64-Kbit (8K x 8) Industrial Parallel EEPROM with Page Write and Software Data Protection

AT28C64B

Features

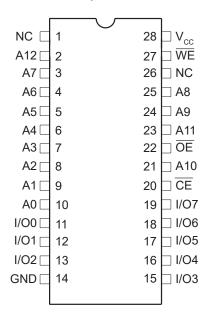
- Fast Read Access Time: 150 ns
- Automatic Page Write Operation:
 - Internal address and data latches for 64 bytes
- Fast Write Cycle Time:
 - Page Write cycle time: 2 ms or 10 ms maximum
 - 1 to 64-byte Page Write operation
- Low-Power Dissipation:
 - 40 mA active current
 - 100 μA CMOS standby current
- Hardware and Software Data Protection
- DATA Polling and Toggle Bit for End of Write Detection
- · High Reliability CMOS Technology:
 - Endurance: 100,000 cycles
 - Data retention: 10 years
- Single 5V ± 10% Supply
- CMOS and TTL Compatible Inputs and Outputs
- JEDEC Approved Byte-Wide Pinout
- Industrial Temperature Ranges
- · Green (RoHS-compliant) Packaging Option Only

Packages

• 28-Lead PDIP, 32-Lead PLCC and 28-Lead SOIC

Table of Contents

Fe	atures		······· '
Pa	ckages.		··········· ·
1.	Packa	age Types (Not to Scale)	4
2.		escriptions	
3.		iption	
	3.1.	Block Diagram	(
4.	Electr	ical Characteristics	
	4.1.	Absolute Maximum Ratings	
	4.2.	DC and AC Operating Range	
	4.3.	DC Characteristics	
	4.4.	Pin Capacitance	
5.	Norm	nalized l _{CC} Graphics	8
6.	Devic	e Operation	
	6.1.	Read	
	6.2.	Byte Write	
	6.3.	Page Write	
	6.4.	Data Polling	
	6.5.	Toggle Bit	
	6.6.	Data Protection	
	6.7.	Device Identification	10
	6.8.	Operating Modes	10
	6.9.	AC Read Characteristics	
	6.10.	AC Read Waveforms ^(1,2,3,4)	1
	6.11.	Input Test Waveforms and Measurement Level	12
	6.12.	Output Test Load	12
	6.13.	AC Write Characteristics	12
	6.14.	AC Write Waveforms	13
		Page Mode Characteristics	
		Page Mode Write Waveforms ^(1,2)	
		Chip Erase Waveforms	
		Software Data Protection Enable Algorithm ⁽¹⁾	
		Software Data Protection Disable Algorithm ⁽¹⁾	
		Software Protected Write Cycle Waveform ^(1,2)	
		Data Polling Characteristics ⁽¹⁾	
		Data Polling Waveforms	
		Toggle Bit Characteristics ⁽¹⁾	
	6.24.	Toggle Bit Waveforms ^(1,2,3)	19
7.	Packa	ging Information	20
	7.1.	Package Marking Information	20
8.	Revis	ion History	28



Microchip Information	29
The Microchip Website	
Product Change Notification Service	
Customer Support	
Product Identification System	
Microchip Devices Code Protection Feature	
Legal Notice	
Trademarks	31
Quality Management System	32
Worldwide Sales and Service	33

1. Package Types (Not to Scale)

28-Lead PDIP/SOICTop View

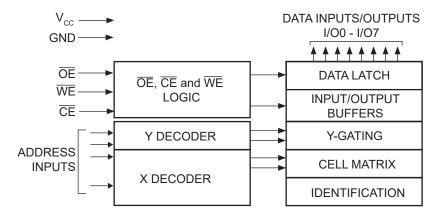
32-Lead PLCC Top View 0 32 33 34 34 35 □ A8 A6 □ A5 □ 6 28 🗆 A9 A4 🗆 27 □ A11 A3 🗆 8 26 🗆 NC A2 🗆 DE 9 25 A1 ☐ 10 24 🗆 A10 A0 □ 23 🗆 CE 11 NC ☐ 12 22 🗆 1/07 21 1/06 I/O0 🗆 GND | 102 | 103 |

2. Pin Descriptions

The descriptions of the pins are listed in Table 2-1.

