
www.DataSheet4U.com

Smart Internet
Appliance
Processor
(SIAP™)

AT75C
DSP Subsystem

Rev. 1368C–INTAP–08/02
Features
• Fully Autonomous DSP System
• 16-bit Fixed-point OakDSPCore®

• 24K x 16 of Uploadable Program RAM
• 16K x 16 of Data RAM
• 2K x 16 of X-RAM
• 2K x 16 of Y-RAM
• X-RAM and Y-RAM Accessible within the Same Cycle
• JTAG Interface Available on AT75C220 and AT75C320
• On-chip Emulation Module
• Flexible Codec Interface
• Communication with External Processor through Dual-port Mailbox

Description
The AT75C DSP subsystem is an autonomous DSP-based computation block that co-
exists on-chip with other processors and functions. It is built around a 16-bit, fixed-
point, industry-standard OakDSPCore. Additionally, the DSP subsystem embeds all
elements necessary to run complex DSP algorithms independently without any exter-
nal resources.

The self-contained subsystem contains the OakDSPCore itself, program memory,
data memory, an on-chip emulation module and a flexible codec interface. These
resources allow the subsystem to run complex DSP routines, such as V.34 modem
emulation or state-of-the-art voice compression.

The codec interface permits connection of any external industry-standard codec
device, allowing the DSP subsystem to handle directly external analog signals such as
telephone line or handset signals.

Communication between the DSP subsystem and the on-chip ARM7TDMI™ core is
achieved through a semaphore-operated dual-port mailbox.
1

Architectural
Overview

Figure 1. AT75C DSP Subsystem Block Diagram

24K x 16
Program RAM

OakDSPCore
16K x 16
General-

purpose RAM

256 x 16
Dual-port
Mailbox

On-chip
Emulation

Module

2K x 16 X-RAM

2K x 16 Y-RAM

Codec Interface

Bus Interface Unit

DSP Subsystem

ASB

Oak Program Bus Oak Data Bus
2 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
Processing Unit A block diagram of the OakDSPCore architecture is shown in Figure 2.

Figure 2. AT75C OakDSPCore Block Diagram

The major components of the OakDSPCore are:

• Computation and Bit-manipulation Unit (CBU)

Accumulators (A0, A1, B0, B1)

Saturation Logic

Arithmetic and Logical Unit (ALU)

Bit-field Operations (BFO)

Shift Value Register (SV)

Barrel Shifter

Exponent Logic (EXP)

Multiplier

Input Registers (X, Y)

Output Register (P)

Output Shifter

• Data Address Arithmetic Unit (DAAU)

DAAU Registers (R0...R5)

DAAU Configuration Registers (CFGI, CFGJ)

Software Stack Pointer (SP)

Base Register (RB)

Alternative bank of registers (R0B, R1B, R4B, CFGIB)

Minimal/Maximal Pointer Register (MIXP)

• Data buses (XDB, YDB, PDB)

• Address buses (XAB, YAB, PAB)

On-core
Y-RAM

Data Address
Arithmetic Unit

On-core
X-RAM

User-
defined I/O

Computation and
Bit-manipulation Unit

Control and
Status Registers

Program Control
Unit

YAB XAB

YDB XDB

PDB

PAB
On-core

Program RAM
3
1368C–INTAP–08/02

• Program Control Unit (PCU)

Loop Counter (LC)

Internal Repeat Counter (REPC)

• Memories

On-core Data Memories (X-RAM, Y-RAM)

Program Memory

• Control Registers

Status Registers (ST0, ST1, ST2)

Interrupt Context Switching Register (shadow and swap)

Internal Configuration Register (ICR)

Data Value Match Register (DVM)

• User-defined I/Os
4 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
Bus Architecture

Data Buses Data is transferred via the X-data bus (XDB) and the program data bus (PDB), 16-bit bi-
directional buses, and the Y-data bus (YDB), a 16-bit unidirectional bus. The XDB is the
main data bus, where most of the data transfers occur. Data transfer between the Y-
data memory (Y-RAM) and the multiplier (Y-register) occurs over the YDB when a multi-
ply instruction uses two data memory locations simultaneously. Instruction word fetches
take place in parallel over PDB.

The bus structure supports the following movements:

• Register to register

• Register to memory

• Memory to register

• Program to data

• Program to register

• Data to program

The bus structure can transfer up to two 16-bit words within one cycle.

Address Buses Addresses are specified for the on-core X- and Y-RAM on the 16-bit unidirectional X-
address bus (XAB) and the 11-bit unidirectional Y-address bus (YAB). Program memory
addresses are specified on the 16-bit unidirectional program address bus (PAB).
5
1368C–INTAP–08/02

Computation and
Bit-manipulation Unit

The computation and bit-manipulation unit (CBU) contains two main units, the computa-
tion unit (CU) and the bit-manipulation unit (BMU). The saturation unit is shared by the
CU and the BMU units. A detailed block diagram of the computation and bit-manipula-
tion unit is shown below in Figure 3.

Figure 3. Computation Unit and Bit-manipulation Unit Block Diagram

Computation Unit The computation unit (CU) consists of the multiplier unit, the ALU and two 36-bit accu-
mulator registers (A0 and A1), as shown in Figure 3.

Multiplier Unit The multiplier unit consists of a 16-by-16 to 32-bit parallel 2’s complement, single-cycle,
non-pipelined multiplier, two 16-bit input registers (X and Y), a 32-bit output register (P),
and a product output shifter. The multiplier performs signed-by-signed, signed-by-
unsigned or unsigned-by-unsigned multiplication. Together with the ALU, the OakDSP-
Core can perform a single-cycle multiply-accumulate (MAC) instruction. The register P
is updated only after a multiply instruction and not after a change in the input registers.

The X- and Y-registers are read or written via the XDB, and the Y-register is written via
YDB, as 16-bit operands. The 16-bit Most Significant Portion (MSP) of the P register,
PH, can be written by the XDB as an operand. This enables a single-cycle restore of PH
during interrupt service routine. The complete 32-bit P register, sign-extended into 36
bits and shifted by the output shifter, can be used only by the ALU and can be moved
only to the A0 and A1 accumulators.

The X- and Y-registers can be also used as general-purpose temporary data registers.

ALU

Align

EXP

SV

Barrel
Shifter

B0/B1 A0/A1

MUX

BFO

Multiplier

X Y

P

Shifter

Saturation Unit

XDB

YDB

In
te

rc
on

ne
ct
6 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
Product Output Shifter The register P is sign-extended into 36 bits and then shifted. In addition to passing the
data unshifted, the output shifter is capable of shifting the data from the register P into
the ALU unit by one bit to the right or by one and two bits to the left. In right shift, the
sign is extended, whereas in left shift, a zero is appended to the LSBs. Shift operation is
controlled by two bits (PS) in the status register ST1. The shifter also includes alignment
(a 16-bit right shift) for supporting double-precision multiplication.

Double-precision Multiplication The OakDSPCore supports double-precision multiplication by several multiplication
instructions and by alignment option of the register P. The register P can be aligned
(shifting 16 bits to the right) before accumulating the partial multiplication results, in mul-
tiply-accumulate instructions (MAA and MAASU instructions). An example of different
multiplication operations is in the multiplication of 32-bit by 16-bit fractional numbers,
where two multiplication operations are needed: multiplying the 16-bit number with the
lower or upper portion of a 32-bit (double-precision) number. The signed-by-unsigned
operation is used to multiply or multiply-accumulate the 16-bit signed number with the
lower, unsigned portion of the 32-bit number. The signed-by-signed operation is used to
multiply the 16-bit signed number with the upper, signed portion of the 32-bit number.
While the signed-by-signed operation is executed, it is recommended to accumulate the
aligned (using MAA instruction) result of the previous signed-by-unsigned operation. For
the multiplication of two double-precision (32-bit) numbers, the unsigned operation can
be used. If this operation requires a 64-bit result, the unsigned-by-unsigned operation
should be used. For details, on the various multiply instructions (MPY, MPYSU,
MACUS, MACUU, MAA, MAASU, MSU and MPYI), refer to “Instruction Set” on page 31.

Ax-accumulators Each Ax-accumulator is organized as two regular 16-bit registers (A0H, A0L, A1H and
A1L) and a 4-bit extension nibble (A0E and A1E). The two portions of each accumulator
can be accessed as any other 16-bit data register and can be used as 16-bit source or
destination registers in all relevant instructions. The Ax-accumulators can serve as the
source operand and the destination operand of the ALU, barrel shifter and exponent
units. The extension nibbles of the A0 and A1 accumulators are the MSB’s part of status
registers ST0 and ST1, respectively. The Ax-accumulators can be swapped with the Bx-
accumulators in a single cycle. Saturation arithmetic is provided to selectively limit over-
flow from the high portion of an accumulator to the extension bits when performing a
move instruction from one of the accumulators through the XDB, or when using the LIM
instruction, which performs saturation on the 36-bit accumulator. For more details, refer
to “Saturation” on page 12.

Registers AxH and AxL can also be used as general-purpose, temporary 16-bit data
registers.

Extension Nibbles Extension nibbles A0E and A1E offer protection against 32-bit overflows. When the
result of an ALU output crosses bit 31, it sets the extension flag (E) in ST0, representing
crosses of the MSB in AxH. Up to 15 overflows or underflows are possible using the
extension nibble, after which the sign is lost beyond the MSB of the ALU output and/or
beyond the MSB of the extension nibble, setting the overflow flag (V) in ST0, and also
latching the Limit flag (L) in ST0. Refer to “Status Registers” on page 23 for more detail.

Sign Extension Sign extension of the 36-bit Ax-accumulators is provided when the Ax or AxH is written
with a smaller size operand. This occurs when these registers are written from XDB,
from the ALU or from the exponent unit in certain CBU operations. Sign extension can
be suppressed by specific instructions. For details, refer to “Instruction Set” on page 31.

Loading of Ax-accumulators AxL is cleared while loading data into AxH, and AxH is cleared while loading AxL. Load-
ing a full 32-bit value is accomplished via the ADDL or ADDH instructions (refer to
7
1368C–INTAP–08/02

“Instruction Set” on page 31). The full 36-bit accumulators can also be loaded using the
shift instructions or with another 36-bit accumulator in a single cycle using the SWAP
instruction. For details, refer to the sections “Swapping the Accumulators” on page 13
and “Instruction Set” on page 31.

Arithmetic and Logic Unit The Arithmetic and Logic Unit (ALU) performs all arithmetic and logical operations on
data operands. It is a 36-bit, single-cycle, non-pipelined ALU.

The ALU receives one operand from Ax (x = 0,1), and another operand from either the
output shifter of the multiplier, the XDB (through bus alignment logic), or from Ax. The
source operands can be 8, 16 or 36 bits. Operations between the two Ax-accumulators
are also possible. The source and destination Ax-accumulator of an ALU instruction is
always the same. The XDB input is used for transferring one of the register’s contents,
an immediate operand or the contents of a data memory location addressed in direct
memory addressing mode, indirect addressing mode, index addressing mode or pointed
to by the stack pointer, as a source operand. The ALU results are stored in one of the
Ax-accumulators or transferred through the XDB to one of the registers or to a data
memory location. The latter is used for addition, subtraction and compare operations
between a 16-bit immediate operand and a data memory location or one of the regis-
ters, without effecting the accumulators, in two cycles. The add and subtract are part of
the read-modify-write instructions. Refer to ADDV, SUBV, CMPV instructions in “Instruc-
tion Set” on page 31. A bit-field operation (BFO) unit is attached to the ALU and
described in detail in “Bit-field Operations”.

The ALU can perform positive or negative accumulate, add, subtract, compare, logical
and several other operations, most of them in a single cycle. It uses 2’s complement
arithmetic.

Unless otherwise specified, in all operations between an 8-bit or 16-bit operand and a
36-bit Ax, the 16-bit operand will be regarded as the LSP of a 36-bit operand with sign
extension for arithmetic operations and zero extension for logical operations. The
ADDH, SUBH, ADDL and SUBL instructions are used when this convention is not ade-
quate in arithmetic operations. For details, refer to these instructions in “Instruction Set”
on page 31.

The flags are affected as a result of the ALU output, as well as a result of the BFO or the
barrel shifter operation. In most of the instructions where the ALU result is transferred to
one of the Ax-accumulators, the flags represent the Ax-accumulator status.

Rounding Rounding (by adding 0x8000 to the LSP of the accumulator) can be performed by spe-
cial instructions, in a single cycle or in parallel to other operations. Refer to MOVR and
MODA instructions in “Instruction Set” on page 31.

Division Step A single-cycle division step is supported. For details, refer to the DIVS instruction in
“Instruction Set” on page 31.

Logical Operations The logical operations performed by the ALU are AND, OR, and XOR. All logical opera-
tions are 36 bits wide. 16-bit operands are zero extended when used in logical
operations. The source and destination Ax-accumulator of these instructions is always
the same. Operations between the two Ax-accumulators are also possible. For details,
refer to AND, OR and XOR instructions in “Instruction Set” on page 31.

Other logical operations are set, reset, change and test, executed on one of the regis-
ters or on data memory contents. Refer to “Bit-field Operations” on page 11.
8 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
Maximum/Minimum Operations A single-cycle maximum/minimum operation is available, with pointer latching and mod-
ification. One of the Ax-accumulators, defined in the instruction, holds the maximal value
in a MAX instruction, or the minimal value in a MIN instruction. In one cycle the two
accumulators are compared and when a new maximal or minimal number is found, this
value is copied to the above-defined accumulator. In the same instruction, the register
R0 can be used, for example, as a buffer pointer. This register can be post-modified
according to the specified mode in the instruction. When the new maximal or minimal
number is found, the R0 pointer is also latched into the 16-bit dedicated minimum/maxi-
mum pointer latching (MIXP) register – one of the DAAU registers. The maximum
operation can also be performed directly on a data memory location pointed to by the
register R0 (MAXD instruction), saving the maximal number in the defined Ax-accumula-
tor and latching the R0 value into MIXP in a single cycle. For more details, refer to MAX,
MAXD and MIN instructions in “Instruction Set” on page 31. For more details on regis-
ters R0 and MIXP, refer to “Data Address Arithmetic Unit (DAAU)” on page 14.

When finding the maximum/minimum value, a few buffer elements can have the same
value. The accumulator will save the same value; the latched pointer, however, depends
on the condition used in the instruction. In finding the maximum value, the pointer of the
first element or the last element will be latched, using greater than (>), or greater-than-
or-equal to (≥) conditions, respectively. In finding the minimum value, the pointer of the
first element or the last element will be latched, using less than (<), or less- than-or-
equal to (≤) conditions, respectively. All these cases are supported by the MAX, MAXD
and MIN instructions.

Bit-manipulation Unit The bit-manipulation unit (BMU) consists of a full 36-bit barrel shifter, an exponent unit
(EXP), a bit-field operation unit (BFO), two 36-bit accumulator registers (B0 and B1),
and the shift value (SV) register. Refer to Figure 3 on page 6.

Barrel Shifter The barrel shifter performs arithmetic shift, logical shift and rotate operations. It is a 36-
bit left and right, single-cycle, non-pipelined barrel shifter.

The barrel shifter receives the source operand from either one of the four accumulators
(A0, A1, B0, B1) or from the XDB (through bus alignment logic). The XDB input is used
for transferring the contents of one of the registers or a data memory location,
addressed in direct memory addressing mode or in indirect addressing mode. The
source operands may be 16 or 36 bits. The destination of the shifted value is one of the
four accumulators. The amount of shifts is determined by a constant embedded in the
instruction opcode or by a value in the SV register.

The flags are effected as a result of the barrel shifter output, as well as a result of the
ALU and BFO outputs. When this result is transferred into one of the accumulators, the
flags represent the accumulator status.

Shifting Operations A few options of shifting are available using the barrel shifter, all of them performed in a
single cycle. Each of the four accumulators can be shifted according to a 6-bit signed
number representing +31, -32 shifts (shift left is a positive number, while shift right is a
negative number) embedded in the instruction opcode, into each of the four accumula-
tors. The accumulators can also be shifted conditionally, according to the SV register
content. In this case the accumulators can be shifted by +36, -36. This supports calcu-
lating the amount of shifts at run-time as, for example, in normalization operations. Refer
to “Normalization” on page 11.

The source and the destination accumulators can be the same or different. If the accu-
mulators are different, the source accumulator is unaffected. For details, refer to SHFC
and SHFI instructions in “Instruction Set” on page 31.
9
1368C–INTAP–08/02

In addition to the conditional shifting operations performed when the accumulators are
shifted according to the SV register (by +36, -36), the shift and rotate operations
included in the MODA and MODB instructions are also performed conditionally. MODA
and MODB include:

• 1-bit right and left arithmetic shift and rotate

• 4-bit right and left arithmetic shift

For details, refer to MODA and MODB instructions in “Instruction Set” on page 31.

Arithmetic left shift and logical left shift perform the same operation, filling the LSBs with
zeros. During an arithmetic right shift, the MSBs are sign extended and during a logical
right shift, the MSBs are filled with zeros. Whether the shift mode is arithmetic or logic is
determined according to the Status mode bit (S) in the register ST2. It affects all shift
instructions.

Figure 4. Arithmetic Shift Right

Figure 5. Logical Shift Right

Figure 6. Logical Shift Left

Move and Shift Operations The four accumulators can be loaded by a shifted value, according to the SV register
content, in a single cycle. The accumulators can be loaded from one of the registers or
from a data memory location, addressed in direct addressing mode or indirect address-
ing mode, according to the SV shift value. The shifting capability is +36, -36, (shift left is
a positive number, while shift right is a negative number). The accumulators can also be
loaded by one of the DAAU registers (Rn registers), shifted according to a constant
embedded in the instruction opcode. The shifting capability in this case is 15 to -16.
Whether arithmetic shift mode or logic shift mode is selected is determined by the Status
mode bit (S) in the register ST2. Refer to MOVS and MOVSI instructions in “Instruction
Set” on page 31.

The register content or a data memory location content can be moved and shifted
according to the SV shift value into one of the four accumulators in a single cycle. One
of the four accumulators can also be loaded by a shifted value of the DAAU registers
(Rn registers), according to a constant embedded in the instruction opcode, also in a
single cycle. The shifting capability in this case is 16 to -15. Refer to “Instruction Set” on
page 31 for MOVS and MOVSI instructions.

Exponent Unit The exponent unit (EXP) performs exponent evaluation of one of the four accumulators,
of a data memory location or of one of the registers. The result of this operation is a
signed 6-bit value sign-extended into 16 bits and transferred into the shift value register
(SV). Optionally, it can also be transferred, sign-extended into 36 bits, into one of the
Ax-accumulators. The source operand is unaffected by this calculation. The source

C

Extension Accumulator high Accumulator low

C

Extension Accumulator high Accumulator low

0

C 0

Extension Accumulator high Accumulator low
10 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
operand can be 36 bits when it is one of the accumulators or 16 bits when it is a data
memory location or one of the registers.

The algorithm for determining the exponent result for a 36-bit number is as follows: Let
N be the number of the sign bits (i.e., the number of MSBs equal to bit 36) found in the
evaluated number. This means that the exponent is evaluated with respect to bit 32. For
a 16-bit operand, the 16 bits are regarded as bits 16 31, sign-extended into bits 32 to 35
and then treated as a 36-bit operand. Therefore, in this case, the exponent result is
always greater than or equal to zero. For examples, refer to Table 1 on page 11.

A negative result represents a number for which the extension bits are not identical. The
value of this negative result stands for how many right shifts should be executed in order
to normalize the number, i.e., bit 31 (representing the sign) and bit 30 (representing part
of the magnitude) will be different. A positive result represents an un-normalized number
for which at least the four extension bits and the sign bits are the same. When evaluat-
ing the exponent value of one of the accumulators, the positive number is the amount of
left shifts that should be executed in order to normalize the source operand. An expo-
nent result equal to zero represents a normalized number.

Examples including an application in a normalization operation can be found in Table 1
below.

Full normalization can be achieved in two cycles using the EXP instruction followed by a
shift instruction. For more details, refer to the section below on normalization, or to the
EXP, SHFC and MOVS instructions in “Instruction Set” on page 31.

The exponent unit can also be used in floating-point calculations, where it is useful to
transfer the exponent result into both the SV register and one of the Ax-accumulators.

Normalization Two techniques for normalization are provided. Using the first technique, normalization
can be done by two cycles using two instructions. The first instruction evaluates the
exponent value of one of the registers including the accumulators, or the value of a data
memory location. The second instruction is shifting the evaluated number according to
the exponent result stored at SV register. The second technique is using a normalization
step (NORM instruction). For details, refer to “Instruction Set” on page 31.

Bit-field Operations The bit-field operation unit (BFO) is used for set, reset, change or test a set of up to 16
bits within a data memory location or within one of the registers. The data memory loca-
tion can be addressed using a direct memory or an indirect address. The SET, RST and
CHNG instructions are read-modify-write and require two cycles and two words. The 16-
bit immediate mask value is embedded in the instruction opcode. Various testing
instructions can be used. Testing for zeros (TST0) or for ones (TST1), of up to 16 bits in
a single cycle, can be achieved when the mask is in one of the AxL or in two cycles
when the mask value is embedded in the instruction opcode.

Testing instruction (TSTB) for a specific bit, 1 out of 16, in a data memory location or in
one of the registers in a single cycle, is also available. For details, refer to SET, RST,
CHNG, TST0, TST1, TSTB instructions in the “Instruction Set” on page 31.

Table 1. Normalization Operation Examples

Evaluated Number
[35:...] N Exponent Result N-5

Normalized Number
[35:...]

0000 0000101... 8 3 (shift left by 3) 0000 0101...

1100 10101... 2 -3 (shift right by 3) 1111...

0000 0111000... 5 0 (no shift) 0000 0111000...
11
1368C–INTAP–08/02

The bit-field operation unit (BFO) is attached to the ALU. Flags are affected as a result
of the bit-field operations as well as a result of the ALU and the barrel shifter operation.

Bx-accumulators Each Bx-accumulator is organized as two regular 16-bit registers (B0H, B0L, B1H and
B1L) and a 4-bit extension nibble. The two portions of each accumulator can be
accessed as 16-bit data registers using the XDB bus and can be used as 16-bit source
or destination data registers in relevant instructions. The Bx-accumulators can be
swapped with the Ax-accumulators in a single cycle. Saturation arithmetic is provided to
selectively limit overflow from the high portion of an accumulator to the extension bits
when performing a move instruction from one of the accumulators through the XDB. For
more details, refer to “Saturation” on page 12.

Each of the Bx-accumulators can be a source operand of the exponent unit and can be
a source operand or a destination operand of the barrel shifter.

Extension Nibbles Extension nibbles of B0 and B1 offer protection against 32-bit overflows. When the
result of the barrel shifter crosses bit 31, it sets the extension flag (E) in ST0, represent-
ing crosses of the MSB at BxH. When the sign is lost beyond the MSB of the barrel
shifter and/or beyond the MSB of the extension nibble, the overflow flag (V) in ST0 is set
and latched in the Limit flag (L) in ST0. Refer to “Status Registers” on page 23 for more
details. The extension bits can be accessed with the aid of a single-cycle shift instruction
or by swapping to the Ax-accumulator.

Sign Extension Sign extension of the 36-bit Bx-accumulators is provided when the Bx or BxH is written
with a smaller size operand. This occurs when these registers are written from XDB or
from the barrel shifter in shift operations.

Loading Bx-accumulators BxL is cleared while loading data into BxH and BxH is cleared while loading BxL. The
full 36-bit accumulator can be loaded in a single cycle, using the shift instructions or by
another 36-bit accumulator, using the SWAP instruction (refer to “Swapping the Accu-
mulators” on page 13 and “Instruction Set” on page 31).

Shift Value Register The shift value (SV) register is a 16-bit register used for shifting operations and expo-
nent calculation. In shift operations it determines the amount of shifts and therefore
enables calculating the amount of shifts at run-time. The exponent result is transferred
to the SV register. This register can be used for full normalization by serving as the des-
tination of the exponent calculation and as the control for the shift (see “Normalization”
on page 11 and “Instruction Set” on page 31).

The SV register can also be used as a general-purpose temporary data register.

Saturation Saturation arithmetic is provided to selectively limit overflow from the high portion of an
accumulator to the extension bits. Saturation is performed when moving from the high
portion or low portion of one of the accumulators through the XDB, or when using the
LIM instruction, which performs saturation on the 36-bit accumulator. The saturation
logic will substitute a “limited” data value having maximum magnitude and the same sign
as the source accumulator.

