The Alchemy Au1100™ From AMD Internet Edge Processor Data Book

PRELIMINARY INFORMATION

April 2002

Important: This document contains preliminary information regarding a product under characterization. A revised document will be available when the product is fully characterized.

Document Number 2000-0001

Document Revision 0.5

Copyright © AMD 2002

Third party brands, logos and names are the property of those respective third parties.

Disclaimer

This documentation is provided for use with AMD products. No license to AMD property rights is granted. AMD assumes no liability, provides no warranty either expressed or implied relating to the usage, or intellectual property right infringement except as provided for by the AMD Terms and Conditions of Sale.

AMD products are not designed for and should not be used in any medical or life sustaining or supporting equipment.

All information in this document should be treated as preliminary. AMD may make changes to this document without notice. Anyone relying on this documentation should contact AMD for the current documentation and errata.

AMD 7800 Shoal Creek Blvd, Suite 222W Austin, TX 78757 512.421.6200 phone 512.421.6262 fax www.alchemysemi.com

Technical Support: support@alchemysemi.com

Contents

1 The Alchemy Au1100TM From AMD Internet Edge Processor	. 1
1.1 Overview	. 1
1.2 Product Description	. 1
1.3 Databook Notations	. 4
1.4 Differences between Au1100 and Au1000	. 5
2 CPU	. 7
2.1 Core	. 8
2.2 Caches	10
2.3 Write Buffer	18
2.4 Virtual Memory	22
2.5 Exceptions	23
2.6 MIPS32 Instruction Set	25
2.7 Coprocessor 0	27
2.8 System Bus	45
2.9 EJTAG	46
3 Memory Controllers	47
3.1 SDRAM Memory Controller	48
3.2 Static Bus Controller	62
4 DMA Controller	85
4.1 DMA Configuration Registers	86
4.2 Using GPIO Lines as External DMA Requests	94

5 Interrupt Controller	97
5.1 Interrupt Controller Sources	98
5.2 Register Definitions	100
5.3 Hardware Considerations	104
5.4 Programming Considerations	104
6 Peripheral Devices	107
6.1 AC97 Controller	108
6.2 USB Host Controller	117
6.3 USB Device Controller	120
6.4 IrDA	133
6.5 Ethernet MAC Controller	156
6.6 I2S Controller	192
6.7 UART Interfaces	200
6.8 SSI Interfaces	216
6.9 LCD Controller	227
6.10 Secure Digital Controller	246
6.11 Secondary General Purpose I/O	261
6.12 Programming Model	261
7 System Control	265
7.1 Clocks	266
7.2 Time of Year Clock and Real Time Clock	279
7.3 Primary General Purpose I/O	286
7.4 Power Management	293
8 Powerup, Reset and Boot	305
8.1 Powerup Sequence	306
8.2 Reset	307
8.3 Powerup and Reset Timing	309
8.4 Boot	310
9 EJTAG	311
9.1 EJTAG Instructions	
9.2 Debug Exceptions	312

	9.3 Coprocessor 0 Registers	
10 Si	ignal Description	
11 EI	lectrical Specifications	357
	11.1 Absolute Maximum Ratings	357
	11.2 DC Parameters	358
	11.3 AC Parameters	361
	11.4 Asynchronous Signals	375
	11.5 Crystal Specifications	375
12 Pa	ackaging and Pinout	377
A Me	emory Map	A-1
Inde	x	. I-1

List of Figures

Figure 1 A	u1100 Internal Diagram	3
Figure 2 A	u1 Core Diagram	В
Figure 3 A	u1 Write Buffer	8
Figure 4 S	DRAM Typical Read Timing	8
Figure 5 S	DRAM Typical Write Timing	9
Figure 6 S	DRAM Refresh Timing	O
Figure 7 St	tatic Memory Read Timing	3
Figure 8 St	tatic Memory Read EWAIT Timing	4
Figure 9 St	tatic Memory Write Timing	4
Figure 10	Static Memory Write EWAIT Timing	4
Figure 11 (One Card PCMCIA Interface77	7
Figure 12	Two Card PCMCIA Interface78	8
Figure 13	PCMCIA Memory Read Timing79	9
Figure 14	PCMCIA Memory Read PWAIT Timing79	9
Figure 15	PCMCIA Memory Write Timing80	O
Figure 16	PCMCIA Memory Write PWAIT Timing80	C
Figure 17	PCMCIA I/O Read Timing8	1
Figure 18	PCMCIA I/O Read PWAIT Timing	1
Figure 19	PCMCIA I/O Write Timing82	2
Figure 20	PCMCIA I/O Write PWAIT Timing82	2
Figure 21 I	LCD Controller Timing	4
Figure 22 I	LCD Read LWAIT Timing	4
Figure 23 I	LCD Write LWAIT Timing	4
Figure 24	nterrupt Controller Logic	C
•	Transmit Ring Buffer Entry Format	
Figure 26	Receive Ring Buffer Entry Format152	2
Figure 27	Typical Write Transaction Timing	7
Figure 28	Typical Read Transaction Timing	7
Figure 29	STN (Passive Mode) Timing	3

Figure 30	TFT (Active Mode) Timing	244
Figure 31	Clocking Topology	267
Figure 32	Frequency Generator and Clock Source Block Diagram	269
Figure 33	Frequency Generator and Clock Source Mapping	271
Figure 34	TOY and RTC Block Diagram	279
Figure 35	GPIO Logic Diagram	289
Figure 36	Sleep and Idle Flow Diagram	294
Figure 37	Powerup Sequence	306
Figure 38	Hardware Reset Sequence	308
Figure 39	Run time Reset Sequence	309
Figure 40	Au1100 Block Diagram	338
Figure 41	SDRAM Timing	363
Figure 42	Static Ram, I/O Device and Flash timing	364
Figure 43	PCMCIA Host Adapter Timing	367
Figure 44	LCD Interface Timing	369
Figure 45	MII Interface Timing	371
Figure 46	AC-Link Timing	372
Figure 47	GPIO Interrupt Timing	373
Figure 48	EJTAG Timing	374
Figure 49	Package Dimensions: Bottom View (left) and Side View (right)	377

List of Tables

Table 1 (Cache Operations	12
Table 2 (CCA Values	13
Table 3 \	Values for Page Size and PageMask Register	23
Table 4 (Cause[ExcCode] Encodings	24
Table 5	CPU Interrupt Sources	25
Table 6	Coprocessor 0 Register Definitions	27
Table 7	Memory Controller Block Base Address	47
Table 8	SDRAM Configuration Registers	49
Table 9	SDRAM Signals	60
Table 10	Static Bus Controller Configuration Registers	62
Table 11	Device Type Encoding	67
Table 12	Burst Size Mapping	67
Table 13	Static RAM, I/O Device and Flash Control Signals	72
	PCMCIA Memory Mapping	
Table 15	PCMCIA Interface Signals	75
Table 16	LCD Controller Interface Signals	83
Table 17	DMA Channel Base Addresses	86
Table 18	Peripheral Addresses and Selectors	87
Table 19	DMA Channel Configuration Registers	87
Table 20	Interrupt Controller Connections to the CPU	97
Table 21	Interrupt Sources	98
Table 22	Interrupt Controller Base Addresses	100
Table 23	Interrupt Controller Registers	101
Table 24	Interrupt Configuration Register Function	104
Table 25	AC97 Base Address	108
Table 26	AC97 Registers	108
Table 27	AC-Link Signals	115

Table 28	USB Host Base Address	117
Table 29	USB Pins	119
Table 30	USB Device Base Address	120
Table 31	USB Device Register Block	120
Table 32	Configuration Data	124
Table 33	USB Pins	131
Table 34	IrDA Modes Supported	133
Table 35	IrDA Base Address	133
	IrDA Registers	
	Ring Buffer Sizes	
Table 38	IrDA Hardware Connections	145
Table 39	IrDA PHY Configuration Table	146
Table 40	Fast Infrared Mode (FIR)	147
Table 41	Medium Infrared Mode (MIR)	148
Table 42	Slow Infrared Mode (SIR)	149
Table 43	Ethernet Base Addresses	158
Table 44	MAC Register Index List	158
Table 45	MAC DMA Entry List	173
Table 46	MAC DMA Receive Entry Registers	173
Table 47	MAC DMA Transmit Entry Registers	173
Table 48	MAC DMA Block Indexed Address Bit Definitions	174
Table 49	Ethernet Pins	187
Table 50	I2S Base Address	192
Table 51	I2S Interface Register Block	192
Table 52	I2S Signals	197
Table 53	UART Registers	201
Table 54	UART Register Base Addresses	201
Table 55	Interrupt Cause Encoding	204
Table 56	Transmit FIFO Trigger Depth Encoding	206
Table 57	Receiver FIFO Trigger Depth Encoding	206
Table 58	Parity Encoding	208
Table 59	Loop Back Mode Connections	209
Table 60	UART Signals	213
	SSI Base Addresses	
Table 62	SSI Registers	218
	Bus Turnaround Selection	
Table 64	SSI Signals	225
	LCD Base Address	228

Table 66 LCD Controller Registers	228
Table 67 Pixel Ordering	232
Table 68 LCD Controller Signals	240
Table 69 LCD Controller Data Pin Usage	241
Table 70 SD Base Address	246
Table 71 SD Registers	246
Table 72 Command Type Field Encodings	255
Table 73 SD Signals	259
Table 74 GPIO2 Registers	262
Table 75 GPIO2 Register Base Addresses	262
Table 76 System Control Block Base Address	265
Table 77 Clock Generation Registers	267
Table 78 Clock Mux Input Select Values	275
Table 79 Programmable Counter Registers	280
Table 80 GPIO Control Registers	290
Table 81 Peripheral Power Management	295
Table 82 Power Management Registers	298
Table 83 Boot Type	307
Table 84 Reset Timing Parameters	309
Table 85 Coprocessor 0 registers for EJTAG	312
Table 86 EJTAG Memory Mapped Registers at 0xFF300000	317
Table 87 EJTAG Instruction Register Values	325
Table 88 EJTAG Signals	335
Table 89 Signal Description	339
Table 90 Absolute Maximum Ratings	357
Table 91 DC Parameters	
Table 92 DC Parameters for CPU frequency <= 333 MHz	359
Table 93 DC Parameters for CPU frequency <= 400 MHz	360
Table 94 DC Parameters for CPU frequency <= 500 MHz	361
Table 95 SDRAM Controller Interface	362
Table 96 Static Ram, I/O Device and Flash timing	363
Table 97 PCI Controller Interface	
Table 98 PCI Controller Interface	365
Table 99 PCMCIA Timing	366
Table 100 LCD Timing	
Table 101 Ethernet MII Interface	
Table 102 AC-Link Interface	
Table 103 GPIO Timing for interrupt	373

Table 104	EJTAG Interface	374
Table 105	12MHz Crystal Specification	375
Table 106	32.768kHz Crystal Specification	376
Table 107	Pin Placement Expanded View (table 1 of 3)	378
Table 108	Pin Placement Expanded View (table 2 of 3)	379
Table 109	Pin Placement Expanded View (table 3 of 3)	380
Table 110	Basic Au1100 Physical Memory Map	A-1
Table 111	System Bus Devices Physical Memory Map	A-2
Table 112	Peripheral Bus Devices Physical Memory Map	A-3
Table 113	Device Memory Map	A-4

The Alchemy Au1100™ From AMD Internet Edge Processor

1.1 Overview

The Au1100, a follow-on to the Au1000, is a high performance, low power, high integration systems-on-a-chip (SOC) with the inclusion of a LCD controller and further reduction in power. The Au1100 is targeted at the Mobile Information Appliances (IAs). These IAs include web pads, telematics, PDAs and multimedia handheld computing devices.

1.2 Product Description

The Alchemy Au1100 from AMD is a complete SOC based on the MIPS32™ instruction set. Designed for maximum performance at very low power, the Au1100 runs up to 500 MHz. Power dissipation is less than 0.25 watt for the 400 MHz version. Highly integrated with onchip SDRAM, SRAM/Flash EPROM memory controllers, a LCD controller, 10/100 Ethernet Controller, USB Host and Device, UARTs (3), and GPIOs (up to 48,24 dedicated). The Au1100 runs a variety of operating systems, including Windows® CE.NET,Linux® and VxWorks®. Moreover, the integration of peripherals with the unique, very high performance, MIPS-compatible core provides lower system cost, smaller form factor, lower system power requirement, simpler designs at multiple performance points and thus, shorter design cycles.

High Speed MIPS CPU Core

333, 400 or 500 MHz

MIPS32 Instruction Set

32-Bit Architecture 16KB Instruction and 16KB Data Caches

High Speed Multiply-Accumulate (MAC) and

Divide unit

1.0-1.2 V Core

3.3 V or 2.5 V SDRAM I/O

3.3 V I/O

Highly-Integrated System Peripherals

GPIO (48 total, 13 dedicated)

10/100 Ethernet MAC Controller

USB Device and Host Controller

Three UARTs

IrDA Controller

AC'97 Controller

I²S Controller

Two SSI Controllers

Two Secure Digital (SD) Controllers

LCD Controller

PCMCIA Interface

High-Bandwidth Memory Buses

100 MHz SDRAM Controller (@400 MHz) SRAM/Flash EPROM Controller

Caches

16KB Non-Blocking Data Cache

16KB Instruction Cache

Instruction/Data Caches are 4-way, set-asso-

ciative

Write-Back with Read-Allocate

Cache Management Features:

Programmable allocation policy

Line locking

Prefetch instructions (instruction and data)

High speed access to on-chip buses

Core MicroArchitecture Highlights

Pipeline

Scalar 5-stage pipeline

Load/Store Adder in I-stage

Scalar branch techniques optimized:

Pipelined register file access in fetchstage Zero Penalty Branch

Multiply-Accumulate (MAC) and Divide Unit

Max Issue Rate of one 32x16 MAC per clock Max Issue Rate of one 32x32 MAC per every

other clock

Operates in parallel to CPU pipeline

Executes all integer multiply and divide

instructions

32 x 16-Bit MAC hardware

MMU

Instruction and Data Watch Registers for software breakpoints

Separate Interrupt Exception Vector

TLB:

32 dual-entry fully-associative

Variable page sizes 4KB-16MB

4-entry ITB

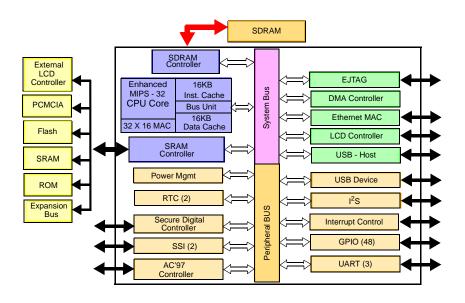


FIGURE 1. Au1100 Internal Diagram

Low System Power

Core MHz Power 333 <200 mW

400 250 mW

500 500 mW

Power-Saving Modes:

Idle

Sleep

Static design to 0 Hz

Package

399 BGA

17 mm x 17 mm

Operating System Support

Microsoft Windows® CE Linux®

VxWorks®

Development Tool Support

Complete MIPS32-Compatible Tool Set Numerous 3rd-Party Compilers, Assemblers and Debuggers

1.3 Databook Notations

This section addresses some of the terminology used in this book.

1.3.1 Unpredictable and Undefined

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the processor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions in a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register). Unprivileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged software can cause UNPREDICTABLE results or operations.

1.3.2 Unpredictable

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction, or as a function of time on the same implementation or instruction. Software can never depend on results that are UNPREDICTABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is generated, it is UNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

- Implementations of operations generating UNPREDICTABLE results must not depend on any data source (memory or internal state) which is inaccessible in the current processor mode
- UNPREDICTABLE operations must not read, write, or modify the contents of
 memory or internal state which is inaccessible in the current processor mode. For
 example, UNPREDICTABLE operations executed in user mode must not access
 memory or internal state that is only accessible in Kernel Mode or Debug Mode or
 in another process
- UNPREDICTABLE operations must not halt or hang the processor

UNPRED used to describe the default state of registers should be taken as meaning UNPREDICATABLE.

1.3.3 Undefined

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to instruction, or as a function of time on the same implementation or instruction. UNDEFINED operations or behavior may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED operations or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which there is no exit other than powering down the processor).
 The assertion of any of the reset signals must restore the processor to an operational state

1.3.4 Register Fields

In general, fields marked as reserved should be considered unpredictable. In other words these fields should be written zeros and ignored on read to preserve future compatibility.

1.4 Differences between Au1100 and Au1000

1.4.1 Peripherals

The Au1100 does not have the following peripherals that are present on the Au1000:

Ethernet MAC 1 UART2

The Au1100 has added these functions not present on the Au1000:

Integrated LCD Controller Secure Digital Controller 13 Dedicated GPIO's (48 total)

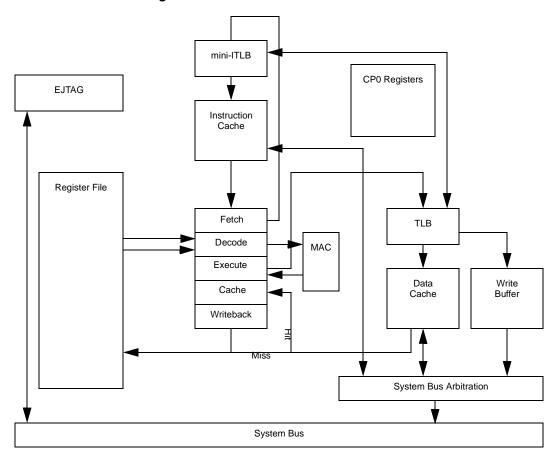
Additionally, the SDRAM memory controller now has an independent I/O power supply (VDDY) and can support both 3.3 V and 2.5 V devices.

1.4.2 Miscellaneous

Some inputs to the interrupt controller have changed due to the addition/removal of blocks. Refer to the interrupt controller section for Au1100 interrupt map.

The DMA channel encoding provides up to 32 Device IDs to the controller. New channels for SD data transfer have been added.

A new CCA encoding has been added to the Au1100. If CCA == 4, all system bus accesses will be cacheline aligned, i.e. no cacheline wrapping is supported.


The Au1100 CPU core is a unique implementation of the MIPS32 instruction set architecture (ISA) designed for high frequency and low power. This chapter provides information on the implementation details of this MIPS32-compliant core.

The full description of the MIPS32 architecture is provided in the "MIPS32TM Architecture For Programmers" documentation, available from MIPS Technologies, Inc.. The information contained in this chapter supplements the MIPS32 architecture documentation.

2.1 Core

The Au1100 CPU core (Au1) is a high performance, low power implementation of the MIPS32 architecture.

FIGURE 2. Au1 Core Diagram

The Au1 core contains a five-stage pipeline. All stages complete in a single cycle when data is present. All pipeline hazards and dependencies are enforced by hardware interlocks so that any sequence of instructions is guaranteed to execute correctly. Therefore, it is unnecessary to pad load delay slots with NOPs.

The general purpose register file has two read ports and one write port. The write port is shared with data cache loads and the pipeline Writeback stage.

2.1.1 Fetch Stage

The Fetch stage retrieves the next instruction from the instruction cache, where it is passed to the Decode stage. If the instruction is not present in the instruction cache, then the fetch address is forwarded to the virtual memory unit in order to fulfill the request. Instruction fetch stalls until the next instruction is available.

2.1.2 Decode Stage

The Decode stage prepares the pipeline for executing the instruction. In the Decode stage, the following occur in parallel:

- The instruction is decoded.
- Control for the instruction is generated.
- Register data is read.
- The branch target address is generated.
- The load/store address is generated.

Instructions stall in the Decode stage if dependent data or resources are not yet available. At the end of the Decode stage a new program counter value is sent to the Fetch stage for the next instruction fetch cycle.

2.1.3 Execute Stage

In the Execute stage, instructions that do not access memory are processed in hardware (shifters, adders, logical, comparators, etc.). Most instructions complete in a single cycle, but a few require multiple cycles (CLO, CLZ, MUL rd).

The load/store hardware calculates addresses for data accesses. The virtual address calculation begins in the Decode stage so that physical address calculation can complete in the Execute stage, in time to initiate the access to the data cache in the Execute stage. If the physical address misses in the TLB, a TLB exception is posted.

Multiplies and divides are forwarded to the Multiply Accumulate unit. These instructions require multiple cycles to execute and operate mostly independent of the main five-stage pipeline.

All exception conditions (arithmetic, TLB, interrupt, etc.) are posted by the end of the Execute stage so that exceptions can be signalled in the Cache stage.

2.1.4 Cache Stage

In the Cache stage, load and store accesses complete.

Loads that hit in the data cache obtain the data in the Cache stage. If a load misses in the data cache, or is to a non-cacheable location, then the request is sent to the system bus to be fulfilled. Load data is forwarded to dependent instructions in the pipeline and the register file.

Stores that hit in the data cache are written into the cache array. If a store misses in the data cache, or is to a non-cacheable location, then the store is sent to the write buffer.

If any exceptions are posted, an exception is signalled and the Au1 core is directed to fetch instructions at the appropriate exception vector address.

2.1.5 Writeback Stage

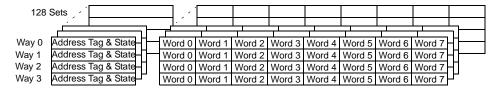
In the Writeback stage, results are posted to the general purpose register file, and forwarded to other stages as needed.

2.1.6 Multiply Accumulate Unit

The Multiply Accumulate unit (MAC) executes all multiply and divide instructions. The MAC is composed of a 32x16 bit pipelined array multiplier that supports early out detection, divide block, and the HI and LO registers used in calculations.

The MAC operates in parallel with the main five-stage pipeline. Instructions in the main pipeline that do not have dependencies on the MAC calculations execute simultaneously with instructions in the MAC unit.

A multiply calculation of 16x16 or 32x16 bits can complete in one cycle. The 32x16 bit multiply must have the sign-extended 16-bit value in register operand rt of the instruction.


32x32 bit multiplies may be started every other CPU cycle. The 32x32 multiplies will complete in two cycles if the results are written to the general purpose registers.

If the results are written to the HI/LO registers then three cycles are required for 16x16 and 32x16 bits multiplies. 32x32 bit multiplies that use HI/LO will complete in 4 cycles.

Divide instructions complete in a maximum of 35 cycles.

2.2 Caches

The Au1 core contains independent, on-chip 16KB instruction and data caches. Each cache is organized as four-way set associative, 128 sets per way, and 32 bytes per line.

A cache line is tagged with a 20-bit physical address, a lock bit, and a valid bit. Data cache lines also include coherency and dirty status bits. The physical address tag contains bits 31:12 of the physical address; as such, physical addresses in which bits 35:32 are non-zero must be mapped non-cacheable.

Cache Line State

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Physical Address Tag																				D	S	L	V									

A cache line address is always 32-byte aligned. The cache is indexed with the lower, untranslated bits (bits 11:5) of the virtual address, allowing the virtual-to-physical address translation and the cache access to occur in parallel.

Cache Address Decode

Bit 31 30	29 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Virtual/Physical Address															Se	t Sele	ect				Ву	te Sel	ect						

2.2.1 Cache Line Replacement Policy

In general, the caches implement a least recently used (LRU) replacement policy. Each cache set maintains true LRU status bits (MRU, nMRU and LRU) to determine which cache line is selected for replacement. However, software can influence which cache line is replaced by marking memory pages as streaming, or by locking lines in the cache.

When an instruction fetch misses in the instruction cache, or a data load misses in the data cache, a burst fill operation is performed to fill the cache line from memory. The cache line is selected by the following algorithm:

```
MRU is most recently used

nMRU is next most recently used

nLRU is next least recently used

LRU is least recently used

Cache Miss:

if (Streaming) then Replacement = 0,

else if (LRU is !Valid or !Locked) then Replacement = LRU

else if (nLRU is !Valid or !Locked) then Replacement = nLRU

else if (nMRU is !Valid or !Locked) then Replacement = nMRU

else Replacement = MRU

Cache Hit:

new MRU = Hit Way
```

In short, the LRU is a true LRU, but with the following priorities:

- 1. Streaming: cache misses are forced to way 0, cache hits remain unchanged.
- 2. Locking: cache misses follow policy above and set Lock bit, cache hits set Lock bit.

3. Normal LRU replacement policy.

The **CACHE** instruction is used to lock individual lines in the cache. A locked line is not subject to replacement. All four lines in a set can not be locked at once; at least one line is always available for replacement.

2.2.2 Cache Streaming Support

Streaming is typically characterized as the processing of a large amount of transient instructions and/or data. In traditional cache implementations (without explicit support for streaming), transient instructions and/or data quickly displace useful, recently used items in the cache. This yields poor utilization of the cache and results in poor system performance.

The Au1 caches explicitly support streaming by placing instructions and/or data marked as streaming into way 0 of the cache. This method ensures that streaming does not purge the cache(s) of useful, recently used items, while permitting transient instructions and/or data to be cached. The CCA bits in the TLB entry indicate if a page contains streaming instructions and/or data. In addition, the **PREF** instruction is available to software to allow data to be placed in the data cache in advance of its use.

2.2.3 Cache Management

The caches are managed with the **CACHE** instruction. Cache management operations are serializing and complete in order. The effect of the **CACHE** instruction is immediately visible to subsequent data accesses. Table 1 shows the Cache operations. An "X" indicates that the instruction or data cache supports the operation, an "N/A" indicates that the operation is not applicable.

TABLE 1. Cache Operations

Operation	CACHE[2018] Encoding	Instruction Cache	Data Cache						
Index Invalidate	000	Х	X (with writeback)						
Index Load Tag	001	Х	Х						
Index Store Tag	010	Х	Х						
Hit Invalidate	100	Х	Х						
Fill	101	Х	N/A						
Hit Writeback and Invalidate	101	N/A	X						
Hit Writeback	110	N/A	Х						
Fetch and Lock	111	Х	Х						

These cache operations permit initialization, locking/unlocking and management of the caches.

2.2.4 Cache Coherency Attributes

The Cache Coherency Attributes (CCA) bits in Config0[K0] and in the TLB determine the cache-ability of accesses to memory. The Au1 implements the following:

TABLE 2. CCA Values

CCA	Description
000 - 0	Reserved
001 - 1	Reserved
010 - 2	Uncached, non-mergable
011 - 3	Cacheable, coherent (critical word first)
100 - 4	Reserved
101 - 5	Cacheable, coherent (critical word first)
110 - 6	Cacheable, coherent, streaming (critical word first)
111 - 7	Uncached, mergable, gatherable

CCA encodings 0 and 1 are unimplemented and must not be used.

CCA encoding 2 is uncached, as required by MIPS32. In addition, this encoding is non-mergable within the write buffer, to achieve a truly uncached effect.

CCA encoding 3 and 5 are cached and coherent. Coherent accesses are snooped to ensure data integrity. The access is performed as critical-word-first to improve performance.

CCA encoding 4 is unimplemented and must not be used.

CCA encoding 6 is cached and streaming. This encoding indicates that instructions and/or data are transient and are placed into way 0. The access is performed as critical word first.

CCA encoding 7 is uncached, but mergable and gatherable. Data stores sent to the write buffer are subject to merging and gathering in the write buffer.

2.2.5 Instruction Cache

The instruction cache is a 16KB four-way set associative cache. The instruction cache services instruction fetch requests from the Fetch stage of the pipeline.

An instruction cache line state consists of a 20-bit physical address tag, a lock bit (L) and a valid bit (V).

Instruction Cache line state

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
									Physi	cal A	ddre	ss Tag	3																		L	V	

2.2.5.1 Instruction Cache Initialization and Invalidation

Out of reset, all instruction cache lines are invalidated; thus the instruction cache is ready for use.

To invalidate the instruction cache in software, a loop of index invalidate **CACHE** instructions for each of the lines in the cache invalidates the cache.

```
li t0,(16*1024) # Cache size
li t1,32 # Line size
li t2,0x80000000 # First KSEGO address
addu t3,t0,t2 # terminate address of loop
loop:
   cache 0,0(t2) # Icache indexed invalidate tag
addu t2,t1 # compute next address
bne t2,t3,loop
nop
```

2.2.5.2 Instruction Cache Line Fills

If an instruction fetch address hits in the instruction cache, the instruction word is returned to the Fetch stage. If the fetch address misses in the cache, and the address is cacheable, then the instruction cache performs a burst transfer from the memory subsystem to fill a cache line, and returns the instruction word to the Fetch stage.

The instruction cache line is selected by the replacement policy described in "Cache Line Replacement Policy" on page 11.

2.2.5.3 Instruction Cache Coherency

The instruction cache does not maintain coherency with the data cache. Coherency between the instruction cache and the data cache is the responsibility of software. However, the data cache is snooped during instruction cache line fills.

Maintaining coherency is important when loading programs into memory, creating exception vector tables, or for self-modifying code. In these circumstances, memory is updated with new instructions using store instructions which places the new instructions in the data cache, but not in the instruction cache (thus the instruction cache may contain old instructions).

To maintain coherency, software may utilize the **CACHE** instruction to invalidate the modified range of program addresses in the instruction cache. The data cache is snooped during

instruction cache line fills; therefore it is not necessary to writeback the data cache prior to invalidating the instruction cache. Once complete, an instruction fetch to the newly loaded/modified program will correctly fetch the new instructions (possibly from the data cache).

2.2.5.4 Instruction Cache Control

The cache-ability of instructions is controlled by three mechanisms:

- Config0[K0] field
- The CCA bits in the TLB
- The CACHE instruction

The Config0[K0] field contains a cache coherency attribute (CCA) setting to control the cache-ability of KSEG0 region. At reset, this field defaults to 011b, cacheable.

The CCA bits in the TLB entry control the cache-ability of the KUSEG region. Each TLB entry specifies a CCA setting for the pages mapped by the TLB.

The **CACHE** instruction manages the caches; including the ability to lock lines in the cache. Valid instruction cache operations are:

- Index Invalidate
- Index Load Tag
- Index Store Tag
- · Hit Invalidate
- Fill
- Fetch and Lock

The **CACHE** instruction is serializing to guarantee that the effect of the cache operation is immediately visible to subsequent instructions.

2.2.6 Data Cache

The data cache is a 16KB four-way set associative write-back cache. Data cache accesses are distributed across the Execute and Cache pipeline stages.

A data cache line state consists the 20-bit physical address tag, a dirty bit (D), a coherency bit (S), a lock bit (L) and a valid bit (V).

Data cache line state

The data cache employs a read-allocate policy. Cache lines can be replaced on loads, but not on stores. Stores that miss in the data cache are forwarded to the write buffer.

The data cache supports hit-under-miss for one outstanding miss. If an access misses in the data cache, the data cache services the next access while the memory subsystem provides the data for the missed access. If the next access hits in the data cache, the data is available immediately; otherwise the cache stalls the access until the first access completes.

2.2.6.1 Data Cache Initialization and Invalidation

Out of reset, all data cache lines are invalidated; thus the data cache is ready for use.

To invalidate the data cache in software, a loop of indexed writeback invalidate **CACHE** instructions for each of the lines in the cache invalidates the cache.

```
li t0,(16*1024) # Cache size
li t1,32 # Line size
li t2,0x80000000 # First KSEGO address
addu t3,t0,t2 # terminate address of loop
loop:
   cache 1,0(t2) # Dcache indexed invalidate tag
addu t2,t1 # compute next address
bne t2,t3,loop
nop
```

2.2.6.2 Data Cache Line Fills

A data cache access is initiated in the Execute stage which allows a cache hit or miss indication and all exceptions to be signaled early in the Cache stage. If the data address hits in the data cache, the data is available in the Cache stage. If the data address misses in the data cache, and the address is cacheable, the data cache performs a burst fill to a cache line, forwarding the critical word to the Cache stage.

The data cache line is selected by the replacement policy described in Section 2.2.1. If the line selected contains modified data (cache line is valid and has its dirty bit set by a store hit), then the cache line is moved to a cast-out buffer, the cache line is filled from memory and the load request fulfilled, and then the cast-out buffer is written to memory.

2.2.6.3 Data Cache Coherency

The data cache snoops coherent system bus transactions to maintain data coherency with other system bus masters (i.e. DMA). If a coherent read transaction on the system bus hits in the data cache, the data cache provides the data. If a coherent write transaction on the system bus hits in the data cache, the data cache updates its internal array with the data. If a coherent transaction (read or write) misses in the data cache, the data cache array is un-changed by the transaction.

Loads and stores which hit in the data cache can bypass previous stores in cacheable regions. The read-allocate data cache policy forwards store-misses to the write buffer. Subsequent loads and stores which hit in the data cache, and to a different cache line address than store-

misses, are fulfilled immediately (while store-misses may still be in the write buffer). However, if a load address hits in a cache-line address of an item in the write buffer, the load is stalled until the write buffer commits the corresponding store.

The data cache also maintains coherency with other caching masters. When a load is serviced from another caching master, both caching masters set the shared bit for the affected cache line. Then if a store occurs to a data cache line with the shared bit set, the cache line address is broadcast on the system bus to invalidate cache lines in other caching masters that contain the same address.

The data cache is single-ported; therefore transactions on the system bus are prioritized over accesses by the core. However, the data cache design prevents the system bus from saturating the data cache indefinitely, which guarantees that the core can make forward progress.

When changing the CCA encoding in Config0[K0] or the TLB to a different CCA encoding, software must ensure that data integrity is not comprised by first pushing modified (dirty) data to memory within the page. This is especially important when changing from a coherent CCA encoding to a non-coherent CCA encoding.

2.2.6.4 Data Cache Control

The cache-ability of data accesses is controlled by four mechanisms:

- Config0[K0] field
- The CCA bits in the TLB
- The CACHE instruction
- The PREF instruction

The Config0[K0] field contains a cache coherency attribute (CCA) setting to control the cache-ability of KSEG0 region. At reset, this field defaults to 011b, cacheable.

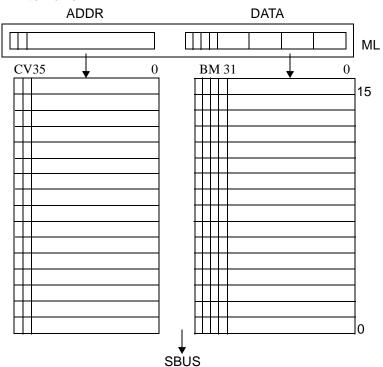
The CCA bits in the TLB entry control the cache-ability of the KUSEG region. Each TLB entry specifies a CCA setting for the pages mapped by the TLB.

