300mA Low Dropout Voltage Linear Regulators

Immense Advance Tech.

FEATURES

V_{IN} Range: 2.0V to 6.0V

Low Dropout Voltage: 0.22V (Typ)
 (V_{OUT}= 3.3V, I_{OUT}= 150mA)

Low-ESR Ceramic Capacitor for Output Stability

• Output Current: 300mA

• High Ripple Rejection: 65dB (Typ)(f= 10kHz)

• Excellent Line Regulation: 0.01% / V(Typ)

Output Voltage Accuracy: ±2.0%

Low Supply Current: 70μA (Typ)

Standby Mode: 0.01µA (Typ)

• Over Current Protection

 Ceramic Capacitors are Recommend to be Used with this IC: C_{IN} = C_{OUT} = 1μF

• Built-In Over Shoot Protection Circuit

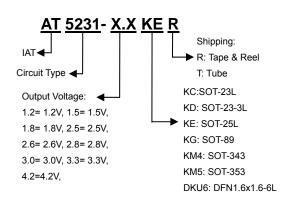
Ultra Fast Transient Response

RoHS Compliant

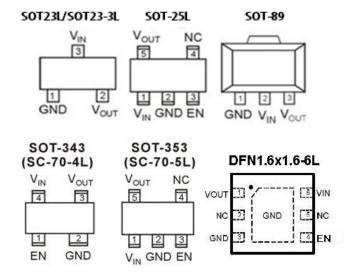
APPLICATION

- Power Source for Portable Communication
 Equipment
- Power Source for Battery-Powered Equipment

DESCRIPTION


The AT5231/AT5231T Series are CMOS-based voltage regulator ICs with high output voltage accuracy, low supply current, low ON-resistance. Each of these ICs consists of a voltage reference unit, an error amplifier, resistor-net for voltage setting, a current limit circuit and a chip enable circuit.

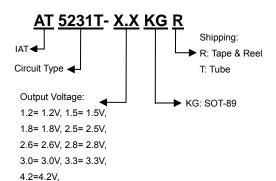
These ICs perform with low dropout voltage and a chip enable function (SOT-25L, SOT-343/353 and DFN1.6x1.6-6L package only). The line transient response and load transient response of the AT5231/AT5231T Series are excellent, thus these ICs are very suitable for the power supply for handheld communication equipment.

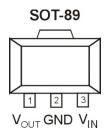

AT5231 are available in the SOT-23L, SOT-23-3L SOT-25L, SOT-343, SOT-353, SOT-89 and DFN1.6x1.6-6L packages.

AT5231T is available in the SOT-89 package.

ORDER INFORMATION

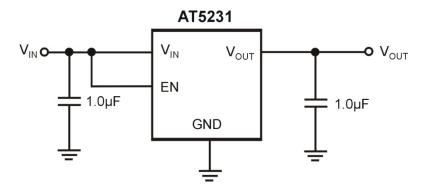
PIN CONFIGURATIONS (TOP VIEW)

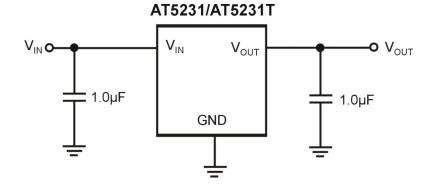



300mA Low Dropout Voltage Linear Regulators

Immense Advance Tech.

ORDER INFORMATION

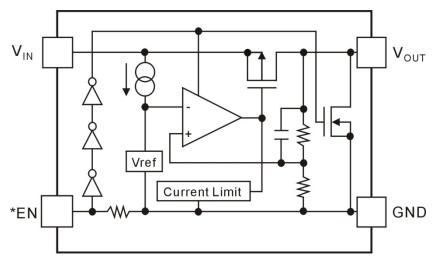



PIN CONFIGURATIONS (TOP VIEW)

PIN DESCRIPTIONS

Pin Name	Pin Description
V _{IN}	Input Pin
GND	Ground Pin
EN	Chip Enable Pin, Active High
NC	No Connection
V _{OUT}	Output Pin.

TYPICAL APPLICATION CIRCUITS


Rev1.6 Sep 2013

300mA Low Dropout Voltage Linear Regulators

Immense Advance Tech.

BLOCK DIAGRAM

* Not available in AT5231T

300mA Low Dropout Voltage Linear Regulators

Immense Advance Tech.