In case saturation occurs when performing a move instruction (MOV or PUSH) from one
of the accumulators (AxH, AxL, BxL or BxH) through the XDB, the value of the accumu-
lator is not changed. Only the value transferred over the XDB is limited to a full-scale,
16-bit positive (0x7FFF for AxH or BxH; 0xFFFF for AxL or BxL) or negative (0x8000 for
AxH or BxH; 0x0000 for AxL or BxL) value. Limiting will be correctly performed even if
the transfer to the XDB does not immediately follow the accumulator overflow. When an
accumulator is swapped by the SWAP instruction, limitation will be correctly performed
12 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
when the value is transferred to the XDB. The saturation in move instructions can be
disabled by the SAT bit in the register ST0. When limiting occurs, the L flag in ST0 is
set. Refer to “Status Registers” on page 23 for more details.

The LIM instruction activates saturation on a 36-bit Ax-accumulator. When there is an
overflow from the high portion of an Ax-accumulator to the extension bits and a LIM
instruction is executed, the accumulator is limited to a full-scale, 32-bit positive (0 X
7FFFFFFF) or negative (0 X 8000000) value. Limiting will be correctly performed when
the value is operated on by the LIM instruction. The LIM instruction can use the same
accumulator for both source and destination or it can use one source Ax-accumulator,
which will not change, and transfer the limited result into the other Ax-accumulator. For
more details, refer to the LIM instruction in “Instruction Set” on page 31. When limiting
occurs, the L flag in ST0 is set. The SAT bit in ST0 has no effect on this instruction.
Refer to “Status Registers” on page 23 for more details.

Swapping the
Accumulators

The Ax-accumulators can be swapped with the Bx-accumulators in a single cycle. It is
possible to swap two 36-bit registers or all four 36-bits registers. Swapping is also
enabled between a specific Ax-accumulator into one of the Bx-accumulators, and in the
same cycle, from that Bx-accumulator into the other Ax-accumulator. Similarly, swap-
ping is enabled between a specific Bx-accumulator into one of the Ax-accumulators, and
in the same cycle, from that Ax-accumulator into the other Bx-accumulator. For a sum-
mary of the 14 swap options and other details, refer to the SWAP instruction in
“Instruction Set” on page 31.

Note that during interrupt context switching, the A1 and B1 accumulators are automati-
cally swapped. For more details, refer to “Interrupt Context Switching” on page 27.
13
1368C–INTAP–08/02

Data Address
Arithmetic Unit
(DAAU)

The DAAU performs all address storage and effective address calculations necessary to
address data operands in data and program memories and supports the software stack
pointer. In addition, it supports latching of the modified register in maximum/minimum
operations (see “Maximum/Minimum Operations” on page 9) and loop counter opera-
tions in conjunction with the MODR instruction (see “Instruction Set” on page 31) and
the R flag (see “Status Registers” on page 23). This unit operates in parallel with other
core resources to minimize address generation overhead. The DAAU performs two
types of arithmetics: linear and modulo. The DAAU contains six 16-bit address registers
(R0, R3 and R4, R5, also referred to as Rn) for indirect addressing, two 16-bit configura-
tion registers (CFGI and CFGJ) for modulo and increment/decrement step control and a
base register (RB) for supporting index addressing. In addition, it contains a 16-bit stack
pointer register (SP), alternative bank registers (R0B, R1B, R4B, CFGIB) supported by
an individual bank exchange and a 16-bit minimum-maximum pointer latching register
(MIXP, see “Maximum/Minimum Operations” on page 9). The Rn and configuration reg-
isters are divided into two groups for simultaneous addressing over XAB and YAB (or
PAB): R0, R3 with CFGI, and R4, R5 with CFGJ. Registers from both groups, in addition
to RB and SP, can be used for both XAB and YAB (or PAB) for instructions that use only
one address register. In addition, in these instructions the X-RAM and Y-RAM can be
viewed as a single continuous data memory space.

The R0, R1, R2, R3, R4, R5, CFGI, CFGJ, SP, RB and MIXP registers may be read
from or written to by the XDB as 16-bit operands, and thus can serve as general-pur-
pose registers.

Address Modification The DAAU can generate two 16-bit addresses every instruction cycle, which can be
post-modified by two modifiers: linear and modulo. The address modifiers allow the cre-
ation of data structures in memory for circular buffers, delay lines, FIFOs, another
pointer to the software stack, etc. The Rn registers can also be used, in addition to the
block-repeat nesting, as loop counters in conjunction with the MODR instruction (see
“Instruction Set” on page 31) and the R flag of ST0 (see “Status Registers” on page 23).
Address modification is performed using 16-bit (modulo 65,536) 2’s complement linear
arithmetic. The range of values of the registers can be considered as signed (from -
32,768 to +32,767) or unsigned (from 0 to +65,535). This is also true for the data space
memory map. Index addressing capability is also available. For details, see “Index
Modifier”.
14 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
Configuration Registers

CFGI

CFGJ

Linear (Step) Modifier During one instruction cycle, one or two (from different groups) of the address register,
Rn, can be post-incremented or post-decremented by 1 or added with a 2’s complement
7-bit step (from -64 to +63). The selection of linear modifier type (one out of four) is
included in the relevant instructions (see “Conventions” on page 34). Step values STEPI
and STEPJ are stored as the seven LSBs of the configuration registers, CFGI and
CFGJ, respectively.

Modulo Modifier The two modulo arithmetic units can update one or two address registers from different
groups within one instruction cycle. They are capable of performing modulo calculations
of up to 29. Each register can be set independently to be affected or unaffected by the
modulo calculation using the six Mn status bits in the ST2 register. Modulo setting val-
ues MODI and MODJ are stored in nine MSBs of configuration registers CFGI and
CFGJ, respectively.

For proper modulo calculation, the following constraints must be satisfied (M = modulo
factor; q = STEPx, +1 or -1).

1. Rn should be initiated with a number whose p LSBs are less than M, where p is
the minimal integer that satisfies 2p ≤ M.

2. The constraints when the modulo M to the power of 2 (full modulo operation):

a. The lower boundary (base address) must have zeros in at least the k LSBs,
where k is the minimal integer that satisfies 2k ≥ M-1.

b. MODx (x denotes I or J) must be loaded with M - |q|.

c. M ≥ q

3. The constraints when the modulo M is not a power of 2:

a. The lower boundary (base address) must have zeros in at least the k LSBs,
where k is the minimal integer that satisfies 2k ≥ M - |q|.

b. MODx (x denotes I or J) must be loaded with M - |q|.

c. M must be an integer multiple of q (this is always true for q = ±1).

d. Rn should be initiated with a number that contains an integer multiple of |q| or
zeros in its k LSBs.

Note: |q| denotes the absolute value of q.

The modulo modifier operation, a post-modification of the Rn register, is defined as
follows:

Rn <- 0 in k LSB; if Rn is equal to MODx in k LSB and q ≥ 0,

15 14 13 12 11 10 9 8

MODI

7 6 5 4 3 2 1 0

STEPI

15 14 13 12 11 10 9 8

MODJ

7 6 5 4 3 2 1 0

STEPJ
15
1368C–INTAP–08/02

Rn <- MODx in k LSB; if Rn is equal to 0 in k LSB and
q < 0,

Rn (k LSBs) <- Rn+q (k LSBs); Otherwise

When M = |q| (i.e., MODx = 0), modulo operation is:
Rn <- Rn.
Notes: 1. R0 ≥ R3 can only work with STEPI and MODI, while R4 • R5 can work only with

STEPJ and MODJ.
2. The modulo operation can work for modulo values greater than 512 when the M -

|STEPx| ≥ 511 and constraints 3a, 3b, 3c and 3d are met.

Examples:

1. M = 7 with STEPx = 1 (or +1 selected in instruction), MODx = 7 - 1 = 6, Rn =
0x0010 (hexa). The sequence of Rn values will be:
0x0010,0x0011,0x0012,0x0013,0x0014,0x0015,0x0016,0x0010,0x0011,...

2. M = 8 with STEPx = 2, MODx = 8 - 2 = 6, Rn = 0x0010. The sequence of Rn val-
ues will be: 0x0010,0x0012,0x0014,0x0016,0x0010,0x0012,...

3. M = 9 with STEPx = -3, MODx = 9 - |-3| = 6, Rn = 0x0016. The sequence of Rn
values will be:
0x0016,0x0013,0x0010,0x0016,0x0013,...

4. M = 8 with STEPx = 3, (23 = 8 - full modulo support), MODx = 8 - 3 = 5, Rn =
0x0010.
The sequence of Rn values will be:
0x0010,0x0013,0x0016,0x0011,0x0014,0x0017,0x0012,0x0015,0x0010,0x0013
,...

Index Modifier The OakDSPCore has short and long index addressing modes. The base register is RB,
one of the DAAU registers. In the short index addressing mode, the base register,
together with a 7-bit signed short immediate value (-64 to +63) embedded in the instruc-
tion opcode, is used to point to a data memory location in a single cycle. In the long
index addressing mode, the base register, together with a signed 16-bit offset, given as
the second word of the instruction, is used to access the memory in two cycles. Unlike
the linear and modulo addressing modes, in both index addressing modes, address pre-
modification is performed prior to accessing the memory. The base register is unaf-
fected. Indexed addition, subtraction, compare, AND, OR, XOR and move from/into the
pointed data memory location can be performed in either one or two cycles, using the
short or long mode, respectively.

The base register can be used as an array pointer or in conjunction with the stack
pointer (SP) register. When the stack is used for transferring routine parameters, initial-
izing the base register by the SP value enables quick access to routine parameters
transferred using the stack. The index addressing mode is useful for supporting C-
compiler.

The RB register is part of the global register set and can be used as a general-purpose
register.

Software Stack The OakDSPCore contains a software stack, pointed to by a dedicated 16-bit register,
the stack pointer (SP). The SP contains the address of the top value in the stack; there-
fore, it points to the last value pushed onto the stack. The stack is filled from high
memory address to low memory address. A POP instruction performs a post-increment;
a PUSH instruction performs a pre-decrement. The Program Counter (PC) is automati-
cally pushed to the stack whenever a subroutine call or an interrupt occurs and popped
back on return from subroutine or interrupt. Other values can be pushed and popped
16 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
using the PUSH and POP instructions. The top of stack can be read without affecting SP
using a dedicated MOV instruction.

The software stack can reside anywhere in the data space (X-RAM and Y-RAM) and
can be accessed by any other pointer (R0 to R5 and RB).

The software stack is useful for supporting the C-compiler. The stack can be used for
transferring routine parameters (e.g., C-automatic variables). Thus, after initializing the
base register (RB) by the SP value, the routine parameters can be referenced by the
index mode with the MOV, ADD, SUB, CMP, AND, OR and XOR instructions. Another
support for transfer of routine parameters is the RETS instruction, which returns from a
subroutine and updates the SP by a short immediate value.

The SP register is part of the global register set. Refer to “Programming Model and Reg-
isters” on page 23.

Alternative Bank of
Registers

The DAAU contains an alternative bank of four registers: R0B, R1B, R4B, CFGIB. For
each of the R0/R0B, R1/R1B, R4/R4B or CFGI/CFGIB, only one register is accessible at
a time. The selection between the current or the alternative register is controlled by a
special BANKE instruction, which exchanges (swaps) the contents between the current
register with the alternative bank register.

The bank exchanging is selected individually, meaning that the BANKE instruction
includes a list of registers to be exchanged in a single cycle. For the four registers there
are 15 different options. Refer to BANKE instruction in “Instruction Set” on page 31.

The individual selectivity of the bank registers contributes to flexibility of the bank regis-
ters. The user can decide where each of the alternative registers will be utilized in
interrupts, routines, etc.

Program Control Unit
(PCU)

The Program Control Unit (PCU) performs instruction fetch, instruction decoding, excep-
tion handling, hardware loop control, wait state support and on-chip emulation support.
In addition, it controls the internal program memory protection. Refer to “Program
Memory”.

The PCU contains the Repeat/Block-repeat unit and two 16-bit directly accessible regis-
ters: the Program Counter (PC) and the Loop Counter (LC).

The PCU selects and/or calculates the next address from several possible sources:

• the incremented PC in sequential program flow

• jump address in branch or call operations

• short PC-relative address of seven bits in relative branch or call operations

• start address and exit address of hardware loops

• interrupts vector handling

• user write to PC or the top value on the stack, pointed to by the SP register upon
returning from subroutines and interrupts

The PCU also writes the PC to the top of stack in subroutines and interrupts.

The PC always contains the address of the next instruction.

For more information on the pipeline method, refer to “Pipeline Method” on page 140.
17
1368C–INTAP–08/02

Repeat and Block-repeat
Unit

The Repeat/Block-repeat unit performs the hardware-loop calculations and controls
execution without overhead (other than the one-time execution of set up instructions
REP or BKREP for initialization of repeat or block-repeat mechanism, respectively).
Four nested levels of block-repeat can be performed and the REP instruction can be
performed inside each one of the these levels.

The number of repetitions can be a fixed value embedded in the instruction code or a
value transferred from one of the processor’s 16-bit registers. This option supports cal-
culating the number of repetitions in run-time.

For the repeat operation, the unit contains an internal 16-bit repeat counter (REPC) for
repeating a single-word instruction from 1 to 65536 repetitions. REPC counter is read-
able by the programmer.

In block-repeat operation, the last and first addresses of a loop are stored in 16-bit dedi-
cated registers. A 16-bit dedicated counter, LC, counts the number of loop repetitions (1
- 65536). In case of nested block-repeats, it saves these values in internal registers. The
LC of each level can be accessed by the user; the start-address and end-address regis-
ters and the internal shadow registers cannot be accessed as registers by the
programmer. An indication of the block-repeat nesting level is a read-only block-repeat
nesting counter (BC2, BC1, BC0) in the internal configuration register (ICR). See also
“Internal Configuration Register” on page 29. The 16-bit block-repeat loop counter (LC)
is one of the global registers. The LC register can be used as an index inside the block-
repeat loop or for determining the value of the block-repeat counter when a jump out of
the block-repeat loop occurs.

The single instruction repeat can reside in each of the block-repeat levels. Both the
repeat and the block-repeat mechanisms are interruptible. For details, on specific limita-
tions, refer to REP and BKREP instructions in “Instruction Set” on page 31.

A BREAK instruction can be used for stopping each of the four nested levels of a block-
repeat. Refer to the BREAK instruction in “Instruction Set” on page 31.

The in-loop (LP) bit in the ICR is set when a block-repeat is executed and reset upon
normal completion of the outer block-repeat loop. When the user resets this bit, it stops
the execution of all four levels of block-repeat. For more details on the LP bit, refer to
“Internal Configuration Register” on page 29. If the LP bit is cleared in the current block-
repeat loop, the processor is no longer in any of the block loop levels (BC2, BC1, BC0
bits in ICR register are cleared). Therefore, when the last address is reached there are
no jumps to the first address of the loop, the counter is not decremented and the proces-
sor continues to the sequential instruction. An exception is when LP is cleared at one of
the last three addresses of the block-repeat. In these cases the effect of clearing LP
takes place only in the next loop. An instruction that reads ICR and starts at last address
of the outer block-repeat loop results in the LP bit equal to zero when the last repetition
of this outer loop is reached.

The LC register may also serve as a 16-bit general-purpose register for temporary
storage.
18 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
Memory Spaces and
Organization

Two independent memory spaces are available: the data space (X-RAM and Y-RAM)
and the program space.

Program Memory Addresses 0x0000 to 0x0016 are used as interrupt vectors for Reset, TRAP (software
interrupt with option for hardware activation), NMI (non-maskable interrupt) and three
maskable interrupts (INT0, INT1, INT2). The RESET, TRAP and NMI vectors have been
separated by two locations so that branch instructions can be accommodated in those
locations if desired. The maskable interrupts have been separated by eight locations so
that branch instructions, or small and fast interrupt service routines, can be accommo-
dated in those locations.

The program memory addresses are generated by the PCU.

Figure 7. Program Memory Diagram

Application Software Area

INT2 vector

INT1 vector

INT0 vector

NMI vector

TRAP vector

Reset vector
0x0000

0x0002

0x0004

0x0006

0x000E

0x0016

0x001E

0x6000
19
1368C–INTAP–08/02

Note that in the AT75C the interrupts have been affected as shown in Table 2.

Data Memory The data space is divided as follows:

• a Y-data space for the on-core Y-RAM (2K x 16)

• an X-data space for the on-core X-RAM (2K x 16)

• an additional X-data space for an on-chip but off-core
X-RAM (16K x 16)

• the dual-port mailbox (refer to “Dual-port Mailbox” on page 152 and following
sections)

• memory-mapped I/Os for peripherals connection

The on-core Y-RAM space and the on-core X-RAM space are mapped to allow a contin-
uous data space. The data space partition allows expansion of the X-RAM, which has
been grown off-core with an additional 16K x 16 block. This off-core block is used as
general-purpose working memory and can be accessed with no wait state cycles. The
dual-port mailbox is also seen in the X-data space.

Memory-mapped I/Os are used to connect to on-chip peripherals (OCEM, codec inter-
face). They are seen by the OakDSPCore in the X-data space. Refer to Figure 8.

Table 2. Affectation of the Interrupt Request Lines

Interrupt Affectation

TRAP Used in conjunction with the OCEM for debug purposes

NMI Not used

INTerrupt 0 Indicates that the dual-port mailbox requires service

INTerrupt 1 Indicates that the codec interface requires service

INTerrupt 2 Not used
20 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
Figure 8. Data Memory Diagram

Memory Addressing
Modes

There are five data memory addressing modes.

Short Direct Addressing Mode Eight bits embedded in the instruction opcode as LSBs plus eight bits from status regis-
ter ST1 as MSB (see “Status Registers” on page 23) compose the 16-bit address to the
data memory. The pages are thus of 256 words each. For example, page 0 corresponds
to addresses 0 to 255 in X-RAM, page 1 from 250 to 511 in X-RAM and page 255 from -
256 to -1 in Y-RAM. Any memory location in the 64K-word data space can be directly
accessed in a single cycle.

Long Direct Addressing Mode Sixteen bits embedded in the instruction opcode as the second word of the instruction
are used as the 16-bit address of the data memory. Any memory location in the 64K-
word data space can be directly accessed in two cycles.

Indirect Addressing Mode The Rn registers of the DAAU are used as 16-bit addresses for indirect addressing the
X-RAM and the Y-RAM. Some instructions use two registers, simultaneously address-
ing a memory location in X-RAM and another in Y-RAM, both addressed in indirect
addressing mode.

Short Index Addressing Mode The base register RB plus an index value (offset7, a 7-bit immediate value embedded in
the instruction opcode) are used for index-based indirect addressing the X-RAM or Y-
RAM. The index value can be from -64 to +63. The actual address is RB + offset7, but
leaving the contents of RB unaffected. For details, refer to “Index Modifier” on page 16.

On-core
Y-RAM

OCEM

CODEC

DPMB

Off-core on-chip
X-RAM

(Data RAM)

On-core
X-RAM

0x0000

0x0800
0x4000

0xE000

0xEC00

0xF000

0xF800

0xFFFF

0x8000
D

at
a

S
pa

ce

2K

2K

1K

2K

16K

2K
21
1368C–INTAP–08/02

Long Index Addressing Mode The base register RB plus a 16-bit immediate index value (embedded in the second
instruction opcode word) are used for index-based indirect addressing of the X-RAM or
Y-RAM. The index value can vary between -32768 to +32767. The contents of RB
remain unaffected. For details, refer to “Index Modifier” on page 16.

The software stack located in the data memory is addressed using the stack pointer
(SP) register.

Program memory is addressed by:

• Indirect Addressing Mode
The Rn registers of the DAAU and the accumulator can be used for addressing the
program memory in specific instructions.

• Special Relative Addressing Mode
Special Branch Relative (BRR) and Call Relative (CALLR) instructions support
jumping relative to the PC (from PC - 63 to PC + 64).
22 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
Programming Model
and Registers

Most of the OakDSPCore’s visible registers are arranged as a global register set of 34
registers that can be accessed by most data moves and core operations.

The registers are listed below, organized according to the units’ partition. Additional
details on each register can be found in the description of each unit and in the following
paragraphs.

Status Registers Three status registers are available to hold the flags, status bits, control bits, user I/O
bits and paging bits for direct addressing. The contents of each register and their field
definitions are described below.

Status Register 0

• Z: Zero

Set if the ALU/BFO/Barrel Shifter output used at the last instruction equals zero; cleared otherwise. This flag is also used to
indicate the result of the test bit/s instructions (TST0, TST1, TSTB).

The zero flag is cleared during processor reset.

The zero flag can be modified by writing to ST0.

• M: Minus

Set if ALU/BFO/Barrel Shifter output used at the last instruction is a negative number; cleared otherwise. The minus flag is
the same as the MSB of the output (bit 35).

The minus flag is cleared during processor reset.

The minus flag can be modified by writing to ST0.

• N: Normalized

Set if the 32 LSBs of the ALU/Barrel Shifter output used at the last instruction are normalized; cleared otherwise, i.e., set if
.

The normalized flag is cleared during processor reset. The normalized flag can be modified by writing to ST0.

• V: Overflow

Set if an arithmetic overflow (36-bit overflow) occurs after an arithmetic operation; cleared otherwise. It indicates that the
result of an operation cannot be represented in 36 bits.

• C: Carry

Set if an addition operation generates a carry or if a subtract generates a borrow; cleared otherwise. It also accepts the
rotated bit or the last bit shifted out of the 36-bit result.

The carry flag is cleared during processor reset.

The carry flag can be modified by writing to ST0.

• E: Extension

Set if bits 35 to 31 of the ALU/Barrel Shifter output used at the last instruction are not identical; cleared otherwise. If the E
flag is cleared, it indicates that the 4 MSBs of the output are the sign-extension of bit 31 and can be ignored.

The extension flag is cleared during processor reset.

The extension flag can be modified by writing to ST0.

• L: Limit

The L flag has two functions: to latch the overflow (V) flag and to indicate limitation during accumulator move or LIM
operations.

15 14 13 12 11 10 9 8

A0E Z M N V

7 6 5 4 3 2 1 0

C E L R IM1 IM0 IE SAT

Z bit 31 bit 30⊕() E∩∪
23
1368C–INTAP–08/02

Set if the overflow flag was set (overflow latch) or if a limitation occurred when performing a move instruction (MOV or
PUSH) from one of the accumulators (AxH, AxL, BxL or BxH) through the data bus or if a limitation occurred when the LIM
(TBD) instruction was executed. Otherwise, it is not affected.

The limit flag is cleared during processor reset.

The limit flag can be modified by writing to ST0.

• R: Rn Register is Zero

This flag is affected by the MODR and NORM instructions. The R flag is set if the result of the Rn modification operation
(Rn; Rn + 1; Rn - 1; Rn + S) is zero; cleared otherwise. The R flag status is latched until one of the above instructions is
used.

The R flag is cleared during processor reset.

The R flag can be modified by writing to ST0.

• IM1, IM0: Interrupt 0 Mask, Interrupt 1 Mask

IM0 – Interrupt mask for INT0

IM1 – Interrupt mask for INT1

Clear – Disable the specific interrupt.

Set – Enable the specific interrupt.

The interrupt mask bits are cleared during processor reset. The interrupt mask bits can be modified by writing to ST0.

• IE: Interrupt Enable

Clear – Disable all maskable interrupts.

Set – Enable all maskable interrupts.

The interrupt enable bit is cleared during processor reset. The interrupt enable bit can be modified by the instructions EINT
(enable interrupts) and DINT (disable interrupts) by using RETI/RETID for returning from one of the maskable interrupt ser-
vice routines or by writing to ST0.

• SAT: Saturation Mode

Clear – Enable the saturation when transferring the contents of the accumulator onto the data bus.

Set – Disable the saturation mode.

Note that this bit has no effect on the LIM instruction.

The saturation enable bit is cleared during processor reset.

The saturation enable bit can be modified by writing to ST0.
24 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
Status Register 1

• PS: Product Shifter Control

The product shifter control bits control the scaling shifter at the output of register P as follows:

The PS bits are cleared during processor reset.

The PS bits can be modified by writing to ST1.

• PAGE: Data Memory Space Page

Used for direct address. Refer to “Memory Addressing Modes” on page 21.

The PAGE bits can be modified by the LOAD instruction, the LPG instruction or by writing to ST1.

