AnalogTek

武汉芯景科技有限公司

AT8810

——通用高亮度LED 驱动芯片

Document No.: _AT8810DS001V1.1E

Issued Date: <u>2010.01.05</u>

April 6, 2010

2 •

通用高亮度 LED 驱动芯片

1	慨处:	4
	特性:	
3	应用:	4
	典型电路及内部框图:	
5	最大额定参数:	5
6	最大额定参数:	5
7	电器参数	6
	应用说明:	
9	封装尺寸	. 10

1 概述:

AT8810 是一款高效率 LED 驱动控制芯片。其输入电压范围为 8V DC 到 450V DC。AT8810 一定的开关频率控制外置 MOSFET,开关频率最高可达 300KHz,此开关频率可通过调节单个的下拉电阻实现。AT8810 是一款恒流驱动的 LED 驱动控制芯片,其输出驱动电流最大可超过 1A。

AT8810 采用高压工艺在输入端可经受高达 450V 的浪涌电压。用户可通过控制 LD 端的输入电压,将 AT8810 的输出驱动电流值在 0 到 LED 最大驱动电流值间进行调节。同时提供的 PWM_D 管脚可将 AT8810 输出的控制信号在 0~100%占空比间调节。

2 特性:

- ▶ 效率高于 90%
- ▶ 超宽的电压输入范围 8V 到 450V;
- ▶ 恒流 LED 驱动
- ▶ 输出驱动电流最高可超过 1A;
- ▶ 单个 LED 灯串可达到数百颗;

3 应用:

- ▶ DC/DC 或 AC/DC 的 LED 驱动;
- ➤ RGB 背光的 LED 驱动;
- ▶ 平板显示器的背光驱动;
- ▶ 通用恒流源;
- ▶ 市政或建筑装饰用 LED 驱动;
- ▶ 日光灯,普通照明;
- ▶ 汽车车灯或内饰灯;
- ▶ 充电器;

典型电路及内部框图: 4

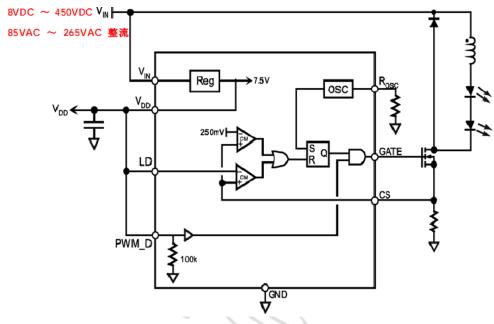


图 1.典型电路及内部框图

最大额定参数: 5

项目	单位	数值			V _{IN} [•	nc
V _{in} to GND	V	-0.5~+470			NC [] NC
CS to GND	V	-0.3~ VDD+0.3			NC [cs [] R _{oac}
LD,PWM_D to GND	V	$-0.3 \sim VDD - 0.3$	V _{IN} □ ●	□ R _{osc}	GND [D v _{oo}
		3	cs 🗆	□ LD	NC [DNC
GATE to GND	V	$-0.3 \sim VDD + 0.3$	GND [□ V _{DO}	NC[] NC
		7	GATE [PWM_D	GATE	PWM_D
VDD	V	13.5V	8-Lead DIP/SOIC		16-Lea	d SOIC

引脚及封装 6

管腿名	SOIC-16	SOIC-8/DIP-8	说明
VIN	1	1	8V to 450V 直流输入电压
CS	4	2	LED 串电流传感器
GND	5	3	地
GATE	8	4	外部 MOSFET 控制输出
PWM-D	9	5	PWM 占空比控制管腿,同样可作为使能端,内部带有 100K 下

			拉电阻
VDD	12	6	内部稳压器输出管腿,能向外提供 1mA 电流。
LD	13	7	可调节该管腿输入电压,使电流传感器开启电压变化,从而实现线性调光
ROSC	14	8	内部 ROSC 外接电阻,可用来调节 PWM 频率。