The **CACHE** instruction manages the caches; including the ability to lock lines in the cache. Valid data cache operations are:

- Index Writeback Invalidate
- Index Load Tag
- Index Store Tag
- Hit Invalidate
- · Hit Writeback and Invalidate
- Hit Writeback
- Fetch and Lock

The **CACHE** instruction is serializing to guarantee that the effect of the cache operation is immediately visible to subsequent data accesses.

The **PREF** instruction places data into the data cache. The following prefetch hints are implemented:


- 0x00 Normal load
- 0x04 Streaming load

The streaming load hint directs the data be placed into way 0 of the data cache (even if the line is locked), thus permitting transient data to be cached and non-transient data to remain in the cache for improved performance. Data cache streaming support combined with the **PREF** instruction enhances multimedia processing.

2.3 Write Buffer

The Au1 write buffer is depicted in Figure 3. All non-cacheable processor stores and data cache store-misses (the data cache is a read-allocate policy) are routed through the write buffer.

FIGURE 3. Au1 Write Buffer

The write buffer is a 16-word deep first-in-first-out (FIFO) queue. All processor stores arrive first at the Merge Latch (ML), where Merging and Gathering decisions are performed, and then travel through the queue. The write buffer arbitrates for the system bus to perform consolidated transfers to the main memory.

A write buffer FIFO entry contains the address (word address), the data and associated byte masks (BM), and two control bits. The four BM bits indicate which bytes within the word contain valid data. The two control bits are the Valid bit which indicates if the entry is valid, and the Closed (C) bit. When a C bit is set, the write buffer initiates a request to the system bus so that it can transfer data to memory. The circumstances for which the C bit is set are described below.

The write buffer is capable of variable-length burst writes to memory. The length can vary from one word to eight words, and is determined by the C bits in the write buffer. During each beat of the burst, the appropriate bytes to write are selected from the corresponding byte masks. As each entry is written to memory, it is popped from the FIFO, advancing each entry in the FIFO by one. In other words, entry 0 is always presented to the system bus for writing.

When the write buffer has at least one empty entry, processor stores are guaranteed to not stall, thus improving processor performance.

The write buffer is disabled by setting Config0[WD] to 1. In this instance, all non-cacheable and data cache store-misses stall until the write completes. The remaining description of the write buffer operation assumes Config0[WD] is 0. Out of reset, Config0[WD] is 0.

2.3.1 Merge Latch

All processor stores first arrive at the Merge Latch (ML). Logic within the merge latch decides what action to take with the incoming data.

- 1. The incoming address is the <u>same word address</u> as the merge latch address. This case is for Merging, which occurs within the merge latch itself.
- 2. The incoming word address is <u>sequentially adjacent</u> to the merge latch word address (incoming address is merge latch address + 4). This case is for Gathering. The merge latch contents are propagated to the FIFO with the C bit cleared for this entry.
- 3. Neither 1 nor 2 is true. The merge latch contents are propagated to the FIFO with the C bit set for this entry.

If the merge latch contents are propagated to the FIFO, the incoming address and data are placed in the merge latch for future comparisons. Furthermore, if the incoming address is the last word address of the maximum burst line size (the least significant 5 bits are 0x1C), then the C bit is set.

2.3.2 Write Buffer Merging

Write buffer merging combines stores destined for the <u>same word address</u>. Merging places the incoming data into the appropriate data byte(s) within the merge latch.

Write buffer merging is particularly useful for sequential, incremental address write operations, such as string operations. With write buffer merging, the writes are merged into 32-bit writes which reduces the number of accesses to the memory and increases the effective throughput to main memory.

This example demonstrates merging: these five byte writes occur in sequence:

```
0x00001000 = 0xAB
0x00001001 = 0xCD
0x00001002 = 0xDE
0x00001003 = 0xEF
0x00001002 = 0xBE
```

After the first four writes, the data in the merge latch contains 0xABCDDEEF. However, after the fifth write, the merge latch data now contains 0xABCDBEEF.

So long as the incoming word address is the same as the merge latch word address, the data can change without a processor stall or access to memory.

Write buffer merging is controlled by the Config[NM] bit and the TLB[CCA] setting. When Config0[NM] is 1 or TLB[CCA] is 2, the merge latch does not perform merging. Conversely, Config0[NM] is 0 or TLB[CCA] is not 2 enables merging. Out of reset, Config0[NM] is 0.

NOTE: Merging takes places <u>only</u> in the Merge Latch. As such, writes to an address which are in the FIFO (but not in the ML) do not merge. In the example below, writes to 0x0001000 and 0x0001002 do not merge because the intervening write to address 0x00001005 is not in the same word address which caused 0x00001000 to leave the ML.

```
0x00001000 = 0xAB

0x00001005 = 0xCD

0x00001002 = 0xDE
```

2.3.3 Write Buffer Gathering

Write buffer gathering combines <u>sequentially adjacent</u> word addresses for burst transfers to the main memory. When a C bit is set, all queue entries from zero (0) up to and including the entry with its C bit set (N) are written to main memory in a single burst.

Write buffer gathering is particularly useful for sequential, incremental address store operations, such as string operations. With write buffer gathering, the stores are combined into

bursts up to 32-bytes (eight words) in length which reduces the number of accesses to the memory and increases effective throughput.

Here is an example of an eight-word burst. The burst could result from code which sequentially writes words (optimized memcpy(), for example). These eight word writes occur in sequence:

0x00001000 0x00001004 0x00001008 0x0000100C 0x00001010 0x00001014 0x00001018 0x0000101C

The entries corresponding to word addresses 0x00001000 through 0x00001018 have C bit set to zero. When address 0x0000101C arrives, its C bit is set. When the write buffer is granted the system bus, it bursts all eight entries to main memory.

Here is an example of two-word burst. This burst may be typical of application software. These four word writes occur in sequence:

0x00001000 0x00001004 0x0000100C 0x00001008

The C bit is zero for the 0x00001000 entry and is one for the 0x00001004 entry. These two words are then burst to main memory. The 0x0000100C entry also has its C bit set, and is written to memory. The 0x00001008 will reside in the merge latch until displaced by a subsequent store.

2.3.4 Write Buffer Reads

When a read from memory is initiated, the read cache-line address (A35..A5) is compared against all cache-line addresses in the write buffer. If the read cache-line address matches a write buffer cache-line address, the read is stalled. The write buffer then flushes entries to memory until the read address no longer matches a write buffer cache-line address. The read is then allowed to complete. The write buffer ensures data integrity by not allowing reads to bypass writes.

2.3.5 Write Buffer Coherency

Non-cacheable stores and/or data cache store-misses reside in the write buffer, possibly indefinitely. Furthermore, the write buffer does not snoop system bus transactions (e.g. inte-

grated peripheral DMA engines). To ensure the write buffer contents are committed to memory, a **SYNC** instruction must be issued.

Issuing a **SYNC** instruction prior to enabling each DMA transfer from memory buffers and/ or structures is necessary. Without the **SYNC**, the DMA engine may retrieve incomplete buffers and/or structures (the remainder of which may be in the write buffer).

Issuing a **SYNC** instruction after a store to an I/O region where stores have side effects is necessary. Without the **SYNC** instruction, the store may not leave the write buffer to achieve the side effects (e.g. clearing an interrupt acknowledge bit).

Note that a read access does not guarantee a complete write buffer flush since the write buffer flushes as few entries as necessary until the read address no longer matches an address in the write buffer.

2.4 Virtual Memory

The Au1 implements a TLB-based virtual address translation unit which is compliant with the MIPS32 specification. This scheme is similar to the R4000 TLB and CP0 implementation. The "MIPS32 Architecture For Programmers Volume III" contains all the information relevant to a TLB-based virtual address translation unit.

The virtual address translation architecture is composed of a main 32-entry fully associative TLB array. To improve instruction fetch performance, a 4-entry fully associative instruction TLB is implemented. This miniature instruction TLB is fully coherent with the main TLB array, and is completely transparent to software.

Each TLB entry maps a 32-bit virtual address to a pair of 36-bit physical addresses. The page size of a TLB entry is variable under software control, from 4KB to 16MB.

A TLB entry is described below.

TLB Entry

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Page- Mask		0									Pagel	Mask														0						
r										ZDAZ												0						4.0	II)			
EntryHi										VPN2	2											U						AS	ш			
EntryLo0	0	0												PF	N0													C0		D0	V0	G
_																																
EntryLol	0	0												PF	N1													C1		D1	V1	G

The size of the page(s) that the TLB entry translates is determined by PageMask. The valid values for PageMask range from 4KB to 16MB, according to Table 3.

TABLE 3. Values for Page Size and PageMask Register

Page Size	PageSize Register	Bits 28:13	PFN Bit
4KB	0x00000000	000000000000000	12
16KB	0x00006000	000000000000011	14
64KB	0x0001E000	000000000001111	16
256KB	0x0007E000	000000000111111	18
1MB	0x001FE000	000000011111111	20
4MB	0x007FE000	0000001111111111	22
16MB	0x01FFE000	000011111111111	24

The PageMask determines the number of significant bits in the 32-bit address generated by the program (either as a load/store address or an instruction fetch address). The upper, significant bits of the program address are compared against the upper, significant bits of VPN2. When an address match occurs, the PFN bit of the program address selects either PFN0 or PFN1 as upper bits of the resulting 36-bit physical address.

The TLB mechanism permits mapping a smaller, 32-bit program address space into a larger 36-bit physical address space. The Au1 implements an internal 36-bit physical address system bus (SBUS) which is then decoded by integrated peripherals, and by chip-selects for external memories and peripherals.

The cache coherency attributes (CCA) of the physical page are controlled by the TLB entry. The valid values are described in Table 2. In general, I/O spaces require a non-cacheable setting, whereas memory can utilize a cacheable setting.

NOTE Physical addresses in which address bits 35:32 are non-zero must be mapped non-cached, CCA encoding 2.

The TLB array is managed completely by software. Software can implement a TLB replacement algorithm that is either random (via the **TLBWR** instruction) or deterministic (via the **TLBWI** instruction). Hardware is available to segment the TLB via the Wired register so different replacement strategies can be used for different areas of the TLB.

2.5 Exceptions

The Au1 core implements a MIPS32-compliant exception scheme. The scheme consists of the exception vector entry points in both KSEG0 and KSEG1, and the exception code (Exc-Code) encodings to determine the nature of the exception.

2.5.1 Exception Causes

The nature of an exception is reported in the Cause[ExcCode] field. The Au1 core can generate the following exceptions:

TABLE 4. Cause[ExcCode] Encodings

ExcCode	Mnemonic	Description									
0	Int	Interrupt									
1	Mod	TLB modification exception									
2	TLBL	TLB exception (load or instruction fetch)									
3	TLBS	TLB exception (store)									
4	AdEL	Address error exception (load or instruction fetch)									
5	AdES	Address error exception (store)									
6	IBE	Bus error exception (instruction fetch)									
7	DBE	Bus error exception (data reference: load or store)									
8	Sys	Syscall exception									
9	Вр	Breakpoint exception									
10	RI	Reserved instruction exception									
11	СрU	Coprocessor Unusable exception									
12	Ov	Arithmetic Overflow exception									
13	Tr	Trap exception									
23	WATCH	Reference to Watchpoint address									
24	MCheck	Machine Check (duplicate TLB entry)									

The Au1 core does not implement hardware floating-point. As a result, all floating-point instructions generate the Reserved Instruction (RI) exception, which permits floating-point operations to be emulated in software.

In addition, the Au1 core does not recognize Soft Reset, Non-Maskable Interrupt (NMI), or Cache Error exception conditions.

2.5.2 Interrupt Architecture

The Au1 core implements a MIPS32-compliant interrupt mechanism in which eight interrupt sources are presented to the core. Each interrupt source is individually maskable to either

enable or disable the core from detecting the interrupt. Interrupts are generated by software, integrated interrupt controllers, performance counters and timers, as noted in Table 5.

TABLE 5. CPU Interrupt Sources

Interrupt Source	CP0 Cause Register Bit	CP0 Status Register Bit
Software Interrupt 0	8	8
Software Interrupt 1	9	9
Interrupt Controller 0		
Request 0	10	10
Request 1	11	11
Interrupt Controller 1		
Request 0	12	12
Request 1	13	13
Performance Counters	14	14
Count/Compare	15	15

All interrupt sources are equal in priority; that is, the interrupt sources are not prioritized in hardware. As a result, software determines the relative priority of the interrupt sources. When Cause[ExcCode]=0, software must examine the Cause[IP] bits to determine which interrupt source is requesting the interrupt.

For more information on Interrupt Controller 0 and 1 see Chapter 5.

2.6 MIPS32 Instruction Set

The Au1 core implements the instruction set defined in "MIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set". The floating-point instructions are not implemented in the Au1 core, but may be emulated in software.

The MIPS32 ISA is characterized as a combination of the R3000 user level instructions (MIPSII) and the R4000 memory management and kernel mode instructions (32-bit MIPSIII).

2.6.1 CACHE Instruction

The **CACHE** instruction permits management of the Au1 instruction and data caches. The valid operations are listed in Table 1.

For data cache operations, the effect of the **CACHE** instruction is immediately visible to subsequent data accesses. However, for instruction cache operations, the effect of the

CACHE instruction is not visible to subsequent instructions already in the Au1 core pipeline. Therefore, care should be exercised if modifying instruction cache lines containing the **CACHE** and subsequent instructions.

When issuing the **CACHE** instruction with indexed operations (Index Invalidate, Index Load Tag and Index Store Tag) the format of the effective address is as follows:

CACHE Index Operation Address Decode

Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0x8000										W	ay			Se	t/Inde	ex				By	te Sel	ect								

The effective address base should be 0x80000000 (KSEG0) to avoid possible TLB exceptions, and place zeros in the remainder of the effective address. The format correlates to a 16KB cache that is 4-way set associative with 128 sets and 32-byte line size.

Software must not use the Index Store Tag **CACHE** operation to change the Dirty, Lock and Shared state bits. To set the Lock bit, software must use the Fetch and Lock **CACHE** operation.

The Index Load Tag and Index Store Tag **CACHE** operations utilize CP0 registers DTag, DData, ITag and IData. The format of data for Index Tag operations is depicted in the description of these registers.

CACHE operations that require an effective address (i.e. not the Index operations) do not generate the Address Error Exception or trigger data watchpoint exceptions.

2.6.2 PREF Instruction

The **PREF** instruction prefetches data into the data cache. Data is prefetched to improve algorithm performance by placing the data in the cache in advance of its use, thus minimizing stalls due to data cache load misses.

If the effective address computed by the **PREF** instruction does not translate in the TLB (i.e. the address would cause a TLBL exception), no exception is generated and the cache is unchanged.

2.6.3 WAIT Instruction

The **WAIT** instruction places the Au1 core in one of two low power modes: IDLE0 and IDLE1. The low power mode is encoded in the **WAIT** instruction bits 24:6 (implementation-dependent code). A value of 0 selects IDLE0, and the value 1 selects IDLE1. Other values are not supported and must not be used.

In the IDLE0 low power mode, the Au1 core stops clocks to all possible core units, but continues to snoop the system bus to maintain data coherency.

In the IDLE1 low power mode, the Au1 core stops clocks to all possible core units, including the data cache, so that data coherency is no longer guaranteed.

In either Idle mode, the general purpose registers and the CP0 registers are preserved, so that when Idle mode is exited by an appropriate event, the Au1 core resumes processing instructions in exactly the same context as prior to entering Idle mode.

To enter the low power mode, the **WAIT** instruction must be followed by at least four NOPs, and the entire instruction sequence must be fetched from the instruction cache. More specifically, if the core fetches the **WAIT** and **NOP** instructions from main memory, then the mechanisms for accessing memory will prevent the core from entering low power mode. This is the recommended code sequence:.

```
.global au1_wait
au1_wait:
  la t0,au1_wait # obtain address of au1_wait
  cache 0x14,0(t0) # fill icache with first 8 insns
  cache 0x14,32(t0) # fill icache with next 8 insns
  nop
  wait 0
  nop
  nop
  nop
  nop
  nop
  i ra
```

When the Au1 core is in Idle mode, the Count register increments at an unpredictable rate; therefore the Count/Compare registers can not be used as the system timer tick when using the **WAIT** instruction to enter an Idle mode.

2.7 Coprocessor 0

Coprocessor 0 (CP0) is responsible for virtual memory, cache and system control.

The MIPS32 ISA provides for differentiation of the CP0 implementation. The Au1 core has a unique CP0 that is compliant with MIPS32 specification.

In Table 6 the Au1 CP0 registers are listed.

TABLE 6. Coprocessor 0 Register Definitions

Register Number	Sel	Register Name	Description	Compliance
0	0	Index	Pointer into TLB array	Required
1	0	Random	Pseudo-random TLB pointer	Required
2	0	EntryLo0	Low half of TLB entry for even pages	Required
3	0	EntryLo1	Low half of TLB entry of odd pages	Required

TABLE 6. Coprocessor 0 Register Definitions (Continued)

Register Number	Sel	Register Name	Description	Compliance
4	0	Context	Pointer to a page table entry	Required
5	0	PageMask	Variable page size select	Required
6	0	Wired	Number of locked TLB entries	Required
7	0		Reserved	Reserved
8	0	BadVAddr	Bad virtual address	Required
9	0	Count	CPU cycle count	Required
10	0	EntryHi	High half of TLB entries	Required
11	0	Compare	CPU cycle count interrupt comparator	Required
12	0	Status	Status	Required
13	0	Cause	Reason for last exception	Required
14	0	EPC	Program Counter of last exception	Required
15	0	PRId	Processor ID and Revision	Required
16	0	Config	Configuration Registers (aka Config0)	Required
16	1	Config1	Configuration Register 1	Required
17	0	LLAddr	Load Link Address	Optional
18	0	WatchLo	Data memory break point low bits	Optional
18	1	IWatchLo	Instruction fetch breakpoint low bits	Optional
19	0	WatchHi	Data memory break point high bits	Optional
19	1	IWatchHi	Instruction fetch breakpoint high bits	Optional
20	0		Reserved	Reserved
21	0		Reserved	Reserved
22	0	Scratch	Scratch register	Au1
23	0	Debug	EJTAG control register	Optional
24	0	DEPC	PC of EJTAG debug exception	Optional
25	0	PerfCnt	Performance counter value(s)	Au1
25	1	PerfCtrl	Performance counter control(s)	Au1
26	0		Reserved	Reserved
27	0		Reserved	Reserved

TABLE 6. Coprocessor 0 Register Definitions (Continued)

Register Number	Sel	Register Name	Description	Compliance
28	0	DTag	Data cache tag value	Au1
28	1	DData	Data cache data value	Au1
29	0	ITag	Instruction cache tag value	Au1
29	1	IData	Instruction cache data value	Au1
30	0	ErrorEPC	Program counter at last error	Required
31	0	DESave	EJTAG debug exception save register	Optional

A compliance of "Required" denotes a register required by the MIPS32 architecture.

A compliance of "Optional" denotes an optional register in the MIPS32 architecture which is implemented in the Au1 core.

A compliance of "Au1" denotes an optional register unique to the Au1 core.

A compliance of "Reserved" denotes a register that is not implemented.

2.7.1 Index Register (CP0 Register 0, Select 0)

The Index register is required for TLB-based virtual address translation units.

Index

CP0 Register 0, Select 0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	P													()															Index		
Def.	X	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	X	X	X	X	X

Bit(s)	Name	Description	R/W	Default
31	Р	Probe Failure.	R	UNPRED
30:5	Reserved	Must always write zeros, always reads zeros	R	0
4:0	Index	TLB Index	R/W	UNPRED

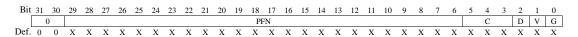
2.7.2 Random Register (CP0 Register 1, Select 0)

The Random register is required for TLB-based virtual address translation units.

Random

CP0 Register 1, Select 0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														0															R	andoı	n	
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1

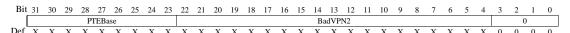

Bit(s)	Name	Description	R/W	Default
31:5	Reserved	Must always write zeros, always reads zeros	R	0
4:0	Random	TLB Random Index	R	31

2.7.3 EntryLo0, EntryLo1 Register (CP0 Registers 2 and 3, Select 0)

The EntryLo0 and EntryLo1 registers are required for TLB-based virtual address translation units.

EntryLo0, EntryLo1

CP0 Registers 2 and 3, Select 0


Bit(s)	Name	Description	R/W	Default
31:30	Reserved	Ignored on writes, returns zero on read	R	0
29:6	PFN	Page Frame Number. Corresponds to physical address bits 3512.	R/W	UNPRED
5:3	С	Cache coherency attribute of the page. See Table 2.	R/W	UNPRED
2	D	Dirty bit.	R/W	UNPRED
1	V	Valid bit	R/W	UNPRED
0	G	Global bit	R/W	UNPRED

2.7.4 Context Register (CP0 Register 4, Select 0)

The Context register is required for TLB-based virtual address translation units.

Context

CP0 Register 4, Select 0

Bit(s)	Name	Description	R/W	Default
31:23	PTEBase	Used by the operating system as a pointer into the current PTA array in memory.	R/W	UNPRED
22:4	BadVPN2	Contains virtual address bits 3113 upon a TLB exception.	R	UNPRED
3:0	Reserved	Reserved	R	0

2.7.5 PageMask Register (CP0 Register 5, Select 0)

The PageMask register is required for TLB-based virtual address translation units.

PageMask

CP0 Register 5, Select 0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0 Mask																	0														
Def.	0	0	0	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	0	0	0	0	0	0	0	0	0	0	0	0	0

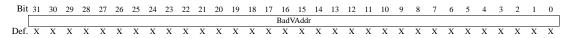
Bit(s)	Name	Description	R/W	Default
31:29	Reserved	Ignored on write, returns zero on read.	R	0
28:13	Mask	The Mask field is a bit mask in which a "1" bit indicates that the corresponding bit of the virtual address should not participate in the TLB match. See Table 3.	R/W	UNPRED
12:0	Reserved	Ignored on write, returns zero on read.	R	0

2.7.6 Wired Register (CP0 Register 6, Select 0)

The Wired register is required for TLB-based virtual address translation units.

Wired

CP0 Register 6, Select 0

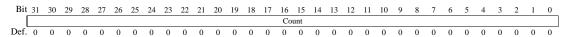

Bit(s)	Name	Description	R/W	Default
31:5	Reserved	Ignored on write, returns zero on read.	R	0
4:0	Wired	TLB wired boundary	R/W	0

2.7.7 BadVAddr Register (CP0 Register 8, Select 0)

The BadVAddr register is required for TLB-based virtual address translation units.

BadVAddr

CP0 Register 8, Select 0


Bit(s)	Name	Description	R/W	Default
31:0	BadVAddr	Bad virtual address	R	UNPRED

2.7.8 Count Register (CP0 Register 9, Select 0)

The Count register is a required register for a constant rate timer. This counter increments 1:1 with the core frequency.

Count

CP0 Register 9, Select 0

During IDLE0 or IDLE1 mode, the Count register increments at an unpredictable rate; therefore the Count/Compare registers can not be used as the system timer tick when using the **WAIT** instruction to enter an Idle mode.

During Sleep mode, this register will not increment.

Bit(s)	Name	Description	R/W	Default
31:0	Count	Interval counter	R/W	0

2.7.9 EntryHi Register (CP0 Register 10, Select 0)

The Index register is required for TLB-based virtual address translation units.

EntryHi

CP0 Register 10, Select 0

Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									VPN2	2											0						AS	ID			
Def. X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	0	0	0	0	0	X	X	X	X	X	X	X	X

Bit(s)	Name	Description	R/W	Default
31:13	VPN2	Virtual address bits 3113.	R/W	UNPRED
12:8	Reserved	Ignored on write, returns zero on read.	R	0
7:0	ASID	Address space identifier	R/W	UNPRED

2.7.10 Compare Register (CP0 Register 11, Select 0)

The Compare register is a required register for generating an interrupt from the constant rate timer.

Compare

CP0 Register 11, Select 0

Bit(s)	Name	Description	R/W	Default
31:0	Compare	Interval counter compare value	R/W	UNPRED

2.7.11 Status Register (CP0 Register 12, Select 0)

The Count register is a required register for general control of the processor.

Status

CP0 Register 12, Select 0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	CU0	RP	0	RE	0	0	BEV	0	SR	NMI	0	0	0				Il	M				0	0	0	UM	0	ERL	EXL	IE
Def.	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

Bit(s)	Name	Description	R/W	Default
31	CU3	This bit is zero. Coprocessor 3 is not implemented.	R	0
30	CU2	This bit is zero. Coprocessor 2 is not implemented.	R	0
29	CU1	This bit is zero. Coprocessor 1 is not implemented.	R	0
28	CU0	Controls access to coprocessor 0.	R/W	0
27	RP	Reduced power. This bit has no effect.	R/W	0
25	RE	Reverse-endian.	R/W	0
22	BEV	Boot exception vectors.	R/W	1

Bit(s)	Name	Description	R/W	Default
20	SR	Soft reset.	R/W	0
19	NMI	Non-maskable interrupt	R/W	0
15:8	IM	Interrupt mask	R/W	0
4	UM	User-mode.	R/W	0
3	R0	This bit is zero; Supervisor-mode not implemented	R	0
2	ERL	Error Level	R/W	1
1	EXL	Exception Level	R/W	0
0	IE	Interrupt Enable	R/W	0

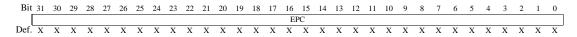
2.7.12 Cause Register (CP0 Register 13, Select 0)

The Cause register is a required register for general exception processing.

Cause

CP0 Register 13, Select 0

Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BD	0	Cl			(0		IV	WP			()						I	P				0		E	cCoc	le		0	1
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0


Bit(s)	Name	Description	R/W	Default
31	BD	Exception in branch delay slot	R	0
29:28	CE	Coprocessor error	R	0
23	IV	Interrupt vector	R/W	0
22	WP	Watchpoint exception deferred	R/W	0
15:10	IP[7:2]	Hardware interrupts pending	R	0x20
9:8	IP[1:0]	Software interrupts pending	R/W	0
6:2	ExcCode	Exception Code	R	0

2.7.13 Exception Program Counter (CP0 Register 14, Select 0)

The EPC register is a required register for general exception processing.

EPC

CP0 Register 14, Select 0

Bit(s)	Name	Description	R/W	Default
31:0	EPC	Exception Program Counter	R/W	UNPRED

2.7.14 Processor Identification (CP0 Register 15, Select 0)

The PRId register is a required register for processor identification.

PRId

CP0 Register 15, Select 0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Cor	npan	Opt	ions					(Compa	any II)					P	roces	sor II	D						Revi	sion			
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	R/W	Default
31:24	Com- pany Options	This field identifies the system-on-a-chip (SOC) identification: 0: Au1000 1: Au1500 2: Au1100	R	0
23:16	Com- pany ID	This field is assigned to AMD by MIPS Technologies, and contains the value 3.	R	3
15:8	Processor ID	This field identifies the core revision: 0: Reserved 1: Au1 revision 1 2: Au1 revision 2	R	2
7:0	Revision	This field contains a manufacturing specific revision level.	R	SOC specific

A complete listing of PRId values is available from AMD.

2.7.15 Configuration Register 0 (CP0 Register 16, Select 0)

The Config0 register is a required register for various processor configuration and capability.

Config0

CP0 Register 16, Select 0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	M			CT			DD	CD	UM	WD	NM	SM	OD	0	0	TM	BE	Α	T		AR			MT			()			K0	
Def	1	Λ	0	0	0	Λ	Λ	Λ	Λ	0	0	Λ	0	Λ	0	0	- 1	Λ	Λ	0	Λ	0	Λ	Λ	1	0	0	0	Λ	Λ	1	1

Bit(s)	Name	Description	R/W	Default
31	М	Denotes Config1 register available at select 1	R	1
30:26	СТ	Reserved, must write 0	R/W	0
25	DD	Reserved, must write 0	R/W	0
24	CD	Reserved, must write 0	R/W	0
23	UM	Reserved, must write 0	R/W	0
22	WD	Reserved, must write 0	R/W	0
21	NM	Reserved, must write 0	R/W	0
20	SM	Reserved, must write 0	R/W	0
19	OD	Reserved, must write 0	R/W	0
16	TM	Reserved, must write 0	R/W	0
15	BE	Indicates the endian mode.	R	1
14:13	AT	Architecture type is MIPS32.	R	0
12:10	AR	Architecture revision is Revision 1.	R	0
9:7	MT	MMU type is standard TLB.	R	1
2:0	K0	KSEG0 is cacheable, coherent.	R/W	3

2.7.16 Configuration Register 1(CP0 Register 16, Select 1)

The Config1 register is a required register for various processor configuration and capability.

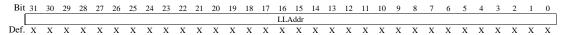
Config1

CP0 Register 16, Select 1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0		M	MU	Size -	- 1			IS			IL			IA			DS			DL			DA		C2		PC	WR	CA	EP	FP
Def.	0	0	1	1	1	1	1	0	0	1	1	0	0	0	1	1	0	0	1	1	0	0	0	1	1	0	0	0	1	0	1	0

Bit(s)	Name	Description	R/W	Default
30:25	MMU Size - 1	Number of entries in the TLB minus one. The TLB has 32 entries.	R	31
24:22	IS	Instruction cache sets per way is 128.	R	1
21:19	IL	Instruction cache line size is 32 bytes.	R	4
18:16	IA	Instruction cache associativity is 4-way.	R	3
15:13	DS	Data cache sets per way is 128.	R	1

Bit(s)	Name	Description	R/W	Default
12:10	DL	Data cache line size is 32 bytes.	R	4
9:7	DA	Data cache associativity is 4-way.	R	3
6	C2	Coprocessor 2 is not implemented.	R	0
5	MD	Always returns zero on read.	R	0
4	PC	Performance Counter registers are not implemented.	R	0
3	WR	Watchpoint registers are implemented.	R	1
2	CA	Code compression is not implemented.	R	0
1	EP	EJTAG is implemented.	R	1
0	FP	FPU is not implemented.	R	0

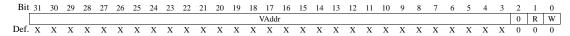

2.7.17 Load Linked Address Register (CP0 Register 17, Select 0)

The LLAddr register provides the physical address of the most recent Load Linked instruction.

LLAddr

CP0 Register 17, Select 0

CP0 Register 18, Select 0



Bit(s)	Name	Description	R/W	Default
31:0	LLAddr	Load Linked Address	R	UNPRED

2.7.18 Data WatchLo Register (CP0 Register 18, Select 0)

The WatchLo and WatchHi registers are the interface to the data watchpoint facility.

WatchLo

Bit(s)	Name	Description	R/W	Default
31:3	VAddr	The virtual address to match	R/W	UNPRED
1	R	If this bit is a one, then watch exceptions are enabled for loads that match the address.	R/W	0
0	W	If this bit is a one, then watch exceptions are enabled for stores that match the address.	R/W	0

2.7.19 Instruction WatchLo Register (CP0 Register 18, Select 1)

The IWatchLo and IWatchHi registers are the interface to the instruction watchpoint facility.

IWatchLo

CP0 Register 18, Select 1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														,	VAdd	r														I	0	0
Def.	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	0	0	0

Bit(s)	Name	Description	R/W	Default
31:3	VAddr	The virtual address to match	R/W	UNPRED
2	I	If this bit is a one, then watch exceptions are enabled for instruction accesses that match the address.	R/W	0

2.7.20 Data WatchHi Register (CP0 Register 19, Select 0)

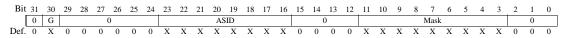
The WatchLo and WatchHi registerS are the interface to the data watchpoint facility.

WatchHi

CP0 Register 19, Select 0

Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
M	G			()						AS	SID					()						Mask						0	
Def. 1	X	0	0	0	0	0	0	X	X	X	X	X	X	X	X	0	0	0	0	X	X	X	X	X	X	X	X	X	0	0	0

Bit(s)	Name	Description	R/W	Default
31	М	another pair of Watch registers is implemented at the next Select index.	R	1
30	G	If this bit is one, then the ASID field is ignored and any address that matches causes a watch exception.	R	UNPRED

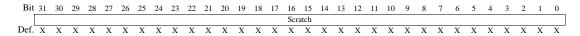

Bit(s)	Name	Description	R/W	Default
23:16	ASID	ASID value which is required to match that in the EntryHi register if the G bit is zero in the WatchHi register.	R/W	UNPRED
11:3	Mask	Any bit in this field that is a one inhibits the corresponding address bit from participating in the address match.	R/W	UNPRED

2.7.21 Instruction WatchHi Register (CP0 Register 19, Select 1)

The IWatchLo and IWatchHi registers are the interface to the instruction watchpoint facility.

IWatchHi

CP0 Register 19, Select 1


Bit(s)	Name	Description	R/W	Default
30	G	If this bit is one, then the ASID field is ignored and any address that matches causes a watch exception.	R	UNPRED
23:16	ASID	ASID value which is required to match that in the EntryHi register if the G bit is zero in the WatchHi register.	R/W	UNPRED
11:3	Mask	Any bit in this field that is a one inhibits the corresponding address bit from participating in the address match.	R/W	UNPRED

2.7.22 Scratch Register (CP0 Register 22, Select 0)

The Scratch register exists for the convenience of software. Upon a read, this register returns the value last written into it.

Scratch

CP0 Register 22, Select 0

Bit(s)	Name	Description	R/W	Default
31:0	Scratch	This register is present for the convenience of software.	R/W	UNPRED

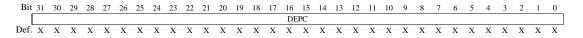
2.7.23 Debug Register (CP0 Register 23, Select 0)

The Debug register is part of the interface to the EJTAG facility.

