

FEATURES AND BENEFITS

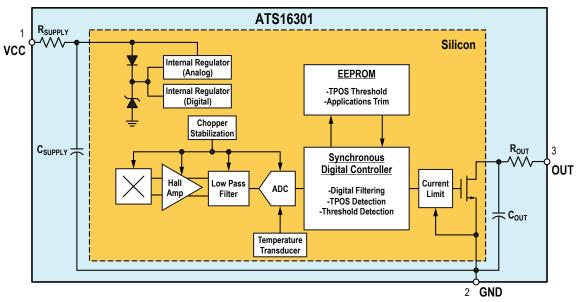
- SL package provides a fully integrated solution with a non-rare-earth back-biasing magnet and EMC protection circuit
- True target state recognition at device power-on (TPOS) with automatic TPOS self-programming capability
- EEPROM programming for performance optimization, temperature compensation, and production traceability
- Fully synchronous digital logic with Scan Path and IDDQ testing for high quality and reliability
- Chopper stabilization reduces offset drift
- Absolute zero-speed performance

PACKAGE:

3-pin SIP (suffix SL)

Not to scale

DESCRIPTION

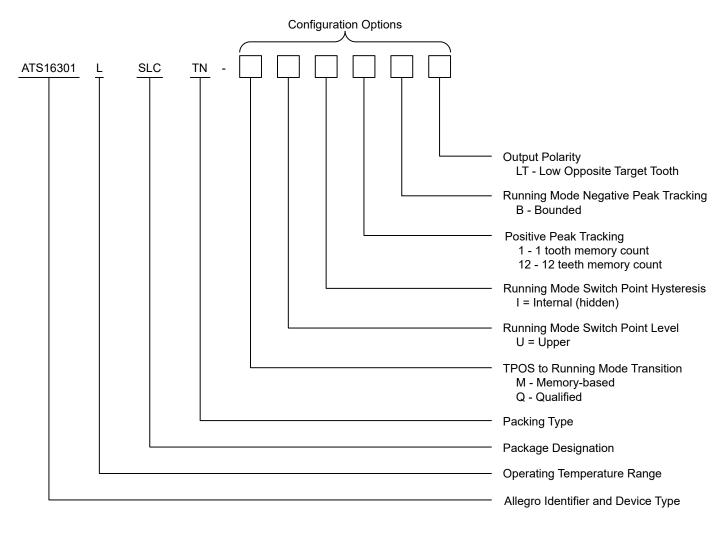

The ATS16301 is a true power-on state camshaft sensor incorporating a non-rare-earth back-biasing magnet, advanced fully synchronous digital IC, and electromagnetic compatibility (EMC) protection circuit all in a single sensing solution.

The ATS16301 incorporates a single element Hall IC with an optimized custom magnetic circuit that switches in response to magnetic signals induced by a ferromagnetic target. The IC contains a sophisticated digital circuit designed to match the temperature behavior of the IC with the integrated magnet. Signal processing is used to provide zero-speed performance independent of air gap and is designed for the typical operating conditions found in automotive camshaft sensing applications. The resulting output of the device is a digital representation of the ferromagnetic target profile.

A number of factory-programmable options allow for performance optimization to meet specific application requirements.

The ATS16301 is provided in a 3-pin single inline package (SIP) (suffix SL) that is lead (Pb) free, with 100% NiPdAu leadframe plating.

Some commercial restrictions apply to this product—contact Allegro Sales for details.


Functional Block Diagram

SELECTION GUIDE*

Part Number	Packing
ATS16301LSLCTN-QUI1B-LT	Tape and reel, 13-in. reel,
ATS16301LSLCTN-MUI12B-LT	500 pieces per reel

^{*} Not all combinations are available. Contact Allegro sales for availability and pricing of custom programming options.