Status Register 2

• IP1, IP0, IP2: Interrupt Pending

IP0 – Interrupt pending for INT0

IP1 – Interrupt pending for INT1

IP2 – Interrupt pending for INT2

The interrupt pending bit is set when the corresponding interrupt is active. The bit reflects the interrupt level regardless of
the mask bits.

The IPx bits are read-only.

• IU1, IU0: IUSER0, IUSER1

The IUSERx bits reflect the logic state of the corresponding user input pins.

The IUSERx bits are read-only bits.

• OU1, OU0: OUSER0, OUSER1

The OUSERx bits define the logic state of the corresponding user output pins.

The OUSERx bits are cleared during processor reset.

The OUSERx bits can be modified by writing to ST2.

• S: Shift Mode

The shift mode bit defines the shift method. Affects all shift instructions: SHFC, SHFI, MODA, MODB, MOVS and MOVSI.
Refer to “Shifting Operations” on page 9.

15 14 13 12 11 10 9 8

A1E PS – –

7 6 5 4 3 2 1 0

PAGE

PS Bit

Number of ShiftsBit 11 Bit 10

0 0 No shift

0 1 Shift right by one

1 0 Shift left by one

1 1 Shift left by two

15 14 13 12 11 10 9 8

IP1 IP0 IP2 --- IU1 IU0 OU1 OU0

7 6 5 4 3 2 1 0

S IM2 M5 M4 M3 M2 M1 M0
25
1368C–INTAP–08/02

Clear – The shift instruction performs an arithmetic shift.

Set – The shift instruction performs a logical shift.

The shift mode bit is cleared during processor reset.

The shift mode bit can be modified by writing to ST2.

• IM2: Interrupt 2 Mask

Interrupt mask for INT2

Clear – Disable interrupt 2

Set – Enable interrupt 2

The interrupt mask bit is cleared during processor reset.

The interrupt mask bit can be modified by writing to ST2.

• M5, M4, M3, M2, M1, M0: Modulo Enable

Cleared Mn bit – When using the corresponding Rn register, the Rn register will be modified as specified by the instruction,
regardless of the modulo option.

Set Mn bit – When using the corresponding Rn register, the Rn register will be modified as specified by the instruction,
using the suitable modulo.

Note that the MODR instruction is the only instruction that can use one of the Rn registers without being affected by the cor-
responding Mn bit, using a special option field.

The Mn bits are cleared during processor reset.

The Mn bits can be modified by writing to ST2.
26 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
Interrupt Context
Switching

When a program is interrupted by an interrupt service routine, it is necessary to save
those registers used by the service routine so that the interrupted program resumes
execution correctly. To reduce the involved overhead, a context-switching mechanism
can be used for each of the following interrupts: NMI, INT0, INT1 and/or INT2. Whether
a specific interrupt should use the context-switching mechanism is determined by the
corresponding bit in the internal configuration register (ICR). Refer to the comments on
ICR contents on page 29 and to the MOV instruction in “Instruction Set” on page 31.

When an interrupt that uses context switching is accepted, context switching occurs
automatically without any impact on interrupt latency. When returning from this interrupt
service routine, context switching should be used to restore the original register values
automatically. Refer to the RETI and CNTX instructions in “Instruction Set” on page 31.

Context switching involves three parallel mechanisms: push/pop to/from dedicated
shadow bits, swap of a dedicated page register and swap between two specific
accumulators.

The following register bits are saved automatically as shadow bits, i.e., one stack level
register: ST0[11:2], ST0[0], ST1[11:10], ST2[7:0]. This means that the data bits can be
pushed to or popped from the shadow registers.

The page bits ST1[7:0] are swapped to an alternative register. This means that when an
interrupt is accepted, the current page is saved into the alternative register while the
previous (stored) value of the page is restored so that it can be used without additional
initialization. When returning from the interrupt, the interrupt page is saved again into the
alternative register for the next interrupt, and the page used before entering the interrupt
service routine is swapped back to ST1.

The A1- and B1-accumulators are automatically swapped. Therefore, it is very conve-
nient to use B1 to store data needed for interrupt routines. This data will be transferred
automatically into the A1-accumulator on interrupt service for interrupts using the con-
text-switching mechanism and transferred back while returning from the interrupt
service routine.

A context-switching activation instruction is also available. For details refer to the CNTX
instruction in “Instruction Set” on page 31.
27
1368C–INTAP–08/02

Status Register 0 (ST0)

Status Register 1 (ST1)

Status Register 2 (ST2)

Figure 9. Accumulator Swapping

15 14 13 12 11 10 9 8

A0E Z M N V

7 6 5 4 3 2 1 0

C E L R IM1 IM0 IE SAT

15 14 13 12 11 10 9 8

Z M N V

7 6 5 4 3 2 1 0

C E L R IM1 IM0 SAT

15 14 13 12 11 10 9 8

A1E PS – –

7 6 5 4 3 2 1 0

PAGE

15 14 13 12 11 10 9 8

PS

7 6 5 4 3 2 1 0

PAGE

15 14 13 12 11 10 9 8

IP1 IP0 IP2 – IU1 IU0 OU1 OU0

7 6 5 4 3 2 1 0

S IM2 M5 M3 M3 M2 M1 M0

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

S IM2 M5 M3 M3 M2 M1 M0

36-bit B1 Accumulator 36-bit A1 AccumulatorSwap

Accumulators
28 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
Internal Configuration
Register

The internal configuration register includes context-switching bits, the block-repeat indi-
cation and processor status bits.

Internal Configuration Register

• BC2, BC1, BC0: Block-repeat Nesting Counter

Holds the current block-repeat loop nesting level as in the following:

The BCx bits are cleared during processor reset and due to disabling the block-repeat mechanism, by clearing
the LP bit.

The BCx bits are read-only.

• LP: INLOOP

Set if a block-repeat is executed; cleared otherwise.

When transferring data into ICR, the LP bit will be influenced as follows:

1 – The LP bit and the block-repeat nesting counter are cleared.

0 – The LP bit is unaffected.

Clearing this bit causes a break from the four levels of block-repeat, hence clearing the block repeat nesting counter (BCx)
bits.

The inloop bit is cleared during processor reset.

The inloop bit can be cleared by writing to ICR.

In addition, refer to “Repeat and Block-repeat Unit” on page 18.

For breaking out from one block-repeat level, refer to the BREAK instruction in “Instruction Set” on page 31.

• IC2, IC1, IC0, NMIC: Context Switching Enable

IC2 – INT2 Context switching enable

IC1 – INT1 Context switching enable

IC0 – INT0 Context switching enable

NMIC – NMI Context switching enable

Set – Enable context switching during the beginning of the corresponding interrupt.

Clear – Disable context switching during the beginning of the corresponding interrupt.

The ICx bits and NMIC are cleared during processor reset.

The ICx bits and NMIC can be modified by writing to ICR.

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

BC2 BC1 BC0 LP IC2 IC1 IC0 NMIC

BC2 BC1 BC0 Block-repeat Counter State Description

0 0 0 Not within a block-repeat loop

0 0 1 Within first block-repeat level (outer loop)

0 1 0 Within second block-repeat level

0 1 1 Within third block-repeat level

1 0 0 Within fourth block-repeat level (inner loop)
29
1368C–INTAP–08/02

Data Value Match
Register

The data value match (DVM) register is part of on-core support for on-chip emulation.
This register can be used by an on-chip emulation module, residing off-core, for gener-
ating a breakpoint on a data value match. A data value match occurs when the DVM
register content is the same as the data on XDB. In order to enable comparison for any
transaction, and since the data on XDB is not always transferred off-core, the DVM reg-
ister is implemented as part of the core.

This register is also used upon servicing the TRAP routine: The PC content is trans-
ferred into the DVM in addition to the software stack. The DVM content can be
transferred from/into the accumulators. Refer to the MOV instruction in the “Instruction
Set” on page 31.
30 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
Instruction Set This section provides an overview and detailed description of the OakDSPCore instruc-
tion set definition and coding, as well as complete information on the function of each
instruction. The pipeline method is covered briefly. The section gives sufficient informa-
tion to understand the nature of OakDSPCore programming and the capability of the
instruction set itself.

Notations and Conventions

Notations The following notations are used in this section:

Registers rN = Address registers: r0, r1, r2, r3, r4, r5

rI = Address registers: r0, r1, r2, r3

rJ = Address registers: r4, r5

aX = a0 or a1

aXl = ax-accumulator-low (LSP), X = 0, 1

aXh = ax-accumulator-high (MSP), X = 0, 1

aXe = ax-accumulator extension, X = 0, 1

bX = b0 or b1

bXl = bx-accumulator-low (LSP), X = 0, 1

bXh = bx-accumulator-high (MSP), X = 0, 1

ac = a0, a1, a0h, a1h, a0l, a1l

bc = b0, b1, b0h, b1h, b0l, b1l

ab = a0, a1, b0, b1

cfgX = Configuration registers of DAAU (MODI or MODJ, STEPI or STEPJ), x = i, j

sv = Shift value register

sp = Stack pointer

pc = Program counter

lc = Loop counter

ext = External registers, X = 0, 1, 2, 3

REG = a0, a1, a0h, a1h, a0l, a1l, b0, b1, b0h, b1h, b0l, b1l, rN, rb, y, p or ph, sv, sp, pc,
lc, st0, st1, st2, cfgi, cfgj, ext

x = x (multiplier input) register

mixp = Minimum/maximum pointer

icr = Internal configuration register

repc = Repeat counter

dvm = Data value match register

Number Representation ___ decimal

0b___ , 0B___ binary

0x___ , 0X___ hexadecimal
31
1368C–INTAP–08/02

Data and Program Operands Table 3 lists the data and the program operands: number of bits, operand range includ-
ing the assembler mnemonics and an example for each operand. See also “Memory
Addressing Modes” on page 21.

Negative numbers can also be written as four hexadecimal digits. For example: -0x80
can be written as 0xFF80; -0x20 can be written as 0xFFe0.

Table 3. Data Operands

Data Operand Bit Count

Assembler Syntax

ExampleDecimal Hexadecimal Binary

#signed short
immediate

2’s complement 8 bits #-128..127 #-0x80..0x7F #-0b100000000..
0b01111111

mov #-12, r0

#signed 6-bit
immediate

2’s complement 6 bits #-32..31 #-0x20..0x1F #-0b100000..
0b011111

shfi b0, a0, #-4

#signed 5-bit
immediate

2’s complement 5 bits #-16..15 #-0x10..0x0F #0b10000..
0b01111

movsi r1, a0, #3

#unsigned 9-bit
immediate

unsigned 9 bits #0..511 #0x000..0x1FF #0b000000000..
0b111111111

load #270, modi

#unsigned short
immediate

unsigned 8 bits #0..255 #0x00..0xFF #0b00000000..
0b11111111

add #0b10, a0

#unsigned 7-bit
immediate

unsigned 7 bits #0..127 #0x00..0x7F #0b0000000..
0b1111111

load #3, stepj

#unsigned 5-bit
immediate

unsigned 5 bits #0..31 #0x00..0x1F #0b00000..
0b11111

mov #0x5, icr

#unsigned 2-bit
immediate

unsigned 2 bits #0..3 #0x0..0x3 #0b00..0b11 load #0b11, ps

#bit number unsigned 4 bits #0..15 #0x0..0xF #0b0000..0b1111 tstb r0, #12

##long immediate,
##offset

2’s complement 16 bits ##-32768..32767 ##0x8000..0x7FFF mov ##-0x9000,
a0

unsigned 16 bits ##0..65535 ##0x0000..0xFFFF mov ##0xF000,
r0

offset7 2’s complement 7 bits -64..63 -0x40..0x3F -0b1000000..
0b0111111

add (rb-5), a1

Table 4. Program Operands

Program Operand Bit Count

Assembler Syntax

ExampleDecimal Hexadecimal Binary

direct address unsigned 8 bits #0..255 #-0x00..0xFF #0b00000000..
0b11111111

add 120, a1

address unsigned 16 bits #0..65535 #-0x0000..0xFFFF call 0x5000
32 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
Option Fields

Condition Fields

Other Tokens

Table 5. Option Field Table

eu Extension unaffected. Optional field in the mov direct address, axh [eu] instruction. When mentioned, the data is
transferred into aXh without affecting aXe. When not mentioned, the data is transferred into Xh with sign-extension into
aXe.

context Context switching. Optional field in the reti instruction. When mentioned, it means automatic context switching. When not
mentioned, it means without context switching.

dmod Disable modulo. This is an option field in the modr instruction. When mentioned, the rN is post-modified with modulo
modifier disable. When not mentioned, the post-modification of rN is influenced by the Mn bit.

Table 6. Condition Field Table (cond)

Mnemonic Description Condition

true Always

eq Equal to zero Z = 1

neq Not equal to zero Z = 0

gt Greater than zero M = 0 and Z = 0

ge Greater than or equal to zero M = 0

lt Less than zero M =1

le Less than or equal to zero M = 1 or Z = 1

nn Normalized flag is cleared N = 0

v Overflow flag is set V = 1

c Carry flag is set C = 1

e Extension flag is set E = 1

l Limit flag is set L = 1

nr R flag is cleared R = 0

niu0 Input user pin 0 is cleared

iu0 Input user pin 0 is set

iu1 Input user pin 1 is set

(x) The contents of x << Shift left

| One of the options should be included exp(x) Exponent of x

[] Optional field at the instruction . Not

–> Is assigned to » Or

>> Shift right « And
33
1368C–INTAP–08/02

Flags Notation The effect of each instruction on the flags is described by the following table:

For flag definitions, refer to “Status Registers” on page 23.

Conventions 1. The arithmetic operations are performed in 2’s complement.

2. The post-modification of rN registers is supported with the following instructions:

– instructions that use an indirect addressing mode

– modr

– norm

– max, maxd, min (in r0 only)

In these instructions the contents of rN register are post-modified as follows:

– rN, rN + 1, rN - 1, rN + step

– Options controlled by configuration registers cfgX:

Step size: STEPI, STEPJ – 2’s complement 7 bits (-64 to 63)

Modulo size: MODI, MODJ – unsigned 9 bits (1 to 512)

– Options controlled by st2:

For each rN register, it should be defined if MODULO is enabled or disabled. In
order to use MODI or MODJ the relative Mn bit must be set (the only exception for
this is at modr instruction, when there is an optional field for disabling the modulo).
For more details on the modulo arithmetic unit, refer to “Modulo Modifier” on page
15.

Whenever the operand field in the instruction includes the option of (rN), it means
that the rN can be post-modified in one of the four options.

Assembler syntax: (rN), (rN)+, (rN)-, (rN) + s

For example: mov(r0)-, r1

mac(r4)+, (r0) + s, a0

add(r2), al

modr(r5)-

3. Direct addressing mode assembler syntax:

The syntax when a one-word instruction is used is either direct address or [direct
address].

4. The MSP of the P register (ph) is a write-only register. The 32-bit P register is
updated after a multiply operation and can be read only by transferring it to the
ALU; that is, it can be moved into aX or be an operand for arithmetic and logic
operations. When transferring it into the ALU, it is sign-extended to 36 bits. This
enables the user to store and restore the P register.

5. The P register is used as a source operand for different instructions: as one of
the REG registers; at moda instruction – pacr function; at multiply instructions
where the P register is added or subtracted from one of the accumulators. When
using the P register as a source operand, it always means using the “shifted P
register”. Shifted P register means that the P register is sign-extended into 36
bits and then shifted as defined at the PS field, status register st1. In shift right,
the sign is extended, whereas in shift left a zero is appended into the LSB. The

x The flag is affected by the execution of the instruction.

– The flag is not affected by the instruction.

1 or 0 The flag is unconditionally set or cleared by the instruction.
34 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
contents of the P register remain unchanged. At two multiply instructions, maa
and maasu, the P register is also aligned, i.e., after the P register is sign-
extended and shifted according to the PS field, it is also shifted by 16 to the right.

6. All move instructions using the accumulator (aX or bX) as a destination are sign-
extended.

All instructions that use the accumulator-low (aXl or bXl) as a destination will clear
the accumulator-high and the accumulator extension. Therefore, they are sign
extension-suppressed.

All instructions using the accumulator-high (aXh or bXh) as a destination will clear
the accumulator-low and are sign- extended. An exception is mov direct address,
axh [eu], when moving data into accumulator-high can be controlled with sign exten-
sion or with sign extension unaffected (the accumulator extension aXe is
unaffected).

7. In all arithmetic operations between 16-bit registers and aX (36 bits), the 16-bit
register will be regarded as the 16 low-order bits of a 36-bit operand with a sign
extension in the MSBs.

8. It is recommended that the flags are used immediately after the instruction that
updated them. Otherwise, very careful programming is required (some flags may
be changed in the meantime).

9. The condition field is almost always an optional field, except when the condition
is followed by another optional field as in reti instruction. The condition field is the
last field of the instruction. When the condition field is missing, the condition is
true.

Examples: shr4 true is the same as shr4, but in reti true, context the true cannot be
omitted.

10. General Restrictions:

a) Arithmetic and logical operations (but not bit-manipulation operations) must not
be performed with the same accumulator as the source (soperand) and the destina-
tion (doperand).

Example: add a0, a0 is not allowed (shfc a0, a0 is allowed)

b) An instruction immediately following an instruction that modifies the rb register
may not use the index addressing mode. The only exception is when rb is modified
using a long immediate operand (mov ## long immediate, rb).

11. Two nop instructions should follow instructions that use the pc as a destination
register except after move ## long immediate, pc, where only one nop is needed.
35
1368C–INTAP–08/02

ADD – Add

Syntax: add operand, aX

Operation: aX + operand −> aX

Operand: REG
[##direct address]
#unsigned short immediate
##long immediate
(rb + offset7)
(rb + ##offset)
(rN)

Affected Flags:

Cycles: 1
2 when the instruction is two words long

Words: 1
2 when the operand is ##long immediate or (rb + ##offset) or [##direct
address]

Notes: The REG cannot be bX.

Z M N V C E L R
x x x x x x x –
36 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
ADDH – Add to High Accumulator

Syntax: addh operand, aX

Operation: aX + operand • 216 −> aX
aXl remains unaffected

Operand: REG
(rN)
direct address

Affected Flags:

Cycles: 1

Words: 1

Notes: The REG cannot be aX, bX, p.

Z M N V C E L R
x x x x x x x –
37
1368C–INTAP–08/02

ADDL – Add to Low Accumulator

Syntax: addl operand, aX

Operation: aX + operand −> aX
The operation is sign-extension suppressed.

Operand: REG
(rN)
direct address

Affected Flags:

Cycles: 1

Words: 1

Notes: The REG cannot be aX, bX, p.

Z M N V C E L R
x x x x x x x –
38 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
ADDV – Add Long Immediate Value or Data Memory Loca-
tion

Syntax: addv ##long immediate, operand

Operation: operand + ##long immediate −> operand
The operand and the long immediate values are sign-extended. If the
operand is not part of an accumulator (aXl, aXh, aXe, bXl, bXh), then
the accumulators are unaffected. If the operand is a part of an accumu-
lator, only the addressed part is affected.

Operand: REG
(rN)
direct address

Affected Flags:

Z, M, C are a result of the 16-bit operation. M is affected by bit 15.
When the operand is st0, st0 (including the flags) accepts the addition
result regardless of a0e bits.

Cycles: 2

Words: 2

Notes: The REG cannot be aX, bX, p, pc. Note that aX can be used in add
##long immediate, aX instruction.

When adding a long immediate value to st0, st0 (including the flags)
accepts the ALU output result. When adding a long immediate value to
st1, the flags are affected by the ALU output, as usual.

Note that when the operand is part of an accumulator, only the
addressed part is affected. For example, if the instruction addv ##long
immediate, a01 generates a carry. The carry flag is set. However, a0h is
unchanged. On the other hand, the instruction addl ##long immediate,
a0l (with same a0 and immediate values) changes the a0h and affects
the carry flag according to bit 36 of the ALU result.

Z M N V C E L R
x x – -x x – – –
39
1368C–INTAP–08/02

AND – And

Syntax: and operand, aX

Operation: If operand is aX or P:
aX[35:0] AND operand −> aX[35:0]

If operand is unsigned short immediate:
aX[7:0] AND operand −> aX[7:0]
aX[15:8] −> aX[15:8]
0 −> aX[35:16]

if operand is REG, (rN), long immediate:
aX[15:0] AND operand −> aX[15:0]
0 −> aX[35:16]
Note: If the operand is one of the a accumulators or the P register, it is
ANDed with the destination accumulator.

If the operand is short immediate, the operand is zero-extended to form
a 36-bit operand, then ANDed with the destination accumulator. Bits 15
to 8 are unaffected; other bits of the accumulator are cleared.

If the operand is a 16-bit register or a long immediate value, the oper-
and is zero-extended to form a 36-bit operand, then ANDed with the
accumulator. Therefore, the upper bits of the accumulator are cleared
by this instruction.

Operand: REG
(rN)
direct address
[##direct address]
#unsigned short immediate
##long immediate
(rb + offset7)
(rb + ##offset)

Affected Flags:

Z flag is set if all the bits at the ALU output are zeroed, cleared other-
wise. Note that when the operand is unsigned short immediate, ALU
output bits 35 to 8 are 0.

Cycles: 1
2 when the instruction is two words long

Words: 1
2 when the operand is ##long immediate or (rb+offset) or [##direct

Z M N V C E L R
x x – – – x – –
40 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
address]

Notes: The instruction and #unsigned short immediate, aX can be used for
clearing some of the low-order bits at a 16-bit destination.

For example:
mov ram, aX
and #unsigned short immediate, aX
mov aX, ram

Using the and instruction, bits 15:8 are unaffected. Therefore, the high-
order bits at the destination do not change. See also rst instruction.

In addition, this instruction can be used for bit test, test one of the low-
order bits of a destination (e.g., at accumulator-low).
For example:

and #unsigned short immediate, aX
br address, eq

See also the tstb instruction.

The REG cannot be bX.
41
1368C–INTAP–08/02

BANKE – Bank Exchange

Syntax: banke [r0], [r1], [r4], [cfgi]

Operation: Exchange the registers appearing in the exchange list with their corre-
sponding swap registers.

Affected Flags:

Cycles: 1

Words: 1

Notes: The number and the order of the registers appearing in the exchange
list may vary. Here are some valid examples:

banke r0
banke r1, cfgi
banke r1, r0
banke cfgi, r1, r4

For more details, refer to “Alternative Bank of Registers” on page 17.

Z M N V C E L R
– – – – – – – –
42 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
BKREP – Block-Repeat

Syntax: bkrep operand, address

Operation: operand −> lc
1 −> LP status bit
BCx + 1 −> BCx

Begin a block-repeat that is to be repeated operand + 1 times.
The repetition range is from 1 to 65536.
The first block address is the address after the bkrep instruction and the
last block address is the address specified in the address field. The
operand is inserted into the loop counter register (lc). The inloop status
bit LP is set – indicating a block-repeat loop. The block-repeat nesting
level counter is incremented by one.

The repeated block is interruptible.

Operand: #unsigned short immediate
REG

Affected Flags:

Cycles: 2

Words: 2

Notes: This instruction can be nested. Four levels of block-repeat can be used.

When using an unsigned short immediate operand, the number of repe-
titions is between 1 and 256. When transferring the #unsigned short
immediate number into the lc register, it is copied to the low-order 8 bits
of lc. The high-order 8 bits are zero-extended.

In case the last instruction at the block-repeat is:
a. a one-word instruction, the address field should contain the address
of the instruction;
b. a two-word instruction, the address field should contain the address
of the second word.

In the outer block-repeat level, the REG cannot be aX, bX, p.
In other nested levels, the REG cannot be aX, bX, p, lc. Note that the
assembler cannot check the restriction on lc register in a nested block-
repeat.
The data read while reading lc during a block repeat loop execution is
from the loop counter. If the outer block repeat loop has normally com-
pleted its turn with the contents of lc of 0; if it was completed using

Z M N V C E L R
– – – – – – – –
43
1368C–INTAP–08/02

break, the contents of lc will be the value of the loop counter at the
break point.

The minimum length of the repeated block is two words.