Debug

CP0 Register 23, Select 0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DB			LSN																							DIN					
	D	DM	0	M					(0						001			DE	ExcCo	ode		0	SSt	0	0	T		0		DBp	DSS
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	X	X	X	X	X	0	0	0	0	0	0	0	0	0	0

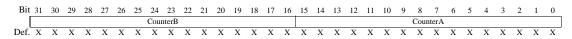

Bit(s)	Name	Description	R/W	Default
31	DBD	Debug exception in branch delay slot.	R	UNPRED
30	DM	If this bit is a one, then in debug mode.	R	0
28	LSNM	Load/stores are performed in the normal fashion when in debug mode.	R/W	0
17:15	001	EJTAG version 2.5	R	001
14:10	DExc- Code	Cause[ExcCode] for normal exceptions in debug mode.	R	UNPRED
8	SSt	Enable single step mode	R/W	0
5	DINT	Last debug exception was asynchronous debug interrupt	R	0
1	DBp	Last debug exception was an SDBPP instruction	R	0
0	DSS	Last debug exception was a single step	R	0

2.7.24 DEPC Register (CP0 Register 24, Select 0)

The DEPC register is part of the interface to the EJTAG facility.

DEPC

CP0 Register 24, Select 0


Bit(s)	Name	Description	R/W	Default
31:0	DEPC	Debug exception program counter.	R/W	UNPRED

2.7.25 Performance Counter Register (CP0 Register 25, Select 0)

The PerfCnt and PerfCtrl registers are the interface to the performance counter facility. The performance counter implementation is unique to the Au1.

PerfCnt

CP0 Register 25, Select 0

Bit(s)	Name	Description	R/W	Default
31:16	CounterB	Value of performance counter B.	R/W	UNPRED
15:0	CounterA	Value of performance counter A.	R/W	UNPRED

2.7.26 Performance Control Register (CP0 Register 25, Select 1)

The PerfCnt and PerfCtrl registers are the interface to the performance counter facility.

PerfCtrl

CP0 Register 25, Select 1

Bi	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	OB		USB			()			ES	SB		IOB	IUB	IKB	IEB	OA		USA			()			ES	SA		IOA	IUA	IKA	IEA
Def	X	X	X	X	0	0	0	0	X	X	X	X	0	X	X	X	X	X	X	X	0	0	0	0	X	X	X	X	0	X	X	X

Bit(s)	Name	Description	R/W	Default
31	ОВ	Overflow detect for counter B.	R/W	UNPRED
30:28	USB	Unit select for 1 of 16 units as source of events for performance counter B.	R/W	UNPRED
23:20	ESB	Event select for 1 of 16 signals from selected unit for performance counter B.	R/W	UNPRED
19	IOB	Enable interrupt on overflow of counter B.	R/W	0
18	IUB	If this bit is one, event counting for performance counter B continues while in user mode (Status[ERL]=0b0 and Status[EXL]=0b0 and Status[UM]=0b1).	R/W	UNPRED

Bit(s)	Name	Description	R/W	Default
17	IKB	If this bit is one, event counting for performance counter B continues while in kernel mode (Status[ERL]=0b0 and Status[EXL]=0b0 and Status[UM]=0b0).	R/W	UNPRED
16	IEB	If this bit is one, event counting for performance counter B continues during exception/interrupt processing (Status[ERL]=0b1 or Status[EXL]=0b1).	R/W	UNPRED
15	OA	Overflow detect for counter A.	R/W	UNPRED
14:12	USA	Unit select for 1 of 16 units as source of events for performance counter A.	R/W	UNPRED
7:4	ESA	Signal select for 1 of 16 signals from selected unit for performance counter A.	R/W	UNPRED
3	IOA	Enable interrupt on overflow of counter A.	R/W	0
2	IUA	If this bit is one, event counting for performance counter A continues while in user mode (Status[ERL]=0b0 and Status[EXL]=0b0 and Status[UM]=0b1).	R/W	UNPRED
1	IKA	If this bit is one, event counting for performance counter A continues while in kernel mode (Status[ERL]=0b0 and Status[EXL]=0b0 and Status[UM]=0b0).	R/W	UNPRED
0	IEA	If this bit is one, event counting for performance counter A continues during exception/interrupt processing (Status[ERL]=0b1 or Status[EXL]=0b1).	R/W	UNPRED

The PerfCnt register provides read/write access to the current value of both performance counters A and B. The PerfCnt register concatenates the two 16-bit counters into a one 32-bit register. A read of this register returns the current count for each performance counter. A write to this register will preload the counters to new values. The performance counters are reset to zeros when a write to the PerfCtrl register is written.

NOTE: USx=0 and ESx=0 is constant so that the counter is effectively disabled and thus consumes no power.

A listing of the valid units and events can be obtained from AMD.

2.7.27 Data Cache Tag Register (CP0 Register 28, Select 0)

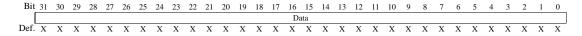
The DTag and DData registers are the interface to the data cache array. This cache interface is unique to the Au1.

NOTE: This register corresponds to the TagLo register in the MIPS32 ISA specification.

DTag CP0 Register 28, Select 0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										T/	٩G										M	RU	NM	RU	LI	RU	0	0	D	S	L	V
Def.	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	0	0	X	X	X	X

Bit(s)	Name	Description	R/W	Default
31:12	TAG	TAG represents bits [31:12] of a physical memory address. Bits [35:32] of the physical address are always zero.	R/W	UNPRED
11:10	MRU	Most recently used way.	R/W	UNPRED
9:8	NMRU	Next most recently used way.	R/W	UNPRED
7:6	LRU	Least recently used way.	R/W	UNPRED
3	D	Cache line is dirty (modified).	R/W	UNPRED
2	S	Cache line is shared (for data cache snoops).	R/W	UNPRED
1	L	Locked. This bit is set by the user to prevent overwriting of the cache block.	R/W	UNPRED
0	٧	Cache block valid.	R/W	UNPRED


2.7.28 Data Cache Data Register (CP0 Register 28, Select 1)

The DTag and DData registers are the interface to the data cache array.

NOTE: This register corresponds to the DataLo register in the MIPS32 ISA specification.

DData

CP0	Register	28.	Selec	t 1
\sim 10	INCEIDICE			

Bit(s)	Name	Description	R/W	Default
31:0	Data	Data from the data cache line.	R	UNPRED

2.7.29 Instruction Cache Tag Register (CP0 Register 29, Select 0)

The ITag and IData registers are the interface to the instruction cache array. This cache interface is unique to the Au1.

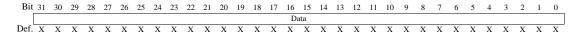
NOTE: This register corresponds to the TagHi register in the MIPS32 ISA specification.

ITag

CP0 Register 29, Select 0

Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TAG													M	RU	NM	RU	LF	RU		()		L	V						
Def. X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	0	0	0	0	X	X

Bit(s)	Name	Description	R/W	Default
31:12	TAG	TAG represents bits [31:12] of a physical memory address. Bits [35:32] of the physical address are always zero.	R/W	UNPRED
11:10	MRU	Most recently used way.	R/W	UNPRED
9:8	NMRU	Next most recently used way.	R/W	UNPRED
7:6	LRU	Least recently used way.	R/W	UNPRED
1	L	Locked. This bit is set by the user to prevent overwriting of the cache block.	R/W	UNPRED
0	V	Cache block valid.	R/W	UNPRED

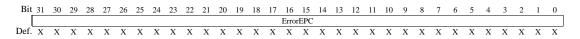

2.7.30 Instruction Cache Data Register (CP0 Register 29, Select 1)

The ITag and IData registers are the interface to the instruction cache array.

NOTE: This register corresponds to the DataHi register in the MIPS32 ISA specification.

IData

CP0 Register 29, Select 1


Bit(s)	Name	Description	R/W	Default
31:0	Data	Data from the instruction cache line.	R	UNPRED

2.7.31 ErrorEPC Register (CP0 Register 30, Select 0)

The ErrorEPC register is a required register for exception processing.

ErrorEPC

CP0 Register 30, Select 0

Bit(s)	Name	Description	R/W	Default
31:0	ErrorEPC	Error Exception Program Counter	R/W	UNPRED

2.7.32 DESAVE Register (CP0 Register 31, Select 0)

The DESAVE register is part of the interface to the EJTAG facility

Bit	(s)	Name	Description	R/W	Default
31:0)	DESAVE	Debug save scratch register, for debug handlers.	R/W	UNPRED

2.8 System Bus

The Au1 core communicates with memories and peripherals via the system bus (SBUS). The system bus is a 36-bit physical address and 32-bit data bus which is internal to the Au1100. The system bus is the coherency point within the Au1100.

2.8.1 SBUS Arbitration

The system bus supports multiple masters which are the Au1 core and peripheral DMA engines. The system bus is granted to the masters in a least-recently-used/fair scheme. This scheme prevents two or more masters from consuming the entire system bus bandwidth, while permitting low latency access to the system bus for masters which request the bus infrequently (such as peripherals).

The system bus requestors in the Au1100 are:

- Au1 core
- Ethernet MAC controller
- USB Host controller
- IrDA controller
- LCD Controller

DMA channels (8)

The Au1 presents a single request to the system bus arbiter for the three possible requestors: the data cache, the instruction cache and the write buffer. The data cache has the highest priority and the write buffer the lowest priority among the three requests. However, the write buffer priority becomes the highest when the data cache requests a load to an address in the write buffer to allow the write buffer to empty prior to fulfilling the data cache load.

2.8.2 SBUS Coherency Model

The SBUS is the coherency point within the Au1100. An SBUS master (i.e. Au1 core or peripheral DMA engine) marks each SBUS transaction as either coherent or non-coherent. SBUS transactions marked as coherent are then snooped by all caching masters (i.e. Au1 data cache). An SBUS transaction that is marked non-coherent is not snooped by caching masters.

The Au1 core is a coherent, caching master. The Au1 data cache snoops SBUS transactions; if a read transaction hits in the data cache then the data cache provides the data, if a write transaction hits in the data cache then the data cache array is updated with the new data.

The integrated peripherals (with DMA engines) can be configured for coherent or non-coherent operation. The 'C' bit in the peripheral/module enable register directs whether peripheral SBUS transactions are to be marked coherent or non-coherent. If a peripheral is configured for coherent operation, then it is not necessary to writeback and invalidate Au1 data cache lines which hit in the memory buffers used by DMA engines. If, on the other hand, the peripheral is configured for non-coherent operation, then software must ensure that memory buffers used by the DMA engines are not in the data cache (else the data cache and/or the memory buffer may contain old, stale data).

The decision to use, or not use, coherent SBUS transactions is left to the application. However, peripheral device drivers using coherent SBUS transactions will perform better than drivers not using coherent SBUS transactions since the need to writeback the data cache is eliminated.

2.9 EJTAG

EJTAG is supported per the MIPS EJTAG Rev. 2.5 specification. EJTAG provides for CPU and board level bring-up and debug.

Memory Controllers

The Au1100 contains two memory controllers, one for SDRAM and one for static devices.

The SDRAM controller supports SDRAM, SMROM and Sync Flash. The controller has its own independent voltage I/O that may be programmed to supply various output voltages such as 2.5 V and 3.3 V.

The static device controller supports SRAM, Flash, ROM, page mode ROM, PCMCIA/Compact Flash devices, and an external LCD controller interface.

Both memory controllers support software configurable memory address spaces. This allows designers to keep memory regions contiguous. For example, a system with 4MB initially installed would locate the memory at physical address 0. Normally, adding 16MB would create a 12MB "hole" in the memory map. With the address configuration options in the Au1100 the 4MB can be relocated to start at 16M and the new memory can be located at 0 to allow a 20MB contiguous memory pool.

All registers in the Memory Controller block are located off of the base address shown in Table 7.

TABLE 7. Memory Controller Block Base Address

Name	Physical Base Address	KSEG1 Base Address					
mem	0x0 1400 0000	0xB400 0000					

Table 83 shows how the state of ROMSEL and ROMSIZE will determine where the processor boots from. The system designer has the choice of booting from 32 bit flash, 16 bit flash, 32 bit SMROM or 32 bit SyncFlash. The ROMSEL and ROMSIZE configuration is discussed in more detail in Section 8.2. "Reset".

3.1 SDRAM Memory Controller

The SDRAM memory controller of the Au1100 is designed for glueless interface to one, two, or three ranks of SDRAM or SMROM. SDRAM and SyncFlash are run at 1/2 the internal system bus speed. The system bus defaults to 1/2 the processor clock speed so that SDRAM or SyncFlash will run at 99MHz with a 396 MHz Au1100. SMROM operates at 1/4 the speed of the system bus. The system bus divider is programmable, see Section 7.4.3, "Device Power Management - Sleep" for more information.

The SDRAM interface supports three chip selects, corresponding to three ranks of SDRAM. Each chip select can be configured to support either SDRAM or SMROM. In addition, chip select 0 can be configured for SyncFlash (no other chip selects can be used to support SyncFlash). For chip selects configured as SDRAM or SyncFlash the controller will keep one row open for each chip select allowing faster accesses and reducing the need to issue precharge cycles.

When RESETIN is deasserted, code is fetched from SMROM/SyncFlash if SMROM/SyncFlash boot is selected. When using SMROM or SyncFlash for boot, the SMROMCKE (muxed with GPIO6) should be used for the SMROM/SyncFlash CKE. If SMROM or SyncFlash are being used, but not for boot, then SDCKE should be used for the clock enable. Please contact AMD technical support for detailed information on booting from SMROM or SyncFlash.

After boot internal configuration registers can be written to enable SDRAM chip selects. When a chip select is enabled the SDCKE is driven asserted and clocks are started. Software must wait 100uS for the SDRAM clock to stablize before any device specific initialization steps.

All SDRAM/SMROM ranks must be 32 bits wide. Support is included for SDRAM with 2 or 4 banks, 11 to 13 row address bits, and 7 to 11 column address bits. It is also possible to send explicit commands to the SDRAM, under software control, for diagnostic, initialization, or power management purposes.

SDRAM clocks keep running during a runtime reset to allow any transaction in progress to complete. This avoids the possibility of bus contention when the part is brought out of reset.

The SDRAM controller assumes that the external SDRAM is configured to a burst of 8 mode.

3.1.1 SDRAM Controller Programming Model

The SDRAM Controller contains a number of registers which configure the operation of the interface. All registers in the SDRAM Controller block are located off of the base address shown in Table 7. Table 8 shows the memory map of the register block.

TABLE 8. SDRAM Configuration Registers

Offset	Register Name	Description
0x0000	mem_sdmode0	Chip Select 0 Mode Configuration (Timing and Functionality)
0x0004	mem_sdmode1	Chip Select 1 Mode Configuration (Timing and Functionality)
0x0008	mem_sdmode2	Chip Select 2 Mode Configuration (Timing and Functionality)
0x000c	mem_sdaddr0	Chip Select 0 Address Configuration and Enable
0x0010	mem_sdaddr1	Chip Select 1 Address Configuration and Enable
0x0014	mem_sdaddr2	Chip Select 2 Address Configuration and Enable
0x0018	mem_sdrefcfg	Refresh Configuration and Timing
0x001c	mem_sdprecmd	Issue Precharge to all enabled chip selects
0x0020	mem_sdautoref	Issue Auto Refresh to all enabled chip selects
0x0024	mem_sdwrmd0	Write data to CS0 SDRAM mode register
0x0028	mem_sdwrmd1	Write data to CS1 SDRAM mode register
0x002C	mem_sdwrmd2	Write data to CS2 SDRAM mode register
0x0030	mem_sdsleep	Force SDRAM into self refresh mode
0x0034	mem_sdsmcke	Toggle SMROMCKE pin

3.1.1.1 SDRAM Registers

Each chip select is configured by two registers, a mode register and an address configuration register.

Chip Select Mode Configuration Registers

The format and reset values of the chip select mode configuration registers is shown in the following figure. The timing parameters (Tcl, Tcrd, Trp, Twr, Tmrd, and Tras) correspond

directly to times shown in the SDRAM timing diagrams. Times are measured in SDRAM/SMROM clock cycles.

The default values for chip select zero correspond to values for SMROM operation. Chip select 1 and 2 are configured with the slowest timing values at reset.

Reserved fields should be written as zeros and ignored on read to preserve compatibility with future versions of the product.

mem_sdmode0 - CS0 Mode Configuration

Offset = 0x0000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									SF	F	SR	BS	R	.S		CS			Tr	as		Tn	ırd	Τv	vr	Tr	p.	Tro	ed .		Tcl	
Def.	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	1	1	0	0

mem_sdmode1 - CS1 Mode Configuration

Offset = 0x0004

mem_sdmode2 - CS2 Mode Configuration

Offset = 0x0008

Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									F	SR	BS	R	S		CS			Tı	as		Tn	nrd	Tv	vr	Ti	rp	Tr	cd		Tcl	
Def. 0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bit(s)	Name	Description	R/W	Default
31:24	RES	These bits are reserved and should be written a 0.	R	0
23	SF	Selects SyncFlash operation. SyncFlash is only available on CS0. For other chip selects this bit is reserved and should be written as 0.	R/W	0
22	F	Setting the F bit allows the SDRAM controller to assume that no cacheing master except the core will access this memory space. This allows accesses to begin sooner. For the Au1100 the CPU core is the only possible cacheing master so this bit may always be set.	R/W	0
21	SR	Chip select operating mode 0: SDRAM Operation 1: SMROM Operation	R/W	See above
20	BS	Select Number of Banks 0: Chip select controls 2 bank SDRAM 1: Chip select controls 4 bank SDRAM This bit must be set to 0 for SMROM support	R/W	See above

Bit(s)	Name	Description	R/W	Default
19:18	RS	This field sets the number of bits in the row address as shown below: RS Row Address Size 0 11 1 12 2 13 3 Reserved	R/W	See above
17:15	CS	This field sets the number of bits in the column address as shown below: CS Column Size 0 7 1 8 2 9 3 10 4 11 5 Reserved 6 Reserved 7 Reserved	R/W	See above
14:11	Tras	This field designates the minimum delay from a activate to a precharge command. The value in the Tras field must be one less than the minimum number of SDRAM clock cycles required.	R/W	15
10:9	Tmrd	This field sets the required delay from an external load of the SDRAM mode register (not the chip select mode register) to an activate command. The value in the Tmrd field must be one less than the required number of SDRAM clock cycles.	R/W	3
8:7	Twr	The Twr field sets the write recovery time. This is the last data for a write to a precharge. This field is sometimes referred to a Tdpl. The value in the Twr field must be one less than the required number of SDRAM clock cycles.	R/W	3
6:5	Trp	This field sets the time from precharge to the next activate command. The value of the Trp field must be one less than the required number of SDRAM clock cycles.	R/W	3

Bit(s)	Name	Description	R/W	Default
4:3	Trcd	This field sets the RAS to CAS delay. The value of the Trcd field must be one less than the required number of SDRAM clock cycles.	R/W	See Above
2:0	Tcl	This field sets the minimum CAS latency timing. This is the time from CAS to DATA on reads. The value in the Tcl field must be one less than the required number of SDRAM clock cycles.	R/W	See Above

Chip Select Address Configuration Registers

The chip select address configuration registers select the physical addresses for each chip select. Each register contains a base address and a mask. When the following equation is met

$$(physical_addr \& CSMASK) == CSBA$$

the given chip select is activated. *Physical_addr* is the actual address as output on the internal system bus (from the TLB for memory mapped regions), *CSMASK* is the mask set below and *CSBA* is the chip select base address as programmed below. Chip select regions must be programmed so that each chip select occupies a unique area of the physical address space. Programming overlapping chip select regions will result in undefined operation.

The E bits for chip selects CS1 and CS2 are initialized to zero. The E bit to CS0 is set non-zero when the ROM_SEL and ROM_SIZE pins indicate that the SMROM/SyncFlash should be used for the boot vector (ROM_SEL==1, ROM_SIZE==0).

Bit(s)	Name	Description	R/W	Default
31:21	RES	These bits are reserved and should be written a 0	R	0
20	Е	When the E bit is set the chip select is enabled. Clearing the E bit will prevent the chip select from becoming activated on a matching address compare.	R/W	See above
19:10	CSBA	The CSBA field becomes bits 31:22 of the chip select base address. The lower bits of the base address are zero.	R/W	See above
9:0	CSMASK	The bits in the CSMASK field become bits 31:22 of the chip select comparison mask. The lower bits of the mask are set to zero.	R/W	See above

Refresh Configuration Register

The refresh configuration register sets the timing of SDRAM refresh for all chip selects. Since the timing for these signals apply to all chip selects, if different types of SDRAM is used the worst case timing must be applied. The format of the refresh configuration register is as follows:

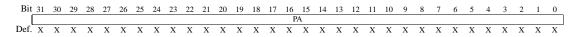
$mem_sdrefcfg - Refresh\ Configuration$

Offset = 0x0018

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ		T	rc		Tı	pr	Е													RI												
Def.	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bit(s)	Name	Description	R/W	Default
31:28	Trc	The Trc field specifies the minimum time from the start of an auto refresh cycle to an activate command for all SDRAM chip selects. The value of the Trc field must be one less than the minimum number of SDRAM clock cycles.	R/W	Oxf

Bit(s)	Name	Description	R/W	Default
27:26	Trpm	This field specifies the minimum time from a precharge to the start of a refresh cycle for all SDRAM chip selects. This is used because a precharge all command is automatically initiated before an auto refresh command. This value should be programmed with the worst case Trp from the sdr_csmoden registers. The value of the Trpr field must be one less than the minimum number of SDRAM clock cycles.	R/W	S
25	Е	When this bit is set, refresh is enabled for all chip selects configured as SDRAM.	R/W	0
24:0	RI	Refresh Interval - This field specifies the maximum refresh interval in system bus clocks for all SDRAM ranks. The refresh interval is for each individual refresh so for a system with a row address size of 12 (4096 rows) and memory with a refresh time of 64ms (all rows), the individual refresh interval will be 15.7us (64ms/4096). With a system bus clock of 198MHz, the RI value should be 0xC24. (15.7us/(1/198MHz).	R/W	0x1FFFFFF


Precharge All Command Register

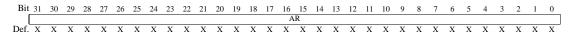
Writing any value to the **mem_sdprecmd** register issues a precharge all command to all enabled SDRAM chip selects. This can be used for initialization sequences that require certain operations to be performed in a deterministic order.

Reading from the **mem_sdprecmd** register is unpredictable.

mem_sdprecmd - Precharge All Command Reg

Offset = 0x001c

Bit(s)	Name	Description	R/W	Default
31:0	PA	Writing any value to PA will cause a precharge command to be issued to all enabled SDRAM chip selects.	W	UNPRED


Auto Refresh Command Register

Writing to the **mem_sdautoref** register performs an auto refresh command on all enabled SDRAM chip selects. This can be used for initialization sequences that require specific operations to be performed in a deterministic order. To insure future compatibility the value written should always be zero.

Reading from the **mem_sdautoref** register will return the current value of the refresh timer.

mem_sdautoref - Auto Refresh Command

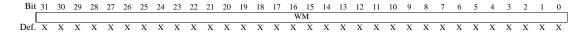
Offset = 0x0020

Bit(s)	Name	Description	R/W	Default
31:0	AR	Writing any value to AR will cause an Auto Refresh command to be issued to all enabled SDRAM chip selects.	R/W	UNPRED

External SDRAM Mode Register Access

The **mem_sdwrmd0**, **mem_sdwrmd1**, and **mem_sdwrmd2** command registers allow software to directly write to the mode registers in SDRAM connected to each chip select. This can be used in initialization sequences that require certain operations be performed in a deterministic order.

mem_sdwrmd0 - Write CS0 SDRAM Mode


Offset = 0x0024

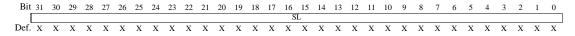
mem_sdwrmd1 - Write CS1 SDRAM Mode

Offset = 0x0028

mem_sdwrmd2 - Write CS2 SDRAM Mode

Offset = 0x002c

Bit(s)	Name	Description	R/W	Default
31:0	WM	The value written to this register will be written to the external SDRAM mode register for the corresponding chip select.	W	UNPRED

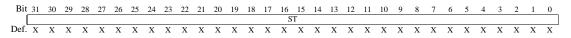

SDRAM Sleep/Self Refresh Command Register

Writing any value to this register performs sends a self refresh command on all enabled SDRAM chip selects. This command can be used for the SDRAM power down sequence which requires specific commands to be performed in a deterministic order.

After performing self refresh the SDRAM controller will hold SDCKE low and wait until a sleep exit sequence or reset is performed. For this reason nothing should access the SDRAM after this command has been issued.

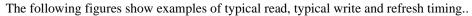
mem sdsleep -SDRAM Sleep

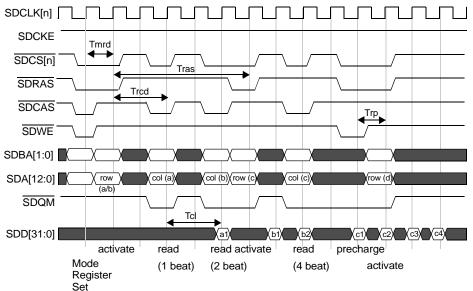
Offset = 0x0030


Bit(s)	Name	Description	R/W	Default
31:0	SL	Writing any value to SL will issue a self refresh command on all enabled chip selects.	W	UNPRED

SMROMCKE Toggle Register

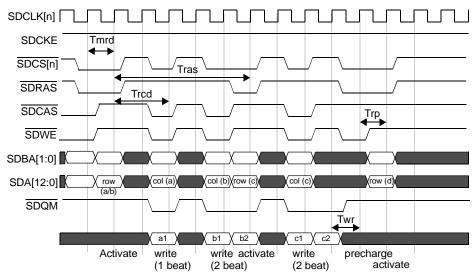
Writing to this register causes the state of the SMROMCKE pin to change. SMROMCKE will default to high when booting from SMROM or Sync Flash. This is used during powerup configuration to change the SMROM burst size from 4 to 8 beats. This command register does not affect the SDRAM SDCKE pin.


mem_sdsmcke -SMROMCKE Toggle


Offset = 0x0034

Bit(s)	Name	Description	R/W	Default
31:0	ST	Writing any value to ST will invert the current state of the SMROMCKE pin.	W	UNPRED

3.1.1.2 SDRAM Timing

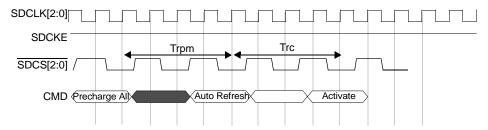


The above timing represents the following:

- 1. Tras = 4 (5 SDRAM clock cycles)
- 2. Trp = 0 (1 SDRAM clock cycles)
- 3. Trcd = 1 (2 SDRAM clock cycles)
- 4. Tcl = 1(2 SDRAM clock cycles)
- 5. Tmrd = 0(2 SDRAM clock cycles)

The above timing is presented to consisely display the different SDRAM timing parameters. The functional bus behavior may differ from that displayed.

FIGURE 4. SDRAM Typical Read Timing


Mode Register Set

The above timing represents the following:

- 1. Tras = 4 (5 SDRAM clock cycles)
- 2. Trp = 0 (1 SDRAM clock cycles)
- 3. Trcd = 1 (2 SDRAM clock cycles)
- 4. Tmrd = 0(1 SDRAM clock cycles)

The above timing is presented to consisely display the different SDRAM timing parameters. The functional bus behavior may differ from that displayed.

FIGURE 5. SDRAM Typical Write Timing

This example assumes that all SDCLK ranks ([2:0] are enable.

The above timing represents the following:

- 1. Trpm = 3 (4 SDRAM clock cycles)
- 2. Trc = 3(4 SDRAM clock cycles)

FIGURE 6. SDRAM Refresh Timing

3.1.2 SDRAM Hardware Considerations

Table 9 shows the signals associated with the SDRAM interface.

TABLE 9. SDRAM Signals

Pin Name	Input/ Output	Description	
SDA[12:0]	0	Address Outputs: A0-A12 are driven during the ACTIVE command (row-address A0-A12) and READ/WRITE command to select one location out of the memory array in the respective bank. The address outputs also provide the opcode during a LOAD MODE REGISTER command.	
SDBA[1:0]	0	Bank Address Inputs: BA0 and BA1 define to which bank the ACTIVE, READ, WRITE or PRECHARGE command is being applied.	
SDD[31:0]	Ю	SDRAM data bus	
SDQM[3:0]	0	Active Low Input/Output Mask: SDQM is a mask signal for write accesses and an output enable signal for read accesses. SDQM0 masks SDD7:0, SDQM1 masks SDD15:8, SDQM2 masks SDD23:16, SDQM3 masks SDD31:24.	

TABLE 9. SDRAM Signals (Continued)

Pin Name	Input/ Output	Description
SDRAS	0	Active Low Command Output. SDRAS, SDCAS and SDWE (along with SDCSn) define the command being sent to the SDRAM rank.
SDCAS	0	Active Low Command Output. SDRAS, SDCAS and SDWE (along with SDCSn) define the command being sent to the SDRAM rank.
SDWE	0	Active Low Command Output. SDRAS, SDCAS and SDWE (along with SDCSn) define the command being sent to the SDRAM rank.
SDCLK[2:0]	0	Clock output corresponding to each of the three chip selects. Clock speed is 1/2 system bus frequency when corresponding SDCSn is set to SDRAM or SyncFlash, 1/4 system bus frequency when corresponding SDCSn is set to SMROM.
SDCS[2:0]	0	Active Low Programmable Chip selects (3 ranks)
SDCKE	0	Clock enable for SDRAM
SMROMCKE	0	Synchronous Mask Rom Clock Enable. This signal must be pulled high if the system is booting from SMROM. Muxed with GPIO6. If ROMSEL and ROM-SIZE are configured to boot from Synchronous Mask ROM, SMROMCKE will control the pin out of reset, else GPIO6 will control the pin out of reset.

3.2 Static Bus Controller

The static bus controller provides a general purpose interface to a variety of external peripherals and memory devices. Each of the four static bus chip selects may be programmed to support standard Flash memory, ROM, Page Mode Flash/ROM, SRAM, I/O peripherals, PCMCIA/Compact Flash devices, or an LCD controller. Because of the similarity of Compact flash and PCMCIA, references to PCMCIA should be taken as applicable to compact flash except where noted.

The Au1100 allows control of different device types by reconfiguring what control signals chip select *n* manages based on how the device type field (DTY) is encoded in the **mem_stcfg***n* register. All device types utilize the address and data bus, RAD[31:0] and RD[31:0] respectively.

Descriptions of all device types are provided in Section 3.2.2, "Static RAM, I/O Device and Flash Device Types", Section 3.2.3, "PCMCIA/Compact Flash Device Type", and Section 3.2.4, "LCD Controller Device Type".

Any read to the static bus will cause a 32 bit access. This can cause a potential problem with volatile devices as a single 16 bit read will result in two 16 bit reads on the external bus.

Chip selects may be programmed for fixed access times or an external wait line may be used to provide a variable delay on a per access basis.

While the static bus controller is a synchronous device internally, there is no external clock available to reference the control signals.

3.2.1 Static Controller Programming Model

The properties of each static controller chip select are determined by a set of registers. All registers in the Static Controller block are located off of the base address shown in Table 7. Table 10 shows the registers and offsets for the static bus controller.

TABLE 10. Static Bus Controller Configuration Registers

Offset	Register Name	Description
0x1000	mem_stcfg0	Configuration for RCS0
0x1004	mem_sttime0	Timing parameters for RCS0
0x1008	mem_staddr0	Address region control for RCS0
0x1010	mem_stcfg1	Configuration for RCS1
0x1014	mem_sttime1	Timing parameters for RCS1
0x1018	mem_staddr1	Address region control for RCS1
0x1020	mem_stcfg2	Configuration for RCS2

TABLE 10. Static Bus Controller Configuration Registers

Offset	Register Name	Description
0x1024	mem_sttime2	Timing parameters for RCS2
0x1028	mem_staddr2	Address region control for RCS2
0x1030	mem_stcfg3	Configuration for RCS3
0x1034	mem_sttime3	Timing parameters for RCS3
0x1038	mem_staddr3	Address region control for RCS3

Static Bus Configuration Registers

The static bus configuration registers set the basic properties of each chip select. Support is included for static RAM, Flash, ROM, PCMCIA, LCD, and other types of I/O devices.

When programming a chip select as an I/O, LCD or PCMCIA device the address comparison mask will expect an address with the upper nibble set as shown in Table 11 for the different device types. The TLB must be set up accordingly to map addresses to the memory region captured by the associated chip select.

For example, to program the TLB for use with an LCD controller, bits 29:26 of CoProcessor register Entry Lo must be set to 1110b (in addition to the other steps necessary to set up the TLB). These bits represent address bits 35:32 of the physical address which must be 0xE in order for the address to match successfully when a chip select is enabled as an LCD device.

Since the RAM and Flash have an upper nibble of zero, it is not necessary to use the TLB to access devices set up with these types.