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Notes	Rating	Units
Supply Voltage	V _{CC}		27	V
Reverse Supply Voltage	V _{RCC}		-18	V
Output Voltage	V _{OUT}		27	V
Reverse Output Voltage	V _{ROUT}	R _{PU} ≥ 1000 Ω	-0.5	V
Output Current	I _{OUT}	Internal current limiting is intended to protect the device from output short circuits, but is not intended for continuous operation.	25	mA
Reverse Output Current	I _{ROUT}	V _{OUT} > -0.5 V, T _A = 25°C	-50	mA
Operating Ambient Temperature	T _A	Range L	-40 to 150	°C
Maximum Junction Temperature	T _{J(max)}	Contact Allegro for extended junction temperature data	165	°C
Storage Temperature	T _{stg}		-65 to 170	°C
Allowable External Magnetic Field	B _{EXT}	Exceeding this level could result in permanent damage to SL magnet	-500 to 500	G

INTERNAL DISCRETE COMPONENT RATINGS

Symbol	Characteristic	Rating	Units
C _{SUPPLY}	Rated Nominal Capacitance	220	nF
C _{OUT}	Rated Nominal Capacitance	1.8	nF
R _{SUPPLY}	Rated Nominal Resistance	100	Ω
R _{OUT}	Rated Nominal Resistance	50	Ω

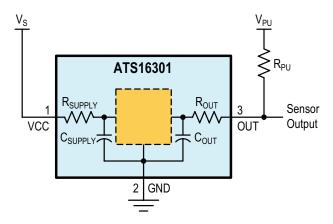
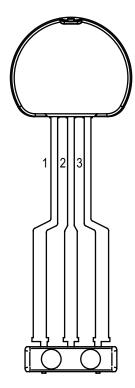
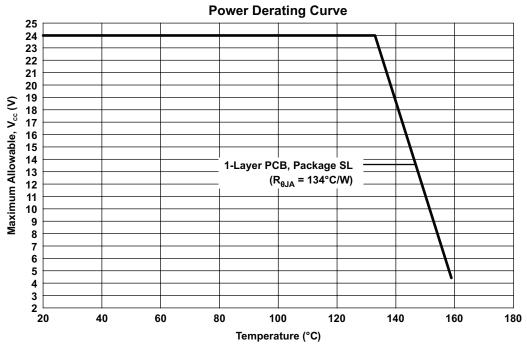
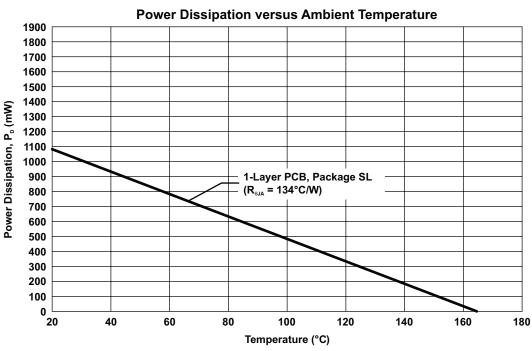



Figure 1: Typical Application Circuit

PINOUT DIAGRAM AND TERMINAL LIST TABLE

Package SL, 3-Pin SIP Pinout Diagram


Terminal List Table


Number	Name	Function	
1	VCC	Supply voltage	
2	GND	Ground	
3	OUT	Open drain output	

THERMAL CHARACTERISTICS: May require derating at maximum conditions; see Power Derating section

Characteristic	Symbol	Test Conditions*	Value	Unit
Package Thermal Resistance	$R_{\theta JA}$	Single-layer PCB, with copper limited to solder pads	134	°C/W

^{*}Additional thermal information is available on the Allegro website.

$\textbf{OPERATING CHARACTERISTICS:} \ \textbf{T}_{\textbf{A}} \ \textbf{and} \ \textbf{V}_{\textbf{CC}} \ \textbf{within specifications, using Reference Target 8X, unless otherwise noted}$

