AT1808

1.5A Ultra Low Dropout Regulator

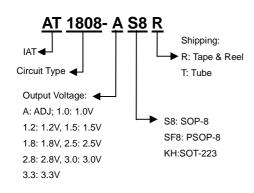
Immense Advance Tech.

FEATURES

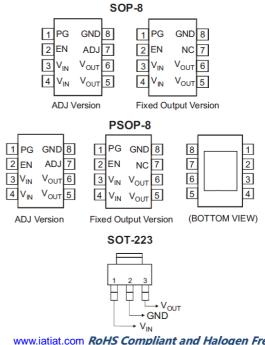
- Adjustable Output from 0.8V
- Input Voltage as Low as 1.8V
- **Enable Pin**
- 250mV Dropout @1A
- Over Current and Over Temperature Protection
- 5μA Quiescent Current in Shutdown
- P-CH Design to Reduce the Operation Current
- Full Industrial Temperature Range
- Vout Power Good Signal

APPLICATION

- Notebook computers
- **Battery Powered Systems**
- Motherboards/Peripheral Cards
- Telecom/Networking Cards
- Industrial Applications
- Set Top Boxes
- Wireless Infrastructure
- Medical Equipment


DESCRIPTION

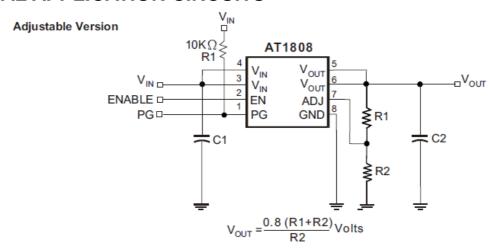
The AT1808 is a high performance positive voltage regulator designed for use in applications requiring very low input voltage and very low dropout voltage at up to 1.5A amps. It operates with a V_{IN} as low as 1.8V, with output voltage programmable as low as 0.8V. The AT1808 features ultra low dropout, ideal for applications where V_{OUT} is very close to V_{IN} . Additionally, the AT1808 has an enable pin to further reduce power dissipation while shut down. The enable pin may be tied to VIN if it is not required for ON/OFF control. The AT1808 provides excellent regulation over variations in line , load and temperature. The AT1808 provides a Power Good signal to indicate if the voltage level of V_{OUT} reaches 92% of its rating value.

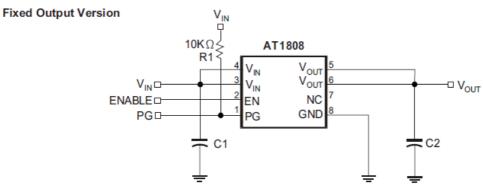

The optimum thermal condition has to consider the layout placement and application to achieve its satisfied high output current requirement.

The AT1808 are available in SOP-8, PSOP-8 and SOT-223 packages.

ORDER INFORMATION

PIN CONFIGURATIONS (TOP VIEW)