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											AS	S	DE	PH	V								BE	TS	EW	Н	BS	PM	RO		DTY	
Def	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

mem_stcfg3

Bit(s)	Name	Description	R/W	Default
31:22	RES	This field is reserved and should be written as zero.	R	0
21	AS	Setup address before chip select on reads.	R/W	0
20	S	Synchronous mode: when this bit is set all static bus signals are synchronized to LCLK; values in the mem_sttime register are programmed in LCLK clock resolution. Note: Synchronous Mode cannot be used when set as PCMCIA.	R/W	0
19	DE	Deassert chip select, output enable, write enable, byte enable, read indicators LRD[1:0] and write indicators LWR[1:0] between each beat during bursts. The deassert time is programmable via Tcsh. Note: a one-word transfer to a 16-bit bus is treated as a burst.	R/W	0
18	PH	Block Phantom mode: Deassert chip select, output enable, and write enable when RBEN[1:0] are not asserted. Note: this bit only affects 16-bit mode.	R/W	0
17	V	Volatile: for single word reads, RBEN[3:0] is asserted only for the bytes explicitly addressed. This is valid for both 16 and 32 bit mode.	R/W	0
16	ТА	Apply Tcsh after both writes and reads. This bit is a global attribute and is only present in mem_stcfg0.	R/W	0
15:13	DIV	Setting these bits will adjust the divsor for the LCLK output clock. The clock frequency is set by LCLK = (System Bus Clock / 2) / (DIV + 1) Note: LCLK should not exceed 50 MHz. This bit is a global attribute and is only present in mem_stcfg0.	R/W	0

Bit(s)	Name	Description	R/W	Default
12	BV	When this bit is set the burst size for static transfers will be output on the LCD controller pins for chip selects not configured as LCD or PCMCIA. The burst size output is one less than the number of 32 bit words to be transferred. For 16 bit chip selects twice as many beats will occur. All beats are guaranteed to occur. The mapping of the burst size to pins is shown in Table 12. This bit is a global attribute and is only present in mem_stcfg0.	R/W	0
11	DV	Debug Visibility: Setting this bit will place information for internal accesses to the system bus on the static address bus. This is intended to be used as a debug aid and should not be used during normal operation as it will increase system power usage. This bit is a global attribute and is only present in mem_stcfg0.	R/W	0
10	AV	Setting this bit will place the address for all internal accesses to the system bus on the static address bus. This is intended to be used as a debug aid and should not be used during normal operation as it will increase system power usage. This bit is a global attribute and is only present in mem_stcfg0.	R/W	0
9	BE	Endianness 0 - Little Endian 1 - Big Endian This bit should be set to match the endianess of the processor. This bit should not be set for PCMCIA.	R	0
8	TS	The TS bit selects the timing scale for the chip select. When TS is cleared the timing is derived from the system bus clock. Setting TS causes timing to be based on the system bus clock divided by 4 resulting in larger timing granularity and potentially longer access times.	R/W	0

Bit(s)	Name	Description	R/W	Default
7	EW	When the EW bit is set the EWAIT input is allow to stretch the bus access time. Chip selects operating in LCD or PCMCIA mode have different wait mechanisms. The EW bit does not apply to chip selects in these modes.	R/W	0
6	Н	If the H bit is set this chip select will function as a 16 bit wide bus. When the H bit is clear the chip select will function as a 32 bit wide bus. In 16 bit mode data is presented and accepted on bits 15:0 of the data bus. This bit should not be set when the device type is set for PCMCIA. This bit should be set for LCD device type.	R/W	0
5	BS	If BS is zero then the burst size for page mode accesses is 4 beats. If BS is nonzero then 8 beat accesses will be used.	R/W	0
4	PM	If the PM bit is set the chip select will operate in page mode. This allows quicker access to sequential locations in memory. Page mode is only applicable to reads.	R/W	0
3	RO	If the RO bit is set the chip select will operate in read only mode. This will inhibit the generation of write cycles to the chip select. Any attempt to write to the address region controlled by a read only chip select will be ignored.	R/W	0
2:0	DTY	The DTY field describes the type of device controlled by the static controller chip select. A list of device types and encodings is shown in Table 11. Programming multiple chip selects as LCD or PCM-CIA is illegal. Only one of each is supported.	R/W	3

TABLE 11. Device Type Encoding

DTY	Chip Select Function	PFN[35:32] (upper nibble of physical address)	Reference
0	Static Ram	0x0	Section 3.2.2
1	I/O Device	0xD	Section 3.2.2
2	PCMCIA Device/Compact Flash	0xF	Section 3.2.3
3	Flash Memory	0x0	Section 3.2.2
4	LCD Device (CE2 only)	0xE	Section 3.2.4
5	Reserved		
6	Reserved		
7	Reserved		

TABLE 12. Burst Size Mapping

Signal	Pin
burst_size[2]	LWR0
burst_size[1]	LRD1
burst_size[0]	LRD0

Static Timing Registers

The static timing registers allow software to control the timing of each phase of a static bus access. The names of the timing parameters correspond directly to timing parameters shown on the timing diagrams.

For asynchronous chip selects, all timing parameters are expressed as a number of clock cycles. The clock is either system bus clock or the system bus clock divided by 4, depending on the TS parameter in the **mem_stcfgn** register. However, for synchronous chip selects the clock is LCLK and timing parameters are expressed as a number of LCLK cycles.

mem_sttime0 (I/O, Flash, SRAM config)

Offset = 0x1004

Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
T1		Twcs			To	sh		T0						Τ\	vp				Tc	sw			Τŗ	m				Т	`a		
Def. 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	0	1

mem_sttime1 (I/O, Flash, SRAM config)
mem_sttime2 (I/O, Flash, SRAM and LCD config)
mem_sttime3 (I/O, Flash, SRAM config)

Offset = 0x1014Offset = 0x1024

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	T1		Twcs			Tc	sh		T0						Tv	vp				Tc	sw			Tp	m				T	a		
Def.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bit(s)	Name	Description	R/W	Default
31	T1	Most significant bit of Tcs_oe[1:0]. Tcs_oe represents the number of clocks to setupthe address before asserting chip select and output enable.	R	0x0
30:28	Twcs	This field specifies the required chip select hold time after a write pulse. (Twcs + 1) is the actual number of cycles.	R/W	0x03
27:24	Tosh	This field specifies the required number of cycles that the chip select must remain deasserted between accesses. (Tcsh + 1) is the actual number of cycles.	R/W	0x0f
23	ТО	Least significant bit of Tcs_oe[1:0]. Tcs_oe represents the number of clocks to setupthe address before asserting chip select and output enable.	R/W	0x0
22:20	RES	These bits are reserved and should be written a 0.	R	0x00
19:14	Twp	This field specifies the duration of the write enable. (Twp + 1) is the actual number of cycles.	R/W	0x3f
13:10	Tcsw	This field sets the delay from the assertion of chip select until the write strobe is asserted. The timing is as follows: (Twcsw + 1) is the actual number of clock cycles	R/W	0x0f

Bit(s)	Name	Description	R/W	Default
9:6	Tpm	This field determines the number of cycles required from a burst address change until read data is valid if the PM bit is set in the static_confign register. The actual read happens at (Tpm + 1) clock cycles. Ta will determine the access time for the first beat of each burst.	R/W	Ox0f
5:0	Та	The Ta parameter determines the number of cycles required from the assertion of chip select until read data is valid. For page mode accesses Ta determines the access time for only the first beat of each burst, or the first beat after a page mode wrap. (Ta + 1) is the actual number of clock cycles	R/W	0x1d

mem_sttime0 (PCMCIA config)

Offset = 0x1004

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Tı	nst							Tmsu	l					Tn	nih					Ti	ist					Tisu		
Def.	1	- 1	1	1	- 1	- 1	- 1	- 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	0	1

mem_sttime1 (PCMCIA config) mem_sttime2 (PCMCIA config) mem_sttime3 (PCMCIA config) Offset = 0x1014Offset = 0x1024

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Tı	nst							Tmsu	l					Tn	nih					Ti	ist					Tisu		
Def	1	1	1	1	- 1	- 1	- 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bit(s)	Name	Description	R/W	Default
31:24	Tmst	This field specifies the strobe width during memory accesses to PCMCIA chip selects. (Tmst + 2) is the actual number of cycles to the end of the strobe, however the actual read occurs at (Tmst + 1).	R/W	Oxff
23:17	Tmsu	This field specifies the setup time from chip select to strobe during memory accesses to PCMCIA chip selects. (Tmsu + 2) is the actual number of cycles.	R/W	0x7f
16:11	Tmih	This field specifies the hold time for address, data, and chip selects from the end of the strobe for both memory and I/O cycles to PCM-CIA chip selects. (Tmih + 2) is the actual number of cycles.	R/W	0x3f
10:5	Tist	This field specifies the strobe width for I/O accesses for a chip select configured for PCM-CIA. (Tist + 2) is the actual number of cycles to the end of the strobe, however the actual read occurs at (Tist + 1).	R/W	0x3f
4:0	Tisu	This field specifies the setup time from chip select to strobe during I/O accesses for PCM-CIA. (Tisu+ 2) is the actual number of cycles.	R/W	0x1f

Static Chip Select Address Registers

The chip select address registers determine the address range that each chip select will respond to. A chip select will become active when E is set and

$$(physical_addr \& CSMASK) == CSBA$$

the given chip select is activated. *Physical_addr* is the actual 36 bit physical address as output on the internal system bus (from the TLB for memory mapped regions), *CSMASK* is the mask set below and *CSBA* is the chip select base address as programmed below. The upper nibble, bits 35:32, of *CSBA* are determined by the DTY encoding from the **mem_stcfgn** register.

Chip select regions must be programmed so that each chip select occupies a unique area of the physical address space. Programming overlapping chip select regions will result in undefined operation.

The E bits for chip selects CS1, CS2, and CS3 are initialized to zero. The E bit to CS0 is set nonzero when the ROM_SEL pin is zero indicating that ROM should be used for the boot vector.

mem staddr $\mathbf{0}$ Offset = 0×1008

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Е							CS	BA													CSM	ASK						
Def.	0	0	0	Rs	0	0	0	1	1	1	1	1	1	1	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1

mem_staddr1Offset = 0x1018mem_staddr2Offset = 0x1028mem_staddr3Offset = 0x1038

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Е							CS	BA													CSM	ASK						
Def.	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bit(s)	Name	Description	R/W	Default
31:29	RES	These bits are reserved and should be written a 0.	R	0
28	Е	Enable 0: Chip select is not enabled 1: Chip select is enabled	R/W	0 (see note)

Bit(s)	Name	Description	R/W	Default
27:14	CSBA	This field specifies bits 31:18 of the physical base address for this chip select. Thee upper nibble of the chip select address is determined by the DTY encoding in the mem_stcfg register.	R/W	0x3fff
13:0	CSMASK	This field specifies which bits of CSBA are used to decode this chip select (see text).	R/W	0x3fff

3.2.2 Static RAM, I/O Device and Flash Device Types

This section describes the Static Ram interface which is implemented when the DTY field is set to 0. 1 or 3.

The Static RAM, I/O device and Flash device types are all very similar. The I/O Device type is identical to the Static RAM type except that is expecting the upper nibble of the system address (bits 35:32) to be a 0xD (see Static Bus Configuration Registers description for more information). The only difference between the Flash Device type and the Static RAM device type is that the Flash timing allows for a chip select hold time after a write pulse (Twcs in the **mem_sttime***n* register).

Other than these differences, the Static RAM, I/O Device and Flash Device Types share the same timing and control signals. The control signals are shown in Table 13.

TABLE 13. Static RAM, I/O Device and Flash Control Signals

Pin Name	Input/Output	Description
RAD[31:0]	0	Address bus
RD[31:0]	Ю	Data bus
RBEN[3:0]	0	Active Low Byte Enable. RBEN0 corresponds to RD7:0, RBEN1 corresponds to RD15:8, RBEN2 corresponds to RD23:16, RBEN3 corresponds to RD31:24.
RWE	0	Write enable

TABLE 13. Static RAM, I/O Device and Flash Control Signals

Pin Name	Input/Output	Description
ROE	0	Output enable
RCS[3:0]	0	Programmable Chip Selects (4 banks). RCSn is not used when configured as a PCMCIA device.
EWAIT	I	This active low input can be used to stretch the bus access time when enabled through bit EW in the mem_stcfgn register. This input is not recognized for chip selects configured as LCD or PCMCIA as these buses have their own wait mechanisms.

3.2.2.1 Static Memory Timing

The following figures show static memory timing. Figure 7 illustrates static memory read timing, and Figure 9 illustrates static memory write timing. The EWAIT timing diagrams are presented to show how EWAIT will hold the cycle past Ta for reads and Twp for writes.

Setup, hold and delay are presented in Chapter 11, Electrical Specifications.

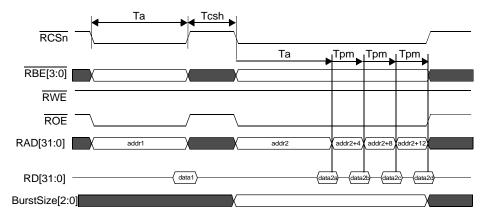


FIGURE 7. Static Memory Read Timing

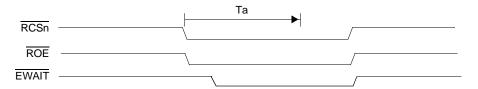


FIGURE 8. Static Memory Read EWAIT Timing

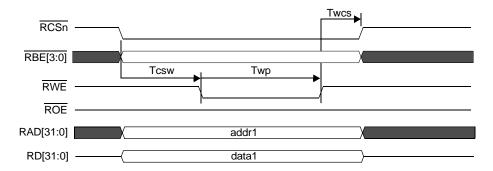


FIGURE 9. Static Memory Write Timing

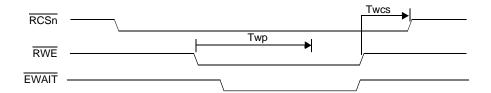


FIGURE 10.Static Memory Write EWAIT Timing

3.2.3 PCMCIA/Compact Flash Device Type

Because of the similarity of Compact Flash and PCMCIA, references to PCMCIA should be taken as applicable to Compact Flash except where noted.

The Au1100 provides a PCMCIA host adapter when the device type is programmed for PCMCIA. The static controller interface provides all the basic bus signals necessary to control a PCMCIA interface. There are a few auxiliary signals for card detect, voltage sense, etc. that can be implemented with the Au1100 GPIOs if desired.

The PCMCIA host interface adapter will support memory, attribute and I/O transactions. External logic can be added to support DMA transfers. The Au1100 only supports 8 and 16 bit load and store instructions (byte and halfword instructions) to PCMCIA devices, 32 bit accesses are not supported.

The PCMCIA interface provides control signals defined for PCMCIA devices. If two devices are required then external logic must be added to allow for both cards to share the bus. It should be noted that when a chip select is programmed as a PCMCIA device that the associated RCSn is not used.

The PCMCIA interface occupies 36 bit address space with the upper 4 bits equal to 0xF. The TLB is required to generate addresses that will activate a chip select with a device type of "PCMCIA".

I/O, Memory and Attribute spaces are differentiated by addr[31:30]. Table 14 shows the mapping.

TABLE 14. PCMCIA Memory Mapping

physical address	PCMCIA mapping
0xF 0xxx xxxx	I/O
0xF 4xxx xxxx	Attribute Memory
0xF 8xxx xxxx	Memory

Note: Each of the PCMCIA physical address spaces have a maximum size of 64 MByte. Any access beyond the 64 MByte space will alias back into the defined region.

Table 15 enumerates the signals to support the PCMCIA interface.

TABLE 15. PCMCIA Interface Signals

Pin Name	Input/ Output	Description
RAD[31:0]	0	Address bus
RD[31:0]	Ю	Data bus
PREG	0	When this signal is asserted card access will be limited to attribute memory when a memory access occurs and to I/O ports when an I/O access occurs. Muxed with GPIO204 which controls the pin out of hardware reset, runtime reset and sleep.

TABLE 15. PCMCIA Interface Signals (Continued)

Pin Name	Input/ Output	Description
PCE[1:0]	0	Card Enables (Active Low)
		Muxed with GP[206:205] which controls the pins out of hardware reset, runtime reset and sleep.
POE	0	Memory Output enable
PWE	0	Memory Write Enable
		Muxed with GP207 which controls the pin out of hardware reset, runtime reset and sleep.
PIOR	0	I/O Read Cycle Indication
PIOW	0	I/O Write Cycle Indication
PWAIT	1	This signal is asserted by the card to delay completion of a pending cycle.
PIOS16	1	16 bit port select
ŌĒ	0	Output Enable - This output enable is intended to be used as a data transceiver control as it will remain asserted for read or deasserted for write for the entire PCMCIA transaction

Figure 11 and Figure 12 show a one and two card PCMCIA implementation. For the two card implementation RAD26 is used as a card select signal. Both figures assume that the PCM-CIA card can be hot swapped at any time. If the card is fixed in the system much of the interface logic can be removed. A Compact Flash implementation is very similar to the PCMCIA implementation except that the number of address lines used is fewer.

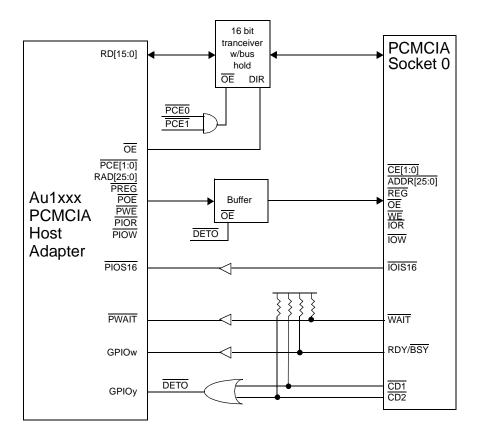
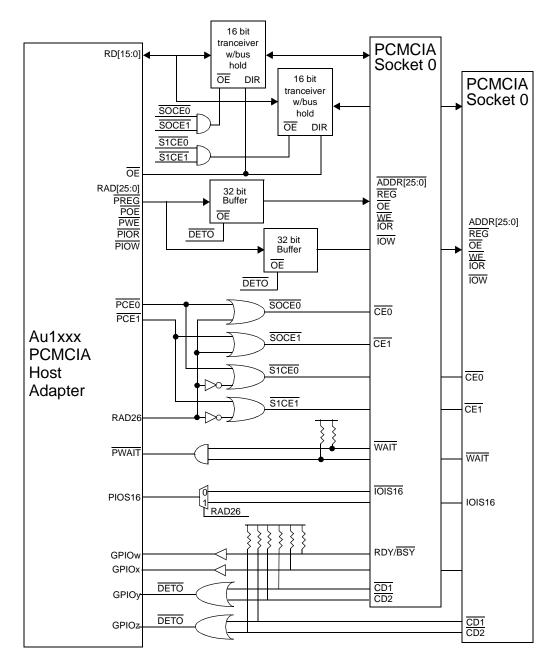



FIGURE 11. One Card PCMCIA Interface

FIGURE 12.Two Card PCMCIA Interface

3.2.3.1 PCMCIA/CompactFlash Interface

The figures on the following pages illustrate the functional timing of the PCMCIA interface, including memory read timing, memory write timing, I/O read timing, and I/O write timing. The PWAIT timing diagrams are presented to show how PWAIT will hold the cycle past Tmst for memory reads and writes and Tist for I/O reads and writes.

Setup and hold time requirements are presented in Chapter 11, Electrical Specifications.

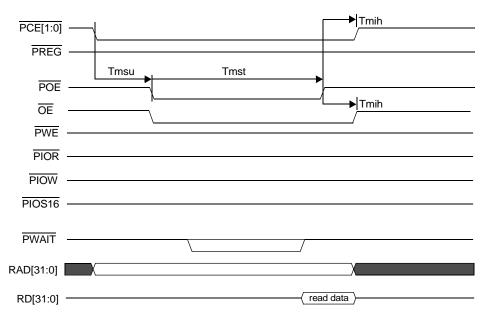


FIGURE 13.PCMCIA Memory Read Timing

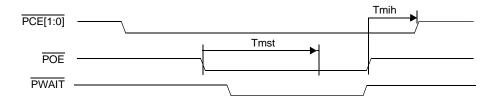
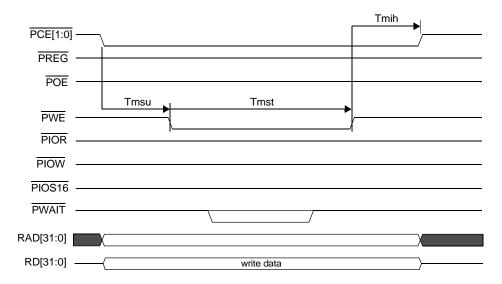



FIGURE 14.PCMCIA Memory Read PWAIT Timing

FIGURE 15.PCMCIA Memory Write Timing

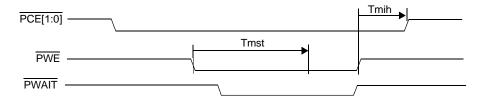


FIGURE 16.PCMCIA Memory Write PWAIT Timing

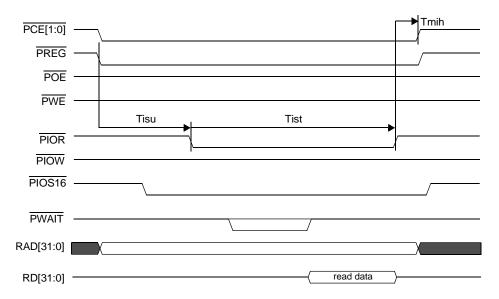


FIGURE 17.PCMCIA I/O Read Timing

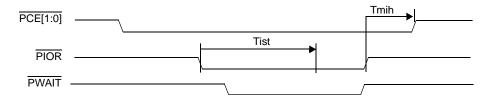


FIGURE 18.PCMCIA I/O Read PWAIT Timing

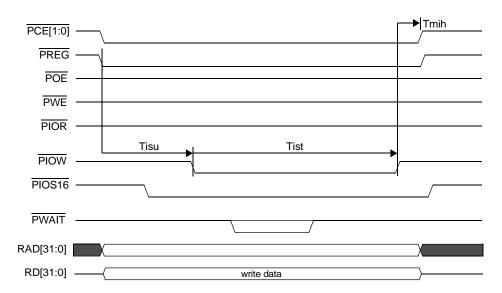


FIGURE 19.PCMCIA I/O Write Timing

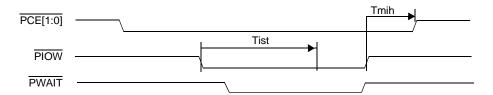


FIGURE 20.PCMCIA I/O Write PWAIT Timing

3.2.4 LCD Controller Device Type

The Au1100 provides a LCD Controller host adapter when the device type is programmed for an LCD. The static controller interface provides the bus signals necessary to interface to most LCD controllers.

There is a dedicated clock, LCLK, intended for use with the LCD interface. The LCLK rate is determined by the D5 bit in **mem_stcfg0**. The rate will be the system bus block divided by 4 (D5 = 0) or 5 (D5 = 1).

The Au1100 supports 8, 16, and 32 bit load and store instructions (byte, halfword, and word instructions) to the LCD controller interface.

The LCD controller occupies 36 bit address space with the upper 4 bits equal to 0xE. The MMU is required to generate addresses that will generate a chip select with a device type of "LCD".

Table 16 lists the control signals to support the LCD controller.

TABLE 16. LCD Controller Interface Signals

Signal		Function
RAD[31:0]	0	Address bus
RD[31:0]	Ю	Data bus
RCS[3:0]	0	Chip Selects
LCLK	0	Interface Clock
LWAIT	1	Extend Cycle
TRD[1:0]	0	Read Indicators Muxed with GP[201:200] which controls the pins out of hardware reset, runtime reset and sleep.
LWR[1:0]	0	Write Indicators Muxed with GP[203:202] which controls the pins out of hardware reset, runtime reset and sleep.

3.2.4.1 LCD Controller Interface Timing

The following figures shows the LCD timing. The LWAIT timing diagrams are presented to show how LWAIT will hold the cycle past Ta for memory reads and Twp for memory writes.

LWAIT timing requirements as well as setup and hold times are presented in Chapter 11, Electrical Specifications.

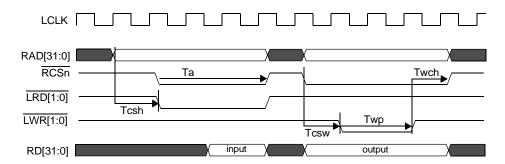


FIGURE 21.LCD Controller Timing

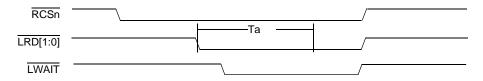


FIGURE 22.LCD Read LWAIT Timing

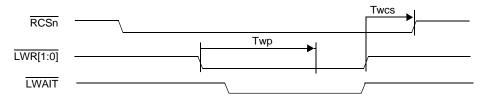


FIGURE 23.LCD Write LWAIT Timing

DMA Controller

The Au1100 contains an eight-channel DMA controller. Each channel is capable of transferring data between memory and any of 20 peripherals or between memory and a memory mapped FIFO through the Static Controller using a GPIO as a request.

GPIO4 and GPIO5 can be programmed to act as external DMA request lines. See Section 4.2 for details.

4.1 DMA Configuration Registers

Each channel of the DMA is configured by a register block. A channel register block contains seven registers. The 36 bit physical base address of the register block for each channel is shown in Table 17.

TABLE 17. DMA Channel Base Addresses

DMA Channel	Base Address	KSEG0 Base Address	Priority
dma0	0x0 1400 2000	0xB400 2000	0 (highest)
dma1	0x0 1400 2100	0xB400 2100	1
dma2	0x0 1400 2200	0xB400 2200	2
dma3	0x0 1400 2300	0xB400 2300	3
dma4	0x0 1400 2400	0xB400 2400	4
dma5	0x0 1400 2500	0xB400 2500	5
dma6	0x0 1400 2600	0xB400 2600	6
dma7	0x0 1400 2700	0xB400 2700	7 (lowest)

Each register block contains the registers shown in Table 18.

TABLE 18. DMA Channel Configuration Registers

Offset	Register Name	Description
0x0000	dma_moderead	Read channel mode register
0x0000	dma_modeset	Set bits in channel mode register
0x0004	dma_modeclr	Clear bits in channel mode register
0x0008	dma_peraddr	Address of peripheral FIFO
0x000c	dma_buf0addr	Starting address of buffer 0
0x0010	dma_buf0size	Transfer size and remaining transfer count for buffer 0
0x0014	dma_buf1addr	Starting address of buffer 1
0x0018	dma_buf1size	Transfer Size and remaining transfer count for buffer 1

Table 19 shows the different peripherals that are capable of DMA. The Device ID, Transfer Size and Transfer Width are configurable fields in the **dma_mode** register. The FIFO address is a physical address whose address should be programmed in the **dma_peraddr** register and in the DAH field if the **dma_mode** register.

Enabling multiple DMA channels with the same Device ID is undefined.

TABLE 19. Peripheral Addresses and Selectors

Peripheral Device	Device ID Select	Device ID	Transfer Size	Transfer Width	FIFO Physical Address
UART 0 transmit	0	0	program- mable	8	0x0 1110 0004
UART 0 receive	0	1	program- mable	8	0x0 1110 0000
GP04	0	2	program- mable	program- mable	programmable
GP05	0	3	program- mable	program- mable	programmable
AC97 Transmit	0	4	4	16	0x0 1000 0008
AC97 Receive	0	5	4	16	0x0 1000 0008
UART3 transmit	0	6	program- mable	8	0x0 1140 0004

TABLE 19. Peripheral Addresses and Selectors (Continued)

Peripheral Device	Device ID Select	Device ID	Transfer Size	Transfer Width	FIFO Physical Address		
UART3 receive	0	7	program- mable	8	0x0 1140 0000		
USB Device Endpoint 0 receive	0	8	4	8	0x0 1020 0000		
USB Device Endpoint 0 transmit	0	9	4	8	0x0 1020 0004		
USB Device Endpoint 2 transmit	0	10	4	8	0x0 1020 0008		
USB Device Endpoint 3 transmit	0	11	4	8	0x0 1020 000c		
USB Device Endpoint 4 receive	0	12	4	8	0x0 1020 0010		
USB Device Endpoint 5 receive	0	13	4	8	0x0 1020 0014		
I ² S transmit	0	14	4	program- mable	0x0 1100 0000		
I ² S receive	0	15	4	program- mable	0x0 1100 0000		
SD 0 transmit	1	0	program- mable	8	0x0 1060 0000		
SD 0 receive	1	1	program- mable	8	0x0 1060 0004		
SD 1 transmit	1	2	program- mable	8	0x0 1068 0000		
SD 1 receive	1	3	program- mable	8	0x0 1068 0004		
Reserved	1	4-15	n/a	n/a	n/a		

DMA Channel Mode Registers

Each DMA channel is controlled by a mode register.

The current value of the register can be read from the **dma_moderead** register but can not be set to an arbitrary value in a single operation. Instead, the configuration register is controlled by two registers.

The **mode_set** register sets bits in the channel control register when the corresponding bit is written as a one.

The **mode_clear** register clears bits in the channel control register when the corresponding bit is written as a one. Bits written as zero to either register do not affect the corresponding bit in the channel mode register.

The Au1100 has been designed to simplify the DMA control process by removing the need for a semaphore to control access to the registers. This is because there is no need to read, modify, write, as there are separate registers for setting and clearing a bit. In this way a function can freely manipulate the DMA channels associated with that function.

An arbitrary value may be written to a field within the register with the following sequence:

```
mode_set = new_value & field_mask;
mode_clear = ~new_value & field_mask;
```

The Transfer Size and Device Width fields must be programmed to match the FIFO of the peripheral chosen with the DID field according to Table 19.

For the UART fifos the transfer size is programmable. It is the programmers responsibility to insure that the Transfer Size matches the trigger depth set in the UART FIFO control register. See Section 6.7, "UART Interfaces" for more information.

For the I²S fifos the transfer width is programmable. It is the programmers responsibility to insure that the Transfer Width field matches the word size in the I²S configuration register and that memory is packed accordingly. See Section 6.6, "I2S Controller" for more information.

For external DMA using GPIO signals as requests, it is the system designers responsibility to insure that the Transfer Size and Device Width match the external FIFO and that memory is packed accordingly.

dma_moderead - Read DMA Mode Register

Offset = 0x0000

dma_modeset - Set DMA Mode Register

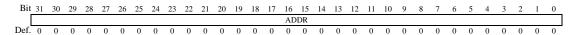
Offset = 0x0000

dma_modeclr - Clear DMA Mode Register

Bit(s)	Name	Description	R/W	Default
31:24	RES	These bits are reserved and should be written a 0.	R	0

Bit(s)	Name	Description	R/W	Default
23:20	DAH	Device Address High Provides the most significant 4 bits of physical device address.	R/W	0
19:16	DID	Device ID Identifies the peripheral device to act as source or destination. This ID is used in combination with the Device ID Select bit (see Table 19).	R/W	0
15	DS	Device ID Select This bit selects between two banks of Device IDs. It is used in combination with the Device ID bits (see Table 19).	R/W	0
14	RES	This bit is reserved and should be written a 0.	R	0
13	BE	Big Endian 0 - Little Endian byte order 1 - Big Endian byte order	R/W	0
12	DR	Device Read 0 - Data is transferred from memory to device. 1 - Data is transferred from device to memory.	R/W	0
11	TS	Transfer Size 0 - Transfer size will be 4 datums. The datum width for the transfer is set in bit DW. 1 - Transfer size will be 8 datums. The datum width for the transfer is set in bit DW.	R/W	0
10:9	DW	Device Width 0 - Device FIFO is 8 bits wide 1 - Device FIFO is 16 bits wide 2 - Device FIFO is 32 bits wide 3 - Reserved Typically the device width should match the FIFO width.	RW	0

Bit(s)	Name	Description	R/W	Default
8	NC	Not Coherent 0 - Memory reads and writes are marked coherent on the system bus. 1 - Memory reads and writes are marked non coherent on the system bus. For more information on coherency see Section 2.8.2, "SBUS Coherency Model" for more information on coherency.	R/W	0
7	IE	Interrupt Enable 0 - No interrupts will be generated. 1 - Interrupts are generated when either D1 or D0 is set.	R/W	0
6	н	Channel Halted 0 - Channel is active. 1 - Channel is halted. This bit should be used to determine if the channel has been halted after the G bit has been cleared.	R	0
5	G	Channel Go Setting the channel go bit enables the channel. When this bit is cleared the DMA controller will not arbitrate for this channel regardless of the state of the buffer enable bits. When the go bit is cleared by the processor the channel configuration should not be modified until the DMA controller sets the halt bit to indicate that the channel is inactive.		
4	АВ	Active Buffer 0 - Buffer 0 is currently in use by the DMA. 1 - Buffer 1 is currently in use by the DMA. This field can be read to determine what buffer the DMA will service next if there is not a DMA transaction in progress. During a DMA transaction this bit will reflect the buffer currently being used. It should be noted that the DMA will ping pong between the two buffers. In other words, it is not possible to only use one buffer, DMA transactions must be alternated between each buffer.	R	0


Bit(s)	Name	Description	R/W	Default
3	D1	Done 1 The D1 bit is set by the DMA controller to indicate that a transfer to or from buffer 1 is complete. This bit must be cleared by the processor.	R/W	0
2	BE1	The BE1 bit enables buffer 1. This bit is set by the processor and cleared by the DMA controller when the buffer has been filled or emptied. This bit may be cleared by the processor only when the H bit is set.	R/W	0
1	D0	Done 0 The D0 bit is set by the DMA controller to indicate that a transfer to or from buffer 0 is complete. This bit must be cleared by the processor.	R/W	0
0	BE0	The BE0 bit enables buffer 0. This bit is set by the processor and cleared by the DMA controller when the buffer has been filled or emptied. This bit may be cleared by the processor only when the H bit is set.	R/W	0

DMA Peripheral Device Address

The peripheral device address register contains a pointer to the peripheral FIFO to be used as a source or destination. Software is responsible for matching the peripheral address to the correct value of the Device ID (DID) field in the mode register. The correspondence between FIFO address and DID values is shown in Table 19. The physical address of the FIFO must be used.

The DAH field from the **dma_mode** register is used as the most significant four bits of the FIFO physical address.

dma_peraddr - DMA Peripheral Address Register

Bit(s)	Name	Description	R/W	Default
31:0	ADDR	Peripheral FIFO address	R/W	0

DMA Buffer Starting Address Registers

Each DMA channel has two buffers, labeled buffer0 and buffer1. The starting address of each buffer should be written to the **dma_buf0addr** and **dma_buf0addr** registers respectively. The starting address must be 32-bit word aligned.

The 4 most significant bits of the buffer address are held in the *BAH* field of the **dma_buf0size** and **dma_buf1size** registers.

The starting address must explicitly be written before each DMA transaction, even if the address has not changed from the previous, as **dma_bufnaddr** will change during the DMA transaction.