Characteristics	Symbol	Test Conditions			Typ.[1]	Max.	Unit
ELECTRICAL CHARACTERISTICS							
Supply Voltage	V _{CC}	Continuous operation, $T_J < T_{J(MAX)}$	R _{SUPPLY} = 100 Ω	4.4	_	24	V
Supply Zener Clamp Voltage	V _{Zsupply}	I _{CC} = I _{CC(MAX)} + 3 mA		27	_	_	V
Reverse Supply Zener Clamp Voltage	V _{RZsupply}	I _{CC} = -3 mA, T _A = 25°C		_	_	-18	V
Supply Current	I _{CC}			5	8	10	mA
OUTPUT STAGE CHARACTERISTIC	cs						
Output On Voltage	V	I _{OUT} = 5 mA, Output = on state (V _{OUT} = Low)	R _{OUT} = 50 Ω	-	_	500	mV
	V _{OUT(SAT)}	I _{OUT} = 15 mA, Output = on state (V _{OUT} = Low)	R _{OUT} = 50 Ω	_	_	1300	mV
Output Zener Clamp Voltage	V _{Zoutput}	I _{OUT} = 3 mA, T _A = 25°C		27	_	_	V
Output Current Limit	I _{OUT(LIM)}	Output = on state (V _{OUT} = Low)		30	_	80	mA
Output Leakage Current	I _{OUT(OFF)}	V _{OUT} = 24 V, Output = off state (V _{OU}	T = High)	_	_	10	μΑ
Output Rise Time	t _r	Measured 10% to 90% of V_{OUT} ; R _{PU} = 1 kΩ; V_{PU} = 5 V	$R_{OUT} = 50 \Omega,$ $C_{OUT} = 1.8 \text{ nF}$	_	4	_	μs
0.1.15.115	,	Measured 90% to 10% of V_{OUT} ; R _{PU} = 1 kΩ; V_{PU} = 5 V		0.5	1.2	2.5	μs
Output Fall Time	t _f	Measured 90% to 10% of V_{OUT} ; R_{PU} = 1 kΩ; V_{PU} = 12 V		_	2	_	μs

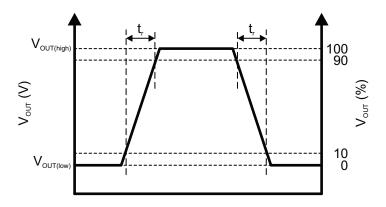


Figure 2: Output Rise Time and Output Fall Time

^[1] Typical values are at T_A = 25°C and V_{CC} = 12 V. Performance may vary for individual units, within the specified maximum and minimum limits.

ATS16301

Self-Calibrating Automatic-TPOS Camshaft Speed Sensor IC

OPERATING CHARACTERISTICS (continued): T_A and V_{CC} within specifications, using Reference Target 8X, unless otherwise noted

Characteristics	Symbol	Note	Min.	Тур.	Max.	Unit		
PERFORMANCE CHARACTERISTICS								
Operational Air Gap Range	AG	TPOS guaranteed; Allegro 8X r	eference target	0.5	_	3	mm	
Extended Operational Air Gap Range		Running mode switching; TPOS not guaranteed; Allegro 8X reference target		_	_	3.5	mm	
Signal Bandwidth	BW	Equivalent to -3 dB cutoff frequ	iency	-	8	_	kHz	
Phase Delay [2]	ΔErr _{SRELF}	Electrical falling edges; $R_{PU} = 1 \text{ k}\Omega, V_{PU} = 5 \text{ V}$		0.88 × 10 ⁻⁴	1.18 × 10 ⁻⁴	1.50 × 10−4	°/rpm	
POWER-ON CHARACTERISTICS								
Power-On Time [3]	t _{PO}	$V_{CC} > V_{CC(MIN)}$		_	-	1	ms	
TPOS Mode		Number of mechanical edges	M Option	_	_	2+2n [4]	edge	
TPOS Mode		after power-on with output switching on TPOS threshold	Q Option	2	_	3	edge	
Lograing Mode	I IPOS Mode with reduced I	M Option	_	_	0	tooth		
Learning Mode		accuracy threshold-based output switching	Q Option	_	_	1	tooth	

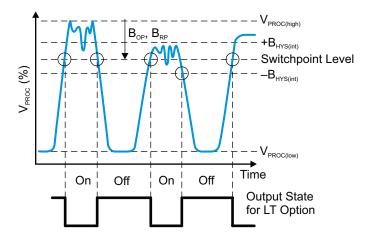
^[4] n = selected memory count for running mode positive peak tracking.

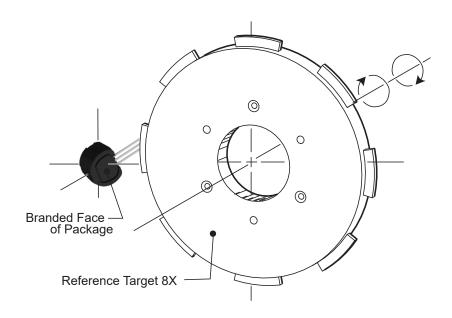
^[2] Phase Delay is the change in edge position at detection, through the full operational tooth speed range for a single device at a single temperature and installation air gap.

 $^{^{[3]}}$ Power-On Time consists of the time from when V_{CC} rises above $V_{CC(MIN)}$ until a valid output state is realized.