BSOLUTE MAXIMUM RATINGS (Note 1)

Parameter		Symbol	Max Value	Unit
Power Supply Voltage		V _{IN}	-0.3 to 6.5	V
Enable Voltage		V _{EN}	-0.3 to V _{IN}	V
Maximum Junction Tempe	erature	TJ	125	°C
Storage Temperature Rar	nge	T _{STG}	-65 to +150	°C
Lead Temperature(Solder	ing) 5 Sec.	T _{LEAD}	260	°C
	SOT-23L		280	
	SOT-23-3L		280	
Power Dissipation	SOT-25L	Б	300	ma\A/
P _D @ T _A =25°C (Note 2)	SOT-89	P_{D}	640	mW
	SOT-343		250	
	SOT-353		250	
	SOT-23L		357	
	SOT-23-3L		357	
Thermal Resistance	SOT-25L (Note 3)	0	333	°C/W
Junction to Ambient	SOT-89	Θ_{JA}	156	C/VV
	SOT-343		400	
	SOT-353		400	
	SOT-23L		106.6	
	SOT-23-3L		106.6	
Thermal Resistance SOT-25L			106.6	90/M
Junction to Case	SOT-89	Θ _{JC}	100	°C/W
	SOT-343(SC-70-4L)		120	
	SOT-353(SC-70-5L)		120	
ESD Rating (Human Body	y Model) (Note 4)	V _{ESD}	2	kV

300mA Low Dropout Voltage Linear Regulators

Immense Advance Tech.

RECOMMENDED OPERATING CONDITIONS (Note 5)

Parameter	Symbol	Operation Conditions	Unit
Supply Voltage	V _{IN}	6.0	V
Enable Voltage	V _{EN}	-0.3 to V _{IN}	V
Operating Junction Temperature Range	TJ	-40 to +125	°C
Operating Ambient Temperature Range	T _{OPA}	-40 to +85	°C

- **Note 1:** Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.
- Note 2: Thermal Resistance is specified with the component mounted on a low effective thermal conductivity test board in free air at $T_A=25^{\circ}C$.
- Note 3: Thermal Resistance is specified with approximately 1 square of 1 oz copper.
- Note 4: Devices are ESD sensitive. Handling precaution recommended.
- Note 5: The device is not guaranteed to function outside its operating conditions.

300mA Low Dropout Voltage Linear Regulators

Immense Advance Tech.

ELECTRICAL CHARACTERISTICS

T_J =25°C, unless otherwise noted

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage (Note 6)	V _{OUT}	V _{IN} =Set V _{OUT} +1V 1mA ≤ I _{OUT} ≤ 30mA	V _{OUT} x0.980		V _{OUT} x1.020	٧
Output Current	lout	V _{IN} -V _{OUT} =1.0V	300			mA
Load Regulation (Note 6)	Reg_load	V_{IN} =Set V_{OUT} +1 V_{OUT} 1mA $\leq I_{OUT} \leq 150$ Ma V_{OUT} >2 $V_{OUT} \leq 2V$		0.005 20	0.015 30	%/mA mV
Line Regulation (Note 6)	Reg_line	V_{OUT} > 1.7V Set V_{OUT} + 0.5V \leq V_{IN} \leq 6V (V_{OUT} \leq 1.7V, 2.2V \leq V_{IN} \leq 6V) I_{OUT} =30mA		0.01	0.20	%/V
Dropout Voltage (Note 6, 7)	V _{DROP}	V_{OUT} < 1.5 V_{OUT} = 1.5 V_{OUT} = 1.6 V_{OUT} = 1.7 V_{OUT} = 1.7 V_{OUT} = 2.0 V_{OUT} < 2.7 V_{OUT} < 2.7 V_{OUT} < 2.7 V_{OUT} < 4.8 V_{OUT}		0.48 0.46 0.44 0.42 0.28 0.22	1.00 0.70 0.65 0.60 0.55 0.50 0.35	٧
Ripple Rejection	RR	$f = 10kHz$ Ripple 0.5Vp-p $V_{OUT} > 1.7V, V_{IN} - V_{OUT} = 1.0V$ $V_{OUT} \le 1.7V, V_{IN} - V_{OUT} = 1.2V$ $I_{OUT} = 10mA$		65		dB
Supply Current	I _{SS}	V _{IN} = Set V _{OUT} +1V, I _{OUT} =0mA		70		μΑ
Supply Current (Standby)	Istandby	V _{IN} = Set V _{OUT} +1V, V _{EN} =GND		0.01	0.1	μΑ
Input Voltage	V _{IN}		2.0		6.0	V
Output Voltage Temperature Coefficient	△V _{OUT} /△T	$I_{OUT} = 30 \text{mA}$ -40°C $\leq T_J \leq 85$ °C		±100		ppm/°C
Current Limit	I _{LIM}			400		mA

300mA Low Dropout Voltage Linear Regulators

Immense Advance Tech.