Restrictions:
• Break cannot start at the last address of the block repeat loop.
• The following instructions cannot start at address – 1 in a block-repeat
loop: break (1 word), mov soperand (2 words), icr, mov icr, ab (2 words).
• The following instructions cannot start at the two last addresses of the
block-repeat loop: br, brr, call, callr, calla, ret, reti, rets, retd, retid, bkrep,
rep, instructions with pc or lc as destination, instructions with lc or icr as
source.
• The following instructions cannot start at address – 2 of a block-repeat
loop: instructions with lc as destination, mov soperand, icr.
• The following instructions cannot start at address – 3 of a block-repeat
loop: set, rst, chng, addv, subv, with lc as destination.
• Note that illegal instruction sequences are also restricted at the last
and first instructions of a block-repeat loop.
• Two block-repeat loops cannot have the same last address.
44 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
BR – Conditional Branch

Syntax: br address[, cond]

Operation: If condition, then address –> pc
If the condition is met, branch to the program memory location specified
by the address field.

Affected Flags:

Cycles: 2 if the branch is not to occur
3 if the branch is to occur

Words: 2

Notes: If the condition is met, address is the address of the new program mem-
ory location. The address is the second word of the instruction.

Z M N V C E L R
– – – – – – – –
45
1368C–INTAP–08/02

BREAK – Break from Block-repeat

Syntax: break

Operation: Used for breaking out of the current block repeat loop. The internal reg-
isters that contain the first address, last address and loop counter are
popped.

Affected Flags:

Cycles: 1

Words: 1

Notes: The break instruction cannot be the last of a block-repeat loop.

A break at the outer level does not change lc and resets the LP bit.

Z M N V C E L R
– – – – – – – –
46 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
BRR – Relative Conditional Branch

Syntax: brr relative address[, cond]

Operation: if condition, then (pc + relative address + 1) –> pc
If the condition is met, a branch is executed to an address relative to the
current program memory location. The offset range is - 63 to +64.

Affected Flags:

Cycles: 2

Words: 1

Z M N V C E L R
– – – – – – – –
47
1368C–INTAP–08/02

CALL – Conditional Call Subroutine

Syntax: call address[, cond]

Operation: if condition, then
sp - 1 –> sp
pc –> (sp)
address –> pc

If the condition is met, the stack pointer is pre-decremented, the pro-
gram counter is pushed into the software stack and a branch is per-
formed to the program memory location specified by the address field.

Affected Flags:

Cycles: 2 if the branch is not to occur
3 if the branch is to occur

Words: 2

Notes: If the condition is met, address is the address of the new program mem-
ory location. The address is the second word of the instruction.

Z M N V C E L R
– – – – – – – –
48 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
CALLA – Call Subroutine at Location Specified by
Accumulator

Syntax: calla aX

Operation: sp - 1 –> sp
pc –> (sp)
aXl –> pc

Call subroutine indirect (address from aXl). The stack pointer (sp) is
pre-decremented. The program counter (pc) is pushed into the software
stack and a branch is executed to the address pointed by accumulator-
low. This instruction can be used to perform computed subroutine calls.

Affected Flags:

Cycles: 3

Words: 1

Z M N V C E L R
– – – – – – – –
49
1368C–INTAP–08/02

CALLR – Relative Conditional Call Subroutine

Syntax: callr relative address[, cond]

Operation: if condition, then
sp - 1 –> sp
pc –> (sp)
pc + relative address + 1 –> pc

If the condition is met, the stack pointer (sp) is pre-decremented, the
program counter (pc) is pushed into the software stack and a branch is
executed to an address relative to the current program memory loca-
tion. The offset range is - 63 to +64.

Affected Flags:

Cycles: 2

Words: 1

Z M N V C E L R
– – – – – – – –
50 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
CHNG – Change Bit-field

Syntax: chng ##long immediate, operand

Operation: operand XOR ##long immediate –> operand

Change specific bit-field in a 16-bit operand according to a long immedi-
ate value that contains ones in the bit-field location.
If the operand is not part of an accumulator (aXl, aXh, aXe, bXl, bXh),
then the accumulators are un-affected. If the operand is part of an accu-
mulator, only the addressed part is affected.
The operand and the long immediate values are sign-extension sup-
pressed.

Operand: REG
(rN)
direct address

Affected Flags:
When the operand is not st0:

When the operand is st0, the specified bits are changed according to
the bit-field in the long immediate value regardless of whether the a0e
bits have changed.

Cycles: 2

Words: 2

Notes: The REG cannot be aX, bX, p.

When changing the a0e bits (chng ##long immediate, st0), the flags are
affected according to the long immediate value. When changing the a1e
bits (chng ##long immediate, st1), the flags are affected according to
the ALU output.

Z M N V C E L R
x x – – – – – –
51
1368C–INTAP–08/02

CLR – Clear Accumulator

Syntax: clr aX[, cond] See moda instructions.
or
clr bX[,cond] See modb instructions.

Operation: If the condition is met,
0 –> aX
or
0 –> bX
52 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
CLRR – Clear and Round aX-accumulator

Syntax: clrr aX[, cond]

Operation: If the condition is met, 0x8000 –> aX.

See moda instructions.
53
1368C–INTAP–08/02

CMP – Compare

Syntax: cmp operand, aX

Operation: aX - operand

The subtraction result is not stored, but the status flags are set corre-
spondingly.

Operand: REG
(rN)
direct address
[##direct address]
#unsigned short immediate
##long immediate
(rb + offset7)
(rb + offset)

Affected Flags:

Cycles: 1
2 when the instruction is two words long

Words: 1
2 when the operand is ##long immediate or (rb + offset) or [##direct
address]

Notes: The REG cannot be bX.

Z M N V C E L R
x x x x x x x –
54 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
CMPU – Compare Unsigned

Syntax: cmpu operand, aX

Operation: aX - operand

The subtraction result is not stored, but the status flags are set corre-
spondingly. The operand is sign-extension suppressed.

Operand: REG
(rN)
direct address

Affected Flags:

Cycles: 1

Words: 1

Notes: The REG cannot be aX, bX, p.

In order to compare aX with an unsigned 16-bit operand, bits 35 to 16 of
the accumulator should be cleared.

Z M N V C E L R
x x x x x x x –
55
1368C–INTAP–08/02

CMPV – Compare Long Immediate Value to Register or
Data Memory Location

Syntax: cmpv ##long immediate, operand

Operation: operand - ##long immediate

The subtraction result is not stored, but the status flags are set corre-
spondingly. The operand and the long immediate values are sign-
extended.

Operand: REG
(rN)
direct address

Affected Flags:

Z, M, C reflect the result of the 16-bit operation. M is affected by bit 15.

Cycles: 2

Words: 2

Notes: The REG cannot be aX, bX, p, pc. Note that aX can be used in the cmp
##long immediate, aX instruction.

Note that when using subv ##long immediate, st0 and cmpv ##long
immediate, st0, the flags are set differently.

Z M N V C E L R
x x – – x – – –
56 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
CNTX – Context Switching Store or Restore

Syntax: cntx s|r

Operation: This instruction triggers the context-switching mechanism.

s: Store the shadow/swap bits and swap a1 and b1 accumulators’ con-
tents.
The following bits: st0[0], st0[11..2], st1[11:10], st2[7:0] are pushed to
their shadow bits.
The page bits st1[7:0] are swapped with their alternative register.

r: Restore the shadow/swap bits and swap a1 and b1 accumulators’
contents.
The following bits: st0[0], st0[11..2], st1[11:10], st2[7:0] are popped from
their shadow bits.
The page bits st1[7:0] are swapped with their alternative register.

Affected Flags: In store, flags represent the data transferred into a1.

In restore, flags are written from their shadow bits.

Cycles: 1

Words: 1

Z M N V C E L R
x x x – – x – –

Z M N V C E L R
x x x – – x – –
57
1368C–INTAP–08/02

COPY – Copy aX-accumulator

Syntax: copy aX[, cond]

Operation: If the condition is met, aX –> aX.

See moda instructions.
58 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
DEC – Decrement aX-accumulator by One

Syntax: dec aX[, cond]

Operation: If the condition is met, aX - 1 –> aX.

See moda instructions.
59
1368C–INTAP–08/02

DINT – Disable Interrupt

Syntax: dint

Operation: 0 –> IE
IE bit is cleared. Disable the interrupts.

Affected Flags:

Cycles: 1

Words: 1

Z M N V C E L R
– – – – – – – –
60 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
DIVS – Division Step

Syntax: divs direct address, aX

Operation: aX - (direct address • 215) –> ALU output
if ALU output < 0
then aX = aX • 2
else aX = ALU output • 2 + 1

Affected Flags:

Cycles: 1

Words: 1

Notes: The 16-bit dividend is placed at accumulator-low while the accumulator-
high and the accumulator-extension are cleared. The divisor is placed
at the direct address. For a 16-bit division, DIVS should be executed 16
times. After 16 times, the quotient is in the accumulator-low and the
remainder is in the accumulator-high. The dividend and the divisor
should both be positive.

Z M N V C E L R
x x x – – x – –
61
1368C–INTAP–08/02

EINT – Enable Interrupt

Syntax: eint

Operation: 1 –> IE

IE bit is set. Enable the interrupts.

Affected Flags:

Cycles: 1

Words: 1

Z M N V C E L R
– – – – – – – –
62 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
EXP – Evaluate the Exponent Value

Syntax: exp soperand[, aX]

Operation: When using exp soperand:
exponent (soperand) –> sv
The soperand remains unaffected.

When using exp soperand, aX:
exponent (soperand) –> sv and aX
The soperand remains unaffected.

Operand: REG
(rN)

Affected Flags:

Cycles: 1

Words: 1

Notes: The REG cannot be p.

The instruction following an exp intruction cannot move to/from the SV
register. The SV register can be used only in shfc and movs instruc-
tions.

Z M N V C E L R
– – – – – – – –
63
1368C–INTAP–08/02

INC – Increment Accumulator by One

Syntax: inc aX[, aX]

Operation: If the condition is met, aX + 1 –> aX.

See moda instructions.
64 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
LIM – Limit Accumulator

Syntax: lim aX[, aX]

Operation: When using lim aX:
if aX > 0x7FFFFFFF, then aX = 0x7FFFFFFF
else
if aX < 0x80000000, then aX = 0x80000000
else
aX is unaffected

When using lim aX, aX:
if aX > 0x7FFFFFFF, then aX = 0x7FFFFFFF
else
if aX < 0x80000000, then aX = 0x80000000
else
aX = aX

Affected Flags:

L flag is set when limitation occurs

Cycles: 1

Words: 1

Z M N V C E L R
x x x – – 0 x –
65
1368C–INTAP–08/02

LOAD – Load Specific Fields into Registers

Syntax: load #unsigned immediate 8 bits, page
load #unsigned immediate 9 bits, modi
load #unsigned immediate 9 bits, modj
load #unsigned immediate 7 bits, stepi
load #unsigned immediate 7 bits, stepj
load #unsigned immediate 2 bits, ps

Operation: Load a specific field (second operand) with a constant (first operand).

Affected Flags:

Cycles: 1

Words: 1

Notes: The assembler syntax permits use of lpg #unsigned short immediate,
which is equivalent to load #unsigned short immediate, page.

Z M N V C E L R
– – – – – – – –
66 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
LPG – Load the Page Bits

Syntax: lpg #unsigned short immediate

Operation: The low-order bits of st1 (page bits) are loaded with an 8-bit constant (0
to 255).

See load instruction.
67
1368C–INTAP–08/02

MAA – Multiply and Accumulate Aligned Previous Product

Syntax: maa operand1, operand2, aX

Operation: aX + aligned and shifted p –> aX
operand1 –> y
operand2 –> x
signed y • signed x –> p

Operands: y, direct address
y, (rN)
y, REG
(rJ), (rI)
(rN), ##long immediate

Affected Flags:

Cycles: 1
2 when the second operand is ##long immediate

Words: 1
2 when the second operand is ##long immediate

Notes: Aligned and shifted p means that the previous product is sign-extended
into 36 bits, then shifted as defined by the PS field of status register st1,
and then aligned with sign-extension, 16 bits to the right.

y –> y means that y retains its value.

The REG cannot be aX, bX, p.

The multiplication in maa (rJ), (rI), aX is between X-RAM and Y-RAM
only, where rJ points to Y-RAM and rI points to X-RAM.

Z M N V C E L R
x x x x x x x –
68 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
MAASU – Multiply Signed by Unsigned and Accumulate
Aligned Previous Product

Syntax: maasu operand1, operand2, aX

Operation: aX + aligned and shifted p –> aX
operand1 –> y
operand2 –> x
signed y • unsigned x –> p

Operands: y, (rN)
y, REG
(rJ), (rI)
(rN), ##long immediate

Affected Flags:

Cycles: 1
2 when the second operand is ##long immediate

Words: 1
2 when the second operand is ##long immediate

Notes: Aligned and shifted p means that the previous product is sign-extended
into 36 bits, then shifted as defined by the PS field of status register st1,
and then aligned with sign-extension, 16 bits to the right.

y –> y means that y retains its value.

The REG cannot be aX, bX, p.

The multiplication in maasu (rJ), (rI), aX is between X-RAM and Y-RAM
only, where rJ points to Y-RAM and rI points to X-RAM.

Z M N V C E L R
x x x x x x x –
69
1368C–INTAP–08/02

MAC – Multiply and Accumulate Previous Product

Syntax: mac operand1, operand2, aX

Operation: aX + shifted p –> aX
operand1 –> y
operand2 –> x
signed y • signed x –> p

Operands: y, direct address
y, (rN)
y, REG
(rJ), (rI)
(rN), ##long immediate

Affected Flags:

Cycles: 1
2 when the second operand is ##long immediate

Words: 1
2 when the second operand is ##long immediate

Notes: Shifted p means that the previous product is sign-extended into 36 bits,
then shifted as defined by the PS field of status register st1.

y –> y means that y retains its value.

The REG cannot be aX, bX, p.

The multiplication in mac (rJ), (rI), aX is between X-RAM and Y-RAM
only, where rJ points to Y-RAM and rI points to X-RAM.

Z M N V C E L R
x x x x x x x –
70 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
MACSU – Multiply Signed by Unsigned and Accumulate
Previous Product

Syntax: macsu operand1, operand2, aX

Operation: aX + shifted p –> aX
operand1 –> y
operand2 –> x
signed y • unsigned x –> p

Operands: y, direct address
y, (rN)
y, REG
(rJ), (rI)
(rN), ##long immediate

Affected Flags:

Cycles: 1
2 when the second operand is ##long immediate

Words: 1
2 when the second operand is ##long immediate

Notes: Shifted p means that the previous product is sign-extended into 36 bits,
then shifted as defined by the PS field of status register st1.

y −> y means that y retains its value.

The REG cannot be aX, bX, p.

The multiplication in macsu (rJ), (rI), aX is between X-RAM and Y-RAM
only, where rJ points to Y-RAM and rI points to X-RAM.

Z M N V C E L R
x x x x x x x –
71
1368C–INTAP–08/02

MACUS – Multiply Unsigned by Signed and Accumulate
Previous Product

Syntax: macus operand1, operand2, aX

Operation: aX + shifted p –> aX
operand1 –> y
operand2 –> x
unsigned y • signed x –> p

Operands: y, direct address
y, (rN)
y, REG
(rJ), (rI)
(rN), ##long immediate

Affected Flags:

Cycles: 1
2 when the second operand is ##long immediate

Words: 1
2 when the second operand is ##long immediate

Notes: Shifted p means that the previous product is sign-extended into 36 bits,
then shifted as defined by the PS field of status register st1.

y –> y means that y retains its value.

The REG cannot be aX, bX, p.

The multiplication in macus (rJ), (rI), aX is between X-RAM and Y-RAM
only, where rJ points to Y-RAM and rI points to X-RAM.

Z M N V C E L R
x x x x x x x –
72 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
MACUU – Multiply Unsigned by Unsigned and Accumulate
Previous Product

Syntax: macuu operand1, operand2, aX

Operation: aX + shifted p –> aX
operand1 –> y
operand2 –> x
unsigned y • unsigned x –> p

Operands: y, (rN)
y, REG
(rJ), (rI)
(rN), ##long immediate

Affected Flags:

Cycles: 1
2 when the second operand is ##long immediate

Words: 1
2 when the second operand is ##long immediate

Notes: Shifted p means that the previous product is sign-extended into 36 bits,
then shifted as defined by the PS field of status register st1.

y –> y means that y retains its value.

The REG cannot be aX, bX, p.

The multiplication in macus (rJ), (rI), aX is between X-RAM and Y-RAM
only, where rJ points to Y-RAM and rI points to X-RAM.

After using this instruction, the P register cannot be reconstructed. Dur-
ing an interrupt service routine that uses the P register, the P register
should be saved before it is used, and restored before returning.
It is also recommended to disable the interrupts before a macuu instruc-
tion and to enable the interrupts after the instruction using the result of
the unsigned product.

The instruction that uses the P register or the shifted P register as a
source operand after a macuu instruction uses the unsigned result in
the P register is zero extended into 36 bits and then shifted as defined
by the PS field. This behavior will be in effect until a new signed product
is generated or a new value is written in ph.

Z M N V C E L R
x x x x x x x –
73
1368C–INTAP–08/02

MAX – Maximum between Two Accumulators

Syntax: max aX, (r0), ge|gt

Operation: When using ge:
If aX ≥ the other a-accumulator, then
the other a-accumulator –> aX
r0 –> mixp
r0 is post-modified as specified.

When using gt:
If aX > the other a-accumulator, then
the other a-accumulator –> aX
r0 –> mixp
r0 is post-modified as specified.

This instruction is used to to find the maximal value between the two a-
accumulators. In case the maximal value should be updated, it saves
the new maximal value in the specified accumulator (aX) and saves the
r0 pointer value in the mixp register. The r0 register is post-modified as
specified in the instruction, regardless of whether the new maximal
value is updated.

Affected Flags:

M is set when the maximum value is found and the accumulator and
mixp register are updated. Cleared otherwise.

Cycles: 1

Words: 1

Notes: mixp cannot be read in the instruction following the max instruction.

Z M N V C E L R
– x – – – – – –
74 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
MAXD – Maximum between Data Memory Location and
Accumulator

Syntax: maxd aX, (r0), ge|gt

Operation: When using ge:
If (r0) ≥ aX, then
(r0) –> aX
r0 –> mixp
r0 is post-modified as specified.

When using gt:
If (r0) > aX, then
(r0) –> aX
r0 –> mixp
r0 is post-modified as specified.

This instruction is used to find the maximal value between a data mem-
ory location pointed to by r0 and one of the aX-accumulators. In case r0
points to a larger (or larger or equal) value than the accumulator, the
new maximal is transferred in the specified accumulator (aX) and the r0
pointer is transferred in the mixp register. The r0 register is post-modi-
fied as specified in the instruction, regardless of whether the new maxi-
mal value is updated.

Affected Flags:

M is set when the maximum value is found and the accumulator and
mixp register are updated. Cleared otherwise.

Cycles: 1

Words: 1

Notes: mixp cannot be read in the instruction following the maxd instruction.

Z M N V C E L R
– x – – – – – –
75
1368C–INTAP–08/02

MIN – Minimum between Two Accumulators

Syntax: min aX, (r0), le|lt

Operation: When using le:
If aX ≤ the other a-accumulator, then
the other a-accumulator –> aX
r0 –> mixp
r0 is post-modified as specified.

When using gt:
If aX < the other a-accumulator, then
the other a-accumulator –> aX
r0 –> mixp
r0 is post-modified as specified.

This instruction is used to find the minimal value between the two a-
accumulators. In case the minimal value should be updated, it saves the
new minimal value in the specified accumulator (aX) and saves the r0
pointer value in the mixp register. The r0 register is post-modified as
specified in the instruction, regardless of whether the new maximal
value is updated.

Affected Flags:

M is set when the minimal value is found and the accumulator and mixp
register are updated.
Cleared otherwise.

Cycles: 1

Words: 1

Notes: mixp cannot be read in the instruction following the min instruction.

Z M N V C E L R
– x – – – – – –
76 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
MODA – Modify A-accumulator Conditionally

Syntax: moda func, aX[, cond]
func aX[, cond]

Operation: If the condition is met, then aX is modified by func.
The accumulator and the flags are modified according to the function
field only when the condition is met.

func: shr aX >> 1–> aX
shl aX << 1 –> aX
shr4 aX >> 4 –> aX
shl4 aX << 4 –> aX
ror rotate aX right through carry
rol rotate aX left through carry
clr 0 –> aX
copy aX –> aX
neg -aX –> aX
not not(aX) –> aX
rnd aX + 0x8000 –> aX
pacr shifted p + 0x8000 –> aX
clrr 0x8000 –> aX
inc aX + 1 –> aX
dec aX - 1 –> aX

Affected Flags:
Arithmetic Shift:

C is set according to the last bit shifted out of the operand (shr: bit 0;
shr4: bit 3; shl: bit 35; shl4: bit 32).
V: with shl and shl4, cleared if the operand being shifted could be repre-
sented in 35/32 bits for shl/shl4, respectively. Set otherwise.

Logical Shift:

C is set according to the last bit shifted out of the operand (shr: bit 0;
shr4: bit 3; shl: bit 35; shl4: bit 32).

Rotate Right:

Z M N V C E L R
x x x x x x x –

Z M N V C E L R
x x x – x x – –

Z M N V C E L R
x x x – x x – –
77
1368C–INTAP–08/02

C is set according to the last bit (bit 0) shifted out of the operand.

Rotate left:

C is set according to the last bit (bit 35) shifted out of the operand.

Not, copy, clr, clrr:

Neg, rnd, pacr:

Inc, dec:

Cycles: 1

Words: 1

Notes: The assembler syntax permits omission of the moda, e.g., shr a0 is
equivalent to moda shr, a0.

Shifted P register means that the P register is sign-extended to 36 bits
and then shifted as defined by the PS field in status register st1.

Arithmetic shift is performed when the S status bit is cleared. Logical
shift is performed when the S status bit is set. See “Shifting Operations”
on page 9 and status register field definitions on page 23.

Z M N V C E L R
x x x – x x – –

Z M N V C E L R
x x x – – x – –

Z M N V C E L R
x x x x x x x –

Z M N V C E L R
x x x x x x x –
78 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
MODB – Modify B-accumulator Conditionally

Syntax: modb func, bX[, cond]
func bX[, cond]

Operation: If the condition is met, then bX is modified by func.
The accumulator and the flags are modified according to the function
field only when the condition is met.

func: shr bX >> 1 –> bX
shl bX << 1 –> bX
shr4 bX >> 4 –> bX
shl4 bX << 4 –> bX
ror rotate bX right through carry
rol rotate bX left through carry
clr 0 –> bX

Affected Flags:
Arithmetic Shift:

C is set according to the last bit shifted out of the operand (shr: bit 0;
shr4: bit 3; shl: bit 35; shl4: bit 32).
V: with shl and shl4, cleared if the operand being shifted could be repre-
sented in 35/32 bits for shl/shl4, respectively. Set otherwise.

Logical Shift:

C is set according to the last bit shifted out of the operand (shr: bit 0;
shr4: bit 3; shl: bit 35; shl4: bit 32).

Rotate Right:

C is set according to the last bit (bit 0) shifted out of the operand.

Z M N V C E L R
x x x x x x x –

Z M N V C E L R
x x x – x x – –

Z M N V C E L R
x x x – x x – –
79
1368C–INTAP–08/02

Rotate Left:

C is set according to the last bit (bit 35) shifted out of the operand.

Clr:

Cycles: 1

Words: 1

Notes: The assembler syntax permits omission of the moda, e.g., shr b0 is
equivalent to moda shr, b0.

Shifted P register means that the P register is sign-extended to 36 bits
and then shifted as defined by the PS field in status register st1.

Arithmetic shift is performed when the S status bit is cleared. Logical
shift is performed when the S status bit is set. See “Shifting Operations”
on page 9 and status register field definitions on page 23.

Z M N V C E L R
x x x – x x – –

Z M N V C E L R
x x x – – x – –
80 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
MODR – Modify rN

Syntax: modr (rN)[, dmod]

Operation: When using modr (rN):
rN is modified as specified, and influenced by the corresponding Mn bit.

When using modr (rN), dmod:
rN is modified as specified, with modulo disabled.

Affected Flags:

R is set if the 16-bit rN becomes zero after the post-modifications;
cleared otherwise.

Cycles: 1

Words: 1

Notes: This instruction can also be used for loop control.
Example: modr (r0)-

brr address, nr

Z M N V C E L R
– – – – – – – x
81
1368C–INTAP–08/02

MOV – Move Data

Syntax: mov soperand, doperand

Operation: soperand –> doperand

The list below gives all the possible combinations for the operands.