OPERATING CHARACTERISTICS (continued): T_A and V_{CC} within specifications, using Reference Target 8X, unless otherwise noted

Characteristics	Symbol	Note	Min.	Тур.	Max.	Unit		
OPERATING MODE CHARACTERISTICS								
		Opposite target tooth, connected as in Figure 1	LT option		Low		V	
Output Polarity	V _{OUT}	Opposite target valley, connected as in Figure 1	LT option		High		V	
Threshold Update Memory		Number of target teeth (peaks) stored for threshold update algorithm	in memory	1 – 12			tooth	
Operate Point [5]	B _{OP}	% of peak-to-peak, referenced to tooth signal	<i>U</i> option	-	30	_	%	
Release Point [5]	B _{RP}	% of peak-to-peak, referenced to tooth signal	<i>U</i> option	_	30	_	%	
Running Mode Hysteresis	B _{HYS(int)}	% of peak-to-peak signal		5	10	15	%	
Maximum Allaurahla Cimral Daduntian		Reduction in magnetic signal amplitude between two consecutive peaks; all specifications within range		-	_	B _{OP} – 15%	%	
Maximum Allowable Signal Reduction	B _{reduce}	Reduction in magnetic signal amplitude two consecutive peaks; output switcher performance not guaranteed		-	-	B _{OP} – 5%	%	




Figure 3: Switch points with Internal Hysteresis

[5] Custom programmable switch point options are also available, allowing independently programmable B_{OP} and B_{RP} between 50% and 70% with 1.56% resolution.

REFERENCE TARGET 8X

Characteristic	Symbol	Test Conditions	Тур.	Units	Symbol Key
Outside Diameter	D _o	Outside diameter of target	120	mm	øD _{o¬} h _{t¬}
Face Width	F	Breadth of tooth, with respect to branded face	6	mm	Branded Face of Package
Circular Tooth Length	t	Length of tooth, with respect to branded face; measured at D _o	23.6	mm	
Circular Valley Length	t _v	Length of valley, with respect to branded face; measured at Do	23.6	mm	
Tooth Whole Depth	h _t		5	mm	
Material		CRS 1018	_	-	Air Gan


FUNCTIONAL DESCRIPTION

Sensing Technology

The ATS16301 contains a single-chip Hall-effect sensor IC, a 3-pin leadframe with integrated EMC protection components, and a specially designed permanent magnet. The IC includes a self-calibrating, chopper-stabilized Hall element that senses differences in magnetic field strength induced by ferromagnetic target teeth and valleys. The sensor generates a digital output signal that is representative of the target features, independent of the direction of target rotation or rotational orientation. The Hall transducer and the electronics are integrated on the same silicon substrate by a proprietary BiCMOS process. Changes in temperature do not negatively affect this device due to the stable amplifier design and advanced digital temperature compensation. The IC also contains a voltage regulator that provides undervoltage lockout and supply noise rejection over the operating voltage range.

Output Polarity

The polarity of the output is low opposite target teeth (LT option). See Figure 4.

(when connected as shown in Figure 1)

Threshold Update

The ATS16301 has two sets of programmable options that determine the threshold update used to establish running mode switching levels. The positive peak threshold update is set to n teeth, which is programmable between one and twelve. The negative peak threshold update is set to bounded update (B option).

With single tooth update (n = 1), the switching threshold for a tooth is established based on the measured peak value of the previous tooth. This option can be used with targets having any number of teeth and is comparable to the continuous update mode used in many Allegro sensors.

When n = 12, the device uses memory-based update. Peak information from the last 12 teeth is stored in on-chip memory. Switching thresholds for the upcoming tooth are established based on the stored information from 12 earlier teeth. When the number of teeth on the target is 12, this allows for optimized switch points based on the same tooth from the previous revolution of the target. The programmable threshold update results in improved output switching accuracy on targets with runout and tooth-to-tooth variation (including narrow valleys).

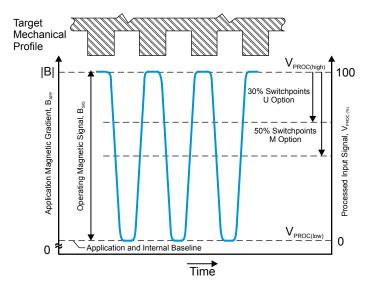
With bounded update (*B* option), large tooth-to-tooth changes in the negative peak tracking are filtered out and not applied to switching threshold generation. This option provides improved output accuracy on camshaft targets with narrow valley widths.

