FEATURES

- Universal Input Voltage Range from 90VAC to 264VAC
- Transition-mode PFC operating
- Built-in Active Power Factor Correction Technique
- Constant Output Current Control LED driver
- Good Line and Load Regulation
- Open-LED Protection on DMG and VCC pin
- Over-Voltage Protection on VCC pin
- Short-LED Protection
- Cycle by Cycle Over current Protection on CS pin
- Over-Temperature Protection
- Gate Driving Voltage Clamping
- SOT26 Package Available

APPLICATIONS

- LED lighting
- Down light
- Tube lamp
- PAR lamp
- Bulb

ORDER INFORMATION

DESCRIPTION

AT7383 is a non-isolation Buck type control IC with active power factor correction function for LED lighting application.

Immense Advance Tech.

The IC achieves high power factor and high efficiency by BCM mode. The line and load regulation of LED current is about $\pm 2.5\%$ because of particular control method.

AT7383 also provides gate driving voltage clamping, VCC over voltage protection and system output open/short circuit protection to increase IC performance.

PIN CONFIGURATIONS (TOP VIEW)

Rev 1.11 Jun. 2014

www.iatiat.com RoHS COMPLIANT

Immense Advance Tech.

PIN DESCRIPTIONS

Pin Name	Pin Description
СОМ	Output pin of error amplifier.
GND	Ground return for all internal circuit.
CS	Input current sense pin.
OUT	Gate driver output.
VCC	Power supply pin for all internal circuit.
DMG	Zero current demagnetization sensing.

TYPICAL APPLICATION CIRCUITS

Figure 1

6 Pin Non-isolation Buck current control IC with High PFC for LED Lighting

Immense Advance Tech.

ABSOLUTE MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Range	Unit
Power supply pin	V _{cc}	40	V
DMG voltage to GND	V _{DMG}	-0.3 to 40	V
OUT voltage to GND	V _{OUT}	-0.3 to 40	V
CS voltage to GND	V _{CS}	-0.3 to 5.5	V
COM voltage to GND	V _{COM}	-0.3 to 5.5	V
Junction Temperature Range	Tj	-40 to +150	C
Storage Temperature Range	T _{STG}	-65 to +150	C
Lead Temperature (Soldering 10 sec)	T _{LEAD}	260	C
Power Dissipation @T _A =25 °C	P _D	0.3	W
Thermal Resistance Junction to Ambient (Note 2)	θ_{JA}	220	CW
Thermal Resistance Junction to Case	θ _{JC}	106.6	CW
ESD Rating (Human body mode) (Note 3)	V _{ESD}	2	kV

RECOMMENDED OPERATING CONDITIONS (Note4)

Parameter	Symbol	Operation Conditions	Unit
Power supply pin	V _{CC}	34.5	V
DMG voltage to GND	V _{DMG}	-0.3 to 11.2	V
OUT voltage to GND	V _{OUT}	-0.3 to 19	V
CS voltage to GND	V _{cs}	-0.3 to 5	V
COM voltage to GND	V _{COM}	-0.3 to 5	V
Operating Junction Temperature Range	TJ	-40 to +125	C
Operating Ambient Temperature Range	T _{OPA}	-40 to +85	C

Note 1: Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.

Note 2: Thermal Resistance is specified with the component mounted on a low effective thermal conductivity test board in free air at $T_A=25$ °C.

Note 3: Devices are ESD sensitive. Handing precaution recommended.

Note 4: The device is not guaranteed to function outside its operating conditions.

AT7383

6 Pin Non-isolation Buck current control IC with High PFC for LED Lighting

Immense Advance Tech.

BLOCK DIAGRAM

Figure 2

6 Pin Non-isolation Buck current control IC with High PFC for LED Lighting

Immense Advance Tech.

ELECTRICAL CHARACTERISTICS

 T_A = 25°C, unless otherwise specified.