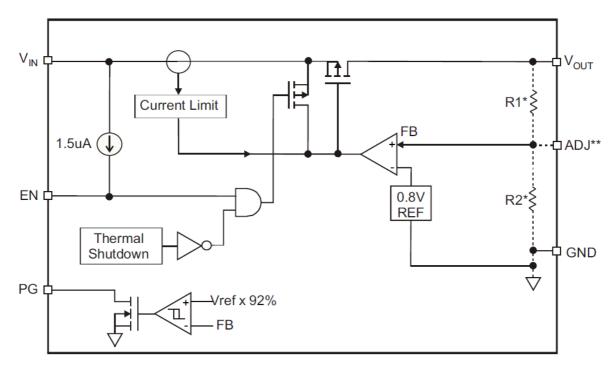

www.iatiat.com RoHS Compliant and Halogen Free



PIN DESCRIPTIONS

Pin Name	Pin Description		
PG	Assert high once V _{OUT} reaches 92% of its rating voltage. Open-drain output.		
	Enable Input. Pulling this pin below 0.4V turns the regulator off, reducing the quiescent		
EN	current to a fraction of its operating value. The device will be enabled if this pin is left open.		
	Connect to V _{IN} if not being used.		
V	Input Voltage. A large bulk capacitance should be placed closely to this pin to ensure that the		
V _{IN}	input supply does not sag below 1.8V.		
Vout	The pin is the power output of the device.		
	For the adjustable versions of the AT1808. This is the input to the error amplifier. The addition		
ADJ	reference voltage is 0.8Vreferenced to ground. The output range is 0.8V to 5V:		
ADJ	$V_{OUT} = \frac{0.8(R1 + R2)}{R2} \text{ Volts}$		
GND	Reference Ground.		
THERMAL	Pad for heatsinking purposes. Connect to ground plane using multiple vias. Not electrically		
PAD	connected internally.		

TYPICAL APPLICATION CIRCUITS



Rev1.0 Sep.2015

BLOCK DIAGRAM

^{*} Feedback network in fixed versions only

ABSOLUTE MAXIMUM RATINGS(Note 1)

Parameter			Max Value	Unit
V _{IN} , EN, V _{OUT} , PG, addition Absolute Voltage			6	V
Power Dissipation			Internally Limited	W
	SOP-8		160	
Thermal Resistance Junction to Ambient	PSOP-8(Note 2)	θ_{JA}	36	€\M
	SOT-223		136	
Operating Ambient Temperature Range			-40 to 85	C
Operating Junction Temperature Range			-40 to +125	${\mathbb C}$
Storage Temperature Range			-65 to +125	
Lead Temperature(Soldering) 5 Sec.			260	C
ESD Rating (Human Body Mode) (Note 3)			2	kV

Note 1: Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.

^{* *}Adjustable version only

Note 2: 2 square inch of FR-4, double sided, 1 oz. minimum copper weight.

Note 3: Devices are ESD sensitive. Handling precaution recommended.

ELECTRICAL CHARACTERISTICS

Unless specified: $V_{EN}=V_{IN}$. Adjustable version: $V_{IN}=3.3V$ and $I_{LOAD}=10\mu A$ to 1A, Fixed version: $V_{IN}=V_{OUT}+0.5V$ and $I_{LOAD}=10\mu A$ to 1A. $T_{J}=25$ $^{\circ}$ C