Switch Points and Hysteresis

The running mode switch points in the ATS16301 are established dynamically as a percentage of the tracked peaks and valleys, as described in the Threshold Update section.

Switch points are chosen as upper (U option) at 30% below the tracked positive peak. The U option gives tighter absolute output accuracy, but provides lower immunity to target variation. See Figure 5 for a description of switch point options.

Operating Modes


TPOS MODE / CALIBRATION MODE

After power-on, the output state is determined by the level of the detected magnetic field relative to the fixed-gauss TPOS threshold. Fixed-gauss TPOS threshold is determined by the ATS16301 automatic TPOS threshold update. The device remains in TPOS mode for a number of edges that is dependent on the TPOS-to-

ATS16301

Self-Calibrating Automatic-TPOS Camshaft Speed Sensor IC

Figure 5: Switch Point Options

running mode transition option selected: qualified (Q option), or memory-based (M option).

With the qualified option, the device remains in TPOS mode for at least two edges before transitioning to running mode. The ${\cal Q}$ option provides the lowest worst-case output accuracy difference between the first edge and subsequent running mode edges.

With the memory-based option, the device remains in TPOS mode for 13 teeth to guarantee it has correctly captured enough

peaks to fill the running mode threshold memory. The *M* option provides transition to running mode thresholds for 13 teeth, but provides the best runout capability.

After TPOS mode/calibration mode is complete, the device transitions to running mode.

RUNNING MODE

In running mode, the ATS16301 uses threshold-based switching with internal hysteresis as described in the previous Threshold Update and Switch Points and Hysteresis sections. The threshold update is intended to optimize output switching accuracy when used with common camshaft targets, including cases with runout and narrow target valleys.

WATCHDOG

The ATS16301 has a peak detector continuously tracking the magnetic signal. If a sudden large signal change causes the sensor output to stop switching but the peak detector continues to detect valid signal movement, the watchdog becomes triggered. When it is triggered, the sensor performs a self-reset and returns to initial startup hysteresis mode to regain output switching.

AUTOMATIC TPOS THRESHOLD

The ATS16301 has automatic threshold update to optimize accuracy during TPOS mode.

The threshold update is active during first 25 mechanical edges after power on.

POWER DERATING

The device must be operated below the maximum junction temperature of the device ($T_{J(max)}$). Under certain combinations of peak conditions, reliable operation may require derating supplied power or improving the heat dissipation properties of the application. This section presents a procedure for correlating factors affecting operating T_J . (Thermal data is also available on the Allegro MicroSystems website.)

The package thermal resistance $(R_{\theta JA})$ is a figure of merit summarizing the ability of the application and the device to dissipate heat from the junction (die), through all paths to the ambient air. Its primary component is the effective thermal conductivity (K) of the printed circuit board, including adjacent devices and traces. Radiation from the die through the device case $(R_{\theta JC})$ is a relatively small component of $R_{\theta JA}$. Ambient air temperature (T_A) and air motion are significant external factors, damped by overmolding.

The effect of varying power levels (power dissipation, P_D), can be estimated. The following formulas represent the fundamental relationships used to estimate T_J at P_D :

$$P_D = V_{IN} \times I_{IN} \tag{1}$$

$$\Delta T = P_D \times R_{\theta JA} \tag{2}$$

$$T_I = T_A + \Delta T \tag{3}$$

For example, given common conditions such as:

$$T_A$$
= 25 °C
 V_{CC} = 12 V
 $R_{\theta JA}$ = 134°C/W
 I_{CC} = 7 mA

Then:

$$P_D = V_{CC} \times I_{CC} = 12 \ V \times 7 \ mA = 84 \ mW$$
 $\Delta T = P_D \times R_{\theta JA} = 84 \ mW \times 134 \ ^{\circ}C/W = 11.3 \ ^{\circ}C$ $T_J = T_A + \Delta T = 25 \ ^{\circ}C + 11.3 \ ^{\circ}C = 36.3 \ ^{\circ}C$

A worst-case estimate, $P_{D(max)}$, represents the maximum allowable power level, $V_{CC(max)}$, $I_{CC(max)}$, without exceeding $T_J(max)$, at a selected $R_{\theta JA}$ and T_A .

