	AT17LV65-10JC	20J	
	AT17LV65-10CI	8CN4	Industrial
	AT17LV65-10PI	8P3	(-40°C to 85°C)
	AT17LV65-10NI	8S1	(10 0 10 00 0)
	AT17LV65-10JI	20J	
128-Kbit	AT17LV128-10CC	8CN4	Commercial
	AT17LV128-10PC	8P3	(0°C to 70°C)
	AT17LV128-10NC	8S1	(0 0 10 7 0 0)
	AT17LV128-10JC	20J	
	AT17LV128-10CI	8CN4	Industrial
	AT17LV128-10PI	8P3	(-40°C to 85°C)
	AT17LV128-10NI	8S1	(10 0 10 00 0)
	AT17LV128-10JI	20J	
256-Kbit	AT17LV256-10CC	8CN4	Commercial
	AT17LV256-10PC	8P3	(0°C to 70°C)
	AT17LV256-10NC	8S1	(0 0 10 70 0)
	AT17LV256-10JC	20J	
	AT17LV256-10CI	8CN4	Industrial
	AT17LV256-10PI	8P3	(-40°C to 85°C)
	AT17LV256-10NI	8S1	(10 0 10 00 0)
	AT17LV256-10JI	20J	

Note:
1. Currently there are two types of low-density configurators. The new version will be identified by a "B" after the date code.
Only the "B" version is available in the 8-lead SOIC devices. The "B" version is fully backward-compatible with the original devices so existing customers will not be affected. The new parts no longer require a mux for ISP. See the programming specification for more details.


	Package Type			
8CN4	8-lead, 6 mm x 6 mm x 1 mm, Leadless Array Package (LAP) – Pin-compatible with 8-lead SOIC/VOID Packages			
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)			
8S1	8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)			
20J	20-lead, Plastic J-leaded Chip Carrier (PLCC)			




Packaging Information

8CN4 - LAP

8P3 - PDIP

Notes:

- 1. This package conforms to JEDEC reference MS-001 BA.
- Dimensions D and E1 do not include mold Flash or Protrusion. Mold Flash or Protrusion shall not exceed 0.25 mm (0.010").

eВ

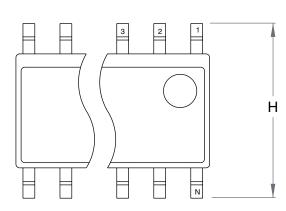
COMMON DIMENSIONS

(Unit of Measure = mm)

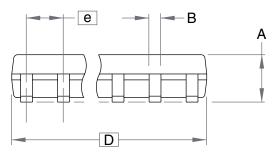
SYMBOL	MIN	NOM	MAX	NOTE
Α	_	_	4.318	
A1	0.381	_	_	
D	9.144	_	9.652	Note 2
E	7.620	-	8.255	
E1	6.096	_	6.604	Note 2
В	0.406	_	0.508	
B1	1.397	_	1.651	
B2	0.762	_	1.143	
L	3.175	_	3.429	
С	0.203	_	0.356	
eB	ı	_	10.922	
eC	0.000	_	1.524	
е	2.540 TYP			

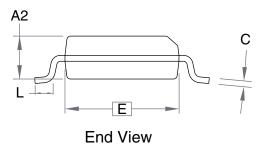
09/28/01

2325 Orchard Parkway San Jose, CA 95131 TITLE


8P3, 8-lead (0.300"/7.62 mm Wide) Plastic Dual Inline Package (PDIP)

BP3 B




8S1 - SOIC

Top View

Side View

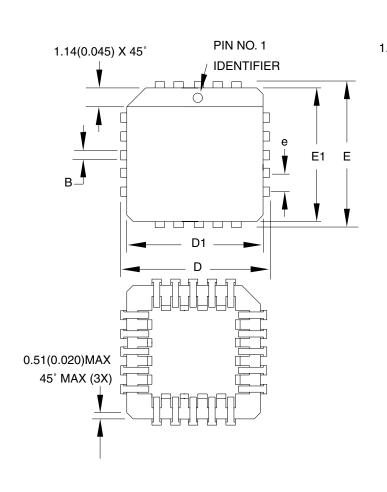
COMMON DIMENSIONS

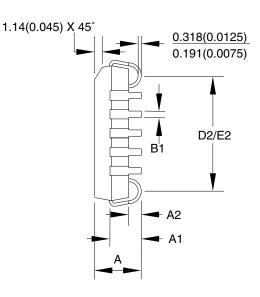
(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	_	_	1.75	
В	ı	_	0.51	
С	-	_	0.25	
D	-	-	5.00	
E	-	-	4.00	
е	1.27 BSC			
Н	-	_	6.20	
L	-	_	1.27	

Note: This drawing is for general information only. Refer to JEDEC Drawing MS-012 for proper dimensions, tolerances, datums, etc.

10/10/01


2325 Orchard Parkway
San Jose, CA 95131


TITLE
8S1, 8-lead (0.150" Wide Body), Plastic Gull Wing
Small Outline (JEDEC SOIC)

DRAWING NO.
8S1

A

20J - PLCC

COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	4.191	-	4.572	
A1	2.286	-	3.048	
A2	0.508	_	_	
D	9.779	-	10.033	
D1	8.890	-	9.042	Note 2
E	9.779	-	10.033	
E1	8.890	_	9.042	Note 2
D2/E2	7.366	-	8.382	
В	0.660	_	0.813	
B1	0.330	_	0.533	
е		1.270 TYP	•	

Notes:

- 1. This package conforms to JEDEC reference MS-018, Variation AA.
- Dimensions D1 and E1 do not include mold protrusion.
 Allowable protrusion is .010"(0.254 mm) per side. Dimension D1 and E1 include mold mismatch and are measured at the extreme material condition at the upper or lower parting line.
- 3. Lead coplanarity is 0.004" (0.102 mm) maximum.

10/04/01

REV.

	0005.0	TITLE	DRAWING NO.
<u>AIMEL</u>	2325 Orchard Parkway San Jose, CA 95131	20J, 20-lead, Plastic J-leaded Chip Carrier (PLCC)	20J

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel Sarl Route des Arsenaux 41 Casa Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Iapan

Atmel Japan K.K. 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory

Atmel Corporate 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 436-4270 FAX 1(408) 436-4314

Microcontrollers

Atmel Corporate 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 436-4270 FAX 1(408) 436-4314

Atmel Nantes La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Atmel Rousset Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

Atmel Colorado Springs 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Atmel Smart Card ICs Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743 RF/Automotive
Atmel Heilbronn
Theresienstrasse 2
Postfach 3535

74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

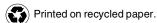
Atmel Colorado Springs 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Atmel Grenoble Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

Atmel Configurator Hotline (408) 436-4119

Atmel Configurator e-mail configurator@atmel.com

FAQ Available on web site e-mail literature@atmel.com


Web Site http://www.atmel.com

© Atmel Corporation 2001.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Atmel® is the registered trademark of Atmel.

FLEX[®] is the registered trademark of Altera Corporation. APEX[™] is the trademark of Altera Corporation; ORCA[®] is the registered trademark of Lucent Technologies; Spartan[®] is the registered trademark of Xilinx, Inc.; XC3000[™], XC4000[™], XC5200[™] and Virtex[™] are the trademarks of Xilinx, Inc.; Other terms and product names may be trademarks of others.