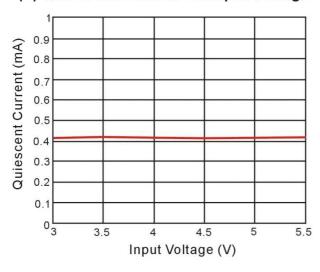
Vin Supply Voltage Range V _{IN} I.8 − 5.5 V Supply Current I _{SS} − 0.4 1.45 uA Quiescent Current I _Q V _{IN} = 5.5V, V _{EN} = 0V − 5 10 uA Vour Vour ≤ 1.3V, V _{IN} = 1.8V, I _{LOAD} = 10mA − 2% Vour +2% V V V V V 1.0 uA V V V V V 1.0 uA V	Parameter	Symbol	Condition	Min	Тур	Max	Uni t
Range	V _{IN}			•	•	•	•
Quiescent Current I₀ V _{IN} = 5.6V, V _{EN} = 0V − 5 10 uA Vour Vour Vout ≤1.3V, V _{IN} =1.8V, I _{LOAD} =10mA (V _{OUT} + 1.3V, V _{IN} =1.8V, I _{LOAD} =10mA (Note 4)(Fixed Voltage) Vout ≤1.3V, V _{IN} =(V _{OUT} +0.5V), I _{LOAD} =10mA (Note 4) -2% (V _{OUT} + 2% (V _{OUT} + 2.5V) (V _{OUT} + 2.5V), I _{LOAD} =10mA (Note 4) Vout ≤1.3V, V _{IN} =(V _{OUT} +0.5V), I _{LOAD} =10mA (Note 4) -2% (V _{OUT} > 1.3V, V _{IN} =(V _{OUT} +0.5V), I _{LOAD} =10mA (Note 4) -2% (V _{OUT} > 1.3V, V _{IN} =(V _{OUT} +0.5V), I _{LOAD} =10mA (Note 4) -2% (V _{OUT} > 1.3V, V _{IN} =(V _{OUT} +0.5V), I _{LOAD} =10mA (Note 4) -2% (V _{OUT} > 1.3V, V _{IN} =(V _{OUT} +0.5V), I _{LOAD} =1A (Note 4) -2% (V _{OUT} > 1.3V, V _{IN} =(V _{OUT} +0.5V), I _{LOAD} =1A (Note 4) -2% (V _{OUT} > 1.3V, V _{IN} =(V _{OUT} +0.5V), I _{IOAD} =1A (Note 4) -2% (V _{OUT} > 1.3V, V _{IN} =(V _{OUT} +0.5V), I _{IOAD} =1A (Note 4) -2% (V _{OUT} > 1.3V, V _{IN} =(V _{OUT} +1.5V, I _{IOAD} =1A) (Note 4) -2% (V _{OUT} > 1.3V, V _{IN} =(V _{OUT} +1.5V, I _{IOAD} =1A) (Note 4) -2% (V _{OUT} > 1.3V, V _{IN} =(V _{OUT} +1.5V, I _{IOAD} =1A) (Note 4) -2% (V _{OUT} > 1.3V, V _{IN} =(V _{OUT} +1.5V, I _{IOAD} =1A) (Note 4) -2% (V _{OUT} > 1.3V, V _{IN} =(V _{OUT} +1.5V, I _{IOAD} =1A) (Note 4) -2% (V _{OUT} > 1.3V, V _{IN} =(V _{OUT} +1.5V, I _{IOAD} =1A) (Note 4) -2% (V _{OUT} > 1.3V, V _{IN} =(V _{OUT} +1.5V, I _{IOAD} =1A) (Note 4) -2% (V _{OUT} > 1.3V, V _{IN} =(V _{OUT} +1.5V, I _{IOAD} =1A) (Note 4) -2% (V _{OUT} > 1.3V, V _{IN} =(V _{OUT} +1.5V, I _{IOAD} +1A) (Note 4) -2% (V _{OUT} > 1.3V, I _{IOAD} +1A (Note 4) (Note 4) -2% (V _{OUT} > 1.3V, I _{IOAD} +1A (Note 4) (Note 4) -2% (V _{OUT} > 1.3V, I _{IOAD} +1A (Note 4) (Note		V _{IN}		1.8	_	5.5	V
Vour Vour Substitute (Note 4)(Fixed Voltage) Vour ≤ 1.3V, V _{IN} =1.8V, I _{LOAD} =10mA Vour ± 2.9V, I _{VOLD} =10mA - 2% Vour ± +2% Vour ± +2% Vour ± 1.3V, V _{IN} =1.8V, I _{LOAD} =10mA Vour ± 1.3V, V _{IN} =1.8V, I _{VOLD} =10mA Vour ± 1.3V, V _{IN} =1.8V, I _{VOLD} =10mA Vour ± 1.3V, V _{IN} =1.8V, I _{VOLD} =10mA Vour ± 1.3V, I _{VN} =1.8V, I _{VN} =1	Supply Current	I _{SS}		_	0.4	1.45	uA