Operands: soperand, doperand:
REG, REG <1, 2, 3, 4>
REG, (rN) <1, 2, 5>
(rN), REG <4, 5>
mixp, REG <6>
REG, mixp <1, 2, 6>
icr, AB
x, AB
dvm, AB
repc, AB

aXl, x
bXl, x
aXl, dvm
bXl, dvm
REG, icr <7, 8>

rN, direct address
aXl, direct address
aXh, direct address
bXl, direct address
bXh, direct address
y, direct address
rb, direct address
sv, direct address

direct address, rN
direct address, aX
direct address, aXl
direct address, aXh[,eu] <10>
direct address, bX
direct address, bXl
direct address, bXh
direct address, y
direct address, rb
direct address, sv

[##direct address], aX
aXl, [##direct address]

(sp), REG <4, 6>
(rb+#offset7), aX
(rb+##offset), aX
aXl, (rb+#offset7)
aXl, (rb+##offset)
82 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
##long immediate, REG <4>

#unsigned short immediate, aXl
#signed short immediate, aXh
#signed short immediate, rN <9>
#signed short immediate, y <9>
#signed short immediate, b <9>
#signed short immediate, extX <9>
#signed short immediate, sv <9>
#unsigned short immediate, icr <7, 8>

Affected Flags: No effect when doperand is not ac, bc, st0, or when soperand is not
aXl, aXh, bXl, bXh.

When soperand is aXl, aXh, bXl, or bXh:

When doperand is ac or bc:

If doperand is st0, st0 (including the flags) accepts the transferred data.

Cycles: 1
2 when the instruction is a two-word instruction

Words: 1
2 when the operand is 33 long immediate or (rb+##offset) or [##direct
address]

Notes: The 32-bit P register can be transferred (through the product output
shifter) only to aX (mov p, aX). ph is write only. Therefore, soperand
cannot be ph.

The 36-bit accumulators can be a soperand only with the mov ab, ab
instruction.

With mov reg, reg the soperand cannot be the same as the doperand.

When the doperand is the pc register, two nop instructions must be
placed after the mov soperand, pc instruction, except for the mov
##long immediate, pc, where only one nop is needed.

It is not permitted to move a data from a location pointed to by one of the
registers to the same rN register (and vice versa) with post-modifica-
tion.

Z M N V C E L R
– – – – – – x –

Z M N V C E L R
X x x – – x – –
83
1368C–INTAP–08/02

The reg cannot be bX.

Enable or disable of context switching (by a write to icr) takes effect after
the next sequential instruction. For example, when the user enables
context switching for a specific interrupt, if the same interrupt is
accepted immediately after the write to icr, it will not activate the con-
text-switching mechanism.

a mov soperand, icr cannot be followed by a bkrep instruction.

Loading the doperand by a short immediate number causes sign-exten-
sion.

The eu field is an optional field. When the eu field is specified, the accu-
mulator extension remains
unaffected.
84 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
MOVD – Move from Data Memory into Program Memory

Syntax: movd (rI), (rJ)

Operation: rI poins to data memory location
rJ points to program memory location
(rI) –> (rJ)
rI and rJ are post-modified as specified

Move a word from data memory location pointed to by rI into a program
memory location pointed to by rJ.

Affected Flags:

Cycles: 4

Words: 1

Notes: It is forbidden for the rI register to point to the movd instruction address
or to (movd address) + 1.

Z M N V C E L R
– – – – – – – –
85
1368C–INTAP–08/02

MOVP – Move from Program Memory into Data Memory

Syntax: movp soperand, doperand

Operation: soperand points to a program memory location.
soperand –> doperand

Move a word from program memory location pointed to by soperand
into a data memory location pointed to by doperand or into REG. When
using aX as a soperand, the address is defined by the aX-accumulator
low.

Operands: soperand, doperand:
(aXl), REG
(rN), (rI)

Affected flags: No effect when doperand is not ac, st0.

When doperand is ac:

If the operand is st0, st0 (including the flags) will accept the pointed pro-
gram memory contents.

Cycles: 3

Words: 1

Notes: When the REG operand is the pc register, two nop instructions must be
placed after the movp (aX), pc instruction.

The REG operand cannot be bX.

Z M N V C E L R
x x x – – x – –
86 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
MOVR – Move and Round

Syntax: movr operand, aX

Operation: operand + 0x8000 –> aX

Operand: REG
(rN)

Affected Flags:

Cycles: 1

Words: 1

Notes: The REG cannot be bX.

Z M N V C E L R
x x x x x x x –
87
1368C–INTAP–08/02

MOVS – Move and Shift According to Shift Value Register

Syntax: movs operand, ab

Operation: The operand is sign-extended to 36 bits.
If 0 < sv ≤ 36, then operand << sv –> ab
If -36 ≤ sv < 0, then operand >> -sv –> ab
If sv = 0, then operand –> ab.

Operand: REG
(rN)
direct address

Affected Flags: When arithmetic shift is performed:

When logical shift is performed:

Cycles: 1

Words: 1

Notes: The REG cannot be p.

When operand is ab, the assembler translates it into an shfc instruction.

Z M N V C E L R
x x x x x x x –

Z M N V C E L R
x x x – x x – –
88 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
MOVSI – Move and Shift According to an Immediate Shift
Value

Syntax: movsi operand, ab, #signed 5-bit immediate

Operation: The operand is sign-extended to 36 bits.
If 0 < #immediate ≤ 15, then operand << #immediate –> ab
If -16 ≤ #immediate < 0, then operand >> - #immediate –> ab
If #immediate = 0, then operand –> ab.

Operand: rN
y
rb

Affected Flags: When arithmetic shift is performed:

When logical shift is performed:

Note: If #immediate = 0, the C flag is cleared.

Cycles: 1

Words: 1

Z M N V C E L R
x x x 0 x x x –

Z M N V C E L R
x x x – x x – –
89
1368C–INTAP–08/02

MPY – Multiply

Syntax: mpy operand1, operand2

Operation: operand1 –> x
operand2 –> y
signed y • signed x –> p

Operands: y, direct address
y, (rN)
y, REG
(rJ), (rI)
(rN), ##long immediate

Affected Flags:

Cycles: 1
2 when the operand is ##long immediate

Words: 1
2 when the operand is ##long immediate

Notes: y –> y means that y retains its value.

The REG cannot be aX, bX, p.

The multiplication in mpy (rJ), (rI) is between X-RAM and Y-RAM only,
where rJ points to Y-RAM and rI points to X-RAM.

Z M N V C E L R
– – – – – – – –
90 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
MPYI – Multiply Signed Short Immediate

Syntax: mpyi y, #signed short immediate

Operation: #signed short immediate –> x
signed y • signed x –> p

Affected Flags:

Cycles: 1

Words: 1

Z M N V C E L R
– – – – – – – –
91
1368C–INTAP–08/02

MPYSU – Multiply Signed by Unsigned

Syntax: mpysu operand1, operand2

Operation: operand1 –> x
operand2 –> y
signed y • unsigned x –> p

Operands: y, (rN)
y, REG
(rJ), (rI)
(rN), ##long immediate

Affected Flags:

Cycles: 1
2 when the operand is ##long immediate

Words: 1
2 when the operand is ##long immediate

Notes: y –> y means that y retains its value.

The REG cannot be aX, bX, p.

The multiplication in mpy (rJ), (rI) is between X-RAM and Y-RAM only,
where rJ points to Y-RAM and rI points to X-RAM.

Z M N V C E L R
– – – – – – – –
92 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
MSU – Multiply and Subtract Previous Product

Syntax: msu operand1, operand2, aX

Operation: aX - shifted p –> aX
operand1 –> x
operand2 –> y
signed y • signed x –> p

Operands: y, direct address
y, (rN)
y, REG
(rJ), (rI)
(rN), ##long immediate

Affected Flags:

Cycles: 1
2 when the operand is ##long immediate

Words: 1
2 when the operand is ##long immediate

Notes: Shifted P register means that the previous product is sign-extended into
36 bits, then shifted as defined in the PS field, status register 1.

y –> y means that y retains its value.

The REG cannot be aX, bX, p.

The multiplication in msu (rJ), (rI), aX is between X-RAM and Y-RAM
only, where rJ points to Y-RAM and rI points to X-RAM.

Z M N V C E L R
x x x x x x x –
93
1368C–INTAP–08/02

NEG – 2’s Complement of aX-accumulator

Syntax: neg aX[, cond]

Operation: -aX –> aX

See moda instruction.
94 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
NORM – Normalize

Syntax: norm aX, (rN)

Operation: If N = 0 (aX is not normalized), then aX • 2 –> aX and rN is modified as
specified
else
nop
nop

This instruction is used to normalize the signed number in the accumu-
lator. It affects the rN register.

Affected Flags:

The R flag is updated in the norm instruction only when the rN pointer is
modified.
C is set or cleared as in shl (moda).

Cycles: 2

Words: 1

Notes: The norm instruction uses the N flag to decide between shift or nop.
Therefore, when using norm in the first iteration of a loop, the flag must
be updated according to aX.

To normalize a number with the norm instruction, the norm instruction
can be used together with a rep instruction.
Example: rep #n

norm a0, (r0)+

Another method is to use the N flag for conditional branch.
Example: nrm: norm a0, (r0)+

brr nrm, nn

Normalization can also be performed using the exp and shift instruc-
tions. For more details, refer to “Normalization” on page 11.

Z M N V C E L R
x x x x x x x x
95
1368C–INTAP–08/02

NOT – Logical Not

Syntax: not aX[,cond]

Operation: not(aX) −> aX

See moda instruction.
96 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
OR – Logical Or

Syntax: or operand, aX

Operation: If the operand is aX or p:
aX[35:0] or operand –> aX[35:0]

If operand is REG, (rN), unsigned short immediate, long immediate:
aX[15:0] or operand –> aX[15:0]
aX[35:16] –> aX[35:16]

If the operand is one of the aX-accumulators or the shifted p register, it
is ORed with the destination accumulator.

If the operand is a 16-bit register or an immediate value, the operand is
zero-extended to form a 36-bit operand, then ORed with the accumula-
tor. Consequently, the upper bits of the accumulator are unaffected by
this instruction.

Operands: REG
(rN)
direct address
[##direct address]
#unsigned short immediate
##long immediate
(rb + #offset7)
(rb + ##offset)

Affected Flags:

Cycles: 1
2 when the instruction is coded on two words

Words: 1
2 when the operand is ##long immediate, (rb + ##offset), or [##direct
address].

Notes: The REG cannot be bX.

Z M N V C E L R
x x x – – x – –
97
1368C–INTAP–08/02

PACR – Product Move and Round to aX-accumulator

Syntax: pacr aX[,cond]

Operation: shifted p + 0x8000 −> aX

See moda instruction.
98 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
POP – Pop from Stack into Register

Syntax: pop REG

Operation: (sp) −> REG
sp + 1 −> sp

The top of the stack is popped into one of the registers and the stack
pointer is post-incremented.

Affected Flags:When REG is ac:

If the REG is st0, st0 (including the flags) accepts the popped data.

Cycles: 1

Words: 1

Notes: When popping to p, the data is transferred into p-high (ph).

The Reg cannot be sp, bX.

Z M N V C E L R
x x x – – x – –
99
1368C–INTAP–08/02

PUSH – Push Register or Long Immediate Value onto Stack

Syntax: push operand

Operation: sp -1 –> sp
operand –> (sp)

The stack pointer (sp) is pre-decremented and the operand is pushed
onto the software stack.

Operands: REG
##long immediate

Affected Flags: When the operand is aXl, aXh, bXl or bXh:

In other cases, the flags remain unaffected.

Cycles: 1
2 when the operand is ##long immediate

Words: 1
2 when the operand is ##long immediate

Notes: The REG cannot be aX, bX, p, sp.

The push instruction cannot follow instuctions that have sp as the desti-
nation operand.

Z M N V C E L R
– – – – – – x –
100 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
REP – Repeat Next Instruction

Syntax: rep operand

Operation: Begins a single-word instruction loop that is to be repeated operand + 1
times. The repetition range is from 1 to 65536.
The repeat mechanism is interruptible and the interrupt service routine
can use another repeat (i.e., nested repeat). The nested repeat is unin-
terruptible.

Operands: #unsigned short immediate
REG

Affected Flags:

Cycles: 1

Words: 1

Notes: Interrupts are not accepted within rep loops in the following places:
• Between the rep instruction and the first execution of the repeated
instruction
• Between the last instruction repetition and the next sequential instruc-
tion

When using an unsigned short immediate operand, the number of repe-
titions is between 1 and 256. When transferring the #unsigned short
immediate number into the lc register, it is copied to the low-order 8 bits
of lc. The higher-order bits are zero-extended.

The REG cannot be aX, bX, p.

The instructions that break the pipeline cannot be repeated: brr; callr;
trap; ret; reti; retid; rets; rep; calla; mov operand, pc; pop pc; movp (aX),
pc; mov repc, ab.

Rep can be performed inside a block-repeat (bkrep).

Z M N V C E L R
– – – – – – – –
101
1368C–INTAP–08/02

RET – Return Conditionally

Syntax: ret [cond]

Operation: If the condition is true, then
(sp) –> pc
sp + 1 –> sp

If the condition is met, the program counter (pc) is pulled from the soft-
ware stack, while the previous program counter is lost; the stack pointer
(sp) is post-incremented. This instruction is used to return from subrou-
tines or interrupts.

Affected Flags:

Cycles: 2 if the return is not performed
3 if the return is performed

Words: 1

Notes: This instruction can also be used to return from the maskable interrupt
service routines (INT0 or INT1 or INT2) to enable additional interrupts,
the IE bit in st0 must be set by the user.
The ret instruction cannot follow the following instructions:
• mov soperand, sp (except for mov ##long immediate, sp)
• movp (aXl), sp; addv/subv/set/rst/chng ##long immediate, sp

Z M N V C E L R
– – – – – – – –
102 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
RETD – Delayed Return

Syntax: retd

Operation: (sp) –> temporary storage
sp + 1 –> sp
One two-cycle instruction or two one-cycle instructions are executed.
Temporary storage –> pc

Delayed return. The two single-cycle instructions, or one two-cycle
instruction (brr; callr; rep; trap; retd; retid; mov operand, pc; pop pc)
are/is fetched and executed before executing the return. When
returned, the program counter (pc) is pulled from the software stack,
while the previous program counter is lost; the stack pointer (sp) is post-
incremented. This instruction is used to obtain a delayed return from
subroutines or interrupts.
The retd instruction and the instruction(s) that follow the retd (two one-
cycle instructions or one two-cycle instruction) cannot be interrupted.

Affected Flags:

Cycles: 1

Words: 1

Notes: The retd instruction and the two following cycles are uninterruptible.

The two cycles following a retd cannot be instructions that break the
pipeline: brr; callr; rep; trap; retd; retid; mov operand, pc; pop pc;
addv/subv/set/rst/chng/ ##long immediate, pc.

This instruction can also be used as return from the maskable interrupts
service routines (INT0 or INT1 or INT2) to enable additional interrupts,
the IE bit at st0 must be set by the user.

The retd instruction cannot follow the following instructions:
• mov soperand, sp (except for mov ##long immediate, sp)
• movp (aXl), sp; addv/subv/set/rst/chng ##long immediate, sp

Z M N V C E L R
– – – – – – – –
103
1368C–INTAP–08/02

RETI – Return from Interrupt Conditionally

Syntax: reti [cond [, context]]

Operation: If the condition is met, then
(sp) –> temporary storage
sp + 1 –> sp
1 –> IE

This instruction is used to return from interrupt service routines with or
without interrupt context switching.

Affected Flags:

Cycles: 2 in case the return is not performed
3 in case the return is performed

Words: 1

Notes: IE is set only when returning from INT0, INT1 or INT2 service routine.

When the context field is specified, the interrupt is returned with context
switching. See “Interrupt Context Switching” on page 27.

Z M N V C E L R
– – – – – – – –
104 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
RETID – Delayed Return from Interrupt

Syntax: retid

Operation: (sp) –> temporary storage
sp + 1 –> sp
1 –> IE
One two-cycle instruction or two one-cycle instructions are executed.
Temporary storage –> sp

Affected Flags:

Cycles: 1

Words: 1

Notes: The IE bit is set only when returning from INT0, INT1 or INT2 service
routine.

The two cycles following a retid cannot be instructions that break the
pipeline: brr; callr; rep; trap; retd; retid; mov operand, pc; pop pc;
addv/subv/set/rst/chng/ ##long immediate, pc.

Z M N V C E L R
– – – – – – – –
105
1368C–INTAP–08/02

RETS – Return with Short Immediate Parameter

Syntax: rets #unsigned short immediate

Operation: (sp) –> pc
sp + 1 + #immediate –> sp

Affected Flags:

Cycles: 3

Words: 1

Notes: This instruction is used to return from subroutines or interrupts and
delete unnecessary parameters from the stack.

This instruction can also be used to return from the maskable interrupt
service routines when the IE bit must be left unaffected (with reti, IE is
set to 1).

This instruction can also be used as return from the maskable interrupts
service routines (INT0 or INT1 or INT2) to enable additional interrupts,
the IE bit at st0 must be set by the user.

The retd instruction cannot follow the following instructions:
• mov soperand, sp (except for mov ##long immediate, sp)
• movp (aXl), sp; addv/subv/set/rst/chng ##long immediate, sp

Z M N V C E L R
– – – – – – – –
106 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
RND – Round Upper 20 Bits of aX-accumulator

Syntax: rnd aX[, cond]

Operation: aX + 0x8000 –> aX

See moda instruction.
107
1368C–INTAP–08/02

ROL – Rotate Accumulator Left through Carry

Syntax: rol aX[, cond]
rol bX[, cond]

Operation: Rotate the specified accumulator left through carry.

See moda and modb instructions.
108 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
ROR – Rotate Accumulator Right through Carry

Syntax: ror aX[, cond]
ror bX[, cond]

Operation: Rotate the specified accumulator right through carry.

See moda and modb instructions.
109
1368C–INTAP–08/02

RST – Reset Bit-field

Syntax: rst ##long immediate, operand

Operation: operand and not (##long immediate) –> operand

Reset a specific bit-field in a 16-bit operand according to a long immedi-
ate value. The long immediate value contains ones in the bit-field loca-
tions.

The operand and the long immediate value are sign-extension sup-
pressed.

Operands: REG
(rN)
direct adddress;

Affected Flags: When the operand is not st0:

When the operand is st0, the specified bits are reset.

Cycles: 2

Words: 2

Notes: The REG cannot be aX, bX, p, pc.

If the operand is not a part of an accumulator, then the accumulators
are unaffected. If the operand is a part of an accumulator, then only the
addressed part is affected.

When resetting the a0e bits (rst ##long immediate, st0), the flags are
reset according to the long immediate value. When resetting the a1e
bits (rst ##long immediate, st1), the flags are reset according to the ALU
output.

Z M N V C E L R
x x – – – – – –
110 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
SET – Set Bit-field

Syntax: set ##long immediate, operand

Operation: operand or ##long immediate −> operand

Set a specific bit-field in a 16-bit operand according to a long immediate
value. The long immediate value contains ones in the bit-field locations.

The operand and the long immediate value are sign-extension sup-
pressed.

Operands: REG
(rN)
direct adddress;

Affected Flags: When the operand is not st0:

When the operand is st0, the specified bits are set.

Cycles: 2

Words: 2

Notes: The REG cannot be aX, bX, p, pc.

If the operand is not a part of an accumulator, then the accumulators
are unaffected. If the operand is a part of an accumulator, then only the
addressed part is affected.

When setting the a0e bits (set ##long immediate, st0), the flags are set
according to the long immediate value. When resetting the a1e bits (set
##long immediate, st1), the flags are set according to the ALU output.

Z M N V C E L R
x x – – – – – –
111
1368C–INTAP–08/02

SHFC – Shift Accumulators according to Shift Value
Register

Syntax: shfc soperand, doperand[, cond]

Operation: When the condition is met:
soperand << sv –> doperand

If 0 < sv <= 36 then
soperand << sv –> doperand

If -36 <= sv < 0 then
soperand >> |sv| –> doperand

If sv = 0 then
soperand –> doperand

Operands: ab, ab

Affected Flags: When arithmetic shift is performed:

V: - if sv is negative or zero (shift right), then V is cleared.
- if sv is positive, less than 36 (shift left) and the soperand can

be represented in (36 sv) bits, then V is cleared. V is set otherwise.
- if sv = 36 and the operand is not zero, then V is set. V is

cleared otherwise.

C: cleared if sv = 0.

When logical shift is performed:

C: cleared if sv = 0.

Cycles: 1

Words: 1

Notes: In case that the sv content is zero, this instruction is a conditional move
between the two accumulators.

If soperand and doperand are different, then soperand is unaffected.

Z M N V C E L R
x x x x x x x –

Z M N V C E L R
x x x x x x – –
112 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
SHFI – Shift Accumulators by an Immediate Shift Value

Syntax: shfi soperand, doperand, #signed 6-bit immediate

Operation: If 0 < #immediate <= 31 then
soperand << #immediate –> doperand

If -32 <= #immediate < 0 then
soperand >> #|immediate –> doperand

If #immediate = 0 then
soperand -> doperand

If soperand is not equal to doperand then
soperand is unaffected.

Operands: ab, ab

Affected flags: When arithmetic shift is performed:

V: If -32 <= #immediate <= (shift right) then V is cleared.
If 0 < #immediate <= 31 (shift left) and the operand before

being shifted can be represented in (36 - #immmediate) bits, then V is
cleared; set otherwise.

When logical shift is performed:

C: cleared if #immediate = 0.

Cycles: 1

Words: 1

Notes: In case the immediate shift value is zero, this instruction can be used as
a move instruction between the 36-bit accumulators.

Z M N V C E L R
x x x x x x x –

Z M N V C E L R
x x x – x x – –
113
1368C–INTAP–08/02

SHL – Shift Accumulator Left

Syntax: shl aX[, cond]
shl bX[, cond]

Operation: Shift the specified accumulator left by one bit.

See moda and modb instructions.
114 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
SHL4 – Shift Accumulator Left by 4 Bits

Syntax: shl4 aX[, cond]
shl4 bX[, cond]

Operation: Shift the specified accumulator left by four bits.

See moda and modb instructions.
115
1368C–INTAP–08/02

SHR – Shift Accumulator Right

Syntax: shr aX[, cond]
shr bX[, cond]

Operation: Shift the specified accumulator right by one bit.

See moda and modb instructions.
116 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
SHR4 – Shift Accumulator Right by 4 Bits

Syntax: shr4 aX[, cond]
shr4 bX[, cond]

Operation: Shift the specified accumulator right by four bits.

See moda and modb instructions.
117
1368C–INTAP–08/02

SQR – Square

Syntax: sqr operand

Operation: operand –> x
operand –> y
signed y • signed x –> p

Operands: direct address
(rN)
REG

Affected Flags:

Cycles: 1

Words: 1

Notes: The REG cannot be aX, bX, p.

Z M N V C E L R
– – – – – – – –
118 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
SQRA – Square and Accumulate Previous Product

Syntax: sqra operand, aX

Operation: aX + shifted p –> aX
operand –> x
operand –> y
signed y • signed x –> p

Operands: direct address
(rN)
REG

Affected Flags:

Cycles: 1

Words: 1

Notes: Shifted P register means that the previous product is sign-extended to
36 bits, then shifted as defined by the ps field, status register st1.

The REG cannot be aX, bX, p.

Z M N V C E L R
x x x x x x x –
119
1368C–INTAP–08/02

SUB – Subtract

Syntax: sub operand, aX

Operation: aX - operand –> aX

Operands: direct address
(rN)
REG
[##direct address]
#unsigned short immediate
##long immediate
(rb + #offset7)
(rb + ##offset)

Affected Flags:

Cycles: 1
2 when the instruction is a two-word instruction

Words: 1
2 when the operand is ##long immediate or (rb + ##offset) or [##direct
address]

Notes: The REG cannot be bX.

Z M N V C E L R
x x x x x x x –
120 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
SUBH – Subtract from High Accumulator

Syntax: subh operand, aX

Operation: aX - operand • 216 –> aX
The aXl remains unaffected.

Operands: direct address
(rN)
REG

Affected Flags:

Cycles: 1

Words: 1

Notes: The REG cannot be aX, bX, p.

Z M N V C E L R
x x x x x x x –
121
1368C–INTAP–08/02

SUBL – Subtract from Low Accumulator

Syntax: subl operand, aX

Operation: aX - operand –> aX
The operand is sign-extension suppressed.