It should be noted that the DMA will ping pong between the two buffers. In other words, it is not possible to only use one buffer, DMA transactions must be alternated between each buffer. The AB bit in the **dma_mode** register can be used to determine the active buffer.

dma_buf0addr - Buffer0 Starting Address dma buf1addr - Buffer1 Starting Address

Offset = 0x000COffset = 0x0014

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																AD	DR															
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	R/W	Default		
31:0	ADDR	Lower 32 bits of the physical starting address of the DMA memory buffer.	R/W	0		

DMA Channel Buffer Size Registers

The size of each DMA buffer is given by the **dma_buff0size** and **dma_buff1size** registers. The buffer size registers also contributes the most significant four bits of the buffer physical address.

This register should be programmed with the block size of the buffer in datums. While a DMA transaction is in progress, it will indicate the number of datums remaining in the transfer.

It should be noted that the DMA will ping pong between the two buffers. In other words, it is not possible to only use one buffer, DMA transactions must be alternated between each buffer. The AB bit in the **dma_mode** register can be used to determine the active buffer.

dma_buff0size - Buffer 0 Size dma_buff1size - Buffer 1 Size Offset = 0x0010Offset = 0x0018

Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													BA	λH		SIZE															
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	R/W	Default		
31:20	RES	These bits are reserved and should be written a 0.	R/W	0		
19:16	ВАН	Buffer Address High This field provides the 4 most significant bits of the buffer address.	R/W	0		
15:0	SIZE	Buffer Size and Count Remaining This field indicates the number of datums remaining in the current transfer.	R/W	0		

4.2 Using GPIO Lines as External DMA Requests

To use GPI04 or GPI05 as an external DMA request the following steps must be done:

- 1. Write the **sys_gpinputen** to enable the GPIO to be used as an input. See Section 7.3, "Primary General Purpose I/O" for more information.
- 2. Tristate the GPIO to make it an input through the **sys_triout** register. See Section 7.3, "Primary General Purpose I/O" for more information.
- 3. Set the **dma_peraddr** register to point to the external device data port. The Static Controller must be configured correctly to recognize this address.
- 4. Program the mode register to match the direction of transfer and peripheral attributes.

The external request must be driven high to request a DMA transfer. It must be held high until the DMA transaction is started. Once the DMA transaction has started it will continue

until finished regardless of the DMA request. A DMA transaction refers to a DMA transfer of one transfer size as defined by the TS bit in the **dma_mode** register.

The external DMA request should be tied to the external FIFO threshold indicator. In this way it will assert when the FIFO threshold is reached and remain asserted until the FIFO fills or empties past the threshold (after the DMA transaction starts). It should then deassert after FIFO threshold is met from the opposite direction (approaches full for a transmit or approaches empty for a read). The threshold should be designed such that a complete DMA transaction (4 or 8 datums) can occur without risking overflow or underflow.

Interrupt Controller

There are two interrupt controllers in the Au1100. Each interrupt controller supports 32 interrupt sources. Interrupts can generate a signal to bring the Au1100 out of an IDLE0 or IDLE1 state and generate a CPU interrupt.

Each interrupt controller has two outputs referred to as requests 0 and 1. Each of these outputs are connected to the CPU core. See Section 2.5, "Exceptions" for a complete Au1100 Interrupt architecture discussion. Table 20 shows the Interrupt controller connections to the CPU.

TABLE 20. Interrupt Controller Connections to the CPU

Interrupt Source	CP0 Cause Register Bit
Interrupt Controller 0	
Request 0	10
Request 1	11
Interrupt Controller 1	
Request 0	12
Request 1	13

5.1 Interrupt Controller Sources

Table 21 shows the mapping of interrupt sources for Interrupt Controller 0 and 1.

Care should be taken to follow the correct interrupt type or there is potential to miss an interrupt. In general, level interrupts are chosen when multiple sources from a single peripheral might cause an interrupt. In this way the programmer will not miss a subsequent interrupt from a particular source while servicing the previous one.

Edge triggered interrupts can be used when there is only a single source for an interrupt. Edge triggered interrupts must be used when an interrupt is caused by an internal event and not tied to a register bit where it is latched and held until cleared by the programmer.

Details about the interrupt sources can be found in the respective peripheral sections.

TABLE 21. Interrupt Sources

Controller	Interrupt Number	Source	Туре					
0	0	UART0	High Level					
0	1	UART1	High Level					
0	2	SD0 or SD1	High Level					
0	3	UART3	High Level					
0	4	SSI0	High Level					
0	5	SSI1	High Level					
0	6	DMA0	High Level					
0	7	DMA1	High Level					
0	8 DMA2		High Level					
0	9	DMA3	High Level					
0	10	DMA4	High Level					
0	11	DMA5	High Level					
0	12	DMA6	High Level					
0	13	DMA7	High Level					
0	14	TOY (tick)	Rising Edge					
0	15	TOY Match 0	Rising Edge					
0	16	TOY Match 1	Rising Edge					
0	17	TOY Match 2	Rising Edge					
0	18	RTC (tick)	Rising Edge					

TABLE 21. Interrupt Sources (Continued)

Controller	Interrupt Number	Source	Туре				
0	19	RTC Match 0	Rising Edge				
0	20	RTC Match 1	Rising Edge				
0	21	RTC Match 2	Rising Edge				
0	22	IrDA transmit	High Level				
0	23	IrDA receive	High Level				
0	24	USB Device Interrupt Request	High Level				
0	25	USB Device Suspend Inter- rupt	Rising/Falling edge				
0	26	USB Host	Low Level				
0	27	AC97 ACSYNC	Rising Edge				
0	28	MAC 0 DMA Done	High Level				
0	29	GPIO 215:208	System Dep.				
0	30	128	High Level				
0	31	AC97 Command Done	Rising Edge				
1	n = 015	GPIO[n]	System Dep.				

Figure 24 shows the Interrupt Controller Logic Diagram. Where applicable, the names in the diagram correspond to bit n in the relative control register.

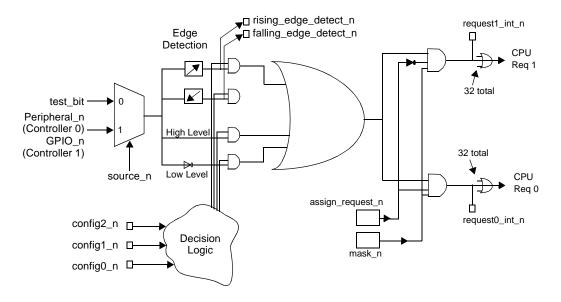


FIGURE 24. Interrupt Controller Logic

5.2 Register Definitions

The design of the software interface to the interrupt controller is based on the premise that software tasks should be able to access the value and control of an individual port without blocking other tasks from accessing ports of interest to them. This interrupt controller design removes the need to arbitrate via a semaphore access to the interrupt controller registers. The result is faster and simpler interrupt controller accessing.

Table 22 shows each interrupt controller's base address.

TABLE 22. Interrupt Controller Base Addresses

Name	Physical Base Address	KSEG1 Base Address
ic0_base	0x0 1040 0000	0xB040 0000
ic1_base	0x0 1180 0000	0xB180 0000

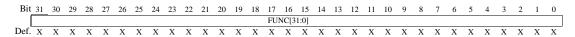
Each interrupt controller has an identical set of registers that controls its set of 32 interrupts. Table 23 shows the interrupt controller registers and their associated offsets. Certain offsets are shared but address different registers depending on whether the access is a read or a write. The register description details the functionality of the register. Bit n of a particular register should be associated with interrupt n of the corresponding controller.

TABLE 23. Interrupt Controller Registers

Offset	Register Name	Туре	Register Description	Default			
0x0040	ic_cfg0rd	R	Configuration 0 register	UNPRED			
0x0040	ic_cfg0set	W	Combined, Config2[n], Config1[n], and Config0[n] specifies the interrupt n charac-				
0x0044	ic_cfg0clr	W	teristics as shown in Table 24.				
0x0048	ic_cfg1rd	R	Configuration 1 register	UNPRED			
0x0048	ic_cfg1set	W	Combined, Config2[n], Config1[n], and Config0[n] specifies the interrupt n charac-				
0x004C	ic_cfg1clr	W	teristics as shown in Table 24.				
0x0050	ic_cfg2rd	R	Configuration 2 register	UNPRED			
0x0050	ic_cfg2set	cfg2set W Combined, Config2[n], Config1[n], and					
0x0054	ic_cfg2clr	W	Config0[n] specifies the interrupt n characteristics as shown in Table 24.				
0x0054	ic_req0int	R	Shows active interrupts on request 0.	0x0000 0000			
			This register is used by host to determine source of interrupt.				
0x0058	ic_srcrd	R	Controls the source of the interrupt between	UNPRED			
0x0058	ic_srcset	W	a test bit and the designated source. 0 - test bit is used as interrupt source.				
0x005C	ic_srcclr	W	1 - peripheral signal (controller 0) or GPIO (controller 1) is used for interrupt source.				
0x005C	ic_req1int	R	Shows active interrupts on request 1.	0x0000 0000			
			This register is used by host to determine source of interrupt.				
0x0060	ic_assignrd	R	Assigns the interrupt to one of the CPU	UNPRED			
0x0060 ic_assignset W		W	W requests (the assignment is inverse to the value programmed).				
0x0064 ic_assignclr W			0 - interrupt assigned to request 1				
			1 - interrupt assigned to request 0				

TABLE 23. Interrupt Controller Registers (Continued)

Offset	Register Name	Туре	Register Description	Default		
0x0068	ic_wakerd	R	Controls whether the interrupt can cause a	0x0000 0000		
0x0068	ic_wakeset	W	wakeup from IDLE0 or IDLE1.			
0x006C	ic_wakeclr	W	0 - no wakeup from idle 1 - interrupt will cause wakeup from idle. The associated interrupt must still be enabled to wake from idle.			
0x0070	ic_maskrd	R	Enables/Disables the interrupt.	0x0000 0000		
0x0070	ic_maskset	W	0 - interrupt is disabled.			
0x0074	ic_maskclr	W	1 - interrupt is enabled.			
0x0078	ic_risingrd	R	Designates active rising edge interrupts. If	UNPRED		
0x0078	ic_risingclr	W	an interrupt is generated off of a rising edge, the associated rising edge detection bit must be cleared after detection.			
0x007C	ic_fallingrd	R	Designates active falling edge interrupts. If	UNPRED		
0x007C	ic_fallingclr	W	an interrupt is generated off of a falling edge, the associated falling edge detection bit must be cleared after detection.			
0x0080	ic_testbit	R/W	This is a single bit register that is mapped to all the source select inputs for testing purposes.	UNPRED		


Interrupt Controller Registers

Each register is 32 bits wide with bit n in each register affecting interrupt n in the corresponding controller.

*rd

*set

*clr

Bit(s)	Name	Description	Read/Write	Default
31:0	FUNC[n]	The function of each register is given in Table 23. FUNC[n] controls the functionality of interrupt <i>n</i> in the corresponding controller.	*rd - read only *set - write only *clr - write only See the following explanation.	See Table 23

Certain registers in the list have the same offset but offer different functionality. This is by design. Care should be taken when programming the registers as a read from one location may reference something different from a write to the same location.

Registers ending in *rd, *set and *clr have the following functionality:

- *rd registers are read only registers will read back the current value of the register.
- *set registers are write only registers and will set to 1 all bits that are written 1. Writing a value of 0 will have no impact on the corresponding bit.
- *clr registers are write only registers and will clear to zero all bits that are written 1. Writing a value of 0 will have no impact on the corresponding bit.

The three configuration registers have a special functionality in that the value associated with ic_cfg2[bit n], ic_cfg1[bit n], ic_cfg0[bit n] uniquely control interrupt n's functionality as shown in Table 24. In general ic_cfg2[n], ic_cfg1[n] and ic_cfg0[n] can be described as follows (Table 24 should be referred for exact functionality):

ic_cfg2[n] - Edge/Level select. When ic_cfg2[n] is low, ic_cfg1[n] and ic_cfg0[n] will enable edge triggered interrupts. When ic_cfg2[n] is high, ic_cfg1[n] and ic_cfg0[n] will enable level triggered interrupts. If ic_cfg2[n], ic_cfg1[n] and ic_cfg0[n] are all high then both level and edge interrupts will be enabled

ic_cfg1[n] - Falling Edge/Low Level enable. Depending on how ic_cfg2[n] is set, ic_cfg1[n] will enable falling edge or low level interrupts when set high.

ic_cfg0[n] - Rising Edge/High Level enable. Depending on how ic_cfg2[n] is set, ic_cfg0[n] will enable rising edge or high level interrupts when set high.

TABLE 24. Interrupt Configuration Register Function

ic_cfg2[n]	ic_cfg1[n]	ic_cfg0[n]	Function
0	0	0	Interrupts Disabled
0	0	1	Rising Edge Enabled
0	1	0	Falling Edge Enabled
0	1	1	Rising and Falling Edge Enabled
1	0	0	Interrupts Disabled
1	0	1	High Level Enabled
1	1 1 0		Low Level Enabled
1	1	1	Both Levels and Both Edges Enabled

5.3 Hardware Considerations

When using a GPIO or peripheral as an interrupt source, it is important that the associated pin functionality has been enabled in the **sys_pinfunc** register. In addition when using a GPIO, the GPIO must first be enabled as an input. See Section 7.3, "Primary General Purpose I/O" for more information.

5.4 Programming Considerations

The Au1100 has been designed to simplify the interrupt control process by removing the need for a semaphore to control access to the registers. This is because there is no need to read, modify, write, as there are separate registers for setting and clearing a bit. In this way a function can freely manipulate the interrupts associated with that function.

If using edge triggered interrupts, it is important to clear the associated edge detection bit or future interrupts will not be seen.

Programming the interrupt controller can be broken into the following steps (the set, clr, rd portion of the register name has been ommitted):

- 1. Identify the interrupt number, *n*, with the associated peripheral or GPIO
- 2. Use *ic_src[n]* to assign the interrupt to the associated peripheral (or a test bit can be used if testing the interrupt).

- 3. Set the *ic_cfg2[n]*, *ic_cfg1[n]* and *ic_cfg0[n]* bits to the correct configuration for the corresponding interrupt (edge, level, polarity).
- 4. Assign the interrupt to a request using *ic_assign[n]*.
- 5. Use ic_wake[n] to assign the interrupt to wake the processor from IDLE if necessary or clear this register bit to keep the interrupt from waking the processor from IDLE.
- 6. If the interrupt is an edge triggered interrupt, clear the edge detect register (ic_risingclr or ic_fallingclr) before enabling.
- 7. Finally, enable the interrupt through ic mask[n].

When taking an interrupt the following steps should be taken:

- 1. Read $ic_req0int$ and $ic_req1int$ to determine the interrupt number n.
- 2. Use *ic_fallingrd* and *ic_risingrd* to determining if the interrupt was edge triggered. If the interrupt is edge triggered, use *ic_fallingclr[n]* or *ic_risingclr[n]* to clear the edge detection circuitry.
- 3. If the interrupt is to be disabled write *ic_maskclr[n]*.
- 4. Service Interrupt

Peripheral Devices

This section provides descriptions of the peripheral devices of the Au1100. This includes an AC97 controller, LCD controller, two SD controllers, USB Host and Device interfaces, IRDA, one 10/100 Ethernet MAC, I²S, three UARTs and two synchronous serial interfaces.

Each peripheral contains an enable register. All other registers within each peripherals register block should not be accessed until the enable register is written the correct sequence to bring the peripheral out of reset. Accessing the peripheral register block before a peripheral is enabled will result in undefined results.

6.1 AC97 Controller

The Au1100 contains an AC'97 Controller which incorporates an AC-link capable of bridging to an AC'97 compliant CODEC.

All data being sent and received through the AC97 controller must be 48kHz.

6.1.1 AC97 Registers

The AC'97 controller is controlled by a register block whose physical base address is shown in Table 25.

TABLE 25. AC97 Base Address

Name	Physical Base Address	KSEG1 Base Address
ac97_base	0x0 1000 0000	0xB000 0000

The register block consists of 5 registers as shown in Table 26.

TABLE 26. AC97 Registers

Offset	Register Name	Description
0x0000	ac97_config	AC-link Configuration
0x0004	ac97_status	Controller Status
0x0008	ac97_data	TX/RX Data
0x000C	ac97_cmmd	Codec Command
0x000C	ac97_cmmdresp	Codec Command Response
0x0010	ac97_enable	AC97 Block Control

AC-Link Configuration Register

The configuration register contains bits necessary to configure and reset the AC-link and CODEC.

ac97_config - AC-link Configuration

Offset = 0x0000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														R	C									X	S					SG	SN	RS
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	Read/ Write	Default
31:23	RES	These bits are reserved and should be written a 0.	R	0
22:13	RC	Receive Slots The bits set in RC will control what data from valid slots are put into the input buffer. The corresponding valid bits in the AC'97 tag (slot 0 of SDATA_IN) must be marked valid for the incoming PCM data to be put in the input buffer. Slot 3 is mapped to bit 13, slot 4 to 14 and so on. It is the programmers responsibility to ensure that the CODEC is configured such that there will be valid data in the slots corresponding to what receive slots are enabled.	R/W	0
12:3	XS	Transmit Slots The bits making up XMIT_SLOTS map to the valid bits in the AC'97 tag (slot 0 on SDATA_OUT) and indicate which outgoing slots have valid PCM data. Bit 3 maps to slot 3, bit 4 to slot 4 and so on. Setting the corresponding bit indicates to the CODEC that valid data will be in the respective slot. The number of valid bits will designate how many words will be pulled out of the FIFO per audio frame	R/W	0
2	SG	Sync Gate Setting this bit to 1 will gate the clock from being driven on SYNC. This allows the SN bit to control the value on SYNC. In combination with SN, the SG bit can be used to initiate a warm reset.	R/W	0

Bit(s)	Name	Description	Read/ Write	Default
1	SN	Sync This bit controls the value of the SYNC signal when SG is set to 1. In combination with SG, the SN bit can be used to initiate a warm reset.	R/W	0
0	RS	AC-link Reset When the RST bit is set high this will drive the ACRST signal of the AC-link low to initiate a cold AC'97 reset. After satisfying the ACRST low time for the CODEC this bit should be set low to deassert ACRST.	R/W	0

AC97 Controller Status

The AC97 Controller Status register contains status bits for the transmit and receive FIFOs, command status and the CODEC.

ac97_status - Controller Status

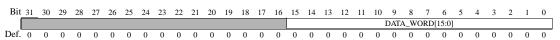
Offset = 0x0004

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																					XU	XO	RU	RO	RD	CP	TR	TE	TF	RR	RE	RF
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0

Bit(s)	Name	Description	Read/ Write	Default
31:12	RES	These bits are reserved.	R	UNPRED
11	XU	Transmit Underflow When set to 1, this bit indicates that the transmit FIFO has experienced an underflow. This sticky bit will be cleared when read.	R	0
10	ХО	Transmit Overflow When set to 1, this bit indicates that the transmit FIFO has experienced an overflow. This sticky bit will be cleared when read.	R	0
9	RU	Receive Underflow When set to 1, this bit indicates that the receive FIFO has experienced an underflow. This sticky bit will be cleared when read.	R	0

Bit(s)	Name	Description	Read/ Write	Default
8	RO	Receive Overflow When set to 1, this bit indicates that the receive FIFO has experienced an overflow. This sticky bit will be cleared when read.	R	0
7	RD	Ready This bit is mapped from the CODEC_READY bit in the SDATA_IN tag word. It indicates that the CODEC is properly booted and ready for normal operation.	R	0
6	CP	Command Pending This bit indicates that there is a command pending on the AC-link. A write to the CODEC command register will cause this bit to be set until the command is completed. The command is completed for a write when the data has been written out on slot 2. The command is completed for a read request when the status data has been read from the corresponding read request. (This means that a read request could be pending for more than 1 cycle depending on the latency of the read.) The command register should not be written until the CP bit is clear. An interrupt can be enabled to indicate when a command is done. The source of this interrupt is an internal pulse so either rising edge or falling edge interrupt should be used for this interrupt.	R	0
5	RES	Reserved	R	UNPRED
4	TE	Transmit Empty When set this bit indicates that the transmit FIFO is empty.	R	0
3	TF	Transmit Full When set this bit indicates the transmit FIFO is full.	R	0
2	RES	Reserved	R	UNPRED

Bit(s)	Name	Description	Read/ Write	Default
1	RE	Receive Empty When set this bit indicates that the receive FIFO is empty.	R	0
0	RF	Receive Full When set this bit indicates that the receive FIFO is full.	R	0


TX/RX Data

The TX/RX Data register is the input to the transmit FIFO when written to and the output from the receive FIFO when read from. Each FIFO is 12 words deep. Care should be taken to monitor the status register to insure that there is room for data in the FIFO for a read or write transaction. This will be taken care of automatically by using DMA.

The number of bits set in XMIT_SLOTS will correspond with how many samples are pulled out of the FIFO and aligned in the respective slots. The number of bits set in RECV_SLOTS will correspond with the number of samples placed in the FIFO from the respective slots in SDATA IN.

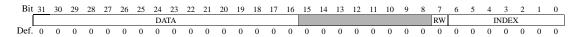
ac97_data - TX/RX Data

Offset = 0x0008

Bit(s)	Name	Description	Read/ Write	Default
31:16	RES	These bits are reserved and should be written 0.	R	0
15:0	DATA_ WORD	Data Word This is where data will be written to or read from the FIFO. Each data word is 16 bits.	R/W	0

CODEC Command

The CODEC Command and Command Response registers share the same physical address.


The CODEC Command register is used to send read and write commands to the CODEC. For write commands, the DATA field will be written to the register indicated by the INDEX field. For read commands, the DATA field should be written zero. The value read from the

register indicated by INDEX will appear in the CODEC Response register when command pending returns to 0.

The CODEC Command register should only be written if the Command Pending bit in the status register is 0.

ac97_cmmd - CODEC Command

Offset = 0x000C

Bit(s)	Name	Description	Read/ Write	Default
31:16	DATA	DATA These bits will be the actual 16 bit word written to the register indicated by INDEX if RW is a 0. If RW is a 1 indicating a read, these bits should be written 0.	W	0
15:8	RES	These bits are reserved and should be written 0.	W	0
7	R/W	Read/Write Bit (1=read, 0=write) This bit maps to the Read/Write bit in the command address and designates whether the current operation will be a read or a write.	W	0
6:0	INDEX	CODEC Register Index These bits will address the specific register to be read or written to inside the CODEC.	W	0

CODEC Command Response

The CODEC Command and Response registers share the same physical address.

When a read command was sent through the CODEC Command register, the response can be read from the CODEC Response register. The response is only valid if the Command Pending bit in the status register is 0.

ac97_cmmdresp - CODEC Command Response

Offset = 0x000C

Bit(s)	Name	Description	Read/ Write	Default
31:16	RES	These bits are reserved and should be written 0.	R	0
15:0	READ_D ATA	READ_DATA These bits will be the response to the last read command sent to the CODEC. The value read is only valid if Command Pending = 0.	R	0

AC97 Enable

The AC97 Enable register is used to enable and reset the entire AC97 Controller block. The suggested power on reset would be to enable clocks with the block disabled. Then clear D for run-time operation.

The correct routine for bringing the AC97 controller out of reset is as follows:

- 1. Set the CE bit to enable clocks.
- 2. Clear the D bit to enable the peripheral.

ac97_enable - AC97 Block Control

Offset = 0x0010

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[D	CE
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

Bit(s)	Name	Description	Read/ Write	Default
31:2	RES	These bits are reserved and should be written 0.	W	0
1	D	AC97 Controller Disable Setting this bit will reset the AC97 block. After enabling the clock with CE, this bit should be cleared for normal operation.	W	1
0	CE	Clock Enable This bit should be set to enable the clock driving the AC97 Controller. It can be cleared to disable the clock for power considerations.	W	0

6.1.2 Hardware Considerations

The AC-link consists of the signals listed in Table 27.

TABLE 27. AC-Link Signals

Pin Name	Input/ Output	Definition
ACSYNC	0	Fixed rate sample sync Muxed with S1DOUT
ACBCLK	1	Serial data clock.
ACDO	0	TDM output stream Muxed with S1CLK
ACDI	1	TDM input stream
ACRST	0	CODEC reset Muxed with S1DEN

For changing pin functionality please refer to the **sys_pinfunc** register in Section 7.3, "Primary General Purpose I/O".

6.1.3 Programming Considerations

To use the AC97 controller the AC97 bit (bit 0) in the **pin_function** register (in GPIO Controller) must be cleared. This enables the associated pins for AC97 use.

The AC97 block supports DMA transfers and interrupts. The use of the DMA or interrupts will be program dependent and is not required to use the AC97 controller.

To use DMA for AC97 memory transfers the transmit and receive functions will each need a dedicated DMA channel. The **peripheral_addr** register in the DMA configuration registers will be set to point to the AC97 **ac97_data** register. The DMA mode register will need to be set up with the correct Device ID (DID). The Device Read bit (DR) will depend on the whether the channel is being used for receive or transmit. Typically the Device Width (DW) should be set to 16 bits and the transfer size (TS8) should be set since the fifo threshold indicators correspond to 8 word transfers. This assumes that the audio samples are aligned in memory on a 16 bit audio sample boundary. The DMA will automatically monitor the transmit and receive request bits and feed data accordingly.

An interrupt can be enabled to indicate when a command is done. The source of this interrupt is an internal pulse so either rising edge or falling edge interrupt should be used for this interupt.

When the AC97 ACSYNC interrupt is enabled in Interrupt controller 0, an interrupt will occur corresponding to the rising edge of the ACSYNC signal. Internally a pulse is generated from the rising edge of the ACSYNC signal and fed to the interrupt controller. Regardless of the edge enabled in the interrupt controller the interrupt will come after the rising edge of ACSYNC. Enabling a rising edge interrupt will interrupt the processor closest to the rising edge of ACSYNC.

The output FIFO for the AC-link is shared for all slots so care should be taken that there is a correspondence with the number of valid bits being set and the number of valid samples written to the transmit FIFO or aligned in memory for DMA or erroneous results will occur. It is the programmer's responsibility to ensure that the number of samples written to the FIFO corresponds with the number of valid slots enabled. Data will automatically be pulled out of the FIFO in the order of what slots are enabled. In other words if slots 3, 4, 6 and 9 are enabled, the programmer should write samples corresponding to data for slots 3, 4, 6, and 9, in that order, to the FIFO.

To insure against underflow at least *x* words should be written per audio frame where *x* is the number of slots enabled. This is a mean rate over time and the actual write rate may differ depending on latency requirements, DMA buffer size, and the number of slots enabled.

Care should be taken that there is a correspondence with the number of valid bits that have been set and the number of valid samples read from the receive FIFO or erroneous results will occur.

The input FIFO for the AC-link is shared for all slots so care should be taken that there is a correspondence with the number of valid bits that are set and the number of samples read from the receive FIFO or erroneous results will occur. It is the programmer's responsibility to ensure that the number of samples read from the FIFO corresponds with the number of valid slots enabled. Data will automatically be put in the FIFO in the order of what slots are enabled. In other words if slots 3, 4, are enabled, the programmer should read samples corresponding to data for slots 3 and 4, in that order, from the FIFO.

To insure against overflow at least *x* words should be read per audio frame where *x* is the number of slots enabled. This is a mean rate over time and the actual read rate may differ depending on latency requirements, DMA buffer size, and the number of slots enabled.

6.2 USB Host Controller

The Au1100 USB Host controller conforms to the Open HCI interface specification, revision 1.0, and is USB 1.1 compliant. Two root hub ports, port 0 and port 1, are provided. The base of the Open HCI register block is shown in Table 28.

TABLE 28. USB Host Base Address

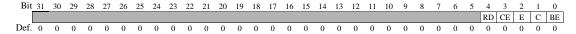
Name	Physical Base Address	KSEG1 Base Address
usbh_base	0x0 1010 0000	0xB010 0000

Only 32 bit accesses are allowed to the Open HCI registers.

All interrupts as described in the Open HCI specification are supported. These interrupts are combined when brought to the interrupt controller into one active low interrupt (negative edge triggered will not work). The interrupt controller should be programmed to reflect this by setting the USB Host interrupt to low level. See Chapter 5, Interrupt Controller for details.

USB Host Enable Register

This register is not part of the OpenHCI registers, however it shares the same base address. The **usbh_enable** register controls the reset and clocks to the USB Host controller. When initializing the USB Host controller the programmer should first enable clocks, then enable the module (remove from reset), then wait for the RD bit to be set before performing OpenHCI initialization.


The correct routine for bringing the USB Host Controller out of reset is as follows:

- 1. Set the CE bit to enable clocks.
- 2. Set the E bit to enable the peripheral (at this time the C and BE bits should be configured appropriately for the system).
- 3. Clear the HCFS bit in the HcControl register to reset the OHCI state.
- 4. Wait for the RD bit to be set before issuing any commands to the OpenHCI controller.

To put the USB Host Controller into reset the following steps should be taken:

- 1. Set the HCFS bit in the HcControl register.
- 2. Clear the E and CE bits

usbh enable Offset = 0x7fffc

Bit(s)	Name	Description	R/W	Default
31:5	RES	These bits are reserved and should be written a 0.	R/W	0
4	RD	Reset Done Wait for this bit to be set before issuing any commands to the OpenHCl controller.	R	0
3	CE	Clock Enable When this bit is set, clocks are enabled to the USB Host controller.	R/W	0
2	E	Enable This bit enables the USB Host controller. When this bit is clear the controller is held in reset.	R/W	0
1	С	Coherent If this bit is set memory accesses by the controller will be marked coherent on the system bus. When this bit is clear memory accesses by the USB Host controller are non coherent. For more information on coherency see Section 2.8.2, "SBUS Coherency Model" for more information on coherency.	R/W	0
0	BE	Big Endian When this bit is set the controller interprets data buffers in Big Endian byte order. When this bit is clear the controller interprets data buffers in Little Endian byte order. Setting the BE bit does not swap the control structures defined in the OHCI specification. Endpoint descriptors (section 4.2), transfer descriptors (section 4.3), and the HCCA (host controller communications area, section 4.4) should always be written as words to ensure proper operation.	R/W	0

6.2.1 Hardware considerations

Table 29 shows the pins associated with the two USB host root hub ports. The USB root hub port pins have USB 1.1 compliant drivers. No external driver circuitry is required.

TABLE 29. USB Pins

Pin Name	Input/ Output	Description			
USB (Host)					
USBH1P	Ю	Positive signal of differential USB host port 1 driver. Requires 15k pulldown to be USB 1.1			
		compliant.			
USBH1M	Ю	Negative signal of differential USB host port 1 driver.			
		Requires 15k pulldown to be USB 1.1 compliant.			
USBH0P	Ю	Positive signal of differential USB host port 0 driver			
		Requires 15k pulldown to be USB 1.1 compliant.			
		Muxed with USBDP which controls the pin out of reset.			
USBH0M	Ю	Negative signal of differential USB host port 0 driver			
		Requires 15k pulldown to be USB 1.1 compliant.			
		Muxed with USBDM which controls the pin out of reset.			

For changing pin functionality please refer to the **sys_pinfunc** register in Section 7.3, "Primary General Purpose I/O".

6.3 USB Device Controller

The Au1500 USB Device controller supports endpoints 0, 2, 3, 4, and 5. Endpoint 0 is always configured as a bidirectional control endpoint. Endpoints 2 and 3 are always IN endpoints and endpoints 4 and 5 are always OUT endpoints.

IN is from device to host. From the device perspective these endpoints are written, so the associated registers are tagged with write or wr.

OUT is from host to device. From the device perspective these endpoints are read, so the associated registers are tagged with read or rd.

The USB device registers are located off of the base address shown in Table 30.

TABLE 30. USB Device Base Address

Name	Physical Base Address	KSEG1 Base Address
usbd_base	0x0 1020 0000	0xB020 0000

Table 31 shows the offsets of each register from the register base.

TABLE 31. USB Device Register Block

Name	Offset	Function
usbd_ep0rd	0x0000	Read from endpoint 0
usbd_ep0wr	0x0004	Write to endpoint 0
usbd_ep2wr	0x0008	Write to endpoint 2
usbd_ep3wr	0x000c	Write to endpoint 3
usbd_ep4rd	0x0010	Read from endpoint 4
usbd_ep5rd	0x0014	Read from endpoint 5
usbd_inten	0x0018	Interrupt Enable Register
usbd_intstat	0x001c	Interrupt Status Register
usbd_config	0x0020	Write Configuration Data
usbd_ep0cs	0x0024	Endpoint 0 control and status
usbd_ep2cs	0x0028	Endpoint 2 control and status
usbd_ep3cs	0x002c	Endpoint 3 control and status
usbd_ep4cs	0x0030	Endpoint 4 control and status
usbd_ep5cs	0x0034	Endpoint 5 control and status

TABLE 31. USB Device Register Block

Name	Offset	Function
usbd_framenum	0x0038	Current frame number
usbd_ep0rdstat	0x0040	EP0 Read FIFO Status
usbd_ep0wrstat	0x0044	EP0 Write FIFO Status
usbd_ep2wrstat	0x0048	EP2 Write FIFO Status
usbd_ep3wrstat	0x004c	EP3 Write FIFO Status
usbd_ep4rdstat	0x0050	EP4 Read FIFO Status
usbd_ep5rdstat	0x0054	EP5 Read FIFO 5 Status
usbd_enable	0x0058	USB Device Controller Enable

Endpoint FIFO Read and Write Registers

The endpoint FIFO read and write registers provide access to the endpoint FIFOs. Each endpoint FIFO is unidirectional. FIFO read registers may not be written and FIFO write registers will return unpredictable results if read.