Output Voltage (Note 4)(Fixed Voltage) Vour Vour≤1.3V, V _{IN} =1.8V, I _{LOAD} =10mA Vour >1.3V, V _{IN} =1.8V, I _{LOAD} =10mA -2% Vour +2% V Line Regulation (Note 4) Reg_line Vour≤1.3V, V _{IN} =1.8V to 5.5V, I _{LOAD} =10mA Vour >1.3V, V _{IN} =1.8V to 5.5V, I _{LOAD} =10mA - 0.2 1.0 %/V Load Regulation (Note 4) Reg_load Vour≤1.3V, V _{IN} =1.8V, 10mA ≤ I _{LOAD} ≤1A Vour≤1.3V, V _{IN} =(Vour +0.5V), 10mA≤ 1A Vour≤1.3V, V _{IN} =(Vour +0.5V), 10mA≤ 1A Pix.Vour>1.3V, V _{IN} =(Vour +0.5V), 10mA≤ 1A Pix.Vour>1.5V _{OUT} , I _{LOAD} ≤1A - 550 650 350 mV Dropout Voltage (Note 4,5) Fix.1.2V ≤ Vour≤1.5, I _{LOAD} =1A Pix.Vour≥1.5, I _{LOAD} =1A Pix.Vour≥2.5V, I _{LOAD} =1A - 550 650 350 mV Vour(cont) Vour(cont) Vour=2.5V, I _{LOAD} =1A - 250 350 mV Vour(Note 4,5) Vour(sour) Vour(sour) - 250 350 mV Vour(sour) Current Limit (Note 6) I _{CL} 1.6 2 - A ADJ V _{REF} V _{IN} =3.3V, V _{ADJ} =V _{OUT} , I _{LOAD} =10mA 0.788 0.8 0.8 0.812 V V Adjust Pin Current (Note 6) I _{ADJ} V _{ADJ} =V _{REF} - 80 200 nA	Quiescent Current	ΙQ	V _{IN} = 5.5V, V _{EN} = 0V	_	5	10	uA
A)(Fixed Voltage)	V _{OUT}			•	•	•	
Line Regulation (Note 4) Reg_line V _{OUT} >1.3V, V _{IN} =(V _{OUT} +0.5V) to 5.5V, 10mA - 0.2 1.0 %/V		V _{OUT}		-2%	V _{OUT}	+2%	V
Dropout Voltage (Note 4) Reg_load Vout >1.3V, Vin=(Vout +0.5V), 10mA≤ - 0.1 1.0 %	•	Reg_line	$V_{OUT} > 1.3V, V_{IN} = (V_{OUT} + 0.5V)$ to 5.5V,10mA	_	0.2	1.0	%/V
Dropout Voltage (Note 4,5) V _D Fix.1.2V ≤ V _{OUT} ≤ 1.5, I _{LOAD} = 1A Fix.V _{OUT} , I _{LOAD} = 1A − 550 250 350 350 mV VOUT(cont) Current Limit (Note 6) I _{CL} 1.6 2 − A ADJ Reference Voltage (Note 3) V _{REF} V _{IN} = 3.3V, V _{ADJ} = V _{OUT} , I _{LOAD} = 10mA 0.788 0.8 0.812 V Adjust Pin Current (Note 6) I _{ADJ} V _{ADJ} = V _{REF} − 80 200 nA Adjust Pin Threshold (Note 7) V _{TH(ADJ)} V _{ADJ} = V _{REF} − 80 0.00 nA Enable Pin Current I _{EN} V _{EN} =0V − 1.5 10 µA Enable Pin Threshold V _{IL} V _I − 0.4 V PG VOUT Power Good V _{IL} V _I − 0.4 V VOUT Power Good Voltage V _{THPG} − 7 − % Hysteresis T _{HYPG} − 7 − % Over T	· ·	Reg_load	$V_{OUT} > 1.3V, V_{IN} = (V_{OUT} + 0.5V), 10 \text{mA} \le$	_	0.1	1.0	%
Adj. Vout=2.5v, ILOAD=1A		V_D	$Fix.1.2V \le V_{OUT} \le 1.5, I_{LOAD} = 1A$	_			mV
Current Limit (Note 6) I _{CL} 1.6 2 − A ADJ Reference Voltage (Note 3) V _{REF} V _{IN} =3.3V, V _{ADJ} =V _{OUT} , I _{LOAD} =10mA 0.788 0.8 0.812 V Adjust Pin Current (Note 6) I _{ADJ} V _{ADJ} = V _{REF} − 80 200 nA Adjust Pin Threshold (Note 7) V _{TH(ADJ)} 0.05 0.16 0.40 V EN EN Enable Pin Current I _{EN} V _{EN} =0V − 1.5 10 µA Enable Pin Threshold V _I 1.6 − − V V Threshold V _{IL} 1.6 − − 0.4 V PG VOUT Power Good Voltage V _{THPG} − 7 − % Hysteresis T _{HYPG} − 7 − % Over Temperature Protection High Trip Level T _{HI} − 160 − ℃	(Note 4,5)		Adj. V _{OUT} =2.5v, I _{LOAD} =1A	_	250	350	