ELECTRICAL CHARACTERISTICS (CONTINUED)

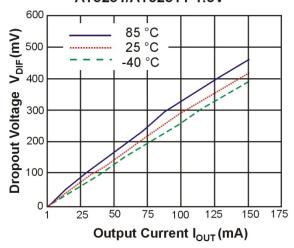
T_J =25°C, unless otherwise noted

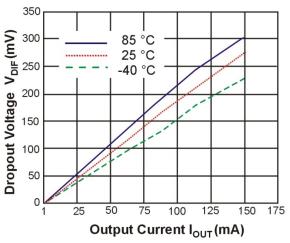
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
EN Pull-Down Resistance	R_{PD}		0.7	2.0	8.0	ΜΩ
EN Input Voltage "H"	V _{ENH}		1.5		V _{IN}	V
EN Input Voltage "L"	V _{ENL}		0		0.3	V
Output Noise	en	BW 10Hz to 100kHz		30		μVrms
On Resistance for	Б	\\ -0\\		60		0
Auto-Discharge	R_{LOW}	V _{EN} =0V		60		Ω
Startun Timo (Noto 9)	т	V _{IN} = V _{OUT} +1V, V _{OUT} = 2.8V,		30		
Startup Time (Note 8)	T _{STR}	C _{IN} = C _{OUT} =1µF		30		μs

Note 6: Low duty cycle pulse testing with Kelvin connections repaired.

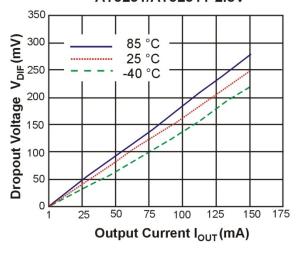
Note 7: Defined as the input to output differential at which the output voltage drops to 2% below the value measured at a differential of 1V.

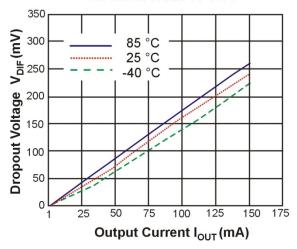
Note 8: Time from V_{EN} = 1.5V to V_{OUT} = 95% ($V_{OUT(NOM)}$).

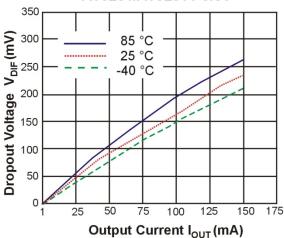

300mA Low Dropout Voltage Linear Regulators


Immense Advance Tech.

TYPICAL CHARACTERISTICS


(1) Dropout Voltage VS. Temperature AT5231/AT5231T-1.5V

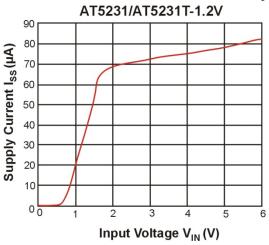

(2) Dropout Voltage VS. Temperature AT5231/AT5231T-2.5V

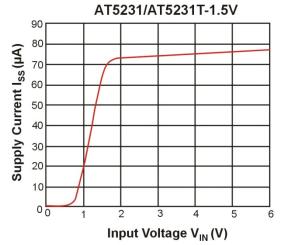

(3) Dropout Voltage VS. Temperature AT5231/AT5231T-2.8V

(4) Dropout Voltage VS. Temperature AT5231/AT5231T-3.0V

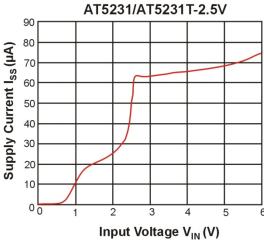
(5) Dropout Voltage VS. Temperature AT5231/AT5231T-3.3V