Table 2-1. Pin Function Table

Name	28-Lead PDIP	32-Lead PLCC	28-Lead SOIC	Function
DC	_	1	_	Don't Connect
NC	1	2	1	No Connect
A12	2	3	2	Address
A7	3	4	3	Address
A6	4	5	4	Address
A5	5	6	5	Address
A4	6	7	6	Address
A3	7	8	7	Address
A2	8	9	8	Address
A1	9	10	9	Address
A0	10	11	10	Address
NC	_	12	_	No Connect
1/00	11	13	11	Data Input/Output
I/O1	12	14	12	Data Input/Output
1/02	13	15	13	Data Input/Output
GND	14	16	14	Ground
DC	_	17	_	Don't Connect
I/O3	15	18	15	Data Input/Output
1/04	16	19	16	Data Input/Output
1/05	17	20	17	Data Input/Output
1/06	18	21	18	Data Input/Output
1/07	19	22	19	Data Input/Output
CE	20	23	20	Chip Enable
A10	21	24	21	Address
ŌĒ	22	25	22	Output Enable
NC	_	26	_	No Connect
A11	23	27	23	Address
A9	24	28	24	Address
A8	25	29	25	Address
NC	26	30	26	No Connect
WE	27	31	27	Write Enable
V _{CC}	28	32	28	Device Power Supply


3. Description

The AT28C64B is a high-performance Electrically Erasable and Programmable Read-Only Memory (EEPROM). Its 64-Kbit memory is organized as 8,192 words by 8 bits. Manufactured with Microchip's advanced nonvolatile CMOS technology, the device offers access times to 150 ns with power dissipation of just 220 mW. When the device is deselected, the CMOS standby current is less than $100~\mu A$.

The AT28C64B is accessed like a Static RAM for the read or write cycle without the need for external components. The device contains a 64-byte page register to allow for writing up to 64 bytes simultaneously. During a write cycle, the addresses and one to 64 bytes of data are internally latched, freeing the address and data bus for other operations. Following the initiation of a write cycle, the device will automatically write the latched data using an internal control timer. The end of a write cycle can be detected by DATA Polling of I/O7. Once the end of a write cycle is detected, a new access for a read or write can begin.

The AT28C64B has additional features to ensure high quality and manufacturability. An optional software data protection mechanism is available to guard against inadvertent writes. The device also includes an extra 64 bytes of EEPROM for device identification or tracking.

3.1 Block Diagram

4. Electrical Characteristics

4.1 Absolute Maximum Ratings

Temperature under bias $-55^{\circ}\text{C to } +125^{\circ}\text{C}$ Storage temperature $-65^{\circ}\text{C to } +150^{\circ}\text{C}$ All input voltages (including NC pins) with respect to ground -0.6V to +6.25V All output voltages with respect to ground $-0.6\text{V to } \text{V}_{\text{CC}} + 0.6\text{V}$ Voltage on $\overline{\text{OE}}$ and A9 with respect to ground -0.6V to +13.5V

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

4.2 DC and AC Operating Range

Table 4-1. DC and AC Operating Range

		AT28C64B-15
Operating Temperature (Case)	Industrial	-40°C to +85°C
V _{CC} Power Supply		5V ± 10%

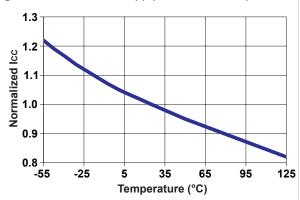
4.3 DC Characteristics

Table 4-2. DC Characteristics

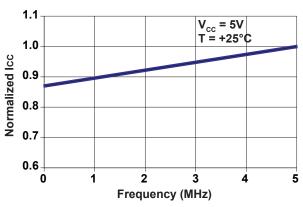
Parameter	Symbol	Minimum	Maximum	Units	Test Conditions
Input Load Current	ILI	_	10	μΑ	$V_{IN} = 0V \text{ to } V_{CC} + 1V$
Output Leakage Current	I _{LO}	_	10	μΑ	$V_{I/O} = 0V \text{ to } V_{CC}$
V _{CC} Standby Current CMOS	I _{SB}	-	100	μΑ	\overline{CE} = V _{CC} - 0.3V to V _{CC} + 1V
V _{CC} Active Current	I _{CC}	_	40	mA	f = 5 MHz; I _{OUT} = 0 mA
Input Low Voltage	V _{IL}	_	0.8	V	
Input High Voltage	V _{IH}	2.0	-	V	
Output Low Voltage	V _{OL}	_	0.45	V	I _{OL} = 1.6 mA
Output High Voltage	V _{OH}	2.0	-	V	I _{OH} = -100 μA

4.4 Pin Capacitance

Table 4-3. Pin Capacitance^(1,2)


Symbol	Typical	Maximum	Units	Conditions
C _{IN}	4	6	pF	V _{IN} = 0V
C _{OUT}	8	12	pF	V _{OUT} = 0V

- 1. This parameter is characterized but is not 100% tested in production.
- 2. $f = 1 \text{ MHz}, T_A = 25^{\circ}\text{C}$



5. Normalized I_{CC} Graphics

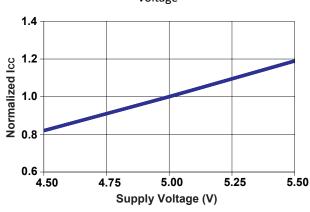

Figure 5-1. Normalized Supply Current vs. Temperature

Figure 5-2. Normalized Supply Current vs. Address Frequency

Figure 5-3. Normalized Supply Current vs. Supply Voltage

6. Device Operation

6.1 Read

The AT28C64B is accessed like a Static RAM. When $\overline{\text{CE}}$ and $\overline{\text{OE}}$ are low and $\overline{\text{WE}}$ is high, the data stored at the memory location determined by the address pins are asserted on the outputs. The outputs are put in the high-impedance state when either $\overline{\text{CE}}$ or $\overline{\text{OE}}$ is high. This dual-line control gives designers flexibility in preventing bus contention in their system.