Only the least significant byte of the FIFO registers contain data.

usbd_ep0rd		Offset = $0x0000$
usbd_ep0wr		Offset = $0x0004$
usbd_ep2wr		Offset = $0x0008$
usbd_ep3wr		Offset = $0x000c$
usbd_ep4rd		Offset = $0x0010$
usbd_ep5rd		Offset = $0x0014$
Bit 31 30 29 28 27 20	6 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9	8 7 6 5 4 3 2 1 0
Def. 0 0 0 0 0 0		DATA 0 0 0 0 0 0 0 0

Bit(s)	Name	Description	R/W	Default
31:13	RES	These bits are reserved and should be written a 0.	R/W	0
7:0	DATA	Data Byte of data to be written to, or read from the endpoint FIFO.	R/W	0

Interrupt Registers

Each endpoint has an interrupt enable register and an interrupt status register. The two registers have identical formats. When a condition becomes true the corresponding bit is set in the usbd_intstat register. If a bit is set in the interrupt enable register and the corresponding condition becomes true then an interrupt will be issued. The interrupt for the USB device should be programmed to high level.

Interrupts and pending conditions must be cleared by writing a 1 to the corresponding bit in the **usbd_intstat** register.

usbd_intenOffset = 0x0018usbd_intstatOffset = 0x001c

Bit(s)	Name	Description	R/W	Default
31:13	RES	These bits are reserved and should be written a 0.	R/W	0
12	SF	Start of Frame This interrupt issues when an SOF token is received.	R/W	0

Bit(s)	Name	Description	R/W	Default
11:6	H5:H0	Fifo Half Full These interrupts issue when the corresponding FIFO reaches the half full/half empty mark. The bits correspond as follows: H0 - ep0rd H1 - ep0wr H2 - ep2wr H3 - ep3wr H4 - ep4rd H5 - ep5rd	R/W	0
5:0	C5:C0	Complete These interrupts issue when a transmission or reception completes on the corresponding FIFO. For FIFOs 0, 4, and 5 these interrupts indicate the reception of a DATA0 or DATA1 packet or a SETUP packet (FIFO 0 only). For FIFOs 1, 2, and 3 these interrupts indicate the transmission of a DATA0 or DATA1 packet. The bits correspond as follows: C0 - ep0rd C1 - ep0wr C2 - ep2wr C3 - ep3wr C4 - ep4rd C5 - ep5rd	R/W	0

Device Configuration Register

The device configuration register allows configuration data to be loaded to the controller after reset.

The data must be written to the usbd_config register in order beginning with byte 0. Bytes are written individually as unsigned 32-bit words. For example:

```
for (i=0; i<25; i++)
  *usbd_config = (unsigned int) cfg_data_bytes[i];</pre>
```

 $\mathbf{usbd_config}$ Offset = 0x0020

Bit(s)	Name	Description	R/W	Default
31:13	RES	These bits are reserved and should be written a 0.	R/W	0
7:0	CFG- DATA	Configuration Data Configuration data consists of a block of 25 bytes which must be written to this register after the controller is removed from reset. Each write must contain only one byte of data. The data is enumerated in Table 32. Data should be written in order, starting with byte 0.	R/W	0

TABLE 32. Configuration Data

Byte	Format	Description
0	0000 0100	fixed
1	0000 0sss	sss = Endpoint 0 Max Packet Size bits[9:7]
2	ssss sss0	ssss sss = Endpoint 0 Max Packet Size bits[6:0]
3	0000 0000	fixed
4	0000 0001	fixed
5	0010 0100	fixed
6	00tt 1sss	tt = Endpoint 2 type: 00 = control, 01 = isochronous, 10 = bulk, 11 = interrupt
		sss = Endpoint 2 Max Packet Size bits[9:7]
7	ssss sss0	ssss sss = Endpoint 2 Max Packet Size bits[6:0]
8	0000 0000	fixed
9	0000 0010	fixed
10	0011 0100	fixed
11	00tt 1sss	tt = Endpoint 3 type: 00 = control, 01 = isochronous, 10 = bulk, 11 = interrupt
		sss = Endpoint 3 Max Packet Size bits[9:7]
12	ssss sss0	ssss sss = Endpoint 3 Max Packet Size bits[6:0]
13	0000 0000	fixed
14	0000 0011	fixed

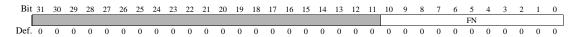
TABLE 32. Configuration Data

Byte	Format	Description
15	0100 0100	fixed
16	00tt 0sss	tt = Endpoint 4 type: 00 = control, 01 = isochronous, 10 = bulk, 11 = interrupt
		sss = Endpoint 4 Max Packet Size bits[9:7]
17	ssss sss0	ssss sss = Endpoint 4 Max Packet Size bits[6:0]
18	0000 0000	fixed
19	0000 0100	fixed
20	0101 0100	fixed
21	00tt 0sss	tt = Endpoint 5 type: 00 = control, 01 = isochronous, 10 = bulk, 11 = interrupt
		sss = Endpoint 5 Max Packet Size bits[9:7]
22	ssss sss0	ssss sss = Endpoint 5 Max Packet Size bits[6:0]
23	0000 0000	fixed
24	0000 0101	fixed

Endpoint Control Registers

The endpoint control registers set parameters and reflect operational conditions for each endpoint.

usb	d_c	ep0	cs																								(Offs	et:	= 0	x002	24
usb	d_e	ep2	cs																								(Offs	et :	= 0	x00′	28
usb	d_0	ep3	cs																								(Offs	set:	= 0	x00	2c
usb	d_0	ep4	cs																								(Offs	et :	= 0	x00	30
usb	d_0	ep5	cs																								(Offs	et :	= 0	x00	34
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2		0
Dof																		SU		A	В						Z					FS


Bit(s)	Name	Description	R/W	Default
31:15	RES	These bits are reserved and should be written a 0.	R/W	0
14	SU	Setup Received - This bit is set when a SETUP packet is received from the host. It is only valid for EP 0.	R	0
13	N	NAK - This bit will be set when an operation does not complete successfully or when data in a receive FIFO should be ignored. For most cases this implies a returned NAK in response to a DATA packet or an incorrect CRC. SETUP packets that are automatically handled in	R	0
		hardware are also indicated by the N bit. For these transactions the data in the receive FIFO should be discarded.		
12	A	ACK - This bit is set when an operation completes successfully. Most of the time this means that the Host returned an ACK to a DATA packet or that a DATA packet was received correctly and an ACK returned to the Host. Isochronous DATA and SETUP packets deviate from this model. For these types of packets the A bit indicates successful transmission or reception but no	R	0
		ACK is returned or expected.	_	0
11	RES	These bits are reserved and should be written a 0.	R	
10:1	SZ	The TSIZE field specifies the data size of an IN transfer. The TSIZE field is only relevant on endpoints 0, 2, and 3.	R/W	0
0	FS	Force Stall - Setting this bit will place the endpoint in a stalled condition. Any transaction directed to the endpoint will be answered with a STALL response. STALL is typically used to indicate that the endpoint has halted. Note that a Clear Feature command received via the USB will not clear a stall condition forced by this bit.	R/W	0

Current Frame Number

This register provides the current frame number form the start of frame packet.

usbd_framenum - Current Frame Number

Offset = 0x0038

Bit(s)	Name	Description	R/W	Default
31:11	RES	These bits are reserved and should be written a 0.	R	0
10:0	FN	Frame Number This field contains the frame number from the start of frame packet.	R	0

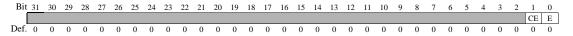
FIFO Status Registers

Each FIFO has a status register that indicates the current state and any error conditions.

The USB FIFOs are 8 words deep.

usb	d_e	ep0	rds	stat	t																						(Offs	et:	= 0x	.0040)
usb	d_e	ep0	wr	sta	t																						(Offs	et:	= 0x	.004	4
usb	d_e	ep2	wr	sta	t																						(Offs	et:	= 0x	.004	3
usb	d_6	ep3	wr	sta	t																						(Offs	set	= 02	:004	С
usb	d_6	ep4	rds	stat	t																						(Offs	et:	= 0x	.0050)
usb	d_6	ep5	rds	stat	t																						(Offs	et:	= 0x	.0054	4
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1 0	
Def	0	0			0				0																	FL		OF	0	FCN		J

Bit(s)	Name	Description	R/W	Default
31:7	RES	These bits are reserved and should be written a 0.	R/W	0
6	FL	Flush FIFO - Writing a 1 to this bit will clear the corresponding FIFO and discard any data contained in it.	W	0
5	UF	Underflow Flag - This bit will be set if a read is done to an empty FIFO. This bit can be cleared by writing a 1 to it.	R/W	0
4	OF	Overflow Flag - This bit will be set if a byte is written to a full FIFO. This bit can be cleared by writing a 1 to it.	R/W	0
3:0	FCNT	FIFO Count - This field reflects the current number of bytes in the corresponding FIFO.	R	


Device Controller Enable Register

The Device Controller Enable register controls the clocks and reset to the device controller. The programmer should first enable clocks and then enable the device controller to bring out of reset.

The correct routine for bringing the USB Device out of reset is as follows:

- 1. Set the CE bit to enable clocks.
- 2. Set the E bit to enable the peripheral

 $usbd_enable$ Offset = 0x0058

Bit(s)	Name	Description	R/W	Default
31:2	RES	These bits are reserved and should be written a 0.	R/W	0
1	CE	Clock Enable - Clearing this bit disables all clocks to the USB Device core. Setting this bit allows normal operation.	R/W	0
0	Е	Enable - When this bit is cleared the Device Controller will be held in reset. Setting this bit enables normal operation.	R/W	0

6.3.1 Programming Considerations

6.3.1.1 Removing the controller from RESET

The following sequence of operations must be applied to remove the controller from reset.

- 1. Write a 0x0002 to the **usbd enable** register to enable the clocks.
- 2. Wait lus.
- 3. Write a 0x0003 to the **usbd enable** register to remove the controller from reset.
- 4. Write 25 bytes of configuration data to the **usbd_config** register.

There are no special constraints on entering the reset state. One write to the **usbd_enable** register may be used to turn the clocks off and reset the controller.

Accessing the endpoint control registers (**usbd_epncs**), frame number register (**usbd_framenum**) or config data register (**usbd_config**) while the USB Device is in sus-

pend mode will result in a system bus deadlock. This will inhibit any further operation of the CPU, including EJTAG debugger operation.

6.3.1.2 Latency Requirements

The time from reception of a token such as IN or OUT until the controller must source the corresponding DATA frame is very short. It is not practical to wait for a token before preparing the buffer for the response. Buffers must be posted before the token is received.

The token itself will not be passed to the buffer, only DATA frames are transferred. When a DATA frame is received the difference between an OUT and a SETUP can be determined by examining the SU bit in the **usbd_epNcs** register.

If an IN endpoint is enabled and no data is available in the FIFO the endpoint will NAK. Underrunning the FIFO during a transfer (after the first byte has been written to the FIFO) will result in a bit stuff error.

6.3.1.3 Using DMA

DMA should be used for all transfers with the exception of the FIFO cleanout described below for OUT transactions.

When setting up a buffer to service a series of IN transactions the DMA size should be set to either less than MAXPACKET or a multiple of MAXPACKET. The size in the **usbd_epNcs** reister should be set to MAXPACKET for all but the last buffer and to the actual remaining transfer size for the last packet. The size must be set correctly before the DMA is enabled for proper frame transmission.

If the last buffer of an IN series is a full MAXPACKET in length it may be necessary to set the size in the **usbd_epNcs** register to zero and write a byte to the FIFO to enable the transmission of a zero length DATA frame since this is often the indicator for end of transfer. In this case the FIFO must be cleared before the next buffer is set up.

For OUT endpoints the DMA may be programmed to a larger size than a transfer will use. When the endpoint completes the FIFO should be examined to see if there are any remaining bytes available. This will happen when DATA packets are not multiples of 4 bytes long because the DMA controller will not receive a request when less than 4 bytes are in the FIFO.

6.3.1.4 Special Handling of SETUP Transactions

Since SETUP transactions do not follow a simple IN/OUT model some special handling is required. If a SETUP transaction has an OUT phase, the acknowledgment is implied by a zero length DATAx packet returned in response to a following IN. For this data packet to be sent it is necessary to write a byte to the **usbd_ep0wr** FIFO after the SETUP is received and before the IN is received. Failure to do so will result in a NAK in response to the IN which

will imply a failure to execute the command. Software must flush this data from the **usbd_ep0wr** FIFO when the IN is completed.

6.3.1.5 Automatic Execution of Commands

Some standard setup commands directed at endpoint zero will be automatically serviced by the USB device hardware. These commands are still passed to the memory buffer but are indicated by the N bit in **usbd_ep0cs**. No further action is required to service these commands although they may be used to signal state changes within the software.

The following commands will be automatically serviced:

- · Set Address
- Set/Clear Feature
- Set Configuration
- Set Interface

6.3.1.6 Detecting USB Reset

The USB device controller does not provide a way to detect reset on the USB. It is recommended that if a device needs to change state on reset it should use the reception of a **Set Address** command to indicate that a reset has occurred.

6.3.1.7 Automatic Suspension

If the USB is idle for more than 3ms the device controller will enter a suspend state. In this state the device controller will not consume data. A rising edge suspend interrupt is provided to inform the CPU when this occurs. The suspend interrupt may also be used to detect the exit from suspend by using the falling edge of the interrupt.

6.3.2 Hardware considerations

The USB root hub port pins have USB 1.1 compliant drivers. No external driver circuitry is required.

The USB Device implementation is full speed and requires the termination mentioned below. Low speed is not supported.

Table 33 shows the pins associated with the USB Device.

TABLE 33. USB Pins

Pin Name	Input/ Output	Description
USB (Device))	
USBDP	Ю	Positive signal of differential USB device driver
		Requires a 1,5k pullup to denote a full speed device.
		Muxed with USBH0P
USBDM	Ю	Negative signal of differential USB device driver
		Muxed with USBH0M

For changing pin functionality please refer to the **sys_pinfunc** register in Section 7.3, "Primary General Purpose I/O".

6.4 IrDA

The IrDA (Infrared Data Association) peripheral is a serial device that uses an infrared serial bus. Features of this peripheral are:

- FIR, MIR, and SIR modes supported
- Integrated physical layer (PHY) implementation only an infrared transceiver is needed.
- Integrated DMA for block transfer of packet data to/from memory
- Support for both Big Endian and Little Endian memory addressing
- 16-bit or 32-bit hardware CRC generation and detection
- Interrupt support on send and receive of buffer

The operating modes and standards supported are listed in Table 34.

TABLE 34. IrDA Modes Supported

Mode	Speed	Compliance
SIR	2.4 to 115.2 kbps	IrDA 1.0
MIR	1.152 Mbps	IrDA 1.1 with error detection
FIR	4.0 Mbps	IrDA 1.1 with error detection

6.4.1 IrDA Registers

The IrDA peripheral is programmed via a block of registers with a base address as shown in Table 35. The register set index is described in Table 36.

TABLE 35. IrDA Base Address

Name	Physical Base Address	KSEG1 Base Address	
irda_base	0x0 1030 0000	0xB030 0000	

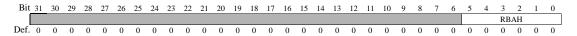
TABLE 36. IrDA Registers

Offset	Register Name	Description
0x0000	ir_rngptrstat	Infrared Ring Pointer Status
0x0004	ir_rngbsadrh	Infrared Ring Base Address High Register
0x0008	ir_rngbsadrl	Infrared Ring Base Address Low Register
0x000C	ir_ringsize	Infrared Ring Size Register
0x0010	ir_rngprompt	Infrared Ring Prompt Register
0x0014	ir_rngadrcmp	Infrared Ring Address Compare Register
0x0018	ir_intclear	IrDA interrupt clear register
0x0020	ir_config1	Infrared Configuration 1 Register
0x0024	ir_sirflags	Infrared SIR Flags Register
0x0028	ir_statusen	Infrared Status/Enable Register
0x002C	ir_rdphycfg	Infrared Read PHY Configuration Register
0x0030	ir_wrphycfg	Infrared Write PHY Configuration Register
0x0034	ir_maxpktlen	Infrared Maximum Packet Length Register
0x0038	ir_rxbytecnt	Infrared Received Byte Count Register
0x003C	ir_config2	Infrared Configuration Register 2
0x0040	ir_enable	Infrared Interface Configuration Register

Infrared Ring Pointer Status Register

This read-only register gives the current indices for both the transmit and receive ring buffer pointers. The ring buffers form one contiguous memory block with the receive ring buffer beginning at the ring base address and the transmit ring buffer following afterward.

ir_rngptrstat - Infrared Ring Pointer Status


Bit(s)	Name	Description	R/W	Default
31:15	RES	These bits are reserved and are read as 0.	R	0
14	RES	This bit is always read as 1.	R	1
13:8	TRPI	Transmit Ring Pointer Index Gives the current pointer location in the transmit ring buffer.	R	0
7:6	RES	This bits are reserved and are always read as 0.	R	0
5:0	RRPI	Receive Ring Pointer Index Gives the current pointer location in the receive ring buffer.	R	0

Infrared Ring Base Address High Register

This register defines the base address of the transmit and receive ring buffers. The receive ring buffer begins at the specified base address; the transmit ring buffer begins at base address + 512 bytes.

ir_rngbsadrh - Infrared Ring Base Address High Register

Offset = 0x0004

Bit(s)	Name	Description	R/W	Default
31:6	RES	These bits are reserved and are read/written as 0.	R/W	0
5:0	RBAH	Ring buffer base address bits [31:26]	R/W	0

Infrared Ring Base Address Low Register

This register defines the base address of the transmit and receive ring buffers. The receive ring buffer begins at the specified base address; the transmit ring buffer begins at base address + 512 bytes.

ir_rngbsadrl - Infrared Ring Base Address Low Register

6 Peripheral Devices

Bit(s)	Name	Description	R/W	Default
31:16	RES	These bits are reserved and are read/written as 0.	R/W	0
15:0	RBAL	Ring buffer base address bits [25:10]	R/W	0

Infrared Ring Size Register

This register defines the size for both the transmit and receive ring buffers. Each ring buffer size is programmed using an encoded value from the following table:

TABLE 37. Ring Buffer Sizes

Encoding	Ring Buffer Size
0000	4
0001	8
0011	16
0111	32
1111	64

ir_ringsize - Infrared Ring Size Register

Offset = 0x000C

Bit(s)	Name	Description	R/W	Default
31:16	RES	These bits are reserved and are read/written as 0.	R/W	0
15:12	TRBS	Transmit ring buffer size encoded using Table 37.	R/W	0
11:8	RRBS	Receive ring buffer size encoded using Table 37.	R/W	0
7:0	RES	This bit is always read/written as 0.	R/W	0

Infrared Ring Prompt Register

Writing this register forces the infrared controller to read the ownership bits of the transmit and receive ring buffers. Reading this register returns a value of 0x0000FFFF.

ir_rngprompt - Infrared Ring Prompt Register

Offset = 0x0010

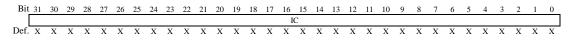
Bit(s)	Name	Description	R/W	Default
31:16	RES	These bits are reserved and should be written as 0.	W	UNPRED
15:0	D/C	Don't care.	W	UNPRED

Infrared Ring Address Compare Register

Setting the address field in this register will define which IrDA packets to accept.

Note: This feature must be enabled by setting EN = 1.

ir_rngadrcmp - Infrared Ring Address Compare Register


Bit(s)	Name	Description	R/W	Default
31:16	RES	These bits are reserved and are read/written as 0.	R	0
15	EN	Address comparison enable 1 - address comparison enabled. 0 - address comparison disabled.	R/W	0
14:8	RES	These bits are reserved and are read/written as 0.	R/W	0
7:0	ADDR	IrDA packet address to compare	R/W	0

IrDA Interrupt Clear

Writing to this register will clear all pending IrDA interrupts.

ir_intclear - IrDA Interrupt Clear

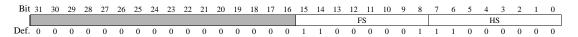
Offset = 0x0018

Bit(s)	Name	Description	R/W	Default
31:0	IC	Interrupt Clear	W	UNPRED
		Any write to this register will clear all pending IrDA interrupts.		

Infrared Configuration Register 1

This register defines general setup parameters for the IrDA controller.

ir_config1 - Infrared Configuration Register 1


Bit(s)	Name	Description	R/W	Default
31:16	RES	These bits are reserved and are read/written as 0.	R/W	0
15	EL	Enable external transmit while in loopback.	R/W	0
14	IL	Enable internal loopback.	R/W	0
13	RES	These bits are reserved and are read/written as 0.	R/W	0
12	TE	Transmit enable.	R/W	0
11	RE	Receive enable.	R/W	0
10	ME	DMA Enable; when set ME allows DMA access to system memory by the IrDA controller. The IrDA has its own DMA controller. This bit should always be set for normal operation.	R/W	0
9	RA	Receive all small/runt packets of size less than 4 bytes (SIR mode only).	R/W	0

Bit(s)	Name	Description	R/W	Default
8	TD	Transparency destuffing disable for SIR receive filter 1 - transparency destuffing disabled	R/W	0
		0 - transparency destuffing enabled		
7	СМ	Cyclical Redundancy Check (CRC) mode 1 - 16-bit CRC 0 - 32-bit CRC	R/W	0
6	FI	Fast infrared mode enable (FIR) When this bit is set the IRFIRSEL output will be a 1	R/W	0
5	МІ	Medium infrared mode enable (MIR) When this bit is set the IRFIRSEL output will be a 1	R/W	0
4	SI	Slow infrared mode enable (SIR) When this bit is set the IRFIRSEL output will be a 0	R/W	0
3	SF	Enable SIR byte filter on the receiver (SIR mode only).	R/W	0
2	ST	Enable SIR filter when not in SIR mode (test).	R/W	0
1	TI	Invert transmit LED signal	R/W	0
0	RI	Invert receive LED signal	R/W	0

Infrared SIR Flags Register

This register returns bit sequences for start-of-frame and end-of-frame of an IrDA packet.

ir_sirflags - Infrared SIR Flags Register

Bit(s)	Name	Description	R/W	Default
31:16	RES	These bits are reserved and are read as 0.	R	0
15:8	FS	Footer bit sequence for end-of-frame	R	0xC1
7:0	HS	Header bit sequence for start-of-frame	R	0xC0

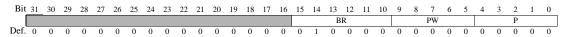
Infrared Status/Enable Register

This register defines enabling/disabling of the physical (PHY) layer and gives programming status for the IrDA controller as defined by Infrared Configuration Register 1 (**ir_config1**).

ir_statusen - Infrared Status/Enable Register

Offset = 0x0028

Bit(s)	Name	Description	R/W	Default
31:16	RES	These bits are reserved and are read/written as 0.	R/W	0
15	Е	Enable PHY layer.	R/W	0
14	CE	Configuration Error	R	0
		This bit is set when more than one operating mode (SIR, MIR, or FIR) is enabled simultaneously.		
13	FV	Valid FIR mode configuration	R	0
12	MV	Valid MIR mode configuration	R	0
11	SV	Valid SIR mode configuration	R	0
10	TS	Status of transmit enable (TE) bit	R	0
9	RS	Status of receive enable	R	0
8	CS	Status of Cyclical Redundancy Check mode (CM) bit	R	0
7:0	RES	These bits are always read as 1.	R	0xFF

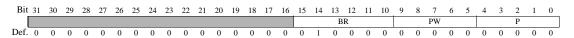

Infrared Read PHY Configuration Register

This register returns the settings of the last value in **ir_wrphycfg** when bit 15 (Enable) of the **ir_statusen** register is 0.

When Enable is set, a write to **ir_wrphycfg** will not update into ir_rdphycfg until enable is 0 again.

ir_rdphycfg - Infrared Read PHY Configuration Register

Offset = 0x002C


Bit(s)	Name	Description	R/W	Default
31:16	RES	These bits are reserved and are read as 0.	R	0
15:10	BR	Baud rate (see "Programming Considerations" on page 146)	R	0
9:5	PW	Pulse width (see "Programming Considerations" on page 146)	R	0
4:0	Р	This register will determine the number of preamble bytes to send for FIR, or start flags for MIR.	R	0
		It should be interpreted as 1 less than the actual number of preamble bytes/start flags required (i.e. setting this field to 1 will cause 2 start flags to be sent in MIR mode).		
		This field does not apply to SIR.		

Infrared Write PHY Configuration Register

This register defines the settings of the physical layer (PHY) interface. When read this register returns the last value written to it.

The status of these values may be read by the Infrared Read PHY Configuration Register, **ir_rdphycfg** when bit 15 (Enable) of the **ir_statusen** register is 0.

ir_wrphycfg - Infrared Write PHY Configuration Register

Bit(s)	Name	Description	R/W	Default
31:16	RES	These bits are reserved and are read/written as 0.	R/W	0
15:10	BR	Baud rate (see "Programming Considerations" on page 146)	R/W	0

6 Peripheral Devices

Bit(s)	Name	Description	R/W	Default
9:5	PW	Pulse width (see "Programming Considerations" on page 146)	R/W	0
4:0	Р	This register will determine the number of preamble bytes to send for FIR, or start flags for MIR. It should be interpreted as 1 less than the actual number of preamble bytes/start flags required (i.e. setting this field to 1 will cause 2 start flags to be sent in MIR mode). This field does not apply to SIR.	R/W	0

Infrared Maximum Packet Length Register

This register defines the maximum length of a received IrDA packet.

ir_maxpktlen - Infrared Maximum Packet Length Register

Offset = 0x0034

Bit(s)	Name	Description	R/W	Default
31:13	RES	These bits are reserved and are read/written as 0.	R/W	0
12:0	ML	Maximum received packet length.	R/W	0

Infrared Receive Byte Count Register

This register returns the current number of received bytes.

ir_rxbytecnt - Infrared Receive Byte Count Register

Bit(s)	Name	Description	R/W	Default
31:13	RES	These bits are reserved and are read as 0.	R	0
12:0	RBCR	Received byte count.	R	0

Infrared Configuration Register 2

This register defines general setup parameters for the IrDA controller.

ir_config2 - Infrared Configuration Register 2

Offset = 0x003C

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																								ΙE	F	S	DA	DP	CS	S	P	MI
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	1	1

Bit(s)	Name	Description	R/W	Default
31:16	RES	These bits are reserved and are read/written as 0.	R/W	0
15:9	RES	These bits are reserved and are read as 1.	R	0x7F
8	IE	Interrupt Enable Setting this bit will allow interrupts to be generated when a ring buffer has been transmitted or received. Writing to the ir_intclear register will clear all pending interrupts.	R/w	0
7:6	FS	Filter selection for finite impulse response DPLL 11 - lowest filter 10 - medium low filter 01 - medium high filter 00 - highest filter	R/W	0x0
5	DA	Disable adjacent pulse width packet circuit in the FIR DPLL. 1 - circuit disabled 0 - circuit enabled	R/W	0
4	DP	Disable pulse width adjustment circuit in the FIR DPLL.	R/W	0
3:2	CS	PHY layer clock speed 11 - 64 MHz 10 - 56 MHz 01 - 48 MHz 00 - 40 MHz The IrDA Clock must be set to match value set in CS. The IrDA clock is programmed from the clock generator which is documented in Section 7.1, Clocks.	R/W	0x0

6 Peripheral Devices

Bit(s)	Name	Description	R/W	Default
1	Р	One receive pin mode	R/W	0
		1 - one pin each for receive and speed select (slow or fast)		
		0 - two pins for receive		
0	MI	Mode inversion (when P=1)	R/W	0
		Fast speed is chosen by asserting speed select high.		
		0 - Fast speed is chosen by asserting speed select low.		

Infrared Enable Register

This register defines the IrDA peripheral interface setup and has a bit to enable clocks to the IrDA module.

The correct routine for bringing the IrDA out of reset is as follows:

1. Set the CE bit to enable clocks with the HC, CA, and E bit set appropriately.

ir_enable - Infrared Enable Register

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																													HC	CE	C	E
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	R/W	Default
31:4	RES	These bits are reserved and are read/written as 0.	R/W	0
3	HC	Half clock speed mode 1 - IrDA clock will run at one-half system bus frequency. 0 - IrDA clock will run at full system bus frequency. HC is not just for power savings. HC must be 1 if the system bus is greater than 100MHz.	R/W	0
2	CE	Clock enable - Setting this bit will enable clocks.	R/W	0

Bit(s)	Name	Description	R/W	Default
1	С	Coherent	R/W	1
		1 - Memory accesses are marked coherent		
		0 - Memory accesses are marked non coherent		
		For more information on coherency see Section 2.8.2, "SBUS Coherency Model" for more information on coherency.		
0	Е	Endian mode	R/W	1
		1 - Big Endian		
		0 - Little Endian		

6.4.2 Hardware Considerations

Table 38 describes the connection between the IrDA peripheral and the external transceiver.

TABLE 38. IrDA Hardware Connections

Pin	Input/Output	Description
IRDATX	0	Serial IrDA output Muxed with GP211 which controls the pin out of hardware reset, runtime reset and sleep.
IRDARX	1	Serial IrDA input
IRFIRSEL	0	Output which will signal at which speed the IrDA is currently set. This signal is not necessary for IrDA operation. This pin will be driven high when IrDA is configured for FIR or MIR. This pin will be driven low for SIR mode.
		Muxed with GPIO15 which controls the pin out of hardware reset, runtime reset and sleep.

For changing pin functionality please refer to the **sys_pinfunc** register in Section 7.3, "Primary General Purpose I/O".

6.4.3 Programming Considerations

6.4.3.1 Initialization

First the IrDA clock must be set to match the CS setting in the **ir_config2** register. Please see Section 7.1, "Clocks" for more information.

Second, enable peripheral logic by programming the **ir_enable** register: HC should be set to 1 for low power or if the system bus is greater than 100MHz, CE must be set to 1 to enable the peripheral logic, C should be set to 1 for dcache to respond to irda accesses on the system bus if it has the data, and E should be set for the appropriate endianess.

Next, the **sys_pinfunc** register bits must be set to the alternate (IrDA) function: IRF can optionally be set to 1 to enable IrDA to drive the FIRSEL pin (this pin is not required if external logic takes care of setting the transceiver speed). IRD must be set to 0 to enable data transmission through the IRTXD pin.

6.4.3.2 Power Management

The HC bit in the **ir_enable** register can be used to run the IRDA at half the system bus. The CE should be disabled when not using the IRDA to gate clocks from this peripheral.

6.4.3.3 Programming Notes

IrDA can be operated at speeds ranging from 2400 bps to 4 Mbps. Table 39 shows the proper parameters to configure communications speed and IrDA mode.

TABLE 39. IrDA PHY Configuration Table

Mode	Speed (bps)	Baud Rate	Pulse Width min - nom - max			Preamble/ Start Flags
SIR	2400	47	0	12	12	N/A
SIR	9600	11	0	12	12	N/A
SIR	19200	5	1	12	12	N/A
SIR	38400	2	3	12	14	N/A
SIR	57600	1	5	12	16	N/A
SIR	115200	0	11	12	20	N/A
MIR	1150000	0	N/A	8	N/A	2 (P field should be set to 1)
FIR	4000000	0	N/A	N/A	N/A	16 (P field should be set to 15)

Table 40, Table 41 and Table 42 show the ordered steps for programming the IrDA peripheral for each mode.

TABLE 40. Fast Infrared Mode (FIR)

Step	Register	Value	Notes
1	ir_intcfg	0x000C	Enable Coherency (C) and Half Clock (HC).
2	ir_enable	0x0000	Clear bit E to allow peripheral programming (disable IrDA).
3	ir_mxpktlen	0x0020	32 bytes maximum per packet
4	ir_wrphycfg	0x000F	16 preamble bytes (P field requires 1 less than number needed)
5	ir_config1	0x1C40	Enable transmitter (TE), receiver (RE), memory scheduler (ME), and fast infrared mode (FI). NOTE: set pin inversion bits (TI and/or RI)
			accordingly for proper transceiver operation.
6	ir_rngbsadrl	user defined	Write the logical address of ring buffer memory. NOTE: The final address must have zeroes for
			address bits 9:0 (i.e. the address must reside on a 1 kByte boundary).
7	ir_rngbsadrh	user defined	Write the logical address of ring buffer memory.
			NOTE: The final address must have zeroes for address bits 9:0 (i.e. the address must reside on a 1 kByte boundary).
8	ir_ringsize	user defined	Write the desired ring size.
9	ir_config2	0x0004	Set the PHY clock speed to 48 MHz.
10	ir_enable	0x8000	Set bit E to enable the peripheral, then read register again for correct status (should equal 0xC7FF).
11	ir_rngprompt	0x0000	Write a zero to this register to start the IrDA transfers.

TABLE 41. Medium Infrared Mode (MIR)

Step	Register	Value	Notes
1	ir_intcfg	0x000C	Enable Coherency (C) and Half Clock (HC).
2	ir_enable	0x0000	Clear bit E to allow peripheral programming (disable IrDA).
3	ir_mxpktlen	0x0020	32 bytes maximum per packet
4	ir_wrphycfg	0x0101	1 preamble byte (P field requires one less than number needed), Pulse Width = 8
5	ir_config1	0x1C20	Enable transmitter (TE), receiver (RE), memory scheduler (ME), and medium infrared mode (MI). NOTE: Set pin inversion bits (TI and/or RI) accordingly for proper transceiver operation.
6	ir_rngbsadrl	user defined	Write the logical address of ring buffer memory. NOTE: the final address must have zeroes for address bits 9:0 (i.e. the address must reside on a 1 kByte boundary).
7	ir_rngbsadrh	user defined	Write the logical address of ring buffer memory. NOTE: The final address must have zeroes for address bits 9:0 (i.e. the address must reside on a 1 kByte boundary).
8	ir_ringsize	user defined	Write the desired ring size.
9	ir_config2	0x0004	Set the PHY clock speed to 48 MHz.
10	ir_enable	0x8000	Set bit E to enable the peripheral, then read register again for correct status (should equal 0xA7FF).
11	ir_rngprompt	0x0000	Write a zero to this register to start the IrDA transfers.