6) ICL 1.6 Z A ADJ Reference Voltage (Note 3) V _{REF} V _{IN} =3.3V, V _{ADJ} =V _{OUT} , I _{LOAD} =10mA 0.788 0.8 0.812 V Adjust Pin Current (Note 6) I _{ADJ} V _{ADJ} = V _{REF} — 80 200 nA Adjust Pin Threshold (Note 7) V _{TH(ADJ)} 0.05 0.16 0.40 V Enable Pin Current I _{EN} V _{EN} =0V — 1.5 10 μA Enable Pin Threshold V _{IH} 1.6 — — V V PG VOUT Power Good Voltage V _{THPG} — 92 — % Hysteresis T _{HYPG} — 7 — % Over Temperature Protection T _{HI} — 160 — C	$V_{OUT(CONT)}$						
Reference Voltage (Note 3) V_{REF} V_{IN} = 3.3V, V_{ADJ} = V_{OUT}, I_{LOAD} = 10mA 0.788 0.8 0.812 V Adjust Pin Current (Note 6) I_{ADJ} V_{ADJ} = V_{REF} - 80 200 nA Adjust Pin Threshold (Note 7) 0.05 0.16 0.40 V EN Enable Pin Current I_{EN} V_{EN} = 0V - 1.5 10 μA Enable Pin Threshold V_{IL} - 0.4 V PG VOUT Power Good Voltage V_{THPG} - 7 - % High Trip Level T_{HI} - 160 - ℃ Countries T_{HI} - 160 - % Countries T_{HI} - % T_{EN} - % Countries T_{HI} - % T_{EN} Countries T_{HI} - % Countri	,	I _{CL}		1.6	2	_	А
Note 3 VREF VIN = 3.3 V, VADJ = VOUT, ILOAD = 10 mA 0.788 0.8 0.812 V Adjust Pin Current (Note 6)	ADJ						
(Note 6) I _{ADJ} V _{ADJ} = V _{REF} — 80 200 IIA Adjust Pin Threshold (Note 7) V _{TH(ADJ)} 0.05 0.16 0.40 V EN Enable Pin Current I _{EN} V _{EN} =0V — 1.5 10 μA Enable Pin Threshold V _{IH} 1.6 — — V V PG VOUT Power Good Voltage V _{THPG} — 92 — % Hysteresis T _{HYPG} — 7 — % Over Temperature Protection High Trip Level T _{HI} — 160 — C	0	V_{REF}	$V_{IN} = 3.3V$, $V_{ADJ} = V_{OUT}$, $I_{LOAD} = 10$ mA	0.788	0.8	0.812	V
Note 7 VTH(ADJ) 0.05 0.16 0.40 V	(Note 6)	I _{ADJ}	$V_{ADJ} = V_{REF}$	_	80	200	nA
Enable Pin Current I _{EN} V _{EN} =0V — 1.5 10 μA Enable Pin Threshold V _{IH} 1.6 — — V PG VOUT Power Good Voltage V _{THPG} — 92 — % Hysteresis T _{HYPG} — 7 — % Over Temperature Protection High Trip Level T _{HI} — 160 — ℃	-	$V_{TH(ADJ)}$		0.05	0.16	0.40	V
Enable Pin Threshold V _{IH} 1.6 − − V PG VOUT Power Good Voltage V _{THPG} − 92 − % Hysteresis T _{HYPG} − 7 − % Over Temperature Protection High Trip Level T _{HI} − 160 − ℃	EN						
Threshold V_{IL} $ 0.4$ V PG VOUT Power Good Voltage Hysteresis T_{HYPG} $ 7$ $-$ % Over Temperature Protection High Trip Level T_{HI} $ 160$ $ \mathbb{C}$	Enable Pin Current	I _{EN}	V _{EN} =0V	_	1.5	10	μΑ
PG VOUT Power Good Voltage V _{THPG} - 92 - % Hysteresis T _{HYPG} - 7 - % Over Temperature Protection - 160 - ℃	Enable Pin	V _{IH}		1.6	_	_	V
VOUT Power Good Voltage VTHPG — 92 — % Hysteresis THYPG — 7 — % Over Temperature Protection — 160 — ℃ High Trip Level THI — 160 — ℃	Threshold	V _{IL}		_	_	0.4	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PG						
Over Temperature Protection High Trip Level T _{HI} − 160 − ℃		V_{THPG}		_	92	_	%
High Trip Level T _{HI} − 160 − ℃	Hysteresis	T _{HYPG}		_	7	_	%
	Over Temperature Pr	otection		•	•	•	-
Hysteresis T _{HYST} − 20 − ℃	High Trip Level	T _{HI}		_	160	_	C
	Hysteresis	T _{HYST}		_	20	_	C