6.2 Byte Write

A low pulse on the \overline{WE} or \overline{CE} input with \overline{CE} or \overline{WE} low (respectively) and \overline{OE} high initiates a write cycle. The address is latched on the falling edge of \overline{CE} or \overline{WE} , whichever occurs last. The data is latched by the first rising edge of \overline{CE} or \overline{WE} . Once a byte write is started, it will automatically time itself to completion. Once a programming operation is initiated and for the duration of t_{WC} , a read operation will effectively be a polling operation.

6.3 Page Write

The page write operation of the AT28C64B allows one to 64 bytes of data to be written into the device during a single internal programming period. A page write operation is initiated in the same manner as a byte write; the first byte written can then be followed by one to 63 additional bytes. Each successive byte must be written within 150 μ s (t_{BLC}) of the previous byte. If the t_{BLC} limit is exceeded, the AT28C64B will cease accepting data and commence the internal programming operation. All bytes during a page write operation must reside on the same page as defined by the state of the A6-A12 inputs. For each \overline{WE} high-to-low transition during the page write operation, A6-A12 must be the same. The A0 to A5 inputs are used to specify which bytes within the page are to be written. The bytes may be loaded in any order and may be altered within the same load period. Only bytes which are specified for writing will be written; unnecessary cycling of other bytes within the page does not occur.

6.4 Data Polling

The AT28C64B features DATA Polling to indicate the end of a write cycle. During a byte or page write cycle, an attempted read of the last byte written will result in the complement of the written data to be presented on I/O7. Once the write cycle was completed, true data is valid on all outputs and the next write cycle may begin. DATA Polling may begin at any time during the write cycle.

6.5 Toggle Bit

In addition to DATA Polling, the AT28C64B provides another method for determining the end of a write cycle. During the write operation, successive attempts to read data from the device will result in I/O6 toggling between one and zero. Once the write is completed, I/O6 will stop toggling and valid data will be read. Reading the toggle bit may begin at any time during the write cycle.

6.6 Data Protection

If precautions are not taken, inadvertent writes may occur during transitions of the host system power supply. Microchip incorporated both hardware and software features that will protect the memory against inadvertent writes.

6.6.1 Hardware Data Protection

Hardware features protect against inadvertent writes to the AT28C64B in the following ways:

- V_{CC} sense if V_{CC} is below 3.8V (typical), the write function is inhibited
- V_{CC} power-on delay once V_{CC} has reached 3.8V, the device will automatically time out 5 ms (typical) before allowing a write
- Write inhibit holding any one of OE low, CE high or WE high inhibits write cycles
- Noise filter pulses of less than 15 ns (typical) on the WE or CE inputs will not initiate a write cycle

6.6.2 Software Data Protection

Software-controlled data protection is available on the AT28C64B and, when enabled, the Software Data Protection (SDP) feature will prevent inadvertent writes. SDP may be enabled or disabled by the user; the AT28C64B is shipped from Microchip with SDP disabled.

SDP is enabled when the user issues a series of three write commands in which three specific bytes of data are written to three specific addresses (see Software Data Protection Enable Algorithm and Software Data Protection Disable Algorithm). After writing the 3-byte command sequence and waiting two, the entire AT28C64B will be protected against inadvertent writes.

It should be noted that even after SDP is enabled, the user may still perform a byte or page write to the AT28C64B by preceding the data to be written by the same 3-byte command sequence used to enable SDP. Once set, SDP remains active unless the disable command sequence is issued. Power transitions do not disable SDP and SDP protects the AT28C64B during power-up and power-down conditions. All command sequences must conform to the page write timing specifications. The data in the enable and disable command sequences are not actually written into the device; their addresses may still be written with user data in either a byte or page write operation. After setting SDP, any attempt to write to the device without the 3-byte command sequence will start the internal write timers. No data will be written to the device. However, for the duration of t_{WC} , read operations will effectively be polling operations.

6.7 Device Identification

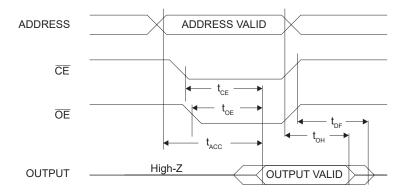
An extra 64 bytes of EEPROM memory are available to the user for device identification. By raising A9 to $12V \pm 0.5V$ and using address locations 1FC0H to 1FFFH, the additional bytes may be written to or read from in the same manner as the regular memory array.