电器参数 7

标号	说明	最小	典型	最大	单位	备注
V _{INDC}	输出直流电压范围	8.0		450	V	直流输入电压
I _{INsd}	关断模式的输出电流		0.5	1	mA	PWM_D 接地,Vin 为 8V
V _{DD}	内部稳压器输出电压	7.0	7.5	8.0	V	VIN = 8-450V, $IDD(ext)=0$,
		7			7	Gate open
I _{DD(ext)}	启动稳压器最大输出电流			1.0	mA	VIN = 8-100V
V _{EN(lo)}	PWM_D 输入低电压	7		1.0	V	VIN = 8-450V
V _{EN(hi)}	PWM_D 输入高电压	2.4		3	V	VIN = 8-450V
RLN	PWM_D 内部拉低电阻	50	100	150	ΚΩ	VEN = 5V
V _{CS(hi)}	CS 内部比较器阈值电压	225	250	275	mV	$@TA = -40^{\circ}C \text{ to } +85^{\circ}C$
V _{GATE(hi)}	GATE 输出高电平	VDD)	VDD	V	IOUT = -10 mA
	1	-0.3				
$V_{\text{GATE(lo)}}$	GATE 输出低电平	0		0.3	V	IOUT = 10 mA
f_{osc}	振荡频率	20	25	30	KHZ	$Rosc = 1.00 \text{ M}\Omega$
		80	100	120	KHZ	$Rosc = 223 \text{ k}\Omega$
D _{MAXht}	振荡器最大占空比			100	%	$F_{PWMh} = 25kHz$, at GATE,
						CS 接地
$V_{ m LD}$	LD 输入电压范围	0		250	mV	@TA=<85°C, VIN = 12V
t _{DELAY}	关断延时			300	ns	VIN = 12V, VLD = 0.15, VCS = 0
						to 0.22V after TBLANK
$t_{ m RISE}$	GATE 输出上升时间		30	50	ns	CGATE = 500pF, 10% to 90%
						V_{GATE}
t _{FALL}	GATE 输出下降时间		30	50	ns	CGATE = 500pF, 90% to 10%
						$V_{ m GATE}$

8 应用说明:

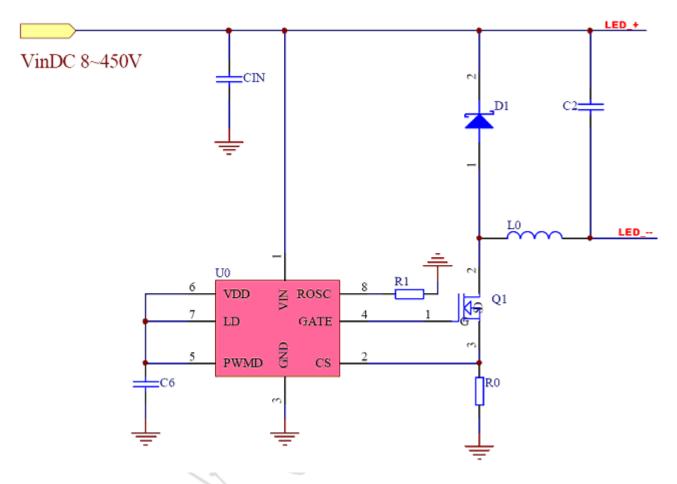


图 2.典型应用电路

● 电阻 R1 的选择.

R1 的连接方式分为两种:

- 1. R1 直接接地,决定 AT8810 工作在固定频率 (Fosc)模式.
- 2. R1 跨接于 Rosc 与 Gate 间,决定 AT8810 工作在固定关断时间(Toff)模式.

本应用中 AT8810 工作在固定频率 (Fosc) 模式, 在大电压输入的情况下 (220V 交流整流后输入)AT8810 的工作频率越大要求电感 L0 的值越小,但是在电容上的动态功耗将会增加. 一般选取工作频率范围从 20KHz-150KHz. 在交流 220V 整流后输入时,一般取 Fosc 为 50KHZ,电阻 R1 的大小为 470K Ω. R1大小与 AT8810 的工作频率相关,其计算公式为:

$$T_{OSC}(us) = \frac{R_1(K\Omega) + 22}{25}$$
$$F_{OSC} = \frac{1}{T_{OSC}}$$

MOS 管关断时间 tOFF 的计算公式为:

$$t_{OFF} = \left(1 - \frac{V_O}{V_{IN}}\right) \times T_{OSC}$$

● 电感 L0 的选择

电感的取值大小决定于负载的纹波电流的峰一峰值,一般取纹波电流为负载电流 I_0 的 30%则电感 L0 的大小可计算为:

$$L_0 = \frac{V_0 \bullet t_{OFF}}{0.3 \bullet I_0}$$

在选择电感大小的同时,电感电流的选择也值得关注,如果选得过小则电感在工作时会发热,一般选取电感额定电流应为: (1+15%) I_O.