TABLE 42. Slow Infrared Mode (SIR)

Step	Register	Value	Notes
1	ir_intcfg	0x000C	Enable Coherency (C) and Half Clock (HC).
2	ir_enable	0x0000	Clear bit E to allow peripheral programming (disable IrDA).
3	ir_mxpktlen	0x0020	32 bytes maximum per packet
4	ir_wrphycfg	0x0180	Baudrate = 0 (115200), Pulse width = 12
5	ir_config1	0x1E10	Enable transmitter (TE), receiver (RE), memory scheduler (ME), receive all runt packets (RA), and slow infrared mode (SI). Note: set pin inversion bits (TI and/or RI) accordingly for proper transceiver operation.
6	ir_rngbsadrl	user defined	Write the logical address of ring buffer memory. NOTE: The final address must have zeroes for address bits 9:0 (i.e. the address must reside on a 1 kByte boundary).
7	ir_rngbsadrh	user defined	Write the logical address of ring buffer memory. NOTE: The final address must have zeroes for address bits 9:0 (i.e. the address must reside on a 1 kByte boundary).
8	ir_ringsize	user defined	Write the desired ring size.
9	ir_config2	0x0004	Set the PHY clock speed to 48 MHz.
10	ir_enable	0x8000	Set bit E to enable the peripheral, then read register again for correct status (should equal 0xA7FF).
11	ir_rngprompt	0x0000	Write a zero to this register to start the IrDA transfers.

Ring Buffers

The IrDA controller is designed to allow the CPU to access the IR media through a system of "rings" set up in memory. Each ring entry corresponds to a LAN packet and stores information and status about that packet as well as the physical address of where the data for that packet is stored. The ring area is split into two areas: Transmit and Receive. The receive ring starts at the Base Address location (specified by the contents of the ring base address registers) and the transmit ring starts at the Base Address + 512 bytes (decimal). Each ring entry

contains 8 bytes with a maximum of 64 ring entries in each of the transmit and/or receive ring areas. The actual number used is programmed via the **ir_ring_size** register.

The format for each transmit ring entry is shows in Figure 25.

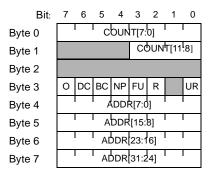


FIGURE 25. Transmit Ring Buffer Entry Format

Bit(s)	Name	Description	R/W	Default
Byte 0 bits 7:0	COUNT [7:0]	Number of bytes to transmit (lowest 8 bits)	R/W	user assigned
Byte 1: bits 7:4	COUNT	Number of bytes to transmit (upper 4 bits)	R/W	user assigned
Byte 1: bits 3:0	RES	These bits are reserved and are read/written as 0.	R/W	0
Byte 2: bits 7:0	RES	These bits are reserved and are read/written as 0.	R/W	0
Byte 3: bit 7	0	Ownership flag 1 - Hardware has ownership of the packet and is sending the packet data to the transmitter. 0 - User has ownership of the packet. NOTE: This bit will be cleared by the hardware when packet has been transmitted.	R/W	user assigned
Byte 3: bit 6	DC	Disable the transmit CRC. 1 - used by IrDA SIR mode. 0 - used for synchronous packet operation. NOTE: This bit will be cleared by the hardware when packet has been transmitted.	R/W	user assigned

Bit(s)	Name	Description	R/W	Default
Byte 3: bit 5	BC	Force a bad CRC. 1 - Send an 'invalid' CRC flag in the packet. Used to test receiver CRC checking. 0 - Normal CRC operation. NOTE: This bit will be cleared by the hardware when packet has been transmitted.	R/W	user assigned
Byte 3: bit 4	NP	Need an indication pulse. 1 - Transmit an indication pulse after the packet has been transmitted. 0 - Normal operation. NOTE: This bit will be cleared by the hardware when packet has been transmitted.	R/W	user assigned
Byte 3: bit 3	FU	Force an underrun condition. 1 - Force an underrun on this packet. Packet size must be greater than 18 bytes. Used for testing only. 0 - Normal operation.	R/W	user assigned
Byte 3: bit 2	R	Request to disable transmitter. 1 - Hardware will clear ir_config_1 transmit enable (TE) bit after this packet has been transmitted. Used to shut down the transmitter immediately after the last packet. 0 - Normal operation.	R/W	user assigned
Byte 3: bit 1	RES	These bits are reserved and are read/written as 0.	R/W	0
Byte 3: bit 0	UR	Hardware Underrun error This bit is set if a hardware underrun occurs during transmission of a packet. Used only to find hardware errors.	R	0
Byte 4: bits 7:0	ADDR [7:0]	Address of data to transmit (bits 7:0)	R/W	user assigned
Byte 5: bits 7:0	ADDR [15:8]	Address of data to transmit (bits 15:8)	R/W	user assigned
Byte 6: bits 7:0	ADDR [23:16]	Address of data to transmit (bits 23:16)	R/W	user assigned
Byte 7: bits 7:0	ADDR [31:24]	Address of data to transmit (bits 31:24)	R/W	user assigned

The format for each receive ring entry is described in Figure 26.

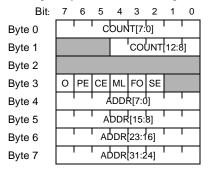


FIGURE 26. Receive Ring Buffer Entry Format

Bit(s)	Name	Description	R/W	Default
Byte 0 bits 7:0	COUNT [7:0]	Number of bytes to transmit (lowest 8 bits)	R/W	user assigned
Byte 1: bits 7:4	COUNT	Number of bytes to transmit (upper 4 bits)	R/W	user assigned
Byte 1: bits 3:0	RES	These bits are reserved and are read/written as 0.	R/W	0
Byte 2: bits 7:0	RES	These bits are reserved and are read/written as 0.	R/W	0
Byte 3: bit 7	0	Ownership flag 1 - Hardware has ownership of the packet and is sending the packet data to the transmitter. 0 - User has ownership of the packet. NOTE: This bit will be cleared by the hardware when packet has been transmitted.	R/W	user assigned
Byte 3: bit 6	DC	Disable the transmit CRC. 1 - Used by IrDA SIR mode. 0 - Used for synchronous packet operation. NOTE: This bit will be cleared by the hardware when packet has been transmitted.	R/W	user assigned

Bit(s)	Name	Description	R/W	Default
Byte 3: bit 5	BC	Force a bad CRC. 1 - Send an 'invalid' CRC flag in the packet. Used to test receiver CRC checking. 0 - Normal CRC operation. NOTE: This bit will be cleared by the hardware when packet has been transmitted.	R/W	user assigned
Byte 3: bit 4	NP	Need an indication pulse. 1 - Transmit an indication pulse after the packet has been transmitted. 0 - Normal operation NOTE: This bit will be cleared by the hardware when packet has been transmitted.	R/W	user assigned
Byte 3: bit 3	FU	Force an underrun condition. 1 - Force an underrun on this packet. Packet size must be greater than 18 bytes. Used for testing only. 0 - Normal operation.	R/W	user assigned
Byte 3: bit 2	R	Request to disable transmitter. 1 - Hardware will clear ir_config_1 transmit enable (TE) bit after this packet has been transmitted. Used to shut down the transmitter immediately after the last packet. 0 - Normal operation.	R/W	user assigned
Byte 3: bit 1	RES	These bits are reserved and are read/written as 0.	R/W	0
Byte 3: bit 0	UR	Hardware Underrun error This bit is set if a hardware underrun occurs during transmission of a packet. Used only to find hardware errors.	R	0
Byte 4: bits 7:0	ADDR [7:0]	Address of data to transmit (bits 7:0)	R/W	user assigned
Byte 5: bits 7:0	ADDR [15:8]	Address of data to transmit (bits 15:8)	R/W	user assigned
Byte 6: bits 7:0	ADDR [23:16]	Address of data to transmit (bits 23:16)	R/W	user assigned
Byte 7: bits 7:0	ADDR [31:24]	Address of data to transmit (bits 31:24)	R/W	user assigned

6 Peripheral Devices

Bit(s)	Name	Description	R/W	Default
Byte 0 bits 7:0	COUNT [7:0]	Number of bytes received (lowest 8 bits)	R/W	user assigned
Byte 1: bits 7:5	RES	These bits are reserved and are read/written as 0.	R/W	0
Byte 1: bits 4:0	COUNT [12:8]	Number of bytes received (upper 5 bits)	R/W	user assigned
Byte 2: bits 7:0	RES	These bits are reserved and are read/written as 0.	R/W	0
Byte 3: bit 7	0	Ownership flag 1 - Hardware has ownership of the packet and is writing packet data from the receiver to memory. 0 - User has ownership of the packet. NOTE: This bit will be cleared by the hardware when packet has been received.	R/W	user assigned
Byte 3: bit 6	PE	PHY layer error detected.	R/W	user assigned
Byte 3: bit 5	CE	CRC error detected. Valid for FIR and MIR modes only.	R/W	user assigned
Byte 3: bit 4	ML	Maximum packet length reached. For SIR mode, data will continue to be received in adjacent packets. However, for FIR and MIR modes, subsequent data will be dropped.	R/W	user assigned
Byte 3: bit 3	FO	Internal hardware FIFO overflow. This should not occur under normal operation.	R/W	user assigned
Byte 3: bit 2	SE	SIR error detected. If the SIR filter is enabled, this flag will be set if an end flag is not received.	R/W	user assigned
Byte 3: bits 1:0	RES	These bits are reserved and are read/written as 0.	R/W	0
Byte 4: bits 7:0	ADDR [7:0]	Address of data to transmit (bits 7:0)	R/W	user assigned
Byte 5: bits 7:0	ADDR [15:8]	Address of data to transmit (bits 15:8)	R/W	user assigned

Bit(s)	Name	Description	R/W	Default
Byte 6:	ADDR	Address of data to transmit (bits 23:16)	R/W	user
bits 7:0	[23:16]			assigned
Byte 7:	ADDR	Address of data to transmit (bits 31:24)	R/W	user
bits 7:0	[31:24]			assigned

On the transmit side the descriptors are set up and point to the data associated with them. Each buffer has an ownership bit that tells the hardware it has been given control of that buffer. When the hardware has finished with a buffer it will clear the 'O' bit. If polling this is how software can tell whether a receive or transit is done. When using interrupts, when the hardware is finished either transmitting or receiving an interrupt will be generated if they are enabled in the **ir_config2** register. See Chapter 5, Interrupt Controller.

Buffers are in a ring structure and are always accessed in sequence. Once the controller reaches a buffer in which the ownership bit is not set, it will stop the chaining at that point and will require the processor to "PROMPT" it to look at the buffer again and restart the chaining.

6.5 Ethernet MAC Controller

The Au1100 contains one Ethernet MAC device. The MAC provides the interface between the host application and the PHY layer through the Media Independent Interface (MII). The PHY layer device is external to the Au1100 and selectable by the customer as long as support for the MII is provided.

The MAC supports the protocol requirements to meet the Ethernet/IEEE 802.3 specification. The MAC operates in both half and full duplex modes. In half duplex mode the MAC is compliant with section 4 of ISO/IEC 8802-3 (ANSI/IEEE Standard) and ANSI/IEEE 802.3.

The MAC core provides programmable enhanced features designed to minimize host supervision, bus utilization and pre/post message processing. These features include ability to disable retries after a collision, dynamic FCS generation on a frame by frame basis, automatic pad field insertion and deletion to enforce minimum frame size attributes, automatic retransmission and detection of collision frames. The MAC can sustain transmission or reception of minimal size back to back packets at full line speed with an inter-packet gap of 9.6 us for 10Mbps and 0.96us for 100Mbps.

A dedicated DMA engine is implemented to support the MAC so that the general purpose DMA is not required.

The primary attributes of the MAC are:

- Transmit and receive message data encapsulation with framing and error detection.
- Frame boundaries are delimited and frames are synchronized. Error detection is done at the physical medium transmission level.
- Media access management is supported through medium allocation and contention resolution. This is accomplished through collision avoidance and handling. The MAC handles collision per the ISO 8802.3 specification.
- Support for flow control during full duplex mode is accomplished by decoding of control frames and disabling the transmitter in conjunction with generation of control frames.
- The serial control interface supports the MII protocol to interface to an MII based PHY.

The MAC features are:

- IEEE 802.3, 802.3u, 803.3x specification compliance
- 10/100Mbs data transfer rates
- IEEE 802.3 compliant MII interface to talk to an external PHY
- Full and half duplex
- CSMA/CD in half duplex

- Flow control support for full duplex
- Collision detection and auto retransmit on collisions in half duplex
- Preamble generation and removal
- Automatic 32 bit CRC generation and checking
- Optional automatic Pad stripping on the receive packets.
- Loopback support on the MII
- Filtering modes supported on the Ethernet side:
 - One 48 bit perfect address
 - 64 hash-filtered multicast addresses
 - Pass all multicast addresses
 - Promiscuous Mode
 - Pass all incoming packets with a status report
 - Toss bad packets
- Separate 32 bit status returned for transmit and receive packets
- Jumbo packet (0x2800 bytes)
- Big/Little Endian data format support

The following PHY interfaces are supported:

- MII Ethernet 4bit parallel PHY per IEEE 802.3u spec
- MII Management 2 wire bus to control and receive status from PHY
- HPNA 1.0 support across MII

The control registers for the MAC are used for address filtering, packet filter for good and bad frames, 48-bit MAC address with a local station address, a multicast table for filtering multicast frames and more. Each register is 32 bits wide.

6.5.1 Ethernet Register Descriptions

The Ethernet MAC contained in the Au1100 is located at the base addresses shown in Table 43. In addition, both the enable register and the MAC DMA register base address is shown.

TABLE 43. Ethernet Base Addresses

Name	Physical Base Address	KSEG1 Base Address
mac0_base	0x0 1050 0000	0xB050 0000
macen_base	0x0 1052 0000	0xB052 0000
macdma0_base	0x0 1400 4000	0xB400 4000

6.5.1.1 MAC Registers

The Ethernet MAC registers and their associated offsets are listed in Table 44. Each Ethernet MAC has an identical register set with identical offsets. The associated base addresses for each ethernet MAC are shown in Table 43. The registers are only presented once.

TABLE 44. MAC Register Index List

Offset	Register Name	Description
0x0000	mac_control	Operation Mode and address filter
0x0004	mac_addrhigh	High 16 bits of the MAC physical address
0x0008	mac_addrlow	Lower 32 bits of the MAC physical address
0x000C	mac_hashhigh	High 32 bits of the Multicast hash address
0x0010	mac_hashlow	Low 32 bits of the Multicast hash address
0x0014	mac_miictrl	Control of PHY management interface
0x0018	mac_miidata	Data to be written or read from PHY over control interface
0x001C	mac_flowctrl	Control Frame Generation Control
0x0020	mac_vlan1	VLAN1 Tag
0x0024	mac_vlan2	VLAN2 Tag

MAC Control Register

The MAC Control Register establishes the receive and transmit operating modes and controls for address filtering and packet filtering.

It should be noted that the PM, PR, IF, HP and HO bits in the MAC Control register will determine the address filtering mode. The RA, DB, PC and PB bits will determine the packet filter mode. The first bit of the destination address will determine if the address is a physical address (first bit = 0) or a multicast address (first bit = 1). If all bits in the destination address are set to 1 then the address is a broadcast address.

 $mac_control$ Offset = 0x0000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RA	EM							DO	LN	M	F	PM	PR	IF	PB	НО		HP	LC	DB	DR		AP	В	L	DC		TE	RE		
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	Read/ Write	Default
31	RA	Receive All 0 - Normal Operation	R/W	0
		1 - All incoming packets will be received regardless of the destination address.		
		The address filter status is reported in Receive Status bit Filtering Fail.		
		The Packet Filter bit in the Receive Status is set for all error free frames regardless of the Destination Address field.		
30	EM	Endian Mode:	R/W	0
		0 - Little Endian 1 - Big Endian		
		The Endian mode is only for data buffers.		
29:24	RES	These bits are reserved and should be written a 0.	R	0
23	DO	Disable Receive Own	R/W	0
		0 - The MAC receives all packets that are given by the PHY.		
		1 - The MAC disables reception of frames when the TXEN is asserted. The MAC will ignore any loop backed receive packets.		
		This bit should be reset when the Full Duplex Mode bit is set or the Operating Mode is set to other than Normal Mode.		

Bit(s)	Name	Description	Read/ Write	Default
22:21	LM	Loopback Operating Mode	R/W	00 _b
		00 _b Normal Mode		
		01 _b Internal Loopback		
		10 _b External Loopback		
		11 _b Reserved		
20	F	Full Duplex Mode	R/W	0
		0 - half duplex mode		
		1 - full duplex mode		
		Changing of this bit is permitted only if the transmitter and receiver are disabled.		
19	PM	Pass All Multicast:	R/W	0
		0 - Normal		
		1 - All incoming frames with a multicast destination address (first bit in the destination address field is '1') are received and the Filter Fail bit reset.		
		Incoming frames with physical address destinations are filtered according to bit 13, HP and bit 15, HO.		
18	PR	Promiscuous Mode	R/W	1
		0 - Normal		
		1 - Any incoming valid frame is received regardless of its destination address.		
		The Filter Fail bit is always reset in Promiscuous Mode.		
17	IF	Inverse Filtering	R/W	0
		0 - Normal		
		1 - Physical addresses are checked with inverse filtering. In other words if the address passes a perfect address filter, the frame is not passed, if the address fails a perfect filter, the frame is passed. This is valid only during perfect filtering mode.		

Bit(s)	Name	Description	Read/ Write	Default
16	РВ	Pass Bad Frames 0 - Normal	R/W	0
		1 - All incoming frames that passed the address fil- tering are received including runt frames, collided frames, or truncated frames caused by buffer over- flow.		
		The Packet Filter bit is set for error frames that pass the Address filtering. If all received bad frames are required, promiscuous mode (bit 18) should be set to '1'.		
15	НО	Hash Only Filtering Mode	R/W	0
		0 - perfect address filtering mode for physical addresses		
		1 - imperfect address filtering mode both for physical and multicast addresses		
		Setting this bit to 1 is only valid if bit HP is set to 1.		
14	RES	This bit is reserved and should be written a 0.	R	0
13	HP	Hash/Perfect Filtering Mode	R/W	0
		0 - Address Check block does a perfect address filter of incoming frames according the address specified in the MAC Address register.		
		1 - Address Check block does imperfect address filtering of multicast incoming frames according to the hash table specified in the multicast Hash Table Register. If the Hash Only (HO) bit is set, then physical addresses are imperfectly filtered too. If the Hash Only bit (HO) is reset, then physical addresses are perfect address filtered according to the MAC Address Register.		
12	LC	Late Collision Control:	R/W	0
		0 - When reset, the MAC aborts the frame transmission on a late collision.		
		1 - Enables the retransmission of the collided frame even after the collision period (late collision).		
		In either case the Late Collision Status is appropriately updated in the Transmit Packet Status. This bit is valid only when the MAC is operating in Half Duplex mode.		

Bit(s)	Name	Description	Read/ Write	Default
11	DB	Disable Broadcast Frames 0 - Forwards all the broadcast frames to the application (Packet Filter bit is set). 1 - Disables the reception of broadcast frames (Packet Filter bit is reset).	R/W	0
10	DR	Disable Retry 0 - The MAC will attempt 16 transmissions before signaling a retry error. 1 - The MAC will attempt transmission of a frame only once. When a collision is seen on the bus, the MAC will ignore the current frame and go to the next frame and a retry error will be reported in the Transmit Status. This bit is valid only when the MAC is operating in Half Duplex mode.	R/W	0
9	RES	This bit is reserved and should be written a 0.	R	0
8	АР	Automatic Pad Stripping 0 - the MAC will pass all the incoming frames to the host unmodified. 1 - the MAC will strip the pad field on all the incoming frames if the length field is less than 46 bytes. The FCS field will also be stripped, since it is computed at the transmitting station based on the data and pad field characters, and will be invalid for a receive frame that has had the pad characters stripped. Receive frames which have a length field of 46 bytes or greater will be passed to the host unmodified (FCS is not stripped). Pad stripping is done only on the IEEE 802.3 formatted frames (frames with Length field).	R/W	0
7:6	BL	Backoff Limit The Backoff limit determines the integer number of slot times the MAC waits before rescheduling a transmission attempt (during retries after a collision).	R/W	00 _b

Bit(s)	Name	Description	Read/ Write	Default
5	DC	Deferral Check 0 - The deferral check is disabled in the MAC and the MAC defers indefinitely. 1 - The deferral check is enabled in the MAC. The MAC will abort the transmission attempt if it has deferred for more than 24,288 bit times. Deferring starts when the transmitter is ready to transmit, but is prevented from doing so because CRS is active. Defer time is not cumulative. In other words, if the transmitter defers, then transmits, collides, backs off, and then has to defer again after completion of backoff, the deferral timer resets to 0 and restarts. This bit is valid only when the MAC Core is operat-	R/W	0
4	RES	ing in Half Duplex Mode. This bit is reserved and should be written a 0.	R	0
3	TE	Transmitter Enable 0 - The MAC transmitter is disabled and will not transmit any frames on the MII interface. 1 - The MAC transmitter is enabled and it will transmit frames from the buffer on to the MII interface.	R/W	0
2	RE	Receiver Enable 0 - The MAC receiver is disabled and will not receive any frames from the MII interface. 1 - The MAC receiver is enabled and will receive frames from the MII interface.	R/W	0
1:0	RES	These bits are reserved and should be written a 0.	R	0

MAC Address High Register

MAC Address Low Register

The MAC Address High Register contains the upper 16 bits of the physical address of the MAC. The MAC Address Low Register contains the lower 32 bits of the physical address of the MAC.

It is the responsibility of the system designer to provide the MAC address for the system.

The MAC address will be compared with the destination address from the incoming frame with PADR[0] (bit 0 of the Mac Address Low register) being compared with the first bit of the destination address and PADR[47] (bit 15 of the MAC Address High register) compared with the 48th bit of the destination address.

Example: To program the MAC address 00.50.c2.0c.20.10 the MAC address registers should be programmed as follows:

 $mac_addrhigh = 0x00001020$ $mac_addrlow = 0x0cc25000$

 $mac_addrhigh$ Offset = 0x0004

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ																	PADR[47:32]															
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bit(s)	Name	Description	Read/ Write	Default
31:16	RES	These bits are reserved and should be written a 0.	R	0
15:0	PADR[4 7:32]	Physical Address [47:32] This field contains the upper 16 bits (47 to 32) of the Physical Address of the MAC.	R/W	0xFFFF

 $mac_addrlow$ Offset = 0x0008

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PADR[31:0]																															
Def.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bit(s)	Name	Description	Read/ Write	Default
31:0	PADR[3 1:0]	Physical Address [31:0] This field contains the lower 32 bits (31 to 0) of the Physical Address of the MAC.	R/W	0xFFFFF FFF

Multicast Address High Hash Table Register

Multicast Address Low Hash Table Register

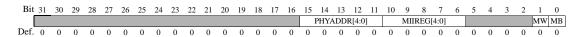
The 64-bit multicast address hash table is used for group address filtering. For hash filtering, the contents of the destination address in the incoming frame is passed through the CRC logic and the upper 6 bits of the CRC register are used to index the contents of the Hash table. The most significant bit determines the register to be used (1 = Hi, 0 = Low), while the other five bits determine the bit within the register. A value of '00000' selects the bit 0 of the selected register and a value of '11111' selects the bit 31 of the selected register.

If the corresponding bit in the hash table is '1', then the multicast frame is accepted, otherwise it is rejected. If the Pass All Multicast is set, then all multi-cast frames are accepted regardless of the multi-cast hash values. The Multi Cast Hash Table High Register contains the higher 32 bits of the hash table and the Multi Cast Hash Table Low Register contains the lower 32 bits of the hash table.

 $mac_hashhigh$ Offset = 0x000C

Bit(s)	Name	Description	Read/ Write	Default
31:0	MCH[63 :32]	Multicast Address Hash Table High These bits map to the upper 32 bits of the 64 bit hash table.	R/W	0x00000 000

 $mac_hashlow$ Offset = 0x0010


Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	MCH[31:0]																															
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	Read/ Write	Default
31:0	MCH[31: 0]	Multicast Address Hash Table Low These bits map to the lower 32 bits of the 64 bit hash table.	R/W	0x00000 000

MII Control Register

The MII Address Register is used to control and generate the Management cycles to the External PHY Controller chip. A write to this register will generate a read/write access on the MII Management Interface (MDIO/MDC) bus to an external PHY device.

 $mac_miictrl$ Offset = 0x0014

Name	Description	Read/ Write	Default
RES	These bits are reserved and should be written a 0.	R	0
PHYADDR	Phy Address These bits tell which of the 32 possible PHY devices are being accessed.	R/W	00000 _b
MIIREG	MII register These bits select the desired MII register in the selected PHY device.	R/W	00000 _b
RES	These bits are reserved and should be written a 0.	R	0
MW	MII Write 0 - operation will be a read (data read is placed in MII Data Register) 1 - operation will be a write (data to be written is taken from MII Data Register)	R/W	0
MB	MII Busy This bit should read a logic 0 before writing to the MII address and MII data registers. This bit should be reset to 0 when writing to the MII address register. This bit will be set by the MAC Core to signify that a read or write access to external PHY is in progress. For a write operation the data register should be kept valid until this bit is cleared by the MAC. For a read operation the MII data register is invalid until this bit is cleared by the MAC. The MII address register should not be written to until this bit is cleared. The MAC Core will clear	R/W	0
	RES PHYADDR MIIREG RES MW	RES These bits are reserved and should be written a 0. PHYADDR Phy Address These bits tell which of the 32 possible PHY devices are being accessed. MII register These bits select the desired MII register in the selected PHY device. RES These bits are reserved and should be written a 0. MW MII Write 0 - operation will be a read (data read is placed in MII Data Register) 1 - operation will be a write (data to be written is taken from MII Data Register) MB MII Busy This bit should read a logic 0 before writing to the MII address and MII data registers. This bit should be reset to 0 when writing to the MII address register. This bit will be set by the MAC Core to signify that a read or write access to external PHY is in progress. For a write operation the data register should be kept valid until this bit is cleared by the MAC. For a read operation the MII data register is invalid until this bit is cleared by the MAC.	RES These bits are reserved and should be written a 0. PHYADDR Phy Address These bits tell which of the 32 possible PHY devices are being accessed. MII register These bits select the desired MII register in the selected PHY device. RES These bits are reserved and should be written a 0. MW MII Write 0 - operation will be a read (data read is placed in MII Data Register) 1 - operation will be a write (data to be written is taken from MII Data Register) MB MII Busy This bit should read a logic 0 before writing to the MII address and MII data registers. This bit should be reset to 0 when writing to the MII address register. This bit will be set by the MAC Core to signify that a read or write access to external PHY is in progress. For a write operation the data register should be kept valid until this bit is cleared by the MAC. For a read operation the MII data register is invalid until this bit is cleared by the MAC. The MII address register should not be written to until this bit is cleared. The MAC Core will clear

MII Data Register

The MII Data Register contains the data to be written to the PHY register specified in the MII address register, or it contains the read data from the PHY register whose address is specified in the MII address register.

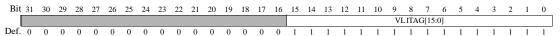
 $mac_miidata$ Offset = 0x0018

Bit(s)	Name	Description	Read/ Write	Default
31:16	RES	These bits are reserved and should be written a 0.	R	0
15:0	MII- DATA	MII Data 16-bit value read from the PHY after a MII read operation or the 16-bit data value to be written to the PHY before a MII write operation.	R/W	0x0000

Flow Control Register

This register is used to control the generation and reception of the Control (PAUSE Command) frames by the MAC Core's Flow control block. A write to this register with the busy bit set to '1' triggers the Flow Control block to generate a PAUSE Control frame. The fields of the control frame are selected as specified in the 802.3x specification with the Pause Time field from this register used in the "Pause Time" field of the control frame. The Busy bit will remain set until the control frame is transmittred. The Host has to insure that the Busy bit is cleared before writing to the register. The Pass Control Frames bit indicates to the MAC whether or not to pass the control frame to the Host. The Flow Control Enable bit enables the receive portion of the Flow Control block.

mac flowetrl Offset = 0x001C



Bit(s)	Name	Description	Read/ Write	Default
31:16	PT	Pause Time This field will be used in the PAUSE TIME field in the generation of the PAUSE control frame.	R/W	0x0000
15:3	RES	These bits are reserved and should be written a 0.	R	0
2	PC	Pass Control Frame 0 - The MAC Core will decode the control frames but will not pass the frames to the Host. The Control Frame bit in the Receive Status (bit 25) will be set and the Transmitter Pause Mode signal gives the current status of the Transmitter, but the PacketFilter bit in the Receive Status is reset to signal the application to flush the frame.	R/W	0
		1 - When set, the control frames are passed to the Host. The MAC will decode the control frame (PAUSE) and disables the transmitter for the specified amount of time. The Control Frame bit in the Receive Status (bit 25) is set and Transmitter Pause Mode signal indicates the current state of the MAC Transmitter.		

Bit(s)	Name	Description	Read/ Write	Default
1	FE	Flow Control Enable 0 - The flow control operation in the MAC Core is disabled and the Core does not decode the frames for control frames. This bit is valid only when the MAC Core is operating in Full Duplex mode. 1 - The MAC Core is enabled for flow control operation and it will decode all the incoming frames for control frames. If the MAC Core receives a valid control frame (PAUSE command), it will disable the transmitter for the specified time.	R/W	0
0	FB	Flow Control Busy This bit should read a logic 0 before writing to the Flow Control register. To initiate a PAUSE control frame the host must set this bit to '1'. During a transfer of Control Frame, this bit will continue to be set to signify that a frame transmission is in progress. After the completion of PAUSE control frame transmission, the MAC Core will reset to '0'. The Flow Control register should not be written to until this bit is cleared.	R/W	0

VLAN1 Tag Register

 mac_vlan1 Offset = 0x0020

Bit(s)	Name	Description	Read/ Write	Default
31:16	RES	These bits are reserved and should be written a 0.	R	0
15:0	VL1TAG	VLAN 1 Tag Identifier This field will be compared with the 13th and 14th bytes of the incoming frame. If a nonzero match occurs the VLAN 1 Frame bit will be set in the receiver status packet. In addition, the legal length of a frame is increased from 1518 bytes to 1522 bytes.	R/W	0xFFFF

VLAN2 Tag Register mac vlan2

Offset = 0x0024

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																							VI	L2TA	G[15	:0]						
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bit(s)	Name	Description	Read/ Write	Default
31:16	RES	These bits are reserved and should be written a 0.	R	0
15:0	VL2TAG	VLAN 2 Tag Identifier This field will be compared with the 13th and 14th bytes of the incoming frame. If a nonzero match occurs the VLAN 2 Frame bit will be set in the receiver status packet. In addition the legal length of a frame is increased from 1518 bytes to 1538 bytes.	R/W	0xFFFF

6.5.1.2 Enable Registers

Each ethernet MAC has an identical enable register. Both enable registers are located off of the **macen_base** shown in Table 43.

MAC0 Enable

MAC1 Enable

The enable register for each MAC contains a bit that enables the entire block. The block should be disabled if not in use to minimize power consumption. In addition, each enable register contains a TOSS bit which will keep frames that do not pass the address filter from being put into memory.

The process for bringing the MAC out of reset is the following:

- 1. Enable Clocks.
- 2. Bring E[2:0] high together with the other bits configured as desired (keeping clocks enabled).

It should be noted that the MAC clocks must be running before the internal MAC registers are accessed.

 $macen_mac0 Offset = 0x0000$

 $macen_mac1 Offset = 0x0004$

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																										JP	E2	E1	C	TS	E0	CE
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	Read/ Write	Default
31:7	RES	These bits are reserved and should be written a 0.	W	0
6	JP	Jumbo Packet Enable 0 - Normal (Max packet length = 0x800 bytes) 1 - Enable Jumbo Packet (Max packet length = 0x2800 bytes)	W	0
5	E2	Enable2 0 - Reset 1 - Enable	W	0
4	E1	Enable1 0 - Reset 1 - Enable	W	0
3	С	Coherent 0 - Memory accesses are marked coherent on system bus 1 - Memory accesses are marked non coherent on system bus For more information on coherency see Section 2.8.2, "SBUS Coherency Model" for more information on coherency.	W	0

Bit(s)	Name	Description	Read/ Write	Default
2	TS	Disable Toss	W	UNPRED
		0 - Only frames passing address filter will be passed to memory. Frames which fail length error, crc error or other non address filter failures will still be passed to memory.		
		Frames will not be passed to memory if the filter fail bit is set or the frame is a broadcast frame and broadcast frames have been disabled.		
		In promiscuous mode all frames will be passed to memory unless the disable broadcast bit is set which will prevent broadcast frames from being passed to memory.		
		Frames that are not passed to memory will be transparent to software (no status or indication will inform software).		
		1 - All frames will be passed to memory, regardless of address filter result.		
1	E0	Enable 0	W	0
		0 - Reset		
		1 - Enable		
0	CE	Clock Enable	W	0
		0 - Clocks Disabled to MAC		
		1 - Clocks Enabled to MAC		

6.5.2 DMA Registers

The MAC has four DMA buffers for both receive and transmit (4 for RX, 4 for TX). The DMA buffers will be serviced in a round robin fashion. Each MAC has a 32 word FIFO for both transmit and receive. The transfer size for the MAC DMA is 8 words. Both the FIFO size and transfer size are taken care of automatically by the MAC DMA and are transparent to the programmer except that all memory buffers must be implemented on a cache line boundary (32 bytes).

The DMA registers can be described as a set of transmit and receive entries off of the MAC DMA base addresses shown in Table 43.

Each MAC DMA base address contains 8 entries which correspond to 4 transmit buffer entries and 4 receive buffer entries as shown in Table 45.

TABLE 45. MAC DMA Entry List

Offset	Entry Prefix	Entry Name
0x000	tx0	Transmit Buffer 0
0x010	tx1	Transmit Buffer 1
0x020	tx2	Transmit Buffer 2
0x030	tx3	Transmit Buffer 3
0x100	rx0	Receive Buffer 0
0x110	rx1	Receive Buffer 1
0x120	rx2	Receive Buffer 2
0x130	rx3	Receive Buffer 3

Within each receive entry there are 2 registers implemented as shown in Table 46 (The third and fourth reserved entries are shown for completeness but are not used).