6.8 Operating Modes

Table 6-1. Operating Modes

Mode	CE	ŌĒ	WE	I/O
Read	V_{IL}	V_{IL}	V _{IH}	D _{OUT}
Write ⁽¹⁾	V_{IL}	V_{IH}	V_{IL}	D _{IN}
Standby/Write Inhibit	V _{IH}	X ⁽²⁾	X	High-Z
Write Inhibit	X	Χ	V _{IH}	_
Write Inhibit	X	V_{IL}	X	_
Output Disable	X	V _{IH}	X	High-Z
Chip Erase	V_{IL}	VH(3)	V_{IL}	High-Z

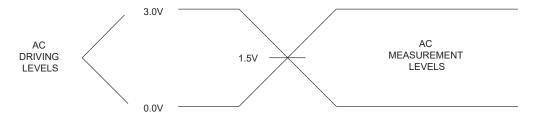
- 1. Refer to AC Write Waveforms.
- 2. X can be V_{IL} or V_{IH} .
- 3. $V_H = 12.0 V \pm 0.5 V$



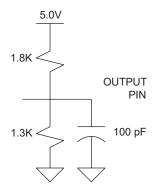
6.9 AC Read Characteristics

Table 6-2. AC Read Characteristics

Parameter	Symbol	AT28C64B-15		Units
		Min.	Max.	
Address to Output Delay	t _{ACC}	_	150	ns
CE to Output Delay	t _{CE} ⁽¹⁾	-	150	ns
OE to Output Delay	t _{OE} ⁽²⁾	0	70	ns
CE or OE to Output Float	t _{DF} (3,4)	0	50	ns
Output Hold from $\overline{\text{OE}}$, $\overline{\text{CE}}$ or Address, whichever occurred first	t _{OH}	0	_	ns


6.10 AC Read Waveforms^(1,2,3,4)

- 1. $\overline{\text{CE}}$ may be delayed up to t_{ACC} - t_{CE} after the address transition without impact on t_{ACC} .
- 2. $\overline{\text{OE}}$ may be delayed up to t_{CE} - t_{OE} after the falling edge of $\overline{\text{CE}}$ without impact on t_{CE} or by t_{ACC} - t_{OE} after an address change without impact in t_{ACC} .
- 3. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first ($C_L = 5$ pF).
- 4. This parameter is characterized and is not 100% tested.



6.11 Input Test Waveforms and Measurement Level

Note: t_R , $t_F < 5$ ns.

6.12 Output Test Load

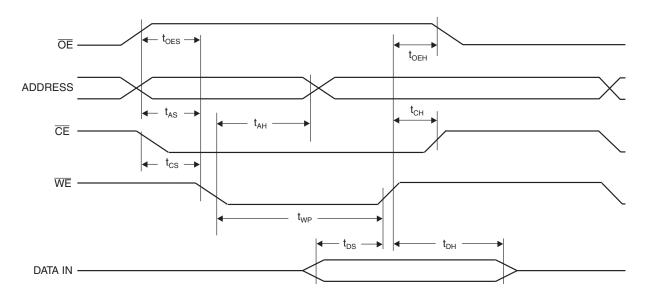
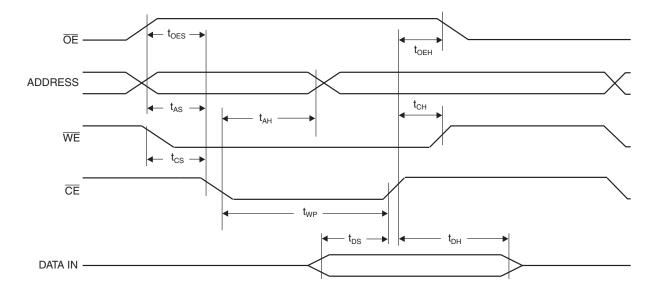

6.13 AC Write Characteristics

Table 6-3. AC Write Characteristics


Parameter	Symbol	Minimum	Maximum	Units
Address, OE Setup Time	t _{AS} , t _{OES}	0	_	ns
Address Hold Time	t _{AH}	50	_	ns
Chip Select Setup Time	t _{CS}	0	-	ns
Chip Select Hold Time	t _{CH}	0	-	ns
Write Pulse Width (WE or CE)	t _{WP}	100	_	ns
Data Setup Time	t _{DS}	50	-	ns
Data, OE Hold Time	t _{DH} , t _{OEH}	0	_	ns