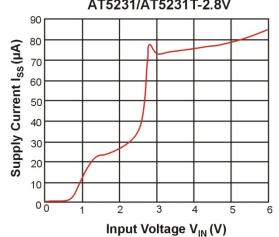
Rev1.6 Sep 2013

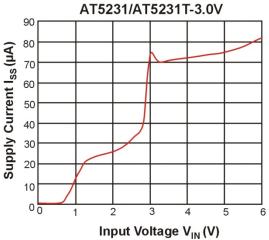

300mA Low Dropout Voltage Linear Regulators

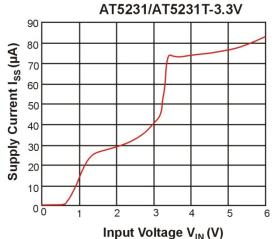


Immense Advance Tech.

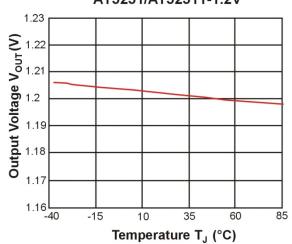

TYPICAL CHARACTERISTICS (CONTINUED)

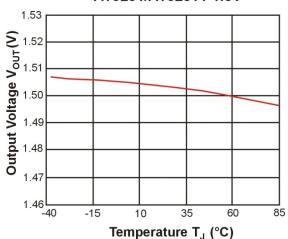

(6) Supply Current VS. Input Voltage ($T_J = 25$ °C) (7) Supply Current VS. Input Voltage ($T_J = 25$ °C)



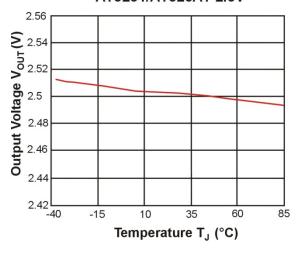

(8) Supply Current VS. Input Voltage ($T_J = 25^{\circ}$ C) (9) Supply Current VS. Input Voltage ($T_J = 25^{\circ}$ C) AT5231/AT5231T-2.5V AT5231/AT5231T-2.8V

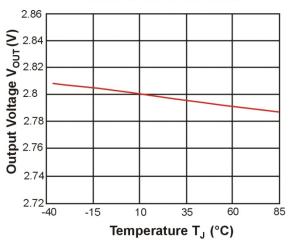
(10) Supply Current VS. Input Voltage (T_J =25°C) (11) Supply Current VS. Input Voltage (T_J =25°C)

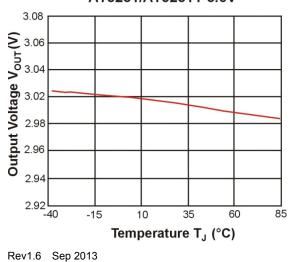

300mA Low Dropout Voltage Linear Regulators

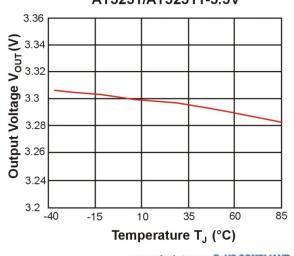

Immense Advance Tech.

TYPICAL CHARACTERISTICS (CONTINUED)


(12) Output Voltage VS. Temperature AT5231/AT5231T-1.2V

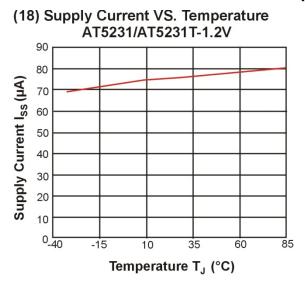

(13) Output Voltage VS. Temperature AT5231/AT5231T-1.5V

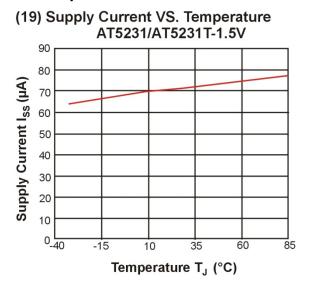

(14) Output Voltage VS. Temperature AT5231/AT523AT-2.5V

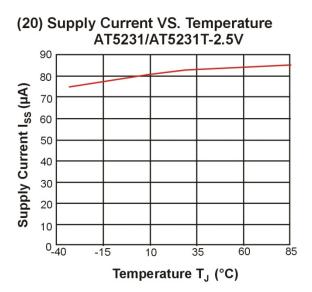

(15) Output Voltage VS. Temperature AT5231/AT5231T-2.8V

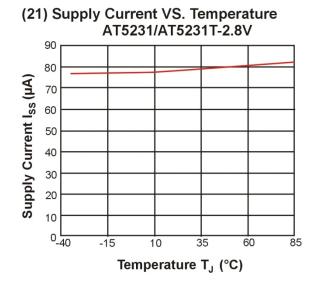
(16) Output Voltage VS. Temperature AT5231/AT5231T-3.0V