● 采样电阻 R0 的选择

电流采样电阻 RO 的大小与该支路的峰值电流 Ipk 有关,其计算公式为:

$$R_0 = \frac{V_{TH}}{I_{PK}} = \frac{0.25}{I_{PK}}$$

如果 LD 脚没有被用到,则 V_{TH} 的大小为芯片内部已设定的 0.25V, LD 引脚被用于线性 调光,则 V_{TH} 的大小被 LD 端电压取代. 如果而峰值电流直接反应了负载 LED 的电流设置 大小,可由以下公式得到:

$$I_{PK} = I_O + \frac{V_O \bullet t_{off}}{2 \bullet L_I}$$

● FET 管 Q1 和快回复二极管 D1 的选择.

FET 管 Q1 的耐压需选择输入电压的 1.5 倍,即 $V_{FET}=1.5 \bullet V_{IN}$.安全起见,电流一般选择为负载电流的 3 倍. 选择 D1 的耐压值和 FET 的一样 $V_{FET}=V_{Diode}=1.5 \bullet V_{IN}$,而电流选取可 根据公式计算为:

$$I_{Diode} = i_o \times \left(1 - \frac{V_O}{V_{IN}}\right)$$

● LED 保护及产品 EMC 的考虑.

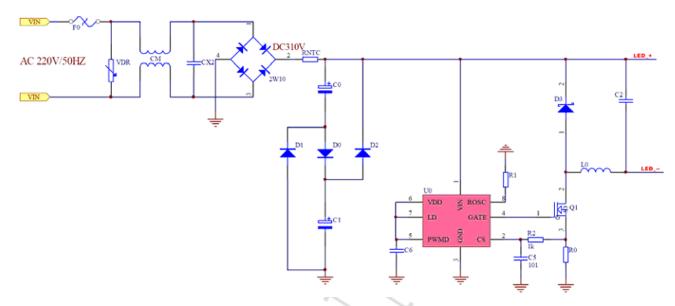
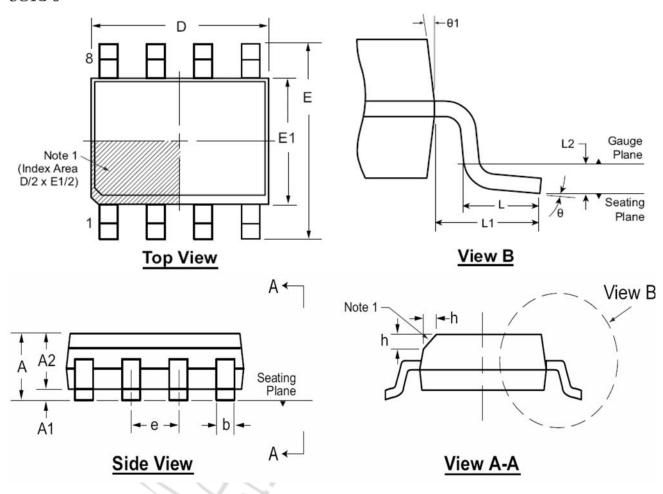


图 3.典型应用电路

RNTC 的选择是必须的,一般选择 $50\,\Omega$ 热敏电阻,可以抵抗上电瞬间的大电流对芯片的冲击,在电路工作稳定后 RNTC 的耗散功率是可以忽略不计的.

VDR 为压敏电阻,CX2 为安规 X2 电容,典型取值为 $0.1\,\mathrm{u}$ f ,可抵抗 $2500\mathrm{V}$ 浪涌冲击,在 ESD 防护方面这些器件是必须的.


CM 为共模电感,能有效滤除共模噪声干扰.

C0,C1,D0,D1,D2,组成无源 PFC 校正网络,可是电路 PFC 达到 90%以上.

R2,C5 滤波电路保证电流采样稳定性,可根据实际情况选取.

9 封装尺寸

SOIC-8

You are appreciated for using or commenting on our products. All documents are available at our website http://www.analogtek.com.cn, and can be downloaded freely. Thank you!

AnalogTek

武汉芯景科技有限公司

April 22, 2010

THE END