Operands: direct address
(rN)
REG

Affected Flags:

Cycles: 1

Words: 1

Notes: The REG cannot be aX, bX, p.

Z M N V C E L R
x x x x x x x –
122 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
SUBV – Subtract Long Immediate Value from a Register or
a Data Memory Location

Syntax: subv ##long immediate, operand

Operation: operand - ##long immediate –> operand

The operand and the long immediate values are sign-extended. If the
operand is not part of an accumulator (aXl, aXh, aXe, bXl, bXh), then
the accumulators are unaffected. If the operand is a part of an accumu-
lator, only the addressed part is affected.

Operand: REG
(rN)
direct address

Affected Flags:

When operand is NOT st0:

Z, M, C are a result of the 16-bit operation. M is affected by bit 15.
When the operand is st0, st0 (including the flags) accepts the subtrac-
tion result, regardless of a0e bits.

Cycles: 2

Words: 2

Notes: The REG cannot be aX, bX, p, pc. Note that aX can be used in sub
##long immediate, aX instruction.

When subtracting a long immediate value from st0, st0 (including the
flags) accepts the ALU output result. When subtracting a long immedi-
ate value from st1, the flags are affected by the ALU output, as usual.

Note that when the operand is part of an accumulator, only the
addessed part is affected. For example, if the instruction subv ##long
immediate, a0l generates a borrow, the carry flag is set. However, a0h is
unchanged. On the other hand, the instruction subl ##long immediate,
a0l (with same a0 and immediate values) changes the a0h and affects
the carry flag according to bit 36 of the ALU result.

Note that when using subv ##long immediate, st0 and cmpv ##long
immediate, st0 the flags are set differently.

Z M N V C E L R
x x – – x – – –
123
1368C–INTAP–08/02

SWAP – Swap aX- and bX-accumulators

Syntax: swap option

Operation: swap between aX- and bX-accumulators according to the following
options:

Affected Flags:

In case of swap (a0, b0), (a1, b1) and swap (a0, b1), (a1, b0), the flags
represent the data transferred into a0.
In other cases, the flags represent the data transferred into aX.

Cycles: 1

Words: 1

Notes: When the operation is x -> y -> z,
this means that
y-> z
then x -> y

Assembler Mnemonic Operation

swap (a0, b0), (a1, b1) a0 <––> b0, a1<––> b1

swap (a0, b1), (a1, b0) a0 <––> b1, a1 <––> b0

swap (a0, b0) a0 <––> b0

swap (a0, b1) a0 <––> b1

swap (a1, b0) a1 <––> b0

swap (a1, b1) a1 <––> b1

swap (a0, b0, a1) a0 –> b0 –> a1

swap (a0, b1, a1) a0 –> b1 –> a1

swap (a1, b0, a0) a1 –> b0 –> a0

swap (a1, b1, a0) a1 –> b1 –> a0

swap (b0, a0, b1) b0 –> a0 –> b1

swap (b0, a1, b1) b0 –> a1 –> b1

swap (b1, a0, b0) b1 –> a0 –> b0

swap (b1, a1, b0) b1 –> a1 –> b0

Z M N V C E L R
x x x – – x – –
124 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
TRAP – Software Interrupt

Syntax: trap

Operation: sp - 1 –> sp
pc –> (sp)
pc –> dvm
0x0002 –> pc
Disable interrupts (INT0, INT1, INT2, NMI, BI)

Affected Flags:

Cycles: 2

Words: 1

Notes: The software interrupt (TRAP) and the breakpoint interrupt (BI) share
the same vector address. For more details on TRAP/BI, refer to
“TRAP/BI Operation” on page 142.

The trap instruction should not be used in a TRAP/BI service routine.

To return from TRAP/BI service routine, it is advisable to use only the
reti or retid instruction.

Z M N V C E L R
– – – – – – – –
125
1368C–INTAP–08/02

TST0 – Test Bit-field for Zeros

Syntax: tst0 mask, operand

Operation: If (operand and mask) = 0, then Z = 1; else Z = 0.
The operand and the mask are sign-extension suppressed.

Operands: mask: aXl
##long immediate

operand REG
(rN)
direct address

Affected Flags:

Cycles: 1
2 when the mask is ##long immediate

Words: 1
2 when the mask is ##long immediate

Notes: The instructions tst0 a0l, a0l and tst0 a1l, a1l are forbidden.

The REG cannot be aX, bX, p.

Z M N V C E L R
x – – – – – – –
126 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
TST1 – Test Bit-field for Ones

Syntax: tst1 mask, operand

Operation: If (operand and mask) = 0, then Z = 1; else Z = 0.
The operand and the mask are sign-extension suppressed.

Operands: mask: aXl
##long immediate

operand REG
(rN)
direct address

Affected Flags:

Cycles: 1
2 when the mask is ##long immediate

Words: 1
2 when the mask is ##long immediate

Notes: The instructions tst1 a0l, a0l and tst1 a1l, a1l are forbidden.

The REG cannot be aX, bX, p.

Z M N V C E L R
x – – – – – – –
127
1368C–INTAP–08/02

TSTB – Test Specific Bit

Syntax: tstb operand, #bit number

Operation: If operand[#bit number] = 1, then Z = 1; else Z = 0.

Operand: REG
(rN)
direct address

#bit number is between 0 and 15

Affected Flags:

Cycles: 1

Words: 1

Notes: The REG cannot be aX, bX, p.

Z M N V C E L R
x – – – – – – –
128 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
XOR – Exclusive Or

Syntax: xor operand, aX

Operation: if the operand is aX or p:
aX[35:0] xor operand –> aX[35:0]

if the operand is REG, (rN):
aX[15:0] xor operand –> aX[15:0]
aX[35:16] –> aX[35:16]

Operand: REG
(rN)
direct address
[##direct address]
#unsigned short immediate
##long immediate
(rb + #offset7)
(rb + ##offset)

Affected Flags:

Cycles: 1
2 when the instruction is two words long

Words: 1
2 when the operand is ##long immediate or (rb + ##offset) or [##direct
address].

Notes: The REG cannot be bX.

Z M N V C E L R
x x x – – x – –
129
1368C–INTAP–08/02

Instruction Coding This section provides a condensed overview of the coding of the OakDSPCore instruc-
tion set. It lists all the codes and number cycles and words for all instructions.

The first section provides the definition of the fields’ abbreviations and their coding.

The second section tabulates the detailed coding of all OakDSPCore instructions,
including the number of cycles and the number of words.

Abbreviation Definition
and Encoding

• The “.” letter anywhere in the code means do not care. It is translated as “0” by the
assembler.

• Bolded opcodes are coding families that are translated to several opcodes
according to the table below the code.

The coding families are:

ALU – ALU opcodes

ALM – ALU and MULTIPLY opcodes

ALB – ALU and BMU opcodes

A(aX) = 0 Accumulator a0

1 Accumulator a1

B(bX) = 0 Accumulator b0

1 Accumulator b1

L = 0 Low

1 High

AB = 00 bo

01 b1

10 a0

11 a1

AB1 = 00 b01

001 b0h

010 b11

011 b1h

100 a01

101 a0h

110 a11

111 a1h

dddddddd = direct address bits

vvvvvvvv = 8-bit short immediate

0000000 = 7-bit offset (offset7) of relative and index addressing modes

BBBB = bit number (one of 16 bits of a register)
130 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
nnn (rN) = 000 r0

001 r1

010 r2

011 r3

100 r4

101 r5

nnn (rN*) = 000 r0

001 r1

010 r2

011 r3

100 r4

101 r5

110 rb

111 y

rrrr (register) =0000 r0

00001 r1

00010 r2

00011 r3

00100 r4

00101 r5

00110 rb

00111 y

01000 st0

01001 st1

01010 st2

01011 p/ph

01100 pc

01101 sp

01110 cfgi

01111 cfgj

10000 b0h

10001 b1h

10010 b01

10011 b1l

10100 ext 0

10101 ext1
131
1368C–INTAP–08/02

10110 ext2

10111 ext3

11000 a0

11001 a1

11010 a0l

11011 a1l

11100 a0h

11101 a1h

11110 1c

11111 sv

Modification of rN:

mm = 00 No modification

01 +1

10 -1

11 + step

Modification of rI:

ii = 00 No modification

01 +1

10 -1

11 + step

Modification of rJ:

jj = 00 No modification

01 +1

10 -1

11 + step

w (fJ) = 0 r4

1 r5

qq (rJ) = 00 r0

01 r1

10 r2

11 r3

cccc = 0000 true

0001 eq

0010 neg

0011 gt

0100 ge
132 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
0101 1t

0110 le

0111 nn

1000 c

1001 v

1010 e

1011 l

1100 nr

1101 niu0

1110 iu0

1111 iu1
133
1368C–INTAP–08/02

Instruction Coding
Table

This section tabulates the detailed coding of all OakDSPCore instructions, including the
number of cycles and the number of words.

The instructions are ordered according to the instruction group. Some of the codes are
organized in subgroups. Following each subgroup appears a list of instructions that use
the code of this subgroup and the encoding of the XX..X field for each instruction. Notice
that the same instruction may appear in several subgroups, depending on the address-
ing mode or operand usage. See Table 7.

Table 7. Instruction Coding Table

Opcode Code Cycles Words

ALM direct 101XXXXAdddddddd 1 1

ALM (rN) 100XXXXA100mmnnn 1 1

ALM register 101XXXXA101rrrrr 1 1

XXX = 0000

0001
0010
0011

0100
0101
0110

0111
1000
1001

1010
1011
1100

1101
1110
1111

or

and
xor
add

tst0_a (mask in aX1)
tst1_a (mask in aX1)
cmp

sub
msu
addh

addl
subh
subl

sqr
sqra
cmpu

ALU #short immediate 1100XXXAvvvvvvv 1 1

ALU ##long immediate 1000XXXA11000000 2 2

ALU (rb + #offset7), ax 0100XXXA0ooooooo 1 1

ALU (rb + ##offset),ax 1101010A11011XXX 2 2

ALU [##direct add.],ax 1101010A11111XXX 2 2

XXX = 000

001
010
011

110
111

or

and
xor
add

cmp
sub
134 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
ffff = 0000
0001
0010

0011
0100
0101

0110
0111
1000

1001
1010
1011

1100
1101
1110

1111

shr
shr4
shl

shl4
ror
rol

clr
reserved
not

neg
rnd
pacr

clrr
inc
dec

copy

norm 10001010A110mmnn 2 1

divs 0000111Adddddddd 1 1

ALB (rN) 1000XXX0111mmnnn 2 2

ALB register 1000XXX1111rrrrr 2 2

ALB direct 1110XXX1dddddddd 2 2

XXX = 000
001
010

011
100
101

110
111

set
rst
chng

addv
tst0_(mask in ##long immediate)
tst0_(mask in ##long immediate)

cmpv
subv

maxd 100000fA011mm000 1 1

f = 0

1

ge

gt

max 1000001fA011mm000 1 1

f = 0
1

ge
gt

lim 01000010000111XX 1 1

XX = 00
01
10

11

lim a0
lim a0, a1
lim a1, a0

lim a1

MUL y, (rN) 10000AXXX011mmnnn 1 1

MUL y, register 1000AXXX010rrrrr 1 1

Table 7. Instruction Coding Table (Continued)

Opcode Code Cycles Words
135
1368C–INTAP–08/02

MUL (rJ), (rI) 1101AXXX0jjiiwqq 1 1

MUL (rN), ##long immediate 1000AXXX000mmnnn 2 2

XXX = 000
001

010
011
100

101
110
111

mpy
mpysu

mac
macus
maa

macuu
macsu
maasu

MUL y, direct address 1110AXX0dddddddd 1 1

XX = 00
01
10

11

mpy
mac
maa

macsu

mpyi 00001000vvvvvv 1 1

msu (rN), ##long immediate 1001000A110mmnnn 2 2

msu (rJ), (rI) 1101000Aljjiiwqq 1 1

tstb (rN) 1001bbbb001mmnnn 1 1

tstb register 1001bbb000rrrr 1 1

tstb direct address 1111bbbbdddddddd 1 1

shfc 1101ab101AB0cccc 1 1

ab is the source

shfi 1001ab1AB1vvvvvv 1 1

ab is the source

vvvvvv = 6-bit immediate

modb 011B11110fffcccc 1 1

fff = 000
001

010
011
100

101
110
111

shr
shr4

shl
shl4
ror

rol
clr
reserved

exp (rN), aX 1001100A010mmnnn 1 1

exp register, aX 10001000A010rrrrr 1 1

exp bX, aX 1001000A011000B 1 1

exp (rN), sv 10011100010mmnnn 1 1

exp register, sv 10010100010rrrrr 1 1

Table 7. Instruction Coding Table (Continued)

Opcode Code Cycles Words
136 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
exp bx, sv 100101000110000B 1 1

mov register, register 010110RRRRRrrrrr 1 1

RRRRR is the destination

mov ab, AB 1101ab101AB10000 1 1

ab is the source

mov AB1, dvm 1101ab101000011 1 1

mov AB1, x 1101AB101000011 1 1

mov register, bX 0101111011brrrrr 1 1

mov register, mixp 01011111010rrrrr 1 1

mov register, (rN) 000110rrrrrmmnnn 1 1

mov mixp, register 01000111110rrrrr 1 1

mov repc, AB 110101001AB10000 1 1

mov dvm, AB 110101001AB10001 1 1

mov icr, AB 110101001AB10010 1 1

mov x, AB 110101001AB10011 1 1

mov (rN), register 000111rrrrrmmnnn 1 1

mov (rN), bX 1001100B110mmnnn 1 1

mov (sp), register 01000111111rrrrr 1 1

mov rN*, direct 0010nnn0dddddddd 1 1

msu (rJ), (rI) 1101000A1jjiiwqq 1 1

mov ABLH, direct 0011ABL0dddddddd 1 1

mov direct, rN* 011nnn00dddddddd 1 1

mov direct, AB 011AB001dddddddd 1 1

mov direct, ABLH 011ABL10dddddddd 1 1

mov direct, aXHeu 011A0101dddddddd 1 1

mov direct, sv 01101101dddddddd 1 1

mov sv, direct 011111101dddddddd 1 1

mov [##direct add.], aX 1101010A101110 2 2

mov aX1, [##direct add] 1101010A101111.. 2 2

mov ##long immediate, register 0101111.000rrrrr 2 2

mov ##long imm., bX 0101111B001 2 2

mov #short, aX1 001A0001vvvvvvvv 1 1

mov #short, aXh 001A0101vvvvvvvv 1 12

mov #shotr, rN* 001nnn11vvvvvvvv 1 1

mov #short, ext 0-3 001X1X01vvvvvvvv 1 1

Table 7. Instruction Coding Table (Continued)

Opcode Code Cycles Words
137
1368C–INTAP–08/02

XX = 00
01
10

11

ext0
ext1
ext2

ext3

mov #short, sv 00000101vvvvvvvv 1 1

mov register, icr 010011111.rrrrr 1 1

mov #immediate 01001111110.vvvvv 1 1

vvvvv = 5-bit immediate

mov (rb + #offset7), aX 110110A1ooooooo 1 1

move aX1, (rb + #offset7) 1101110A1ooooooo 1 1

mov (rb + ##offset), aX 1101010A100110.. 2 2

movp (aX), register 0000000001Arrrrr 3 1

movp (rN), (rI) 0000011iiqqmmnnn 3 1

movs register, AB 000000010abrrrrr 1 1

movs (rN), AB 000000011abmmnnn 1 1

movs direct, AB 011AB011dddddddd 1 1

movsi rN*, AB 0100nnn01ABvvvvv 1 1

vvvvv = 5-bit immediate

movr register, aX 1001110A110rrrrr 1 1

movr (rN), aX 1001110A11mmnnn 1 1

push register 01011110010rrrrr10 1 1

push ##long immediate 0101111101 2 2

pop register 01011110011rrrrr 1 1

swap swap-options 0100100110..swap 1 1

Swap
0000
0001

0010
0011
0100

0101
0110
0111

1000
1001
1010

1011
1100
1101

Operation
a0 < –> b0
a0 <–> b1

a1 <–> b0
a1 <–> b1
a0 <–> b0 and a1 –> b1

a0 <–> b1 and a1 –> b0
a0 –> b0 and –> a1
a0 –> b1 –> a1

a1 –> b0 –> a0
a1 –> b0 –>a0
b0 –> a1 –> b1

b0 –> a1 –> b1
b1 –> a0 –> b0
b1 –> a1 –> b0

banke 010010111...bank 1 1

Table 7. Instruction Coding Table (Continued)

Opcode Code Cycles Words
138 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
bank = r0, r1, r4, cfgi
Ex.: bank = 0101 means bank switch of
r1 and cfgi

movd (rI), (rJ) 01011111jjiiwqq 4 1

rep register 00001101...rrrrr 1 1

rep #short 00001100vvvvvvvv 1 1

bkrep #short 01011100vvvvvvvv 2 2

bkrep register 01011101000rrrrr 2 2

break 1101001111 1 1

br 010000011000cccc 2/3 2

brr 01010ooooooocccc 2 2

call 010000011100cccc 2/3 2

callr 00010ooooooocccc 2 1

calla 1101010A10000000 3 1

ret 010001011000cccc 2/3 1

retd 1101011110 1 1

reti 0100010111fcccc 2/3 1

f = 0
1

Do not do context switching
Do context switching

retid 1101011111000000 1 1

cntx 11010011100f0000 1 1

f = 0 (s)
1 (r)

Store shadows of context switching
Restore shadows of context switching

rets 00001001vvvvvvvv 3 1

nop 0000000000000000 1 1

modr 000000001fmmnnn 1 1

f = 0
1

Don’t disable modulo
Disable modulo

eint 0100001110000000 1 1

dint 0100001111000000 1 1

trap 0000000000100000 1 1

load page 00000100vvvvvvvv 1

load modX 0000x01vvvvvvvv 1

x =

vvvvvvvvv = 9-bit immediate

0

1

load modi

load modj

load stepX 11011x111vvvvvv 1

Table 7. Instruction Coding Table (Continued)

Opcode Code Cycles Words
139
1368C–INTAP–08/02

Pipeline Method The program controller implements a four-level pipeline architecture. In the operation of
the pipeline, concurrent fetch, decode, operand fetch and execution occur. Thus, during
a given cycle up to four different instructions are being processed, each at a different
stage of pipeline. The pipeline is an “interlocking” type.

Figure 10 shows the pipeline operation for sequential single-cycle instructions: The
instruction n is executed in cycle four. During this cycle instruction n + 3 is pre-fetched,
instruction n + 2 is decoded and the operand needed at instruction n + 1 is fetched.

For multiple-cycle instructions, the pipeline structure may differ but these details are
beyond the scope of this document.

Figure 10. Pipeline Operation

x =
vvvvvvv = 7-bit immediate

0
1

load stepi
load stepj

load ps 01001101100000vv 1 1

vv = 2-bit immediate

Table 7. Instruction Coding Table (Continued)

Opcode Code Cycles Words

fetch

decode

op. fetch

execute

n

n

n

n

n + 1

n + 1

n + 1

n + 1

n + 2

n + 2

n + 2

n + 3

n + 3

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
140 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
Reset Operation The reset line of the DSP subsystem is fully controlled by the ARM7TDMI core through
the bits RA/RB in the SIAP_MD register.

In order to put the DSP subsystem in a correct reset state, some constraints must be
respected when asserting/de-asserting the reset signal:

• The OakDSPCore must be held in a reset condition for a minimum of 12
OakDSPCore clock cycles. On removal of the reset, the OakDSPCore immediately
starts the execution from location 0x0000 in program memory. In a typical case, the
program memory will have been pre-loaded before the removal of the reset.

• The ARM7TDMI and OakDSPCore processors each have their own PLL, so at
power-on each processor has its own indeterminate lock period. To guarantee
message synchronization between the ARM7TDMI and the OakDSPCore, the
ARM7TDMI must assert/de-assert the DSP subsystem reset signal three times.

Program Memory Upload When the reset is active, the program memory becomes visible from the ARM7TDMI
point of view. During reset, the ARM7TDMI has the ability to write the full program mem-
ory in order to upload a DSP application. The DSP application is executed as soon as
the reset condition is exited.

Interrupts The OakDSPCore provides four hardware interrupts: three maskable interrupts (INT0,
INT1, INT2), and one non-maskable interrupt (NMI). One software interrupt (TRAP) also
exists and can be used to mimic hardware interrupt operation by software.

When one of the interrupts NMI, INT0, INT1, INT2 is accepted, the core uses one stack
level to store the program counter. Additionally, the core can also perform automatic
context switching to save/restore critical parameters. For details, refer to “Interrupt Con-
text Switching” on page 27. Then, the PC is automatically loaded with a predefined
address corresponding to the interrupt service routine location.

Table 8 summarizes the predefined interrupt service routine addresses and the interrupt
priorities. Since the NMI is not used in the AT75C, its operation is not discussed here.

Table 8. Interrupt Service Routine Addresses and Interrupt Priorities

Interrupt Service
Routine Location Interrupt Name and Function Priority

0x0000 RESET 1 – highest

0x0002 TRAP/BI - Software interrupt 2

0x0004 NMI – Not used in the AT75C 3

0x0006 INT0 – Indicates that the dual-port mailbox requires service 4

0x000E INT1 – Indicates that the codec interface requires service 5

0x0016 INT2 – Not used in the AT75C 6 – lowest
141
1368C–INTAP–08/02

INT0, INT1, INT2
Operation

INT0, INT1 and INT2 are individually maskable interrupts. A maskable interrupt is
accepted when:

• the OakDSPCore is in an interruptable state (see “Interrupt Latency”)

• the global Interrupt Enable bit within ST0 is set

• the corresponding Interrupt Mask bit (IM0, IM1 or IM2) is set

When a maskable interrupt is accepted, the OakDSPCore performs the following:

• SP - 1 –> SP
The stack pointer is pre-decremented.

• PC –> (SP)
The program counter is saved into the stack.

• ##ISR address –> PC
Control is given to the interrupt service routine.

It should be noted that the IMx mask remains unaffected.

When the interrupt request is acknowledged by the OakDSPCore, the IE bit within ST0
is reset, disabling other maskable interrupts from being serviced. Additional pending
interrupts are serviced once the program re-enables (sets) the IE bit.

Return from the interrupt service routine is down through the instructions ret, retd, reti,
or retid. The instructions reti and retid set the IE flag, allowing pending interrupts to be
serviced. When using the ret or retd instructions, the IE bit must be set explicitly to
enable interrupts again.

Interrupt priority is used to arbitrate simultaneous interrupt requests. INT0 has the high-
est priority, and INT2 the lowest. Nesting is supported if IE is enabled by the current
interrupt service routine. The priority between INT0, INT1 and INT2 is significant only if
more than one interrupt is received at the same time. The priority scheme is also applied
when the IE bit is cleared for some time and more than one maskable interrupt request
is received.

When a maskable interrupt INTx is accepted, the corresponding IPx bit in ST2 is set.
This can be used in applications that use interrupt polling while disabling (via the IE bit)
the automatic response to interrupt requests.

TRAP/BI Operation TRAP is a software interrupt used to mimic hardware interrupts, while BI is a hardware
breakpoint interrupt dedicated to the on-chip emulation module (OCEM) operation. Both
TRAP and BI share the same interrupt vector.

During the execution of the TRAP/BI service routine, all other interrupts are disabled.

A TRAP/BI is accepted while the OakDSPCore is in an interruptible state, as stated in
“Interrupt Latency”. When the OakDSPCore accepts the TRAP/BI, the following actions
are taken:

• SP - 1 –> SP
The stack pointer is decremented.

• PC –> (SP)
The program counter is saved into the stack.

• PC –> DVM
The program counter is saved into the Data Value Match register.

• 0x0002 –> PC
Control is given to the TRAP service routine.
142 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
The TRAP instruction should not be used within another TRAP/BI interrupt service
routine.

The TRAP/BI service routine must end with a reti or retid instruction.

The on-chip emulation module (OCEM) uses the BI to provide emulation capability
within the OakDSPCore. When BI is used as hardware interrupt, note the following dif-
ferences between BI and other interrupts:

• The latency is two instruction cycles (compared to one in other interrupts)

• BI has the highest priority

• BI has no masking option

• BI has no option for automatic context switching

Interrupt Latency The INT0, INT1, INT2 interrupts latency is one machine cycle, assuming that the OakD-
SPCore is in an interruptible state. The BI latency is two machine cycles, assuming that
the OakDSPCore is in an interruptible state. During non-interruptible states, the OakD-
SPCore will not service the interrupt, but will continue to execute instructions. The
interrupt will be accepted once the OakDSPCore exits this state.