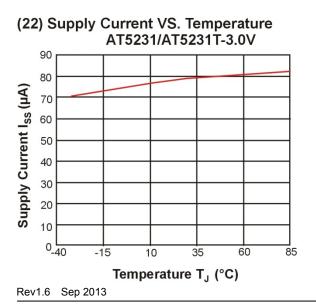
(17) Output Voltage VS. Temperature AT5231/AT5231T-3.3V

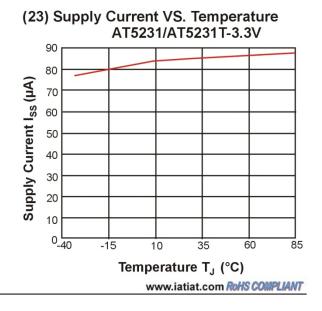

www.iatiat.com RoHS COMPLIANT

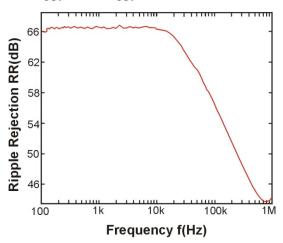

300mA Low Dropout Voltage Linear Regulators

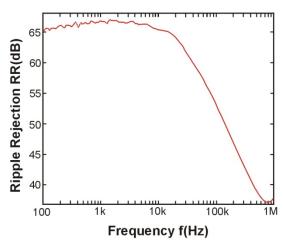



Immense Advance Tech.

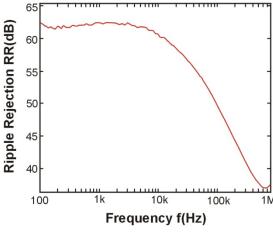

TYPICAL CHARACTERISTICS (CONTINUED)

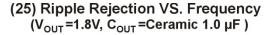


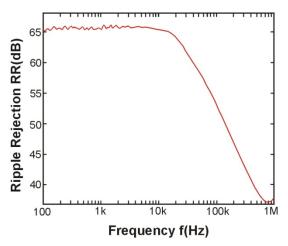

300mA Low Dropout Voltage Linear Regulators


Immense Advance Tech.

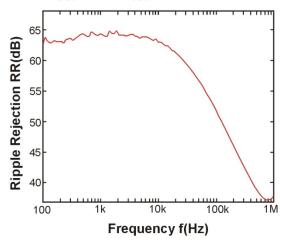
TYPICAL CHARACTERISTICS (CONTINUED)


(24) Ripple Rejection VS. Frequency (V_{OUT} =1.5V, C_{OUT} =Ceramic 1.0 μF)

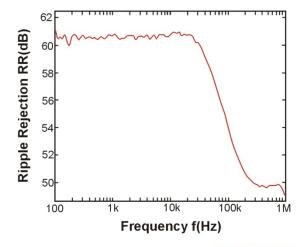

(26) Ripple Rejection VS. Frequency (V_{OUT}=2.5V, C_{OUT}=Ceramic 1.0 μF)



(28) Ripple Rejection VS. Frequency (V_{OUT}=3.0V, C_{OUT}=Ceramic 1.0 μF)

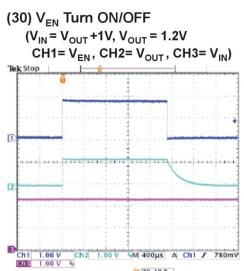


Rev1.6 Sep 2013

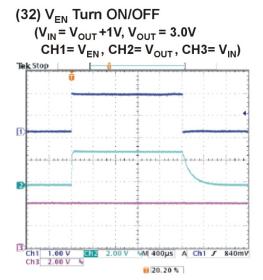


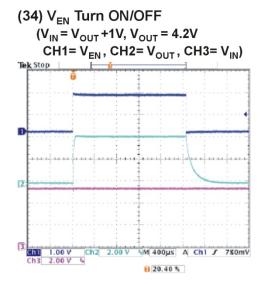
(27) Ripple Rejection VS. Frequency (V_{OUT} =2.8V, C_{OUT} =Ceramic 1.0 μF)