Parameter	Symbol	Condition	Min	Тур	Мах	Unit
Turn-on voltage	V _{CC_ON}		17.4	18.4	19.4	V
Turn-off voltage	V_{CC_OFF}		9.3	9.8	10.3	V
Quiescent current 1	I _{Q1}	Vcc=17V, at Vcc_off		30	50	uA
Quiescent current 2	I _{Q2}	Start up at 4.5 KHz		600	800	uA
Operation supply current	I _{cc}			2.5	3.0	mA
PROTECTION						
VCC voltage protection	V _{OVPA}		31.2	32.8	34.5	V
Output voltage protection	V _{OVPS}		9.8	10.5	11.2	V
CS limit voltage	V _{OCP}		1.15	1.25	1.35	V
Short circuit protection(Note 5)	V_{O_STR}			2		V
OSCILLATOR						
Start up timer	T _{STR}			220		us
GM AMPLIFIER						
Reference voltage	V_{REF}		195	200	205	mV
Transconductance	G _M			108		uA /V
Source current	I _{COMP_SOU}			20		uA
DRIVER						
Dropout voltage	V _{OH}	V_{CC} =33V, I_{O} = 10mA		1.2	1.5	V
Diopout voltage	V _{OL}	V_{CC} =33V, I_{O} = -10mA		0.12		V
Rising time	T _{RISE}	V_{CC} =20V, C_{O} =1nF		40		ns
Falling time	T _{FAIL}	V_{CC} =20V, C_{O} =1nF		80		ns
Output clamp voltage	V_{O_CLAMP}				19	V
Leading edge blanking time	LEB _T			0.5		ns
OTP(Note 6)						
OTP Trip Point				150		°C
OTP Release Point				115		°C
OTP Threshold Hysteresis				35		°C

Note 5: Guaranteed by design.

Note 6: Auto Recovery Type.

APPLICATION INFORMATION

1. Function Description

The AT7383 is a constant current Buck controller with PFC function for LED lighting applications.

The controller is BCM operation with constant on time based regulator design to achieve high power factor performance.

The AT7383 is built-in functions of VCC over voltage protection, open LED protection, short LED protection, over temperature protection, primary side current limit, and gate clamp within.

The AT7383 sense output current from CS pin to get the output current information. By the system close loop feedback. The avarge output current can express as below.

IOUT = 0.2 / Rs

2. Pin Detail

2-1. COM

This is the output of the Gm amplifier. Connect with a suitable RC network to ground.

2-2. GND

GND is the reference node of internal circuit.

2-3. CS

MOSFET current signal sensing for LED constant current control and current limit setting function

$$I_{CS(Limit)} = \frac{1.25}{Rs}$$

2-4. OUT

Gate drive for external MOSFET switch and is built-in Gate clamp function.

Immense Advance Tech.

2-5. VCC

Power supply for the controller during normal operation. The controller will start up when VCC reaches 18.4V (typical) and will shut-down when VCC voltage is below 9.8V (typical). A decoupling capacitor should be connected between the VCC and GND pin as close as possible.

The AT7383 perform VCC over voltage protection though VCC pin. Once VCC pin exceed in 32.8V, AT7383 turns off and latch out the MOSFET switcher until VCC under $V_{CC OFF}$.

2-6. DMG

The DMG pin can sense output information to depart from start up voltage($V_{O_{_{ostr}}}$) and protection voltage($V_{_{ovps}}$). Besides, the Internal resistance of DMG pin is 1.6Mohm.

When DMG sense voltage under V_{O_STR} , the circuit will work on short circuit protection,and the system switching frequency $F_{STR}=1/Tstr$.

When DMG sense voltage over V_{OVPS} , the circuit will work on over voltage protection, it will latch out off until VCC under $V_{CC OFF}$.

Immense Advance Tech.

OVP Protection (By DMG)

 $V_{DMG_OVP} = V_{OVPS} \times \frac{R_{DGM1} + (R_{DGM2} // 1.6M)}{R_{DGM2} // 1.6M}$

OVP Protection (By VCC)

 $V_{VCC_OVP} = V_{OVPA} + V_{ZD1}$

Short Circuit Protection

 $Vo_Short = Vo_STR \times \frac{RDGM1 + (RDGM2 //1.6M)}{RDGM2 //1.6M}$

6 Pin Non-isolation Buck current control IC with High PFC for LED Lighting

Immense Advance Tech.

PACKAGE OUTLINE DIMENSIONS Sot-26 Package outline dimensions

Symbol	Dimensions In Millimeters			
Symbol	Min	Max		
A	1.45 MAX.			
A1	0	0.15		
A2	0.90	1.30		
С	0.08	0.22		
D	2.90 REF.			
E	2.80 REF.			
E1	1.60 REF.			
L	0.30 0.60			
L1	0.60 REF.			
L2	0.25 REF.			
θ	0° 10°			
b	0.30	0.50		
е	0.95REF.			
e1	1.90REF.			

Note:

Information provided by IAT is believed to be accurate and reliable. However, we cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an IAT product; nor for any infringement of patents or other rights of third parties that may result from its use. We reserve the right to change the circuitry and specifications without notice.

Life Support Policy: IAT does not authorize any IAT product for use in life support devices and/or systems. Life support devices or systems are devices or systems which, (I) are intended for surgical implant into the body or (II) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. Typical numbers are at 25°C and represent the most likely norm.