Note 5: Low duty cycle pulse testing with Kelvin connections required.

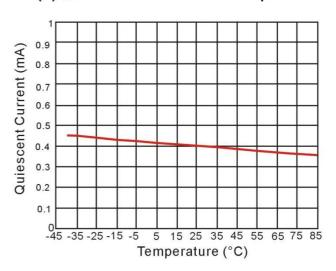
Rev1.0 Sep.2015

AT1808

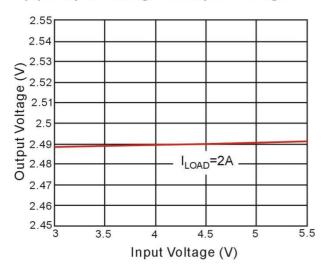
1.5A Ultra Low Dropout Regulator

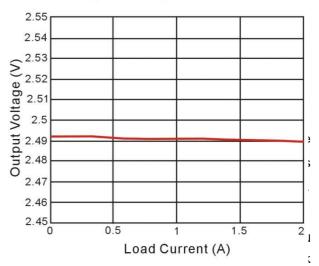

Immense Advance Tech.

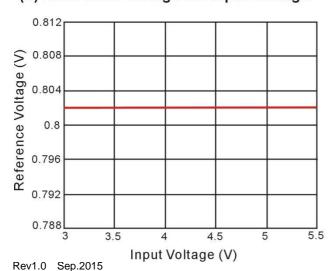
- Note 4: Defined as the input to output differential at which the output voltage drops to 2% below the value measured at a differential of 0.8V, and V_{OUT} set to 2.5V.
- Note 5: Guaranteed by design.
- Note 6: When V_{ADJ} exceeds this threshold, the "Sense Select" switch disconnects the internal feedback chain from the error amplifier and connects V_{ADJ} instead.



TYPICAL OPERATING CHARACTERISTICS


(1) Quiescent Current vs. Input Voltage


(2) Quiescent Current vs. Temperature


(3) Output Voltage vs. Input Voltage

(4) Output Voltage vs. Load Current

(5) Reference Voltage vs. Input Voltage

www.iatiat.com RoHS Compliant and Halogen Free

APPLICATION INFORMATION

Introduction

The AT1808 is intended for applications where high current capability and very low dropout voltage are required. It provides a very simple, low cost solu-tion that uses very little PCB real estate. Additional features include an enable pin to allow for a very low power consumption standby mode, and a fully adjustable output.

Component Selection

Input capacitor: A minimum of $10\mu F$ ceramic ca-pacitor is recommended to be placed directly next to the V_{IN} pin. This allows for the device being some distance from any bulk capacitance on the rail. Additionally, bulk capacitance of about $100\mu F$ may be added closely to the input supply pin of the AT1808 to ensure that VIN does not sag, improves load transient response.

Output Capacitor: A minimum bulk capacitance of $10\mu F$, along with a $0.1\mu F$ ceramic decoupling ca-pacitor is recommended. Increasing the bulk ca-pacitance will improve the overall transient re-sponse. The use of multiple lower value ceramic ca-pacitors in parallel to achieve the desired bulk ca-pacitance will not cause stability issues. Although designed for use with ceramic output capacitors , and thus will also work comfortably with tantalum output capacitors.

External Voltage Selection Resistors : The use of 1% resistors, and consider for system stability and power losing , we recommend to design high dividing resistance (R1>100K Ω) to strengthen the benefits which AT1808 has inherent .