(29) Ripple Rejection VS. Frequency (V_{OUT}=3.3V, C_{OUT}=Ceramic 1.0 μF)

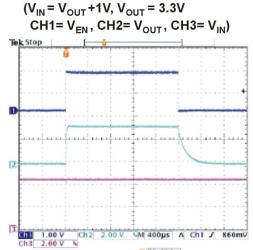

www.iatiat.com RoHS COMPLIANT

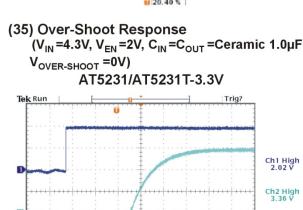
300mA Low Dropout Voltage Linear Regulators

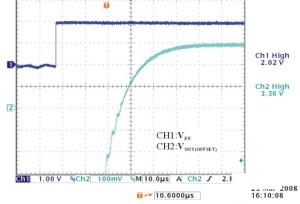



Immense Advance Tech.

TYPICAL CHARACTERISTICS (CONTINUED)

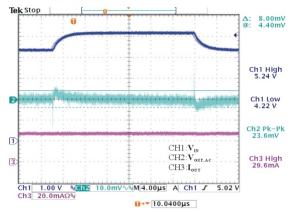

10.40%

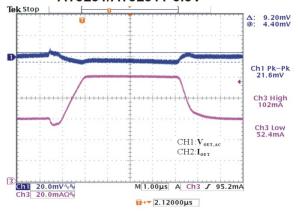



Rev1.6 Sep 2013

(33) V_{EN} Turn ON/OFF

www.iatiat.com RoHS COMPLIANT

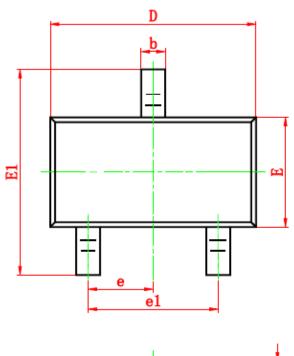

300mA Low Dropout Voltage Linear Regulators

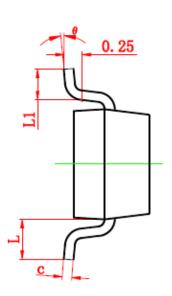

Immense Advance Tech.

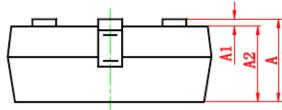
TYPICAL CHARACTERISTICS (CONTINUED)

(36) Input Transient Response (I_{OUT} =30mA, C_{IN}=Ceramic 1.0 μF, tr=tf=5 μs, C_{OUT}=Ceramic 1.0 μF) V_{IN}=4.3V~5.3V, △=V_{OUT, TRANSIENT, P-P}=8mV AT5231/AT5231T-3.3V

(37) Load Transient Response $(V_{IN}$ =4.3V, C_{IN} =Ceramic 1.0 μ F, tr=tf=1 μ s, C_{OUT} =Ceramic 1.0 μ F) I_{OUT} =50mA~100mA, \triangle =V_{OUT, TRANSIENT, P-P} =9.2mV AT5231/AT5231T-3.3V

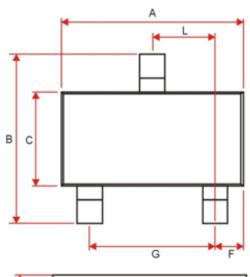


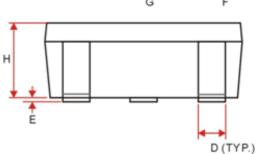

300mA Low Dropout Voltage Linear Regulators

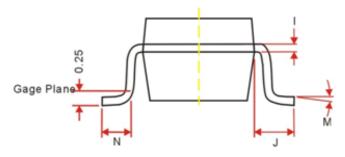


Immense Advance Tech.