6.14 AC Write Waveforms

6.14.1 WE Controlled

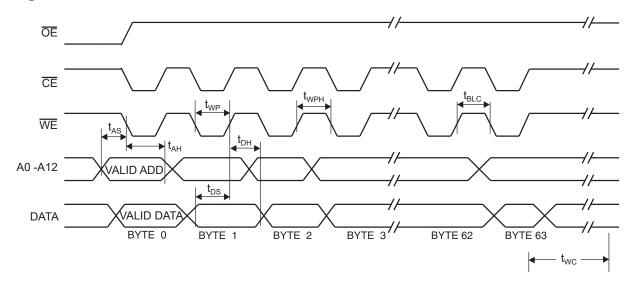
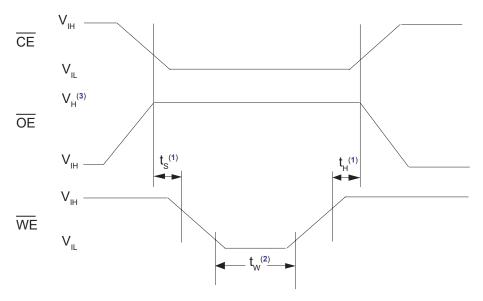

6.15 Page Mode Characteristics

Table 6-4. Page Mode Characteristics

Parameter		Symbol	Minimum	Maximum	Units
Write Cycle Time	AT28C64B	+	_	10	ms
	AT28C64BF ⁽¹⁾	t _{WC}	_	2	ms
Address Setup Time		t _{AS}	0	_	ns
Address Hold Time		t _{AH}	50	_	ns
Data Setup Time		t _{DS}	50	_	ns
Data Hold Time		t _{DH}	0	_	ns
Write Pulse Width		t _{WP}	100	_	ns
Byte Load Cycle Time		t _{BLC}	_	150	μs
Write Pulse Width High		t _{WPH}	50	_	ns

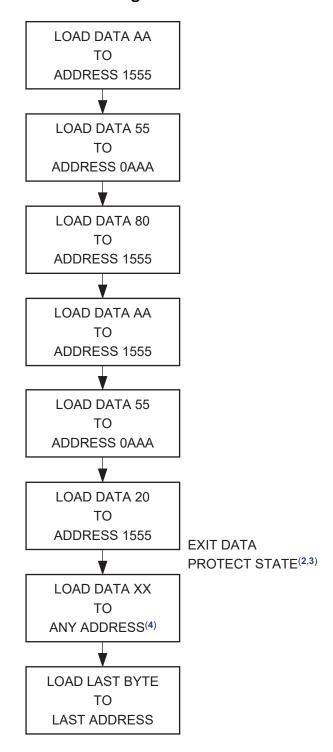

Note: See AT28C64BF data sheet.

6.16 Page Mode Write Waveforms^(1,2)

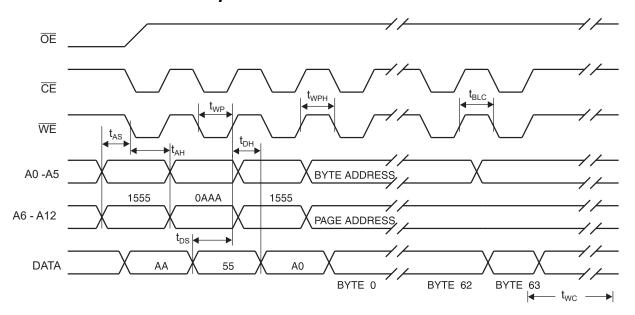
- 1. A6 through A12 must specify the same page address during each high-to-low transition of $\overline{\text{WE}}$ (or $\overline{\text{CE}}$).
- 2. $\overline{\text{OE}}$ must be high only when $\overline{\text{WE}}$ and $\overline{\text{CE}}$ are both low.

6.17 Chip Erase Waveforms

- 1. $t_S = t_H = 1 \mu sec$ (minimum)
- 2. $t_W = 10 \text{ msec (minimum)}$
- 3. $V_H = 12.0V \pm 0.5V$


6.18 Software Data Protection Enable Algorithm⁽¹⁾

- 1. Data format: I/O7-I/O0 (Hex); Address format: A12-A0 (Hex).
- 2. Write-Protect state will be activated at end of write even if no other data is loaded.
- 3. Write-Protect state will be deactivated at end of write period even if no other data is loaded.
- 4. One to 64 bytes of data are loaded.


6.19 Software Data Protection Disable Algorithm(1)

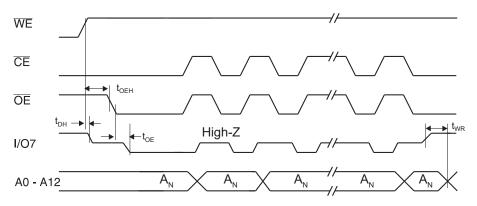
- 1. Data format: I/O7-I/O0 (Hex); Address format: A12-A0 (Hex).
- 2. Write-Protect state will be activated at end of write period even if no other data is loaded.
- 3. Write-Protect state will be deactivated at end of write period even if no other data is loaded.
- 4. One to 64 bytes of data are loaded.

