AT5204/AT5204E

250mA ,Low Supply current Iq 1µA LDO

FEATURES

- Output Current Over 250mA(TYP.)
- Low Dropout Voltage: 600mV at 200mA 300mV at 100mA 30mV at 10mA
- Low Power Consumption 1µA(TYP.)
- Maximum Operating voltage:35V
- Output Voltage Range:1.8V ,3.3V, 5.0V
- Highly Accurate:±2%
- Operational Temperature Range:-40℃~85℃
- Package Type: SOT-89

The AT5204/AT5204E is a set of three-terminal high current low voltage regulator implemented in CMOS technology. They can deliver 250mA output current and allow an input voltage as high as 35V. They are available with several fixed output voltages ranging from 1.8V ,3.3V, 5.0V. CMOS technology ensures low voltage drop and low quiescent current.

Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain variable voltages and currents.

APPLICATION

- Battery-powered equipment
- Communication equipment
- **Portable Application**

ORDER INFORMATION

PIN CONFIGURATIONS (TOP VIEW)

2

VIN

3

VOUT

250mA ,Low Supply current Iq 1µA LDO

Immense Advance Tech.

PIN DESCRIPTIONS

Pin Name	Pin Description
GND	Ground return for all internal circuit
VIN	Input Voltage
VOUT	Output Voltage
NC	Not Connected

TYPICAL APPLICATION CIRCUITS

Cin: 10µF CL: 10µF

BLOCK DIAGRAM

Figure 1

AT5204/AT5204E

ABSOLUTE MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Range	Unit		
Supply Voltage	V _{CC} -0.3~+40		V		
Storage Temperature Range	T _{STG} -65 to +150		C		
Junction Temperature Range	TJ	T _J -40 to +150			
Lead Temperature (Soldering 10 sec)	T _{LEAD}	260	C		
Power Dissinction @T -25 %	SOT-25	р	450	mW	
Power Dissipation @1 _A =25 C	SOT-89	۳D	640		
Thermal Desistance Investige to Ambient (Nate 2)		0	220	∞ ^^/	
Thermal Resistance Junction to Ambient (Note 2)	SOT-89	UJA	156	C/VV	
Thermal Desistance, lunction to Case	SOT-25	0	106.6	C/W	
Thermal Resistance Junction to Case	SOT-89	OJC	100		
ESD Rating (Human body mode)(Note 3)	V _{ESD}	2	kV		

RECOMMENDED OPERATING CONDITIONS (Note 4)

Parameter	Symbol	Operation Conditions	Unit
Supply Voltage	V _{CC}	3~35	V
Operating Junction Temperature Range	TJ	-40 to +125	ĉ
Operating Ambient Temperature Range	T _{OPA}	-40 to +85	C

Note 1: Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.

Note 2: Thermal Resistance is specified with the component mounted on a low effective thermal conductivity test board in free air at $T_A=25$ °C.

Note 3: Devices are ESD sensitive. Handing precaution recommended.

Note 4: The device is not guaranteed to function outside its operating conditions.

ELECTRICAL CHARACTERISTICS

 T_A = 25°C, unless otherwise specified.

Parameter	Symbol	Condition	Min	Тур	Мах	Unit
Input Voltage	V _{OUT}		3	_	35	V
Supply Current	I _{SS}	$I_{LOAD} = 0mA$	_	1.0	_	μA
Output Voltage	V _{OUT}	I _{LOAD} = 10mA	-2%		+2%	V _{OUT}
Output Current	I _{OUT}		200	250	_	mA
	V _{DROP}	$I_{LOAD} = 10 \text{mA}$ $\Delta V_{OUT} = -V_{OUT} \times 2\%$	_	30	50	
Output Voltage		$I_{LOAD} = 100 \text{mA}$ $\Delta V_{OUT} = -V_{OUT} \times 2\%$		300	400	mV
		$I_{LOAD} = 200 \text{mA}$ $\Delta V_{OUT} = -V_{OUT} \times 2\%$		600	750	
Line Regulation	ΔV_{OUT_LINE}	$I_{LOAD} = 1mA,$ $V_{IN} = (V_{OUT} + 1V) to$ 30V			0.2	%/V
Load Regulation	ΔV_{OUT_LOAD}	1mA ≤ I _{OUT} ≤ 100mA	_	20	50	mV
Current Limit	I _{LIM}	$V_{IN} = (V_{OUT}+1V)$ to 30V $R_{LOAD} = V_{OUT} / 1A$	_	0.45	_	A
Over Temperature Protection	T _{OTP}		_	125	_	ĉ
Temperature Coefficient	ΔV _{OUT} /ΔT	$I_{LOAD} = 10 \text{mA}$ -40 °C $\leq T_{AMB} \leq 100$ °C		±100		ppm/℃