PACKAGE OUTLINE DIMENSIONS SOT-23L PACKAGE OUTLINE DIMENSIONS

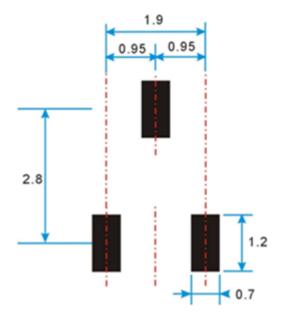

C. mala a l	Dimensions	In Millimeters	Dimension	s In Inches
Symbol	Min	Max	Min	Max
Α	0.900	1.150	0.035	0.045
A1	0.000	0.100	0.000	0.004
A2	0.900	1.050	0.035	0.041
b	0.300	0.500	0.012	0.020
С	0.080	0.150	0.003	0.006
D	2.800	3.000	0.110	0.118
E	1.200	1.400	0.047	0.055
E1	2.250	2.550	0.089	0.100
е	0.950 TYP		0.037	7 TYP
e1	1.800	2.000	0.071	0.079
L	0.550	0.022 REF		2 REF
L1	0.300	0.500	0.012	0.020
θ	0°	8°	0°	6°


300mA Low Dropout Voltage Linear Regulators



Immense Advance Tech.

PACKAGE OUTLINE DIMENSIONS SOT-23-3L PACKAGE OUTLINE DIMENSIONS



Cumbal	Dimensions	In Millimeters	
Symbol	Min.	Max.	
Α	2.70	3.10	
В	2.10	2.95	
С	1.20	1.70	
D	0.30	0.50	
E	0	0.15	
F	0.45	0.55	
N	0.30	0.60	
G	2.10	REF.	
Н	0.70	1.30	
- 1	0.10	0.20	
J	0.54 REF.		
L	0.95 REF.		
M	0°	10°	

SOT23-3L PACKAGE FOOTPRINT (mm)

300mA Low Dropout Voltage Linear Regulators

L1 (REF.)

Immense Advance Tech.

Dimensions In Millimeters

2.90 BSC. 2.80 BSC. 1.60 BSC.

0.60BSC. 0.25BSC.

0.95BSC.

1.90BSC

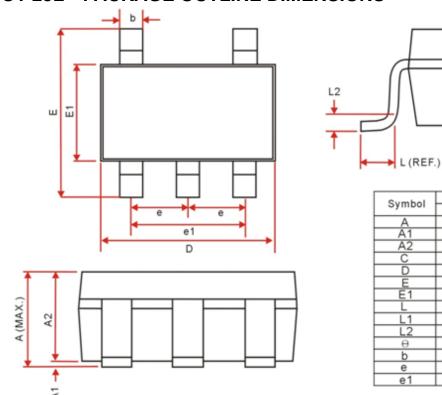
Min.

0.90

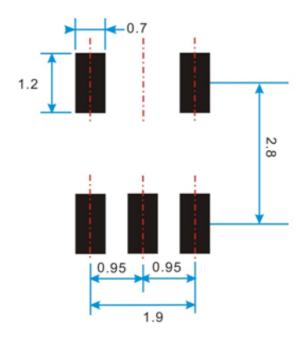
0.08

Max.

0.15


1.30

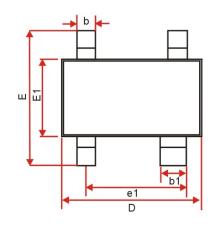
0.22

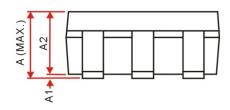

0.50

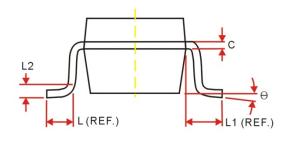
PACKAGE OUTLINE DIMENSIONS

SOT-25L PACKAGE OUTLINE DIMENSIONS

SOT-25L PACKAGE FOOTPRINT (mm)

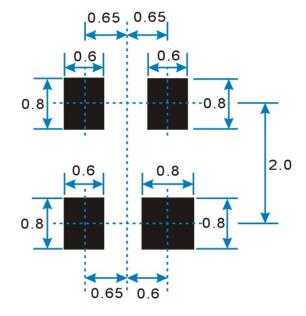



300mA Low Dropout Voltage Linear Regulators



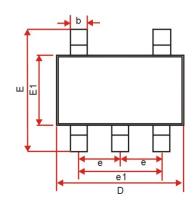
Immense Advance Tech.