Noise Immunity: In very electrically noisy envi-ronments, it is recommended that $0.1\mu F$ ceramic capacitors be placed from VIN to GND and V_{OUT} to

GND as close to the device pins as possible.

Parallel a small cap (ex:100p) would be ecom-mended to improve the transient response.

Thermal Considerations

The power dissipation in the AT1808 is approxi-mately equal to the product of the output current and the input to output voltage differential:

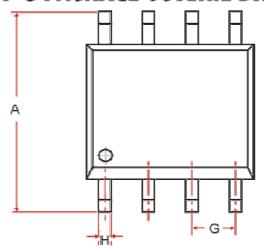
The absolute worst-case dissipation is given by:

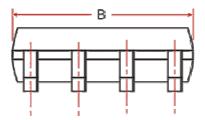
$$P_{D(MAX)} = (V_{IN(MAX)} - V_{OUT(MIN)})xI_{LOAD(MAX)} + V_{IN(MAX)}xI_{G(MAX)}$$

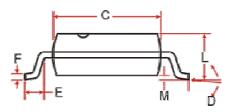
For a typical scenario, V_{IN} =3.3V ±5%, V_{OUT} =2.8V and I_{LOAD} =0.9A, therefore:

 $V_{IN(MAX)}\!=\!3.465V, V_{OUT(MIN)}\!=\!2.744V \text{ and } I_{G(MAX)}\!=\!1.75mA,$ Thus $P_{D(MAX)}\!=\!0.64W.$

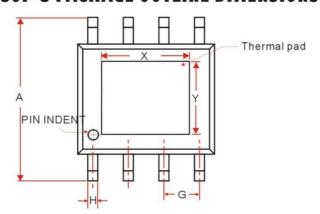
Using this formula, and assuming $T_{A(MAX)}$ =85°C, we can calculate the maximum thermal impedance allowable to maintain $T_{IJ} \le 125$ °C:

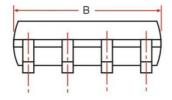

$$R_{\Theta(J-A)(MAX)} = \frac{(T_{J(MAX)} - T_{A(MAX)})}{P_{D(MAX)}} = \frac{(125-85)}{0.64} = 62.5^{\circ}C/W$$

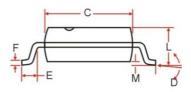

The package thermal performance may be en-hanced by attaching an external heat sink to the thermal pad.


Rev1.0 Sep.2015

PACKAGE OUTLINE DIMENSIONS SOP-8 PACKAGE OUTLINE DIMENSIONS






	DIMENSIONS			
REF.	Millimeters			
	Min.	Min.		
Α	5.80	6.20		
В	4.80	5.00		
С	3.80	4.00		
D	0 °	8°		
Е	0.40	0.90		
F	0.15	0.26		
М	0	0.25		
Н	0.31	0.51		
L	1.35	1.75		
G	1.27 TYP.			

PACKAGE OUTLINE DIMENSIONS PSOP-8 PACKAGE OUTLINE DIMENSIONS

	DIMENSIONS			
REF.	Millimeters			
	Min.	Max.		
Α	5.79	6.20		
В	4.80	5.00		
С	3.80	4.00		
D	0 °	8 °		
E	0.40	1.27		
F	0.15	0.26		
M	0	0.25		
Н	0.31	0.51		
L	1.30	1.75		
G	1.27 TYP.			
Х	3.30 TYP.			
Y	2.50 TYP.			

PSOP-8 PACKAGE FOOTPRINT (mm)

Note:

Information provided by IAT is believed to be accurate and reliable. However, we cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an IAT product; nor for any infringement of patents or other rights of third parties that may result from its use. We reserve the right to change the circuitry and specifications without notice.

Life Support Policy: IAT does not authorize any IAT product for use in life support devices and/or systems. Life support devices or systems are devices or systems which, (I) are intended for surgical implant into the body or (II) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. Typical numbers are at 25°C and represent the most likely norm.

Rev1.0 Sep.2015

www.iatiat.com RoHS Compliant and Halogen Free