Note5 : Power Calculation

Power Dissipation of Built-in Power Transistor (MOSFET) = (V_{IN}-V_{OUT}) * I_{OUT}

Overall Power Dissipation P_{D} (TOTAL) = P_{D} (MOSFET) + V_{IN} * I_{SS}

The Quiescent Current, I_{GND} , is 1.0µA with Negligible VIN * I_{GND} Power Dissipation, so the Worst-Case Power Dissipation is :

 P_{D} (max) = [VIN (max) -V_{OUT} (min)] * I_{OUT}

250mA ,Low Supply current Iq 1µA LDO

TYPICAL PERFORMANCE CHARACTERITICS

40

Temperature(℃)

60

80

100

V_{OUT} VS. I_{OUT}, V_{IN} =6.0V

-40

-20

0

20

TYPICAL PERFORMANCE CHARACTERITICS(Continue)

Quiescent Current VS. I_{OUT}, V_{IN} =4.3V

Rev1.11 Jun.2018

21

Input Voltage VIN(V)

26

31

36

16

Quiescent Current VS. Voltage, NO LOAD

NO LOAD

2.60

2.40

2.20

2.00

1.80

1.60 1.40

1.20

1.00

6

11

Quiescent Current Ia (µA)

Quiescent Current VS. Temperature

TYPICAL PERFORMANCE CHARACTERITICS(Continue)

System No Load Start :No Load C_{OUT} =10µF, With Load 30mA Start

Transient Response of Load Modulation & Transient Response of Power Modulation :

VIN=12.0V, C_{OUT}=10 μ F,I_{OUT}=10mA to 200mA,V_{IN}=5.0V to 12.0V, C_{OUT}=10 μ F, I_{OUT}=10mA

Rev1.11 Jun.2018

PACKAGE OUTLINE DIMENSIONS SOT-25 PACKAGE OUTLINE DIMENSIONS

SOT-25 PACKAGE FOOTPRINT (mm)

250mA ,Low Supply current Iq 1µA LDO

Immense Advance Tech.

PACKAGE OUTLINE DIMENSIONS SOT-89 PACKAGE OUTLINE DIMENSIONS

DEE	Dimensions In Millimeters			
REF.	Min.	Max.		
A	4.40	4.60		
B	3.94	4.25		
С	1.50	1.70		
D	1.30	1.50		
E	2.29	2.60		
F	0.89	1.20		
G	3.00 REF.			
Н	1.50 REF.			
	0.40	0.56		
J	1.40	1.60		
K	0.35	0.44		
L	5°TYP.			
M	0.70 REF.			

Note :

Information provided by IAT is believed to be accurate and reliable. However, we cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an IAT product; nor for any infringement of patents or other rights of third parties that may result from its use. We reserve the right to change the circuitry and specifications without notice.

Life Support Policy: IAT does not authorize any IAT product for use in life support devices and/or systems. Life support devices or systems are devices or systems which, (I) are intended for surgical implant into the body or (II) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. Typical numbers are at 25°C and represent the most likely norm.

Rev1.11 Jun.2018

www.iatiat.com RoHS Compliant and Halogen Free