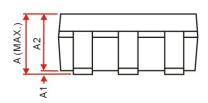
PACKAGE OUTLINE DIMENSIONS SOT-343 PACKAGE OUTLINE DIMENSIONS

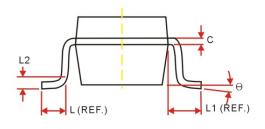


	Dimensions	In Millimeters	
Symbol	Min.	Max.	
Α	1.10 MAX.		
A1	0	0.10	
A2	0.70	1.00	
С	0.08	0.22	
D	2.10 BSC.		
E	2.30 BSC.		
E1	1.30	BSC.	
L	0.26	0.46	
L1	0.52	5REF.	
L2	0.20	BSC.	
θ	0°	8°	
b	0.15	0.35	
b1	0.30	0.50	
e1	1.30BSC.		

SOT-343 PACKAGE FOOTPRINT (mm)

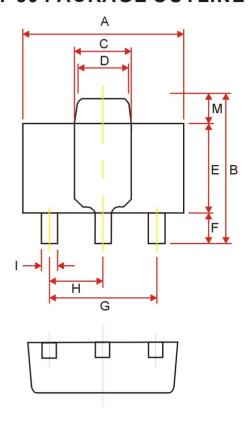


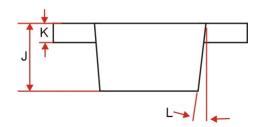

300mA Low Dropout Voltage Linear Regulators



Immense Advance Tech.

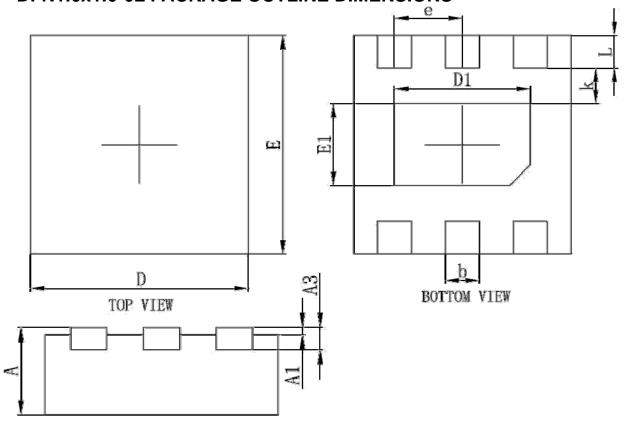
PACKAGE OUTLINE DIMENSIONS SOT-353 PACKAGE OUTLINE DIMENSIONS





Symbol	Dimensions	In Millimeters	
Syllibol	Min.	Max.	
Α	1.10	MAX.	
A1	0	0.10	
A2	0.70	1.00	
С	0.08	0.22	
D	2.00 BSC.		
E	2.10 BSC.		
E1	1.25	BSC.	
L	0.26	0.46	
L1	0.52	25REF.	
L2	0.1	5BSC.	
θ	0°	8°	
b	0.15	0.35	
е	0.65BSC.		
e1	1.30BSC.		

SOT-89 PACKAGE OUTLINE DIMENSIONS


DEE	Dimensions I	n Millimeters	
REF.	Min.	Max.	
Α	4.40	4.60	
В	3.94	4.25	
С	1.50	1.70	
D	1.30	1.50	
E	2.29	2.60	
F	0.89	1.20	
G	3.00	REF.	
Н	1.50	REF.	
	0.40	0.56	
J	1.40	1.60	
K	0.35	0.44	
L	5°TYP.		
M	0.70 REF.		

300mA Low Dropout Voltage Linear Regulators

Immense Advance Tech.

PACKAGE OUTLINE DIMENSIONS DFN1.6x1.6-6L PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions	Dimensions In Millimeters		s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	0.450/0.550	0.550/0.650	0.018/0.022	0.022/0.026
A1	0.000	0.050	0.000	0.002
A3	0.152	REF.	0.006	REF.
D	1.550	1.650	0.061	0.065
E	1.550	1.650	0.061	0.065
E1	0.550	0.650	0.022	0.026
D1	0.950	1.050	0.037	0.041
k	0.200MIN		0.008REF.	
b	0.200	0.300	0.008	0.012
е	0.500BSC.		0.020	BSC.
L	0.164	0.316	0.006	0.012

Note:

Information provided by IAT is believed to be accurate and reliable. However, we cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an IAT product; nor for any infringement of patents or other rights of third parties that may result from its use. We reserve the right to change the circuitry and specifications without notice.

Life Support Policy: IAT does not authorize any IAT product for use in life support devices and/or systems. Life support devices or systems are devices or systems which, (I) are intended for surgical implant into the body or (II) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. Typical numbers are at 25°C and represent the most likely norm.

Rev1.6 Sep 2013