Non-interruptible states are:

• during reset

• during the first three instruction fetches after de-activation of the reset. BI is an
exception.

• during the execution of multi-cycle instructions

• when no clock is provided to the DSP subsystem

• during a nested repeat loop execution

For specific instructions where interrupts are delayed after their execution, refer to the
section “More on Interrupt Latency” on page 167.
143
1368C–INTAP–08/02

On-chip Emulation
Module (OCEM)

The OCEM is a standalone module, which is used to provide software debug facilities
such as hardware emulation and program flow trace buffering. The OCEM functions
include:

• Program address breakpoints with separate match condition counters

• Data address breakpoint

• Data value breakpoint

• Combined data address and data value breakpoint

• Single-step

• Break-on-branch

• Break-on-interrupt

• Break-on-block repeat loop

• Program flow trace buffer

OCEM Operation The OCEM uses the OakDSPCore breakpoint interrupt (BI) mechanism to implement its
emulation functions. The emulation functions include two main tasks:

• Breakpoint generation

• Program flow tracing

The breakpoint generation is done due to a predefined condition that is programmed
into the OCEM registers set. Once a condition is met, the OCEM activates the BI mech-
anism causing the OakDSPCore to suspend any action and jump into the BI service
routine. This routine can be a debug monitor or any function allowing code behavior
analysis.

Program flow buffering includes dynamic recording of the instructions’ addresses, which
cause a discontinuity in the code sequence. These addresses are kept in a FIFO within
the OCEM block and used afterwards to reconstruct the complete program flow graph.

Program Address
Breakpoint Operation

The program address breakpoint condition can be programmed through three program
address breakpoint registers (PABP1, PABP2, PABP3) and three corresponding pro-
gram address breakpoint counters (PABC1, PABC2, PABC3).

When the OCEM senses a match between the program address from the OakDSPCore
and one of the addresses written in the PABPx register, the counter PABCx is decre-
mented. If the counter value is zero, a BI request is issued. If the user wishes to have a
breakpoint every time the OakDSPCore fetches a given program address, the corre-
sponding PABC counter should be set to 1 (0 also gives the same behavior). If the user
wishes to have a breakpoint only at the nth occurrence, the counter has to be set to n.

The program address breakpoint can be disabled by writing 0 to the PIE/P3E bit within
the OCEM STATUS0 register. The BI service routine can check the P1, P2 and P3 bits
to discriminate which address match has caused the BI to be triggered.

Data Address Breakpoint
Operation

The data address breakpoint is initiated upon a match between the OCEM data address
breakpoint (DABP) register and the OakDSPCore data address bus. The data address
mask (DAM) register allows expansion of the data address breakpoint to an address
space rather than one single address. Figure 11 describes this behavior.
144 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
Figure 11. Data Address Breakpoint Logic

The data address breakpoint can be enabled for read or write transactions. It is done by
setting the bit DARE (for breaking on read) or DAWE (for breaking on write) in the
OCEM MODE register. Detection of a data address match condition is indicated in the
DABP bit within the OCEM STATUS0 register.

For more information on data address breakpoint latency, refer to “Data Address/Value
Breakpoint Latency”.

Data Value Breakpoint
Operation

Data value breakpoint is initiated upon detection of a data match between the OakDSP-
Core internal data bus and the content of the data value match (DVM) register. It should
be noted that the data value breakpoint procedure is initiated only due to a matched
data during memory transactions. There is an option to detect a combined data address
and value condition. It is enabled by the bit CDVAE within the OCEM MODE register. An
indication for this break point type is in the CDVA bit within the OCEM STATUS0 regis-
ter. Note that if one wants to break on the combined condition, it has to set the CDVAE
bit together with DARE and DVRE bits for read transaction and DAWE and DVWE for
write transactions.

Note that the data address as well as data value breakpoint is being initiated after the
transaction is completed. This is opposed to program address breakpoint, where the
breakpoint occurs during the fetch period, i.e., prior to the instruction execution.

For more information on data value breakpoint latency, refer to “Data Address/Value
Breakpoint Latency”.

Data Address/Value
Breakpoint Latency

Since the data is detected at the operand fetch of the instruction, two more instructions
are already in the pipe and issued for decode, thus they are executed before the inter-
rupt is served. This means that for data value breakpoints there is a latency of two
instructions and the user will see the status of the OakDSPCore only two instructions
after the event has happened.

For data address breakpoint, the latency could have been reduced to one instruction.
However, in order to enable combined DABP and DVBP, the trigger of BI request is
delayed. Thus, the latency is also two instructions.

Single-step Operation The single-step operation is controlled by the SSE bit in the MODE0 register. If this bit is
set when the program returns from the BI service routine, the BI procedure is re-trig-
gerred once the OakDSPcore has executed a single instruction.

Data Address
Breakpoint Register

Data Address
Mask Register

OakDSPCore Data Address Bus

BI
145
1368C–INTAP–08/02

Break-on-branch
Operation

The OCEM allows the user to trigger the BI mechanism upon pipe-break events such as
branch, call, interrupt or looping. The user can choose which event of the following list
would cause a breakpoint:

• BR, BRR, CALL, CALLR, CALLA, RET, RETI, RETD, RETID, RETS, MOV to PC

• Interrupt service start (excluding TRAP)

• Transition from the last back to the first address within a block-repeat loop

Program Flow Trace
Buffer

The OCEM contains a 16-stage program flow trace buffer. The buffer dynamically keeps
non-linear program addresses. This means only those program addresses that contain
an instruction that causes a discontinuity in the program flow. The whole program flow
graph can be reconstructed by taking those non-linear addresses and filling in the gaps
using the object code.

The advantage of using the “condensed” trace buffer resides in the number of
addresses that can effectively be kept in the buffer.

The method behind the condensed trace buffer is composed of four principles:

1. Only branches that have effectively been taken are recorded. For example, a
conditional branch not causing code discontinuity due to a false condition will not
be recorded.

2. If the non-sequential instruction has a destination address explicitly coded in the
program (e.g., BR, BRR, CALL, CALLR), only the instruction address is
recorded.

3. If the non-sequential instruction has a destination address not explicitly coded in
the program (e.g., CALLA, RET or MOV to PC), the instruction address as well
as the target address is recorded.

4. Interrupts are treated as non-sequential instructions. However, they can arrive
anywhere and, although the target destination is known, the source (the last
instruction address being executed prior to the branch to the interrupt vector)
cannot be derived easily. Therefore, for the interrupt case, the source address
(i.e., the last instruction address before servicing the interrupt) as well as the
destination address (the vector address) is recorded in the trace buffer.

There is an option for trace buffer full breakpoint by setting the bit TBF in the MODE reg-
ister. The bit TBF indicates the cause of the breakpoint. If the TBF bit is disabled, the
trace buffer would contain the last 16 non-sequential recordings. Once the whole buffer
is read, it is filled with all 1s.

The trace memory mechanism contains one extra bit per trace stage that is used to tag
two-word instructions.

Note that:

• “Non-sequential” addresses within the breakpoint handler are not recorded.

• The PROM address in MOVP instruction and the PRAM address in MOVD
instruction are not recorded.

• Non-sequential fetches that are due to TRAP instruction (as well as TRAP/BI
breakpoint) are not recorded.
146 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
Trace Reading and
Decoding Algorithm

Trace reading and decoding requires several operations that must be done sequentially.

In order to decode the addresses written in the trace buffer correctly, reading should
take place in the sequence below:

1. Read the tag (bit 0, TREI, in STATUS1 register).

2. Read the PFT register, which holds the most recent entry in the trace buffer.

The read operation updates the PFT register and the tag so as to reflect the next entry
of the trace buffer.

This operation (reading TREI and trace one by one) should be repeated 16 times in
order to read the whole buffer.

Decoding of the program flow should start from the last address that was read from the
buffer (e.g., last entry to the buffer) and proceed backwards.

The addresses that are saved in the trace buffer can be single entry with the tag bit
equal to 1, or double entry with the tag bits equal to 0 for both entries.

By using this tag bit, the user can differentiate between single and double entries of the
buffer.

Completion of the program flow is done by filling the sequential instructions from the
program list between the branches.

Notice that sometimes one or more lines at the beginning of the buffer (addresses first
read from the buffer) may contain only 1s, including the tag bit. It means that those lines
were not used since the previous buffer’s reading and do not contain any information.
147
1368C–INTAP–08/02

OCEM Programming Mode

STATUS0 (0xF7FF)

Reset Value: 0x0000

• SFT

When set, this bit indicates that the current breakpoint has been caused by a TRAP instruction.

• IL

Indicates the detection of an illegal breakpoint. This breakpoint is activated if the user program tries to access the mailbox
space or the OCEM registers, not the breakpoint handler.

• TBF

When set, this indicates that the current breakpoint has been caused by the program flow trace buffer being full.

• INT

When set, this bit indicates that the current breakpoint has been caused by an accepted interrupt.

• BR

Indicates the detection of a branch or block repeat breakpoint.

• PA3

Indicates the detection of a program address breakpoint due to a match with PABP3.

• PA2

Indicates the detection of a program address breakpoint due to a match with PABP2.

• PA1

Indicates the detection of a program address breakpoint due to a match with PABP1.

• ABORT

Indicates the detection of a breakpoint due to an external event.

• EREG

Indicates the detection of a breakpoint due to an external register transaction.

• CDVA

Indicates the detection of a breakpoint due to a combine data value and data address match.

• DA

Indicates the detection of a breakpoint due to a data address match.

• DV

Indicates the detection of a breakpoint due to a data value match.

15 14 13 12 11 10 9 8

SFT IL TBF INT BR – – –

7 6 5 4 3 2 1 0

PA3 PA2 PA1 ABORT EREG CDVA DA DV
148 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
STATUS1 (0xF7FE)

Reset Value: Only MVD reset to 0.

• DBG

Indicates debug mode. Activated as a result of an indication on the CA1 pin at res rising edge.

• BOOT

Indicates boot mode. Activated as a result of an indication on the CA0 pin at res rising edge.

• ERR

Indicates the detection of a user reset during the execution of a breakpoint service routine. In this case, the Oak debugger
may not follow the user commands.

• MVD

Indicates the detection of a MOVD instruction.

• TREI

Acts as a tag bit for the program flow trace. When cleared, it indicates that the current trace entry (the one that is at the
trace top) has to be combined with the next trace entry for the proper expansion of the user program.

MODE0 (0xF7FD)

Reset Value: 0x0000

• SSE

When set, this bit enables single-step operation.

• ILLE

Enables the breakpoint on an illegal condition (trying to access the mailbox space not through the TRAP handler).

• BKRE

When set, this bit enables the breakpoint when returning to the beginning of a repeat loop.

• TBFE

Enables the breakpoint as a result of program flow trace buffer full.

• INTE

Enables the breakpoint upon the detection of an interrupt service execution.

• BRE

Enables the breakpoint every time the program jumps instead of executing the next sequential instruction.

• P3E

Enables the program breakpoint 3. The breakpoint is activated upon a match on the address specified at PABP3.

• P2E

Enables the program breakpoint 2. The breakpoint is activated upon a match on the address specified at PABP2.

• P1E

Enables the program breakpoint 1. The breakpoint is activated upon a match on the address specified at PABP1.

15 14 13 12 11 10 9 8

DBG BOOT ERR MVD – – – –

7 6 5 4 3 2 1 0

– – – – – – – TREI

15 14 13 12 11 10 9 8

SSE ILLE BKRE TBFE INTE BRE P3E P2E

7 6 5 4 3 2 1 0

P1E EXTRE EXTWE CDVAE DARE DAWE DVRE DVWE
149
1368C–INTAP–08/02

• EXTRE

Enables the breakpoint as a result of an external register read transaction.

• EXTWE

Enables the breakpoint as a result of an external register write transaction.

• CDVAE

Enables the breakpoint as a result of simultaneous data address and data value match.

• DARE

Enables the breakpoint as a result of a read transaction where the address matches with the value in DABP.

• DAWE

Enables the breakpoint as a result of a write transaction where the address matches with the value in DABP.

• DVRE

Enables the breakpoint as a result of a read transaction where the data value matches with the value in the
OakDSPCore’s DVM register.

• DVWE

Enables the breakpoint as a result of a write transaction where the data value matches with the value in the
OakDSPCore’s DVM register.

DABP (0xF7FB)

DAM (0xF7FA)

PABC3 (0xF7F9)

PABC2 (0xF7F8)

15 14 13 12 11 10 9 8

Data Address Breakpoint Value

7 6 5 4 3 2 1 0

Data Address Breakpoint Value

15 14 13 12 11 10 9 8

Data Address Mask Value

7 6 5 4 3 2 1 0

Data Address Mask Value

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – Program Address Breakpoint Counter 3

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – Program Address Breakpoint Counter 2
150 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
PABC1 (0xF7F7)

PABP3 (0xF7F3)

PABP2 (0xF7F2)

PABP1 (0xF7F1)

PFT (0xF7F0)

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – Program Address Breakpoint Counter 1

15 14 13 12 11 10 9 8

Program Address Breakpoint 3

7 6 5 4 3 2 1 0

Program Address Breakpoint 3

15 14 13 12 11 10 9 8

Program Address Breakpoint 2

7 6 5 4 3 2 1 0

Program Address Breakpoint 2

15 14 13 12 11 10 9 8

Program Address Breakpoint 1

7 6 5 4 3 2 1 0

Program Address Breakpoint 1

15 14 13 12 11 10 9 8

Program Flow Trace

7 6 5 4 3 2 1 0

Program Flow Trace
151
1368C–INTAP–08/02

Dual-port Mailbox Communications between the asynchronous ARM7TDMI and OakDSPCore are via the
dual-port mailbox (DPMB). It is assumed that each processor is running asynchronously
and that the coherency of communications is maintained by a robust software.

The DPMB consists of 512 bytes of DPRAM and some memory-mapped registers that
configure the DPMB and act as semaphores. The DPMB sits on the ARM7TDMI ASB
bus and can be accessed by memory-mapped operations. Similarly, the DPMB also sits
on the OakDSPCore data bus and can be accessed by memory-mapped operations.

Messages can be sent between the two processors by the sending processor writing
data to the DPRAM within the DPMB and signalling via the semaphores. This data is
subsequently read by the recipient processor. Individual mailboxes are bi-directional
with access permission controlled by the semaphores. The message-passing protocol
can be configured for each mailbox as interrupt-driven or polled, in each direction.

Figure 12. Dual-port Mailbox Block Diagram

Dual-port RAM The major component of the DPMB is a dual-port RAM (DPRAM). It consists of 256 by
16 bits of dual-port static RAM. The DPRAM is divided into eight equal mailboxes, each
with its own semaphore register. The hardware implements locks such that both proces-
sors never have write access to the same mailbox region. This protection mechanism is
based upon the values of the semaphores, which must be maintained by the software.

If a processor attempts to access a mailbox to which it does not have semaphore per-
mission, then this access will be ignored.

The DPMB supports word access from the ARM side, provided the address is word-
aligned, and half-word access from both the ARM and Oak sides, provided the address
is half-word-aligned. All other accesses will result in a data abort being issued. The
DPMB does not decode protection information carried in AMBA™ output BPROT[1:0]
and, as a result, does not support Thumb® compiled code.

Mailbox Memory

Access
Control

Access
Control

Protection
Mechanism

Semaphores
Logic

OAK Bus

ARM ASB

IRQ

IRQ

Control

Control

Enable

Enable

Rd Wr

Rd Wr

Data

Data

Address

Address

Address

Address
152 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
In order to reduce hardware, the minimum number of address bits are used in decoding
register and mailbox addresses. This results in address aliasing. For the ARM side, only
address bits ba[5:2] and ba[9] are used in the register decodes and bits ba[8:5] in the
mailbox decodes. On the Oak side, only address bits dxap[2:0] are used in the register
decode and bits dxap[7:4] are used in the mailbox decode.

Semaphore Operation The DPMB supports semaphore registers to facilitate asynchronous communication
between two processors. Each of the eight mailboxes has its own memory-mapped
semaphore register. This avoids any need for complex read-modify-write operations.
Each semaphore is configured to control message passing in a single direction, i.e.,
from the ARM to the Oak when the DPMB ARM-to-Oak flag is set high. When this flag is
low, then the direction of transfer is Oak to ARM.

A semaphore can be configured to support either interrupts or polling in either direction.
The ARM Interrupt Enable (AIE) flag determines if interrupts shall be raised to the ARM
when an associated semaphore operation occurs. Similarly, the Oak Interrupt Enable
(OIE) flag determines if an interrupt is raised to the Oak when an associated semaphore
operation occurs.

There are no hardware-read restrictions to any semaphore for either processor. This
allows a semaphore to be polled freely. However, the software is expected to maintain
message-level synchronization and not attempt to write to the same semaphore at the
same time. Because the two processors may run asynchronously, the semaphores are
re-synchronized to the clock domains of both processors and hence, cycle accuracy is
not maintained.

At reset, all semaphores are reset low.

Each semaphore can be set or cleared by either processor by performing a write opera-
tion to the semaphore register. A set operation (write high) sets the semaphore register
to high and a clear operation (write low) sets the semaphore low. However, a sema-
phore operation can also raise or clear interrupts, depending on which processor
performs the operation and which processor has been enabled as the sender processor.
The semantics of semaphore operations are presented in Table 9.

Table 9. Semaphore Operations Semantics

Operation ARM to Oak High ARM to Oak Low

ARM Set Set Semaphore
Raise Oak Interrupt

Set Semaphore
Clear ARM Interrupt

ARM Clear Clear Semaphore
Clear ARM Interrupt

Clear Semaphore
Clear ARM Interrupt
Raise Oak Interrupt

Oak Set Set Semaphore
Clear Oak Interrupt

Set Semaphore
Raise ARM Interrupt

Oak Clear Clear Semaphore
Clear Oak Interrupt
Raise ARM Interrupt

Clear Semaphore
Clear Oak Interrupt
153
1368C–INTAP–08/02

DPMB Register Map

Note: 1. Base address is 0xFA000000 for OakA and 0xFB000000 for OakB.

Note: 1. Mailbox 0 for Config 3 allows access to the entire DPRAM.

Table 10. ARM Registers

Register Address
(Offset from Base) (1) Register Description

Mailbox Base Address
(Offset from Base) (1)

AccessConfig 0 Config 1 Config 2 Config 3

0x200 DPMBS0 Mailbox Semaphore 0 0x000 0x000 0x000 0x000 Read/write

0x204 DPMBS1 Mailbox Semaphore 1 0x040 0x0E0 0x080 – Read/write

0x208 DPMBS2 Mailbox Semaphore 2 0x080 0x100 0x100 – Read/write

0x20C DPMBS3 Mailbox Semaphore 3 0x0C0 0x120 0x140 – Read/write

0x210 DPMBS4 Mailbox Semaphore 4 0x100 0x160 0x180 – Read/write

0x214 DPMBS5 Mailbox Semaphore 5 0x140 0x1A0 0x1A0 – Read/write

0x218 DPMBS6 Mailbox Semaphore 6 0x180 0x1C0 0x1C0 – Read/write

0x21C DPMBS7 Mailbox Semaphore 7 0x1C0 0x1E0 0x1E0 – Read/write

0x220 DPMBCC Mailbox Configuration (0x200) Read/write

Table 11. Oak Registers

Register Address Register Description

Mailbox Base Address

AccessConfig 0 Config 1 Config 2 Config 3

0xE800 DPMBS0 Mailbox Sempahore 0 0xE000 0xE000 0xE000 0xE000(1) Read/write

0xE801 DPMBS1 Mailbox Semaphore 1 0xE020 0xE070 0xE040 – Read/write

0xE802 DPMBS2 Mailbox Semaphore 2 0xE040 0xE080 0xE080 – Read/write

0xE803 DPMBS3 Mailbox Semaphore 3 0xE060 0xE090 0xE0A0 – Read/write

0xE804 DPMBS4 Mailbox Semaphore 4 0xE080 0xE0B0 0xE0C0 – Read/write

0xE805 DPMBS5 Mailbox Semaphore 5 0xE0A0 0xE0D0 0xE0D0 – Read/write

0xE806 DPMBS6 Mailbox Semaphore 6 0xE0C0 0xE0E0 0xE0E0 – Read/write

0xE807 DPMBS7 Mailbox Semaphore 7 0xE0E0 0xE0F0 0xE0F0 – Read/write
154 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
DPMB Semaphore
Registers

The semaphore registers look the same from the ARM and the Oak sides.

• Sem: Semaphore

When low, the sender has read and write permission to the mailbox. The recipient has no permission to read or write the
associated mailbox. When high, the recipient has read and write permission to the mailbox and the sender has no
permission.

• AIS: ARM Interrupt Status

This flag indicates the value of the ARM interrupt flag. This is a read-only bit; any attempt to write to this bit will be ignored.

• OIS: Oak Interrupt Status

This flag indicates the value of the Oak interrupt flag. This is a read-only bit; any attempt to write to this bit will be ignored.

DPMB Configuration
Register (DPMBCC)

The DPMB is configured by means of a memory-mapped register that sits on the ARM
ASB bus. This register is not accessible by the Oak.

• ATO[7:0]: ARM To Oak

The value of this flag conditions the semantics of semaphore operation for the associated mailbox. When high, the ARM is
the sender and the Oak is the recipient. When low, the Oak is the sender and the ARM is the recipient.

• AIE[15:8]: ARM Interrupt Enable

• When high, appropriate semaphore operations can raise an interrupt to the ARM. When low, interrupts are never raised
by any semaphore operation.

• OIE[23:16]: Oak Interrupt Enable

When high, appropriate semaphore operations can raise an interrupt to the ARM. When low, interrupts are never raised by
any semaphore operation.

• MB_CONFIG[30:29]: Mailbox Configuration

Selects one of four possible mailbox configurations. Refer to Table 10.

• RESET

When a high is written to this bit, the DPMB is reset to its initial state, ready for the configuration to be set.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – OIS AIS Sem

31 30 29 28 27 26 25 24

RESET MB_CONFIG – – – – –

23 22 21 20 19 18 17 16

OIE

15 14 13 12 11 10 9 8

AIE

7 6 5 4 3 2 1 0

ATO
155
1368C–INTAP–08/02

Codec Interface In the AT75C product family, the DSP subsystem implements a flexible serial port inter-
face that provides a full duplex bi-directional communication with external serial devices
such as codecs. The codec interface signals are directly compatible with many industry-
standard codecs and other serial devices.

See Figure 13 for a block diagram of the codec interface.

Figure 13. Codec Interface Block Diagram

Transmit
FIFO

Outshift
Register

Serial
Control

Inshift
Register

Receive
FIFO

Bus Interface
and Registers

Transmit Data

Receive Data

O
ak

D
S

P
C

or
e

B
us

AT75C

SDOUT

SDIN

FS

SCLK
156 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
Codec Interface
Registers

The codec interface operates through a set of memory-mapped registers. These regis-
ters are listed below. The first three are control registers, which impact the behavior of
the interface. They are described in more detail in “Codec Control Register”. These are
followed by a status register, which informs the software about the current status of the
interface. The status register is described in more detail in “Codec Interface Status Infor-
mation” on page 161. The two final registers hold the data sent/received to/from the
codec device.

During normal codec interface operation, the CODTX is typically loaded with data to be
transmitted on the codec interface by the executing program, and its contents read auto-
matically by the codec interface logic to be sent out when a transmission is initiated. The
CODRX is loaded automatically by the codec interface logic with data received on the
codec interface and read by the executing program to retrieve the received data.

Codec Interface Signals Only four wires are needed to achieve synchronous bi-directional communications
between the codec interface and an external codec. Those wires are described in Table
13.

The SCLK signal is the serial clock. All the other codec interface signals are synchro-
nous to this clock. In particular, the SCLK is used as the shift clock for the codec
interface transmit and receive shift registers. The SCLK signal can be delivered either
by the external codec device (master mode) or by the AT75C itself (slave mode).

The FS signal is used to indicate the beginning of a transmission between the AT75C
and the external codec device. Typically, the state of FS changes when the first bit of
transmitted word is delivered on the SDIN/SDOUT lines. When the AT75C is connected
to an external stereo codec, the FS signal can also be used to discriminate the right
channel against the left channel. The FS signal is synchronous to SCLK. In master
mode, it is sampled by the AT75C. In slave mode, it is generated by the AT75C.