6.20 Software Protected Write Cycle Waveform^(1,2)

Notes:

- 1. A6 through A12 must specify the same page address during each high-to-low transition of WE (or CE) after the software code was entered.
- 2. \overline{OE} must be high only when \overline{WE} and \overline{CE} are both low.

6.21 Data Polling Characteristics(1)


Table 6-5. Data Polling Characteristics

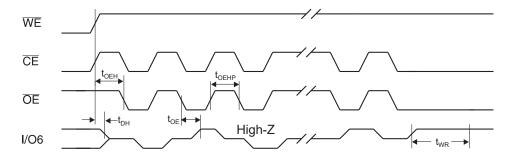
Parameter	Symbol	Minimum	Typical	Maximum	Units
Data Hold Time	t _{DH}	0	_	_	ns
OE Hold Time	t _{OEH}	0	_	_	ns
OE to Output Delay ⁽²⁾	t _{OE}	_	_	_	ns
Write Recovery Time	t _{WR}	0	_	_	ns

Notes:

- 1. These parameters are characterized and not 100% tested.
- 2. See AC Read Characteristics.

6.22 Data Polling Waveforms

6.23 Toggle Bit Characteristics⁽¹⁾

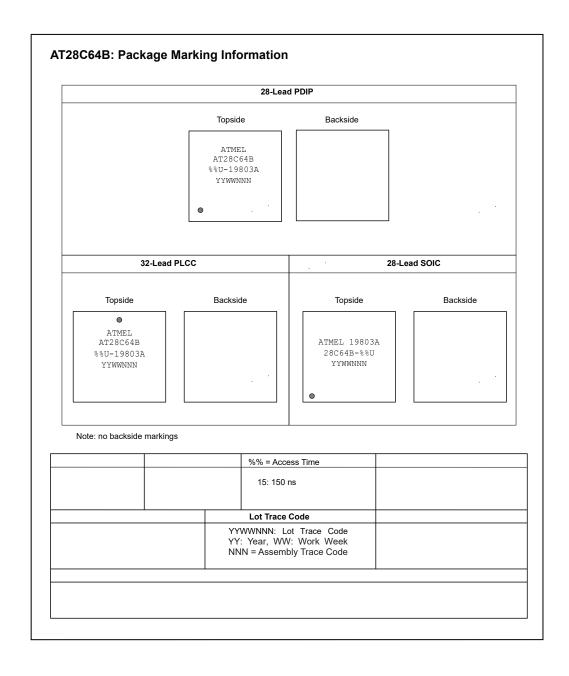

Table 6-6. Toggle Bit Characteristics

Parameter	Symbol	Minimum	Typical	Maximum	Units
Data Hold Time	t _{DH}	10	_	_	ns
OE Hold Time	t _{OEH}	10	_	_	ns
OE to Output Delay ⁽²⁾	t _{OE}	_	_	_	ns
OE High Pulse	t _{OEHP}	150	_	_	ns
Write Recovery Time	t _{WR}	0	_	-	ns

Notes:

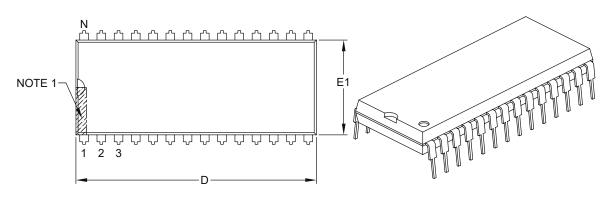
- 1. These parameters are characterized and not 100% tested.
- 2. See AC Read Characteristics.

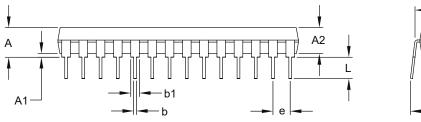
6.24 Toggle Bit Waveforms^(1,2,3)



- 1. Toggling either \overline{OE} or \overline{CE} or both \overline{OE} and \overline{CE} will operate toggle bit.
- 2. Beginning and ending state of I/O6 will vary.
- 3. Any address location may be used but the address should not vary.