Example: Reliability for V_{CC} at $T_A = 150$ °C.

Observe the worst-case ratings for the device, specifically:

$$\begin{split} R_{\theta JA} &= 134 ^{\circ} C/W \\ T_{J(max)} &= 165 ^{\circ} C \\ V_{CC(max)} &= 24 \ V \\ I_{CC} &= 10 \ mA. \end{split}$$

Calculate the maximum allowable power level, $P_{D(max)}$. First, invert Equation 3:

$$\Delta T_{(max)} = T_{J(max)} - T_A = 165$$
° $C - 150$ ° $C = 15$ ° C

This provides the allowable increase to T_J resulting from internal power dissipation. Then, invert Equation 2:

$$P_{D(max)} = \Delta T_{(max)} \div R_{\theta JA} = 15^{\circ}C \div 134^{\circ}C/W = 112 \text{ mW}$$

Finally, invert Equation 1 with respect to voltage:

$$V_{CC(est)} = P_{D(max)} \div I_{CC(max)} = 112 \text{ mW} \div 10 \text{ mA} = 11.2 \text{ V}$$

The result indicates that, at T_A , the application and device can dissipate adequate amounts of heat at voltages $\leq V_{CC(est)}$.

Compare $V_{CC(est)}$ to $V_{CC(max)}$:

- If $V_{CC(est)} \leq V_{CC(max)}$, reliable operation between $V_{CC(est)}$ and $V_{CC(max)}$ requires enhanced $R_{\theta JA}$.
- If V_{CC(est)} ≥ V_{CC(max)}, operation between V_{CC(est)} and V_{CC(max)} is reliable under these conditions.

PACKAGE OUTLINE DRAWING

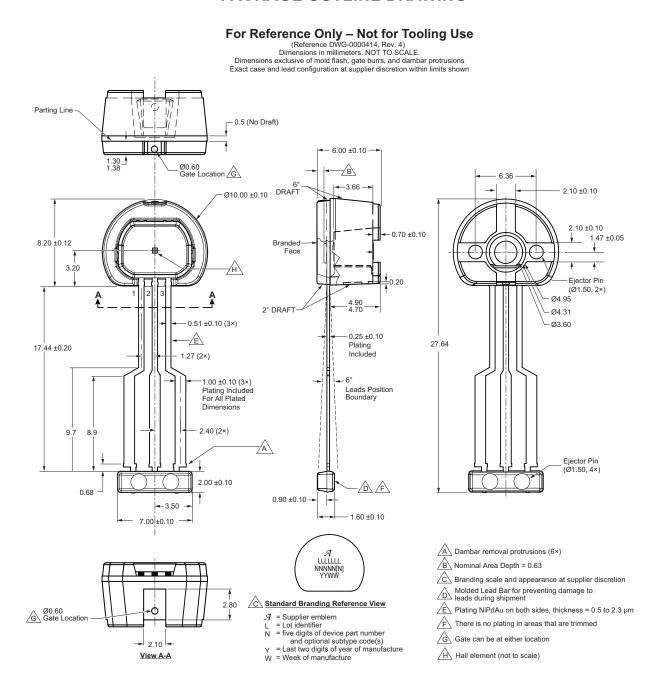


Figure 6: Package SL, 3-Pin SIP

Note: Package is manufactured with two steps. The molded magnet uses a hygroscopic nylon plastic material; therefore customer manufacturing process selection must take this factor into consideration. This package is designed for direct solder and welding attachment methods. If a reflowed solder attachment method is preferred, customers must utilize an MSL 6 handling protocol.

ATS16301

Self-Calibrating Automatic-TPOS Camshaft Speed Sensor IC

Revision History

Number	Date	Description	
_	August 13, 2019 Initial release		
1	February 18, 2021	Corrected plating material and thickness in package drawing (page 12)	
2	March 8, 2023 Updated Operating Characteristics table (page 6)		
3	September 6, 2024	Added reference target information (page 9) and made minor editorial corrections throughout, including minimization of capitalization and addition of hyperlinks to cross-referenced sections.	

Copyright 2024, Allegro MicroSystems.

Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro's products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro's product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Copies of this document are considered uncontrolled documents.

For the latest version of this document, visit our website:

www.allegromicro.com