SDIN is used to carry the serial bits from the external codec device into the AT75C
codec interface. The value on SDIN is sampled by the AT75C each SCLK period.

Table 12. Codec Interface Registers

Address Register Name Description Access Reset Value

0xEC00 CODCNT Codec control register R/W 0x0800

0xEC02 CODFRM Codec frame control register R/W 0x0096

0xEC04 CODSCK Codec serial clock control register R/W 0x401F

0xEC06 CODSTS Codec status register R 0x0000

0xEC08 CODTX Codec transmit data register W 0x0000

0xEC0A CODRX Codec receive data register R 0x0000

Table 13. Codec Interface Wires Description

Signal Name Direction Description

SCLK I/O Serial clock

FS I/O Frame synchronization

SDIN I Serial Data In

SDOUT O Serial Data Out
157
1368C–INTAP–08/02

SDOUT is used to carry the serial bits from the AT75C to the external codec device. A
new bit is transmitted each SCLK period.
158 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
Codec Control Register The codec interface contains a control register which configures the operation of the
port. This register and the corresponding bit fields are described below.

CODCNT (0xEC00)

• TEN

Transmitter enable. When high, the transmitter is enabled.

• REN

Receiver enable. When high, the receiver is enabled.

• ITE

Transmitter empty interrupt enable. When high, this bit allows an interrupt to be triggered as soon as the transmit FIFO is
empty.

• ITF

Transmitter full interrupt enable. When high, this bit allows an interrupt to be triggered as soon as the transmit FIFO is full.

• ITO

Transmitter overrun interrupt enable. When high, this bit allows an interrupt to be triggered when a transmit overrun condi-
tion occurs. Define transmit overrun condition.

• IRE

Receiver empty interrupt enable. When high, this bit allows an interrupt to be triggered as soon as the receive FIFO is
empty.

• IRF

Receiver full interrupt enable. When high, this bit allows an interrupt to be triggered as soon as the receive FIFO is full.

• IRS

Receiver sample ready interrupt enable. When high, this bit allows an interrupt to be triggered interrupt when a sample has
been received and is ready to be processed. This interrupt is independent of the receive FIFO operation.

• IRO

Receiver overrun interrupt enable. When high, this bit allows an interrupt to be triggered when a receive overrun condition
occurs. Define receive overrun condition.

• SCIO

Serial clock direction. When high, the SCLK pin is an output, and the SCLK signal is derived according to the value in the
CODSCLK register. When low, the SCLK pin is an input and is used as the serial bit clock.

• FSIO

Frame sync direction. When high, the FS pin is an output and the FS signal is derived according to the value of the COD-
FRM register. When low, the FS pin is an input and is used as the frame synchronization signal.

• SDOZ

SDOUT tri-state mode. When high, the SDO pin is put in high impedance when it does not carry significant data. When low,
the SDO pin is always in low impedance, even when it does not carry significant data.

• FSC

Frame sync clock select. When high, the FS signal is derived from a division of the system clock. When low, the FS signal
is derived from a division of the SCLK, independent of the source of SCLK.

• LOOP

Loopback mode. When high, the bitstream on SDO is internally copied on the incoming bitstream, overriding the values on
SDI.

15 14 13 12 11 10 9 8

– – LOOP FSC SDOZ FSIO SCIO IRO

7 6 5 4 3 2 1 0

IRS IRF IRE ITO ITF ITE REN TEN
159
1368C–INTAP–08/02

CODFRM (0xEC02)

• FD[7:0]

Frame divisor. This 8-bit number is the value by which to divide the serial clock SCLK to derive the frame sync signal FS.

• DD[7:0]

Serial data delay. This is the number of SCLK cycles by which to delay the start of the first data bit from FS.

CODSCK (0xEC04)

• SD[7:0]

Serial clock divisor. Value by which to divide the system clock to derive the SCLK output in slave mode:

In master mode, this value is not significant.

• TES

Transmitter active edge of SCLK. When high, the data on SDO is shifted out on the falling edge of SCLK. When low, the
data on SDO is shifted out on the rising edge of SCLK.

• RES

Receiver active edge of SCLK. When high, the data on SDI is sampled on the rising edge of SCLK. When low, the data on
SDI is sampled on the falling edge of SCLK.

• FRL

Frame sync length. When high, the generated frame sync lasts one SCLK cycle. When low, the generated frame sync has
a 50% duty cycle.

• DWS

Serial data word width select. When high, the transmit and receive shift registers are 32 bits wide. When low, the shift reg-
isters are 16 bits wide.

• WT[1:0]

Word type.

00: Single data mode. Each sample represents a sample value.
01: 1 control, 1 data
10: 1 control, 2 data
11: Stereo mode. Two data are transmitted in one sample period, the left data and the right data. The left and right are

discriminated by the polarity of FS.

• FPS[1:0]

Frames per sample. This value indicates the expected number of serial data words to be transmitted and received during
one sample period. This value defines the level reached with receive FIFO before the sample ready interrupt is signalled.

15 14 13 12 11 10 9 8

DD[7:0]

7 6 5 4 3 2 1 0

FD[7:0]

15 14 13 12 11 10 9 8

FPS[1:0] WT[1:0] DWS FRL RES TES

7 6 5 4 3 2 1 0

SD[7:0]

DSP System Clock

AT75C310 (Quartz Clock) x 2.5

AT75C220 (Quartz Clock) x 3.75
160 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
Codec Interface Status
Information

A dedicated status register can inform the software about the current state of the codec
interface. When the codec interface interrupt is unmasked, the status flags reflect the
state of the codec interface interrupt sources. They can be used by the interrupt service
routine to recognize the condition that triggered the interrupt request. When the codec
interface interrupt is masked, the status bits can be polled.

The status bits are set on the active edge of the interrupt source, and are cleared upon
register read.

The codec status register is detailed below.

CODSTS (0xEC06)

• TXE

Transmitter empty flag.

• TXF

Transmitter full flag.

• RXE

Receiver empty flag.

• RXF

Receiver full flag.

• RXW

Receiver sample ready flag.

• TOV

Transmit FIFO overrun.

• ROV

Receive FIFO overrun.

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– ROV TOV RXW RXF RXE TXF TXE
161
1368C–INTAP–08/02

Codec Interface
Transmit/Receive
Registers

CODTX (0xEC08)

• TxD[15:0]

16-bit data word to be added to the location being pointed to within the transmit FIFO. Depending on the configuration of
the codec interface, this FIFO location may require a 32-bit word. In this case, the data will be written in two cycles and con-
trolled by the transmit pointer logic.

CODRX (0xEC0A)

• RD[15:0]

16-bit data word received from the external codec device. This value is latched from the location being pointed to within the
receive FIFO. Depending on the configuration of the codec interface, this FIFO location may deliver a 32-bit word. In this
case, the data will be fetched in two cycles and controlled by the receive pointer logic.

15 14 13 12 11 10 9 8

TxD[15:0]

7 6 5 4 3 2 1 0

TxD[15:0]

15 14 13 12 11 10 9 8

RD[15:0]

7 6 5 4 3 2 1 0

RD[15:0]
162 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
Codec Interface
Operation

This section describes the standard operation of the codec interface, reviewing the dif-
ferent modes available.

Master Mode The external codec device and the codec interface are said to be in the master mode
when the external codec device delivers the serial clock (SCLK) and the frame sync
(FS) information. This mode allows the AT75C and the codec device to be fully asyn-
chronous (i.e., with separate clock sources) because the synchronization is maintained
by the SCLK and FS signals. This insures that the codec device will deliver a new sam-
ple when it is available and will accept a new sample when it is able to, according to its
own conversion timing.

The master mode is recommended because it leads to robust synchronization between
the codec device and the application software and does not require accurate timing
calculations.

Figure 14 illustrates an AT75C and a codec device connection in master mode.

Figure 14. Connection of a Codec Device in Master Mode

Note that programming FS and SCLK to be in opposite directions is not recommended.

Slave Mode In slave mode the serial clock (SCLK) and the frame sync (FS) signals are delivered by
the AT75C. To achieve data synchronization between the AT75C and the codec device,
the following rules must be respected:

• The AT75C system clock and the codec device clock must be kept in sync.

• The SCLK generator in the AT75C must be programmed to generate a serial clock
with a frequency compatible with the codec device.

• Because the AT75C initiates the transfers, the FS generator must be accurately
programmed so that data are exchanged when the codec device is ready to
accept/deliver them.

The slave mode operation is not recommended in a typical design because it has strong
requirements on the overall system clock strategy and requires fine tuning of the AT75C
codec interface. However, it allows the accommodation of some industry-standard
codec devices provided that the rules described above are followed.

Figure 15 illustrates an AT75C and a codec device connection in slave mode.

Codec DeviceAT75C310

SDO SDI

SCLK SCLK

FS FS

SDI SDO

Asynchronous
Clocks
163
1368C–INTAP–08/02

Figure 15. Connection of a Codec Device in Slave Mode

Note that programming SCLK and FS in opposite directions is not recommended.

Serial Clock
Configuration

The direction of the serial clock SCLK is controlled by the SCIO bit in CODCNT. When
SCIO is low, the codec interface is said to be in master mode; when SCIO is high, the
codec interface is said to be in slave mode.

Serial Clock in Master Mode When SCIO is low, the SCLK pin is an input of the AT75C.

The SCLK signal is internally clocked and the resynchronized signal is used as the shift
clock for the transmit and receive shift registers. When SCIO is low, the internal SCLK
generator is disabled and the field SD[7:0] in CODSCK is not used.

The active edge of the serial clock can be programmed independently for the transmitter
and the receiver. When the TES bit in CODSCK is low, the transmitted bits are shifted
out on the rising edge of XSCLK. When TES is high, the transmitted bits are shifted out
on the falling edge of XSCLK.

When the RES bit in CODSCK is low, the received bits are latched on the falling edge of
XSCLK.

Serial Clock in Slave Mode When SCIO is high, the SCLK pin is an output of the AT75C. An internal clock generator
is used to produce the SCLK signal.

The active edge of SCLK can be programmed independently for the transmitter and the
receiver. When the TES bit in CODSCK is low, the transmitted bits are shifted out on the
rising edge of SCLK. When TES is high, the transmitted bits are shifted out on the falling
edge of SCLK.

When the RES bit in CODSCK is low, the received bits are latched on the falling edge of
SCLK.

The generated SCLK signal is a 50% duty cycle clock whose frequency is controlled by
the SD[7:0] field in CODSCK. The SCLK is derived from the DSP subsystem clock
((Quartz Clock) x 2.5 for AT75C310, (Quartz Clock) x 3.75 for AT75C220) by a program-
mable counter. The count value is stored in SD[7:0].

Codec DeviceAT75C

SDO SDI

SCLK SCLK

FS FS

SDI SDO

Clocks
Generator
164 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
Frame Synchronization
Configuration

The direction of the frame synchronization FS is controlled by the FSIO bit in CODCNT.

Frame Synchronization in
Master Mode

In master mode, the FS pin is an input. It is internally clocked for resynchronization.
When a transition is detected on the synchronized frame sync, the behavior of the codec
interface depends on the value of the WT0 and WT1 bits.

When WT1 - WT0 = 00, the codec interface is single data mode. Each communication
(i.e., each FS cycle) is used to transfer a sample value.

When WT1 - WT0 = 01, the codec interface transfers two interlaced control/data words.
The first word is for codec control, the second is a conversion data.

When WT1 - WT0 = 10, the codec interface transfers three interlaced control/data/data.
The first word is for codec control, the second and third words are conversion data.

When WT1 - WT0 = 11, the codec interface is in stereo mode. Each communication
(i.e., each FS cycle) is used to transfer two sample values, left and rigth.

Frame Synchronization in Single
Data Mode

In this mode, the start of a transfer is detected when a low-to-high transition on the syn-
chronized frame sync occurs. The delay between the low-to-high transition and the first
data bit is adjustable through the DD[7:0] field. This value represents the number of
SCLK cycles between the low-to-high transition of FS and the occurrence of the first
data bit exchange.

When this frame delay has elapsed, the first received bit is sampled on SDIN and the
first transmitted bit is shifted out on SDOUT. Then, one bit is transferred per SCLK
cycle. When 16 or 32 bits (depending on the DWS field) have been transferred, the
codec interface enters an idle mode, waiting for a new frame synchronization event.

Frame Synchronization in
Multiple Data Mode

These modes are for WT1 - WT0 = 01 or 10.

When WT1 - WT0 = 01, two identical frames are automatically generated. When WT1 -
WT0 = 10, three identical frames are automatically generated. Each individual frame
has the same structure as in single data mode.

Frame Synchronization in
Stereo Mode

In this mode, two samples are exchanged per FS cycle. The left channel is transferred
when FS is high, while the right channel is transferred when FS is low. Both FS edges
are used for synchronization.

The start of a transfer is detected when a low-to-high tran-sition on the synchronized
frame sync occurs. The delay between the low-to-high transition and the first data bit is
adjustable through the DD[7:0] field. This value represents the number of SCLK cycles
between the low-to-high transi-tion of FS and the occurrence of the first left channel data
bit exchange.

When this frame delay has elapsed, the first received bit is sampled on SDIN and the
first transmitted bit is shifted out on SDOUT. Then, one bit is transferred per SCLK
cycle. When 16 or 32 bits (depending on the DWS field) have been transferred, the
codec interface enters an idle mode, waiting for the high-to-low transition on FS. The
start of the right data transfer is detected when a low-to-high transition on the synchro-
nized frame sync occurs. The delay between the low-to-high transition and the first data
bit is adjustable through the DD[7:0] field, as for the left data. When this frame delay has
elapsed, the first received bit is sampled on SDIN and the first transmitted bit is shifted
out on SDOUT. Then, one bit is transferred per SCLK cycle.

When 16 or 32 bits (depending on the DWS field) have been transferred, the codec
interface enters an idle mode, waiting for a new frame sync event.
165
1368C–INTAP–08/02

Frame Synchronization in
Slave Mode

In slave mode, the FS signal is generated by the AT75C according to the CODCNT,
CODFRM and CODSCK registers.

The FS signal is derived from a clock source by a simple divider. If the FSC bit in COD-
CNT is low, the FS signal is derived from a division of the system clock. If FSC is low,
the FS signal is derived from a division of the SCLK, independent of the source of
SCLK.

The division ratio between the FS clock source and the FS signal is defined by FD[7:0]
in the CODFRM register. This 8-bit number is the value by which to divide the serial
clock SCLK to derive the FS signal. If the bit FRL in CODSCK is low, the FS signal is the
direct output of the divider and has a 50% duty cycle (sometimes called long FS). If FRL
is high, the active FS level will last only one SCLK cycle (also called short FS).

The position of the first data bit, with respect to the FS signal, can also be programmed
through the DD field in CODFRM. DD is the number by which to delay the first data bit
from FS.

The state machines that control the data exchange are the same in slave mode as in
master mode. They rely on the SCLK and FS signals, independent of how these are
generated.
166 AT75C DSP Subsystem
1368C–INTAP–08/02

AT75C DSP Subsystem
Appendix

More on Interrupt
Latency

This section contains details on interrupt latency in addition to the details described in
“Interrupt Latency” on page 143.

If the processor begins to handle one of the maskable interrupts (INT0, INT1 or INT2),
an NMI will be accepted only after the execution of the instruction at the maskable inter-
rupt vector.

Table 14 includes a description of all cases where interrupts are delayed due to execu-
tion of a specific instruction. The second column describes the interrupt delayed
measured by machine cycles(1). The third column contains the interrupts that are
delayed (0, 1, 2 stands for INT0, INT1, INT2, respectively).
Note: 1. A machine cycle is one clock cycle that may be stretched to more than one in case of

wait states. It is stretched until the end of the wait interval.

Note: 1. soperand represents every source operand except for a ##long immediate.

Table 14. Interrupt Latency after Specific Instructions

Current Instruction
Interrupt Delay after

Instruction Interrupt

br, call, ret or reti when the condition is not met;

mov soperand(1), sp; movp (aX1). sp;
set/rst/chng/addv/subv ##long immediate, sp;
Last repetition of instruction during a repeat loop;

First repetition of instruction during a repeat loop after returning from an
interrupt;

First instruction executed after returning from a TRAP/BI routine.

One Cycle 0, 1, 2, NMI

mov soperand, st0; movp (aX1), st0;

set/rst/chng/addv/subv ##long immediate, st0; pop st0

Two Cycles 0, 1, 2

One Cycle NMI

mov soperand, st2; movp (aX1), st2;
set/rst/chng/addv/subv ##long immediate, st2; pop st2

Two Cycles 2

One Cycle 0, 1, NMI

##long immediate, st0 One Cycle 0, 1, 2

##long immediate, st2 One Cycle 2

retd, retid, mov soperand2, pc; movp (aX1), pc Two Cycles 0, 1, 2, NMI, BI

mov ##long immediate, pc One Cycle 0, 1, 2, NMI, BI

rep Two Cycles 0, 1, 2, NMI, BI
167
1368C–INTAP–08/02

AT75C DSP Subsystem
Table of Contents Features... 1

Description .. 1

Architectural Overview... 2

Processing Unit .. 3

Bus Architecture... 5
Data Buses ... 5
Address Buses.. 5

Computation and Bit-manipulation Unit... 6
Computation Unit .. 6
Bit-manipulation Unit... 9
Saturation ... 12
Swapping the Accumulators ... 13

Data Address Arithmetic Unit (DAAU) .. 14
Address Modification .. 14
Configuration Registers .. 15
Software Stack.. 16
Alternative Bank of Registers ... 17

Program Control Unit (PCU) .. 17
Repeat and Block-repeat Unit... 18

Memory Spaces and Organization .. 19
Program Memory .. 19
Data Memory .. 20
Memory Addressing Modes .. 21

Programming Model and Registers .. 23
Status Registers ... 23
Interrupt Context Switching... 27
Internal Configuration Register ... 29
Data Value Match Register... 30
i
1368C–08/02

Instruction Set... 31
Notations and Conventions... 31

Instruction Coding.. 130
Abbreviation Definition and Encoding... 130

Instruction Coding Table ... 134

Pipeline Method .. 140

Reset Operation .. 141
Program Memory Upload.. 141

Interrupts ... 141
INT0, INT1, INT2 Operation.. 142
TRAP/BI Operation ... 142
Interrupt Latency... 143

On-chip Emulation Module (OCEM) .. 144
OCEM Operation .. 144
Program Address Breakpoint Operation... 144
Data Address Breakpoint Operation ... 144
Data Value Breakpoint Operation ... 145
Data Address/Value Breakpoint Latency .. 145
Single-step Operation ... 145
Break-on-branch Operation .. 146
Program Flow Trace Buffer... 146
Trace Reading and Decoding Algorithm... 147
OCEM Programming Mode .. 148

Dual-port Mailbox ... 152
Dual-port RAM .. 152
Semaphore Operation .. 153
DPMB Register Map ... 154
DPMB Semaphore Registers.. 155
DPMB Configuration Register (DPMBCC).. 155

Codec Interface... 156
Codec Interface Registers .. 157
ii AT75C DSP Subsystem
1368C–08/02

AT75C DSP Subsystem
Codec Interface Signals.. 157
Codec Control Register .. 159
Codec Interface Status Information .. 161
Codec Interface Transmit/Receive Registers ... 162

Codec Interface Operation... 163
Master Mode... 163
Slave Mode... 163
Serial Clock Configuration .. 164
Frame Synchronization Configuration .. 165

Appendix ... 167
More on Interrupt Latency... 167

Document Details ... 168
Revision History.. 168

Table of Contents .. i
iii
1368C–08/02

 Printed on recycled paper.

© Atmel Corporation 2002.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Europe
Atmel SarL
Route des Arsenaux 41
Casa Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Memory
Atmel Corporate
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 436-4270
FAX (408) 436-4314

Microcontrollers
Atmel Corporate
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 436-4270
FAX (408) 436-4314

Atmel Nantes
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-50
FAX (33) 2-40-28-19-60

ASIC/ASSP/Smart Cards
Atmel Rousset
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-64-21
FAX (33) 4-42-53-62-88

Atmel Colorado Springs
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Atmel Smart Card ICs
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-015
FAX (44) 1355-242-743

RF/Automotive
Atmel Heilbronn
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

Atmel Colorado Springs
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Atmel Grenoble
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

1368C–08/02/0M

ATMEL®, AVR® and AVR Studio® are the registered trademarks of Atmel.
Microsoft®, Windows® and Windows NT® are the registered trademarks of Microsoft Corporation. Other terms
and product names may be the trademarks of others.

	Features
	Description
	Architectural Overview
	Processing Unit
	Bus Architecture
	Data Buses
	Address Buses

	Computation and Bit-manipulation Unit
	Computation Unit
	Multiplier Unit
	Product Output Shifter
	Double-precision Multiplication

	Ax-accumulators
	Extension Nibbles
	Sign Extension
	Loading of Ax-accumulators

	Arithmetic and Logic Unit
	Rounding
	Division Step
	Logical Operations
	Maximum/Minimum Operations

	Bit-manipulation Unit
	Barrel Shifter
	Shifting Operations
	Move and Shift Operations

	Exponent Unit
	Normalization
	Bit-field Operations
	Bx-accumulators
	Extension Nibbles
	Sign Extension
	Loading Bx-accumulators

	Shift Value Register

	Saturation
	Swapping the Accumulators

	Data Address Arithmetic Unit (DAAU)
	Address Modification
	Configuration Registers
	CFGI
	CFGJ
	Linear (Step) Modifier
	Modulo Modifier
	Index Modifier

	Software Stack
	Alternative Bank of Registers

	Program Control Unit (PCU)
	Repeat and Block-repeat Unit

	Memory Spaces and Organization
	Program Memory
	Data Memory
	Memory Addressing Modes
	Short Direct Addressing Mode
	Long Direct Addressing Mode
	Indirect Addressing Mode
	Short Index Addressing Mode
	Long Index Addressing Mode

	Programming Model and Registers
	Status Registers
	Status Register 0
	Status Register 1
	Status Register 2

	Interrupt Context Switching
	Status Register 0 (ST0)
	Status Register 1 (ST1)
	Status Register 2 (ST2)

	Internal Configuration Register
	Internal Configuration Register

	Data Value Match Register

	Instruction Set
	Notations and Conventions
	Notations
	Registers
	Number Representation
	Data and Program Operands
	Option Fields
	Condition Fields
	Other Tokens
	Flags Notation

	Conventions

	Instruction Coding
	Abbreviation Definition and Encoding

	Instruction Coding Table
	Pipeline Method
	Reset Operation
	Program Memory Upload

	Interrupts
	INT0, INT1, INT2 Operation
	TRAP/BI Operation
	Interrupt Latency

	On-chip Emulation Module (OCEM)
	OCEM Operation
	Program Address Breakpoint Operation
	Data Address Breakpoint Operation
	Data Value Breakpoint Operation
	Data Address/Value Breakpoint Latency
	Single-step Operation
	Break-on-branch Operation
	Program Flow Trace Buffer
	Trace Reading and Decoding Algorithm
	OCEM Programming Mode
	STATUS0 (0xF7FF)
	STATUS1 (0xF7FE)
	MODE0 (0xF7FD)
	DABP (0xF7FB)
	DAM (0xF7FA)
	PABC3 (0xF7F9)
	PABC2 (0xF7F8)
	PABC1 (0xF7F7)
	PABP3 (0xF7F3)
	PABP2 (0xF7F2)
	PABP1 (0xF7F1)
	PFT (0xF7F0)

	Dual-port Mailbox
	Dual-port RAM
	Semaphore Operation
	DPMB Register Map
	DPMB Semaphore Registers
	DPMB Configuration Register (DPMBCC)

	Codec Interface
	Codec Interface Registers
	Codec Interface Signals
	Codec Control Register
	CODCNT (0xEC00)
	CODFRM (0xEC02)
	CODSCK (0xEC04)

	Codec Interface Status Information
	CODSTS (0xEC06)

	Codec Interface Transmit/Receive Registers
	CODTX (0xEC08)
	CODRX (0xEC0A)

	Codec Interface Operation
	Master Mode
	Slave Mode
	Serial Clock Configuration
	Serial Clock in Master Mode
	Serial Clock in Slave Mode

	Frame Synchronization Configuration
	Frame Synchronization in Master Mode
	Frame Synchronization in Single Data Mode
	Frame Synchronization in Multiple Data Mode
	Frame Synchronization in Stereo Mode

	Frame Synchronization in Slave Mode

	Appendix
	More on Interrupt Latency

	Table of Contents