7. Packaging Information


7.1 Package Marking Information



28-Lead Plastic Dual In-Line (P) - 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

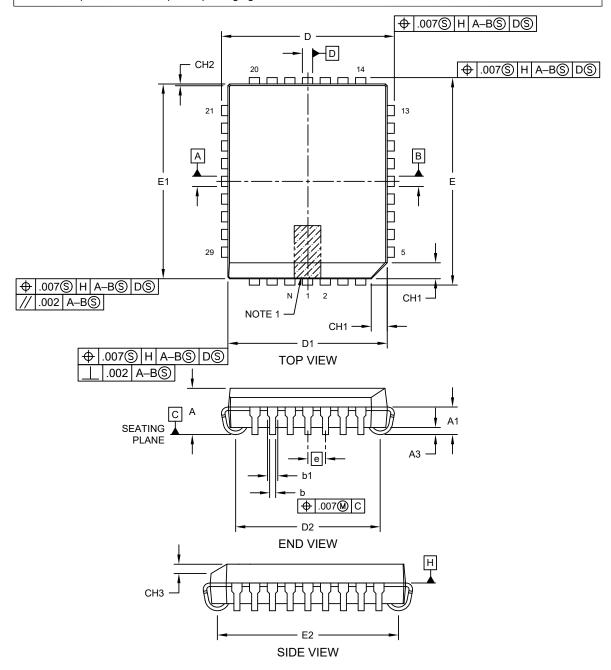
	Units		INCHES	
D	imension Limits	MIN	NOM	MAX
Number of Pins	N	28		
Pitch	е	.100 BSC		
Top to Seating Plane	Α	-	_	.250
Molded Package Thickness	A2	.125	_	.195
Base to Seating Plane	A1	.015	_	-
Shoulder to Shoulder Width	E	.590	_	.625
Molded Package Width	E1	.485	_	.580
Overall Length	D	1.380	_	1.565
Tip to Seating Plane	L	.115	_	.200
Lead Thickness	С	.008	-	.015
Upper Lead Width	b1	.030	_	.070
Lower Lead Width	b	.014	_	.022
Overall Row Spacing §	eB	-	_	.700

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

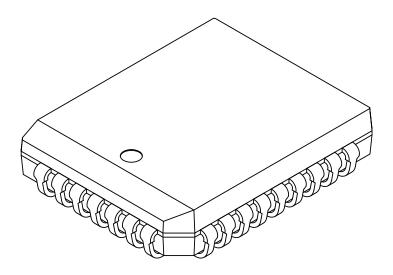
Microchip Technology Drawing C04-079B


- E

еΒ

32-Lead Plastic Leaded Chip Carrier (L) - Rectangle [PLCC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-023 Rev C Sheet 1 of 2

32-Lead Plastic Leaded Chip Carrier (L) - Rectangle [PLCC]

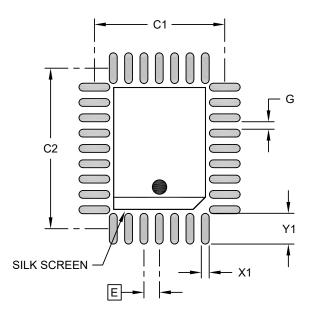
For the most current package drawings, please see the Microchip Packaging Specification located at Note: http://www.microchip.com/packaging

Units		INCHES		
Dimension Limits		MIN	NOM	MAX
Number of Pins	Ν		32	
Pitch	е		.050 BSC	
Pins along Length	ND		7	
Pins along Width	NE		9	
Overall Height	Α	.125	.132	.140
Contact Height	A1	.060	.0775	.095
Standoff §	А3	.015	-	-
Corner Chamfer	CH1	.042	.045	.048
Chamfers	CH2	-	-	.020
Side Chamfer Height	CH3	.023	.026	.029
Overall Length	D	.485 .490 .495		.495
Overall Width	Е	.585	.590	.595
Molded Package Length	D1	.447	.450	.453
Molded Package Width	E1	.547	.550	.553
Footprint Length	D2	.376	.411	.446
Footprint Width	E2	.476	.511	.546
Lead Thickness	С	.008	.010	.013
Upper Lead Width	b1	.026	.029	.032
Lower Lead Width	b	.013	.017	.021

Notes:

- Pin 1 visual index feature may vary, but must be located within the hatched area.
 Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-023 Rev C Sheet 2 of 2

32-Lead Plastic Leaded Chip Carrier (L) - Rectangle [PLCC]

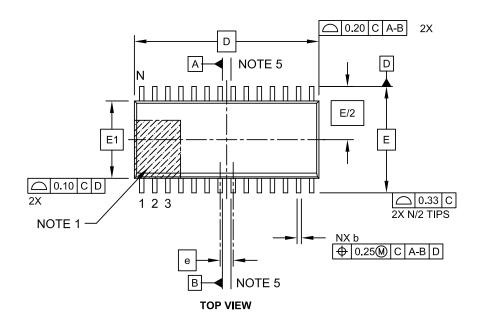
For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

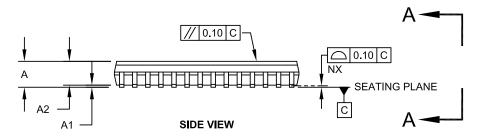
RECOMMENDED LAND PATTERN

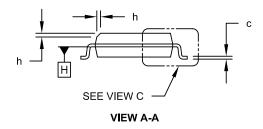
	INCHES			
Dimension Limits		MIN	NOM	MAX
Contact Pitch E		.050 BSC		
Contact Pad Spacing	C1		.425	
Contact Pad Spacing C2			.524	
Contact Pad Width (X32)	X1			.026
Contact Pad Length (X32)	Y1			.100
Contact Pad to Center Pad (X28)	G	.008		

Notes:

Note:

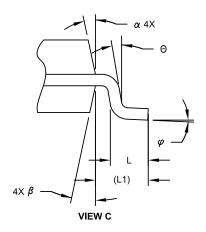

- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

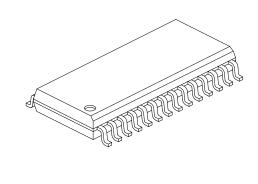

Microchip Technology Drawing C04-2023 Rev C



28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



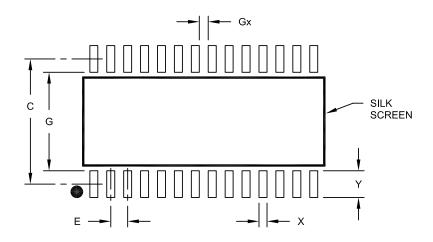

Microchip Technology Drawing C04-052C Sheet 1 of 2 $\,$

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	/ILLIMETER	S
Dimension Limits		MIN	NOM	MAX
Number of Pins	N		28	
Pitch	е		1.27 BSC	
Overall Height	Α	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	Е	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	17.90 BSC		
Chamfer (Optional)	h	0.25 - 0.75		0.75
Foot Length	L	0.40	-	1.27
Footprint	L1	1.40 REF		
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0° - 8°		8°
Lead Thickness	С	0.18 - 0.33		0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5° - 15°		15°

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch E		1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	Х			0.60
Contact Pad Length (X28) Y				2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

8. Revision History

Revision B (August 2023)

Removed 28-Lead TSOP package. Updated 32-Lead PLCC package drawing to latest revision (no change to form, fit or function).

Revision A (October 2020)

Updated to the Microchip template. Microchip DS20006432 replaces Atmel document 0270. Added updated Part Markings to include new trace code format.

Microchip Information

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- **Business of Microchip** Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

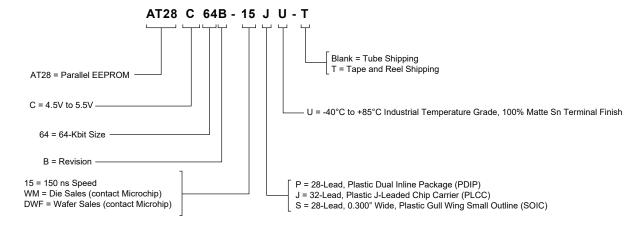
Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support


Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Product Identification System

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Examples

Table 9-1. Ordering Information

Ordering Code	Package Drawing Code	Package Option	t _{ACC} (ns)	Quantity	Operating Range														
AT28C64B-15JU				32 Tube															
AT28C64B-15JU-T	L L	J	J	J	750 Reel	Industrial Temperature													
AT28C64B-15PU	Р	Р	150	14 Tube	(-40°C to +85°C)														
AT28C64B-15SU	0.2	S	S	c	27 Tube	(40 € 10 105 €)													
AT28C64B-15SU-T	SO			3	3	3	5	5	5	5	5	5	5	5	5	5	5	S	5

Note: Contact Microchip Sales.

Package Types				
Р	28-Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)			
J	32-Lead, Plastic J-leaded Chip Carrier (PLCC)			
S	28-Lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)			

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable".
 Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2020-2023, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-6683-2856-9

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
Tel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
Technical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
www.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
Web Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
www.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Duluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Tel: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
ax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Austin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
el: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Westborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
el: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
ax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
tasca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
el: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
ax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
Dallas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Addison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
el: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
ax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
Detroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
Novi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
Tel: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
louston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
el: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
ndianapolis	China - Xiamen		Tel: 31-416-690399
Noblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
el: 317-773-8323	China - Zhuhai		Norway - Trondheim
ax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
el: 317-536-2380			Poland - Warsaw
os Angeles			Tel: 48-22-3325737
Aission Viejo, CA			Romania - Bucharest
el: 949-462-9523			Tel: 40-21-407-87-50
ax: 949-462-9608			Spain - Madrid
el: 951-273-7800			Tel: 34-91-708-08-90
Raleigh, NC			Fax: 34-91-708-08-91
el: 919-844-7510			Sweden - Gothenberg
New York, NY			Tel: 46-31-704-60-40
Tel: 631-435-6000			Sweden - Stockholm
San Jose, CA			Tel: 46-8-5090-4654
el: 408-735-9110			UK - Wokingham
el: 408-436-4270			Tel: 44-118-921-5800
Canada - Toronto			Fax: 44-118-921-5820
el: 905-695-1980			
Fax: 905-695-2078			