TABLE 46. MAC DMA Receive Entry Registers

Offset	Receive Entry Register Name	Description
0x0	stat	Status register
0x4	addr	Address/enable register
0x8	Reserved	Nothing is implemented at this offset
0xc	Reserved	Nothing is implemented at this offset

Within each transmit entry, there are 3 registers implemented as shown in Table 47 (The fourth reserved entry is shown for completeness but is not used).

TABLE 47. MAC DMA Transmit Entry Registers

Offset	Transmit Entry Register Name	Description
0x0	stat	Status register

TABLE 47. MAC DMA Transmit Entry Registers

Offset	Transmit Entry Register Name	Description
0x4	addr	Address/enable register
0x8	len	Length register
0xc	Reserved	Nothing is implemented at this offset

To calculate the address of a specific MAC DMA buffer all offsets should be combined. For example the physical address of the MAC1 receive buffer 3 address register is

$$macdma1_rx3addr = mac1dma_base + rx3 + addr = 0x0\ 1400\ 4200 + 0x130 + 0x4$$

$$macdma1_rx3addr = 0x0\ 1400\ 4334$$

Another way to look at the DMA register addresses is to view them as built off of the base address using an indexed approach to build the address for each unique register within the block. In other words, each bit (or set of bits) within the address will select a parameter of the DMA Register (TX/RX, Buffer number, Status/Address/Length register) until a unique address is formed selecting a single register.

To build the address for a unique register the bits should be set according to the definitions in Table 48.

TABLE 48. MAC DMA Block Indexed Address Bit Definitions

AddrBit(s)	Description
8	TX/RX
	0 - Transmit Block
	1 - Receive Block
7:6	These bits should be set to 0.

TABLE 48. MAC DMA Block Indexed Address Bit Definitions

AddrBit(s)	Description
5:4	MAC DMA Buffer
	00 - Buffer 0
	01 - Buffer 1
	10 - Buffer 2
	11 - Buffer 3
3:2	Register Select
	00 - Status Register
	01 - Address/Enable Register
	10 - Length Register (valid for transmit only)
	11 - Reserved
1:0	The registers are aligned on a word boundary, so these bits should be set to 0.

The enumerated DMA registers are shown in Appendix A.

6.5.2.1 Receive Registers

There are two receive registers for each DMA channel associated with each MAC, the status register and the address/enable register. The length register is not applicable to the receive DMA channel, as the length will be determined by the size of the received packet (typically the size of a frame for a complete, successful reception). The receive memory buffers should be 0x800 bytes when Jumbo Packets are not enabled and to 0x2800 when Jumbo packets are enabled. This will allow for the worst case maximum reception length.

In the naming of the receive registers dummy variables m and n have been inserted into the name to designate MAC number (m) and buffer number (n).

Receive Status

This register contains the receive packet status bits sent by the MAC after receiving a frame. This register is only valid after a receive transaction has been enabled by the host and the done bit has been set by the MAC in the Address/Enable Register to indicate that the transaction is complete.

The MI bit should be checked by software after receiving a frame to verify that the received frame is valid.

 $macdmam_rxnstat$ offset = 0x0

Bit(s)	Name	Description	Read/ Write	Default
31	MI	Missed Frame 0 - The frame is received normally by the Application without any latency or error violations 1 - Indicates that a frame was missed due to an internal FIFO overrun.	R	UNPRED
30	PF	Packet Filter 0 - Indicates that the current frame failed the packet filter. 1 - Indicates that the current frame passed the packet filter that is implemented in the MAC. Packet Filter will indicate failed frame when any of the following conditions happens. a. FF = 0 and frame is not a Broadcast or RA is 1 b. Frame is Broadcast and DB is 0 c. Frame is not Control Frame or PC is 1 d. No Error Status or PB Frames is 1 e. Unsupported Control Frame is 0 The Application can use this bit to decide whether to keep the packet in the memory or flush the packet from the memory. It should be noted that frames with length greater than max ethernet size (1500 bytes- normal, 1518 bytes - VLAN1, 1538 bytes - VLAN2) will create an error status thus failing the packet filter. The frames may still be valid with failure only due to frame size.	R	UNPRED
29	FF	Filtering Fail 0 - current frame passed address filtering 1 - Destination Address field in the current frame failed the Address filtering.	R	UNPRED
28	BF	Broadcast Frame 0 - Destination address is not Broadcast. 1 - Destination address is all 1's indicating broadcast address.	R	UNPRED
27	MF	Multicast Frame 0 - Destination address is not multicast. 1 - Destination address is multicast (the first bit is 1).	R	UNPRED

Bit(s)	Name	Description	Read/ Write	Default
26	UC	Unsupported Control Frame 0 - If the Control Frame bit is set, this bit indicates a supported control frame has been received (Pause Frame). 1 - The MAC observed an unsupported Control Frame. This is set when a control frame is received and the opcode field is unsupported, or the length	R	UNPRED
		is not equal to minFrameSize (64 bytes). This bit is set only when the MAC is operating in the full-duplex mode.		
25	CF	Control Frame 0 - Current frame is not a control frame. 1 - Current frame is a control frame. This bit is only set when operating in Full Duplex mode.	R	UNPRED
24	LE	Length Error 0 - No length error occurred. 1 - The current frame Length value is inconsistent with the total number of bytes received in the current frame. When the number of bytes received in the data field are more than what indicated in the Length/Type field, the additional bytes are assumed to be PAD bytes and the Length Error bit is not set. When the number of bytes received in the data field is less than what was indicated in the Length/Type field, the Length Error bit is set. This is valid when the Frame Type is set to '0' (802.3 Frame). This bit is not applicable for frame lengths greater than max ethernet size (1500 bytes- normal, 1518 bytes - VLAN1, 1538 bytes - VLAN2).	R	UNPRED
23	V2	VLAN2 ID 0 - no match with VLAN2 tag 1 - The current frame is tagged with a VLAN2 ID. The thirteenth and fourteenth bytes of the frame were a nonzero match with the VLAN2 tag register.	R	UNPRED
22	V1	VLAN1 ID 0 - no match with VLAN1 tag 1 - The current frame is tagged with a VLAN1 ID. The thirteenth and fourteenth bytes of the frame were a nonzero match with the VLAN1 tag register.	R	UNPRED

Bit(s)	Name	Description	Read/ Write	Default
21	CR	CRC Error 0 - no CRC error in current frame 1 - CRC error occurred in received frame.	R	UNPRED
		This bit is not applicable for frame lengths greater than max ethernet size (1500 bytes- normal, 1518 bytes - VLAN1, 1538 bytes - VLAN2). If a CRC check is required it must be done in software.		
20	DB	Dribbling Bit	R	UNPRED
		0 - An integer multiple of eight bits was received.		
		1 - A non-integer multiple of eight bits was received. This bit is not valid if either the Collision Seen bit or Runt Frame bit is set. If this bit is set and the CRC Error bit is 0, then the packet is still valid.		
19	ME	MII Error	R	UNPRED
		0 - no MII error		
		1 - MII error during frame reception		
18	FT	Frame Type	R	UNPRED
		0 - IEEE 802.3 Frame		
		1 - Ethernet-type frame (frame length field is greater than max ethernet size (1500 bytes- normal, 1518 bytes - VLAN1, 1538 bytes - VLAN2).		
		This bit is still applicable when Jumbo packets are enabled.		
		This bit is not valid for runt frames of less than 14 bytes.		
17	CS	Collision Seen	R	UNPRED
		0 - No collision seen during frame reception.		
		1 - The frame was damaged by a collision that occurred after the 64 bytes following the start of frame delimiter (SFD). This is a late collision.		

Bit(s)	Name	Description	Read/ Write	Default
16	FL	Frame Too Long 0 - Frame size is less than or equal to max ethernet frame size (1500 bytes- normal, 1518 bytes - VLAN1, 1538 bytes - VLAN2).	R	UNPRED
		1 - Frame size is greater than the maximum ethernet specified size (1500 bytes- normal, 1518 bytes - VLAN1, 1538 bytes - VLAN2). This also applies when Jumbo packets are enabled.		
		Frame too long is only a length indication and does not cause frame truncation.		
15	RF	Runt Frame 0 - Frame was not damaged in collision window.	R	UNPRED
		1 - Frame was damaged by a collision or premature termination before the collision window passed.		
14	WT	Watchdog Timeout	R	UNPRED
		0 - Frame was received before timeout occurred.		
		1 - The receive watchdog timer expired while receiving the frame. The watchdog timer inside the MAC is programmed to be twice the MaxFrame-Length. When set, the Frame Length field is invalid.		
		Any time the max frame length is exceeded (0x800 bytes for normal mode, 0x2800 with Jumbo packets enabled) the WT bit will be set.		
13	L[13:0]	Frame Length	R	UNPRED
		Indicates length in bytes of the received frame. The host should take into account how the Automatic Pad Stripping (AP) bit in the corresponding MAC control register is set, as this will affect how the length field and frame contents should be interpreted.		

Receive Buffer Address/Enable Register

This register contains the starting address for the receive buffer. The host should ensure that the memory buffer is set up to accommodate the worst case largest frame size to be able to be able to handle all received packets. At worst case the MAC will receive 0x800 bytes before aborting a receive in normal mode or 0x2800 bytes when Jumbo packets have been enabled in the **macen_macn** register.

After the transaction has been enabled this register should not be written until the DN bit has been set.

The buffer for the DMA must be cache line aligned so the lowest 5 bits are not used as part of the address. These bits have been employed as done and enable bits that are exclusive of the address.

 $macdmam_rxnaddr$ offset = 0x4

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													AD	DR[3	1:5]														С	В	DN	EN
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	Read/ Write	Default
31:5	ADDR	Buffer Address Upper 27 bits of the starting physical address for the DMA buffer. This address must be cache line (32 bytes) aligned so only 27 bits are used. This address must be written for each DMA transaction (the address will not remain after the transaction is enabled)	R/W	0
4	RES	This bit is reserved and should be written a 0.	R	0
3:2	СВ	Current Buffer Current DMA Receive Buffer	R	0
1	DN	Transaction Done	R/W	0
		This bit will be set by hardware to indicate that the receive transaction has been completed and that the receive packet status is valid.		
		If the respective MAC DMA interrupt is enabled (see Chapter 5, Interrupt Controller), an interrupt will be generated when this bit is set. Done bits for all TX and RX buffers are or'ed together for this interrupt so a high level interrupt should be used.		
		This bit must be cleared explicitly by software after checking for done. This will also clear the interrupt.		
0	EN	MAC DMA Enable	R/W	0
		When set, this bit enables a DMA receive transaction to the memory location designated in ADDR.		

6.5.2.2 Transmit Registers

There are three transmit registers, including the status register, the address/enable register, and the length register. In the naming of the transmit registers dummy variables m and n have been inserted into the name to designate MAC number (m) and buffer number (n).

Transmit Packet Status Register

This register contains the transmit packet status bits sent by the MAC after transmitting a frame. This register is valid after a transmit transaction has been enabled by the host and the done bit has been set by the MAC in the Address/Enable Register to signify that the transmit transaction is complete.

If either PR (bit 31) or FA (bit 0) is set then the frame was not sent successfully and the application should resend the frame.

 $macdmam_txnstat$ offset = 0x0

Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PR																			C	С		LO	DF	UR	EC	LC	ED	LS	NC	JT	FA
Def. X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X

Bit(s)	Name	Description	Read/ Write	Default
31	PR	Packet Retry	R	UNPRED
		0 - Transmission of current packet is complete.		
		1 - The Application has to restart the transmission of the frame (packet) when this bit is set to '1'. The successful/unsuccessful completion of the frame's transmission is indicated by the Frame Aborted bit (bit 0).		
30:14	RES	These bits are reserved.	R	UNPRED
13:10	СС	Collision Count	R	UNPRED
		This 4-bit count indicates the number of collisions that occurred before the frame was transmitted. This bit is not valid when the Excessive Collisions bit is set.		
		This bit is valid only when the MAC is operating in half-duplex mode.		

Bit(s)	Name	Description	Read/ Write	Default
9	LO	Late Collision Observed 0 - No late collision observed during transmission. 1 - Indicates that the MAC observed a late collision (collision after 64 bytes into transmission of frame), but retransmitted the frame in the next retransmission attempt. This bit will be set when the Late Collision bit is set.	R	UNPRED
		This bit is valid only when the MAC is operating in half-duplex mode.		
8	DF	Deferred 0 - Transmitter did not defer when transmitting. 1 - The transmitter had to defer while ready to transmit a frame. This bit is valid only when the MAC core is operating in half-duplex mode.	R	UNPRED
7	UR	Under Run 0 - no data under run 1 - The transmitter aborted the message because of data under run during the frame's transmission.	R	UNPRED
6	EC	Excessive Collisions 0 - Transmission did not abort due to excessive collisions. 1 - Transmission aborted after 16 successive collisions. If the Disable Retry bit is set, this bit is set after the first collision and the transmission of the frame will be aborted. This bit is valid only when the MAC is operating in half-duplex mode.	R	UNPRED
5	LC	Late Collision 0 - no late collision 1 - Transmission was aborted due to collision occurring after the collision window of 64 bytes. This bit is not valid if under run error is set. This bit is valid only when the MAC is operating in half-duplex mode.	R	UNPRED

Bit(s)	Name	Description	Read/ Write	Default
4	ED	Excessive Deferral	R	UNPRED
		0 - no excessive deferral		
		1 - Transmission has ended because of excessive deferral of over 24,288 bit times during the transmission, if the defer bit is set high in the control register.		
		This bit is valid only when the MAC is operating in half-duplex mode.		
3	LS	Loss of Carrier	R	UNPRED
		0 - no loss of carrier		
		1 - The loss of carrier occurred during the frame's transmission (i.e., the CRS input was inactive for one or more bit times when the frame is being transmitted).		
		This bit is valid only when the MAC is operating in half-duplex mode.		
2	NC	No Carrier	R	UNPRED
		0 - carrier present		
		The carrier signal from the transceiver was not present during transmission.		
		This bit is valid only when the MAC is operating in half-duplex mode.		

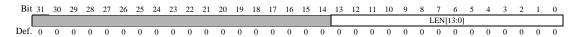
Bit(s)	Name	Description	Read/ Write	Default
1	JT	Jabber Timeout	R	UNPRED
		0 - no jabber timeout		
		1 - The MAC transmitter has been active for an abnormally long time (twice the Ethernet maxFrameLength size).		
0	FA	Frame Aborted	R	UNPRED
		0 - Current frame was successfully transmitted.		
		1 - The transmission of the current frame has been aborted by the MAC because of one or more of the following conditions:		
		Jabber Timeout (bit 1)		
		No Carrier (bit 2)		
		Loss of Carrier (bit 3)		
		Excessive Deferral (bit 4)		
		Late Collision (bit 5)		
		Retry Count exceeds the attempt limit (bit 6).		
		Data under run (bit 7)		

Transmit Buffer Address/Enable Register

This register contains the starting address for the transmit memory buffer. The MAC DMA will transfer the number of bytes designated by length in the Length register.

The buffer for the DMA must be cache line aligned so the lowest 5 bits are not used as part of the address. These bits have been employed as done and enable bits and are exclusive of the address.

 $macdmam_txnaddr$ offset = 0x4



Bit(s)	Name	Description	Read/ Write	Default
31:5	ADDR	Buffer Address Upper 27 bits of the starting physical address for the DMA buffer. This address must be cache line (32 bytes) aligned so only 27 bits are used. note: This address must be written for each DMA transaction (the address will not remain after the transaction is enabled).	R/W	0
4	RES	This bit is reserved and should be written a 0.	R	0
3:2	СВ	Current Buffer Current DMA Transmit Buffer	R	0
1	DN	Transaction Done This bit will be set by hardware to indicate that the transmit transaction has been completed and that the transmit packet status is valid. If the respective MAC DMA interrupt is enabled (see Chapter 5, Interrupt Controller), an interrupt will be generated when this bit is set. Done bits for all TX and RX buffers are or'ed together for this interrupt so a high level interrupt should be used. This bit must be cleared explicitly by software after checking for done. This will also clear the interrupt.	R/W	0
0	EN	MAC DMA Enable When set, this bit enables a DMA transmit transaction from the memory location designated in ADDR.	R/W	

Transmit Buffer Length Register

This register contains the length of the memory buffer in bytes to be transmitted.

 $macdmam_txnlen$ offset = 0x8

Bit(s)	Name	Description	Read/ Write	Default
31:14	RES	These bits are reserved and should be written a 0.	R	0
13:0	LEN	Buffer Length This field sets the length of the memory buffer (in bytes).	R/W	0
		When the normal bit is set the length can only be up to 0x800 bytes.		
		When the Jumbo packets are enabled in the enable register the length can be set up to 0x2800 bytes.		

6.5.3 Hardware Connections

Table 49 shows the pins associated with the two ethernet MAC MII interfaces.

TABLE 49. Ethernet Pins

Pin Name	Input/ Output	Description
Ethernet Cor	ntroller 0	
NOTXCLK	I	Continuous clock input for synchronization of transmit data. 25 MHz when operating at 100-Mb/s and 2.5 MHz when operating at 10-Mb/s.
NOTXEN	0	Active high. Indicates that the data nibble on N0TXD[3:0] is valid. Muxed with GP24 which controls the pin out of hardware reset, runtime reset and sleep.
N0TXD[3:0]	0	Nibble wide data bus synchronous to N0TXCLK. For each N0TXCLK period in which TX_EN is asserted, TXD[3:0] will have the data to be accepted by the PHY. While TX_EN is de-asserted the data presented on TXD[3:0] should be ignored. Muxed with GP[28:25] which control the pins out of hardware reset, runtime reset and sleep.
NORXCLK	1	Continuous clock that provides the timing reference for the data transfer from the PHY to the MAC. NORXCLK is sourced by the PHY. The NORXCLK shall have a frequency equal to 25% of the data rate of the received signal data stream (typically 25 MHz at 100-Mb/s and 2.5 MHz at 10-Mb/s).
NORXDV	I	Active high. Indicates that a receive frame is in process and that the data on N0RXD[3:0] is valid.

TABLE 49. Ethernet Pins

Pin Name	Input/ Output	Description
N0RXD[3:0]	I	RXD[3:0] is a nibble wide data bus driven by the PHY to the MAC synchronous with N0RXCLK. For each N0RXCLK period in which N0RXDV is asserted, RXD[3:0] will transfer four bits of recovered data from the PHY to the MAC. While RX_DV is deasserted, RXD[3:0] will have no effect on the MAC.
N0CRS	I	NOCRS shall be asserted by the PHY when either transmit or receive medium is non idle. NOCRS shall be deasserted by the PHY when both the transmit and receive medium are idle. NOCRS is an asynchronous input.
N0COL	I	NOCOL shall be asserted by the PHY upon detection of a collision on the medium, and shall remain asserted while the collision condition persists. NOCOL is an asynchronous input. The NOCOL signal is ignored by the MAC when operating in the full duplex mode.
NOMDC	0	NOMDC is sourced by the MAC to the PHY as the timing reference for transfer of information on the NOMDIO signal. NOMDC is an aperiodic signal that has no maximum high or low times. The NOMDC frequency is fixed at system bus clock divided by 160. Muxed with GP215 which controls the pin out of hardware reset, runtime reset and sleep.
NOMDIO	Ю	N0MDIO is the bidirectional data signal between the MAC and the PHY that is clocked by N0MDC.

MAC1 shares its pins with GPIO[28:24]; those pins must be assigned to MAC1 in able to use MAC1. Please see Section 7.3, Primary General Purpose I/O for more information.

6.5.3.1 Programming Considerations

The ethernet MAC is designed such that the application could use a pool of memory buffers for both the transmit and receive functions.

The lowest level device driver would respond to the MAC DMA interrupt and swap out the filled DMA buffers for those that are empty for the receive case. For the transmit case the driver should provide ready to transmit buffers to the DMA while reclaiming empty buffers. Four transmit and receive DMA buffers are allocated for each MAC to allow for latency to service the lowest level MAC DMA interrupt.

At the next level in software the device driver can parse the valid data out of the frame for receive, or build the frame for transmit. The number of memory buffers needed in the pool will depend on how fast the parsing can occur for worst case receive bursts, and any minimum transmit latency requirements.

From this level the application or protocol stack can take the data and apply it as needed.

6.5.3.2 Initialization

This section demonstrates the functional requirements for getting the MAC running. This is assuming that the programmer has already performed the Au1100 bringup.

- 1. Interrupt Controller a high level interrupt should be used as the interrupt is triggered with an ORing of the DN (Done) bits.
- 2. DMA Controller Setup
- 3. MAC Registers It is the system designer's responsibility to set up addresses.
- 4. Memory Depending on how the system is built, there could be a pool of memory buffers which can be used for parsing and building of frames. Individual buffers would be swapped in and out of the 4 active receive and transmit DMA buffers as needed. This strategy would require some sort of minimal memory management within the ethernet driver to insure chronology of ethernet frames.

The following is a transmit example in a very basic form. Typically this would be split between an interrupt handler and another higher layer.

- 1. Construct Frame
- 2. Set length in **macdmai_txnlen** register
- 3. Set address of memory buffer and enable transmit. During this time the physical memory buffer and address and length registers should not be disrupted or transmit contents will be undefined.
- 4. Wait for done. This can be done by waiting for the interrupt handler or polling the done signal in the **macdmai_txnaddr** register.
- 5. Read status (it's validity is signaled by the reception of the done signal).

The following is a very basic receive example:

- 1. Enable all receive buffers with four different memory buffer addresses.
- 2. Wait for interrupt. Conversely the done bit could be polled. During this time the physical memory buffer and address registers should not be disrupted or receive contents will be undefined.
- 3. Replace all full buffers with empty memory buffers.
- 4. Read Status for full buffers.
- 5. Parse frames.

6.6 I²S Controller

The Au1100 contains an I²S controller capable of interfacing with a CODEC or a discreet DAC and ADC. The I²S interface works in two different modes: unidirectional data mode and bidirectional data mode.

In unidirectional data mode the I2SDI signal is not used. In this mode the I2SDIO can be configured as an input or an output and can be used with either an ADC or a DAC at any one time.

In bidirectional mode the I2SDIO signal is configured as an output and used in conjunction with I2SDI to interface the port to a CODEC or discreet ADC and DAC.

The port will only support one input at any one time. In other words, I2SDIO can not be enabled as an input at the same time I2SDI is being used.

6.6.1 I²S Register Descriptions

The I²S Interface is controlled by a register block whose physical base address is shown in Table 50.

TABLE 50. I2S Base Address

Name	Physical Base Address	KSEG1 Base Address
i2s_base	0x0 1100 0000	0xB100 0000

The I²S register block consists of 3 registers as shown in Table 51.

TABLE 51. I²S Interface Register Block

Offset	Register Name	Туре	Description
0x0000	i2s_data	R/W	Input and output from data FIFOs
0x0004	i2s_config	R/W	Configuration and status register
0x0008	i2s_enable	R/W	Allows port to be enabled and disabled

I²S Data

The I²S Data register is the input to the transmit FIFO when written to and the output from the receive FIFO when read from. Each FIFO is 12 words deep.

Care should be taken to monitor the status register to insure that there is room for data for a write or data in the FIFO for a read transaction.

The FIFO is for both the left and the right channels. For this reason data should be read from and written to the FIFO in pairs. The programmer should insure that data is written to the FIFO corresponding to how the Justification, Initial Channel, and Size is configured. If the sample size being written or read is different than the size being configured, the programmer should justify the data accordingly.

i2s_data - TX/RX Data

Offset = 0x0000

Bit(s)	Name	Description	Read/ Write	Default
31:24	RES	These bits are reserved and should be written a 0.	R	0
23:0	DATA	Data Word Up to 24 bit transmit data when written read data when read from.	R/W	

Configuration and Status Register

The I²S Interface Configuration and Status register contains status bits for the transmit and receive FIFOs, and configuration bits for the interface.

i2s config - Configuration and Status

Offset = 0x0004

Bit(s)	Name	Description	Read/ Write	Default
31:26	RES	These bits are reserved and should be written a 0.	R	0
25	XU	Transmit Underflow When set to 1, this bit indicates that the transmit FIFO has experienced an underflow. This sticky bit will be cleared when read. This bit can be written so care should be taken when writing the configuration register that this bit is masked if necessary.	R/W	0

6 Peripheral Devices

Bit(s)	Name	Description	Read/ Write	Default
24	хо	Transmit Overflow When set to 1, this bit indicates that the transmit FIFO has experienced an overflow. This sticky bit will be cleared when read. This bit can be written so care should be taken when writing the configuration register that this bit	R/W	0
23	RU	is masked if necessary. Receive Underflow When set, this bit indicates that the receive FIFO has experienced an underflow. This sticky bit will be	R/W	0
		cleared when read. This bit can be written so care should be taken when writing the configuration register that this bit is masked if necessary.		
22	RO	Receive Overflow When set, this bit indicates that the receive FIFO has experienced an overflow. This sticky bit will be cleared when read. This bit can be written so care should be taken when writing the configuration register that this bit is masked if necessary.	R/W	0
21	TR	Transmit Request This bit indicates that the transmit FIFO has at least 4 samples of space to accommodate a burst write.	R	0
20	TE	Transmit Empty This bit indicates that the transmit FIFO is empty.	R	0
19	TF	Transmit Full This bit indicates the transmit FIFO is full.	R	0
18	RR	Receive Request This bit indicates that the receive FIFO has at least 4 samples in it to accommodate a burst read.	R	0
17	RE	Receive Empty This bit indicates that the receive FIFO is empty.	R	0
16	RF	Receive Full This bit indicates that the receive FIFO is full.	R	0
15:12	RES	These bits are reserved and should be written a 0.	R	0

Bit(s)	Name	Description	Read/ Write	Default
11	PD	Pin Direction This bit sets the direction of the I2SDIO pin. 0: This pin is an output. 1: This pin is an input (I2SDIN should not be used).	R/W	0
10	LB	Loopback When set this bit will enable a loop back mode where data coming on the input will be presented on the output.	R/W	0
9	IC	Initial Channel 0: The left sub channel will be the first presented. This means that data will not be presented until the word clock is the correct polarity for left as described in Format. 1: The right sub channel will be the first presented. This means that data will not be presented until the word clock is the correct polarity for right (as described in the Format section of this table).	R/W	0
8:7	FM	Format The following formats are supported: 00 _b - I2S mode. In this mode the first bit of a sample word will be presented after one I2SCLK delay from the transition of I2SWRD. The left sample data will be presented when the word clock is low. The data is presented MSB first. 01 _b - Left Justified mode. In this mode the first bit of a sample word will be presented on the first I2SCLK after an I2SWRD transition. The left sample data will be presented when the word clock is high. The data is presented MSB first. 10 _b - Right Justified mode. In this mode the first bit of a sample word will be presented on the first I2SCLK after an I2SWRD transition. The left sample data will be presented when the word clock is high. The data is presented LSB first.	R/W	00
6	TN	Transmit Enable This will enable the transmit FIFO and must be enabled if the output is being used. 0: Disable transmit FIFO 1: Enable transmit FIFO	R/W	0

6 Peripheral Devices

Bit(s)	Name	Description	Read/ Write	Default
5	RN	Receive Enable	R/W	1
		This will enable the receive FIFO and must be enabled if either of the inputs are being used.		
		0: Disable Receive FIFO		
		1: Enable receive FIFO		
4:0	SZ	Size	R/W	10010 _b
		These bits will set the size of the sample word. The following combinations are valid:		
		01000 - 8 bit words		
		10000 - 16 bit words		
		10010 - 18 bit words		
		10100 - 20 bit words		
		11000 - 24 bit words		
		If using DMA it is important that memory is packed consistently with the transfer width programmed for the DMA channel and the Size field.		

I²S Enable

The I^2S Block Control register is used to enable clocks to and reset the entire I^2S block.

The suggested power on reset is as follows:

- 1. Set both CE and D
- 2. Clear D for to enable the peripheral.

i2s_enable - I2S Block Control

Offset = 0x0008

Bit(s)	Name	Description	Read/ Write	Default
31:2	RES	These bits are reserved and should be written 0.	W	0
1	D	DISABLE Setting this bit will disable the I2S block. After enabling the clock with CE, this bit should be cleared for normal operation.	W	1
0	CE	Clock Enable This bit should be set to enable the clock driving the I2S block. It can cleared to disable the clock for power considerations.	W	0

6.6.2 Hardware Considerations

Table 52 shows the signals associated with this port.

TABLE 52. I2S Signals

Pin Name	Input/ Output	Description
I2SCLK	0	Serial bit clock. Muxed with GPIO30
I2SWORD	0	Word clock typically configured to the sampling frequency (Fs). Muxed with GPIO31

TABLE 52. I2S Signals

Pin Name	Input/ Output	Description				
I2SDI	0	Serial data input which should be valid on the rising edge of I2SCLK.				
		Muxed with GPIO8 which controls the pin out of hardware reset, runtime reset and sleep.				
I2SDIO	Ю	Configurable as input or output. As input data should be presented on rising edge. As output, data will be valid on rising edge. Muxed with GPIO29				
EXTCLK0(1)	0	This is the System audio clock and typically is programmed to 256Fs (Fs is the sampling frequency for the system). The system audio clock will be taken from EXTCLK0 or EXTCLK1 as the signals are synchronous to I2SCLK and I2SWRD. These clocks will be programmed individually. See Section 7.1, Clocks for information.				

For changing pin functionality please refer to the **sys_pinfunc** register in Section 7.3, "Primary General Purpose I/O".

6.6.3 Programming Considerations

It is the programmer's responsibility to set up DMA channels and the I2SCLK and the EXTCLK0(1) to be used with the system.

The I2SWRD clock, which is typically equal to the sampling frequency, will be a function of the word width and the I2SCLK frequency. The I2SCLK and the EXTCLK0(1) are programmable as shown in Section 7.1, Clocks. The EXTCLK0(1) will be taken from the external clocks available on the pins shared with GPIO2 or GPIO3.

6.7 UART Interfaces

The Au1100 contains three UART interfaces. Each UART has the following features:

- 5 8 Data Bits
- 1 2 Stop Bits
- Even, Odd, Mark, or No Parity
- 16 Byte Transmit and Receive FIFOs
- Interrupts for Receive FIFO Full, Half Full, and Not Empty
- Interrupts for Transmit FIFO Empty
- False Start Bit Detection
- Full Modem Control Signals on UART3
- Capable of speeds up to 1.5Mbs to enable connections with Bluetooth and other peripherals through a UART interface
- Similar to personal computer industry standard 16550 UART

6.7.1 Programming Model

Each UART is controlled by a register block. Table 53 lists the base address for each UART register block.

TABLE 53. UART Register Base Addresses

Name	Physical Base Address	KSEG1 Base Address					
uart0_base	0x0 1110 0000	0xB110 0000					
uart1_base	0x0 1120 0000	0xB120 0000					
uart3_base	0x0 1140 0000	0xB140 0000					

UART0 and UART3 are capable of being used with DMA. See Chapter 4, DMA Controller for more information.

6.7.2 UART Registers

Each register block contains the registers listed in Table 54.

TABLE 54. UART Registers

Offset	Register Name	Description
0x0000	uart_rxdata	Received Data FIFO
0x0004	uart_txdata	Transmit Data FIFO
0x0008	uart_inten	Interrupt Enable Register
0x000c	uart_intcause	Pending Interrupt Cause Register
0x0010	uart_fifoctrl	FIFO Control Register
0x0014	uart_linectrl	Line Control Register
0x0018	uart_mdmctrl	Modem Line Control Register (UART3 only)
0x001C	uart_linestat	Line Status Register
0x0020	uart_mdmstat	Modem Line Status Register (UART3 only)
0x0024	uart_autoflow	Automatic Hardware Flow Control (UART3 only)
0x0028	uart_clkdiv	Baud Rate Clock Divider
0x0100	uart_enable	Module Enable Register

Received Data FIFO

The **uart_rxdata** register contains the next entry in the received data fifo. This register is read only.

uart_rxdata - Received Data FIFO

Offset = 0x0000

Bit(s)	Name	Description	R/W	Default
31:8	RES	These bits are reserved and should be written a 0.	R	0
7:0	RXDATA	Receive Data	R	0

Transmit Data FIFO

The **uart_txdata** register provides access to the transmit data FIFO. This register is write only.

uart txdata - Transmit Data FIFO

Offset = 0x0004

Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																											TXD	ATA			
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	R/W	Default
31:8	RES	These bits are reserved and should be written a 0.	R	0
7:0	TXDATA	Transmit Data	R	0

Interrupt Enable Register

The **uart_inten** register contains bits which enable interrupts under certain operational conditions.

uart_inten - Interrupt Enable Register

Offset = 0x0008

Bit(s)	Name	Description	R/W	Default
31:4	RES	These bits are reserved and should be written a 0.	R	0
3	MIE	Modem Status Interrupt Enable When the MIE bit is set an interrupt will be generated when changes occur in the state of the modem control signals (UART3 only).	R/W	0
2	LIE	Line Status Interrupt Enable When the LIE bit is set an interrupt will be generated when errors (overrun, framing, stop bits) or break conditions occur.	R/W	0
1	TIE	Transmit Interrupt Enable When the TIE bit is set an interrupt will be generated when the transmit FIFO is not full.	R/W	0
0	RIE	Receive Interrupt Enable When the RIE bit is set the UART will generate an interrupt on received data ready (<i>DR</i> bit in the uart_linestat register) or a character time out.	R/W	0

Interrupt Cause Register

The **uart_intcause** register contains information about the cause of the current interrupt.

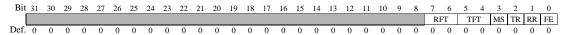
uart_intcause - Interrupt Cause Register

Offset = 0x000c

Bit(s)	Name	Description	R/W	Default
31:4	RES	These bits are reserved and should be written a 0.	R	0
3:1	IID	Interrupt Identifier The IID field identifies the highest priority current interrupt condition. Table 55 lists the priorities and encodings of each interrupt condition.	R	0
0	IP	Interrupt Pending The IP bit is set when an interrupt is pending.	R	0

Table 55 contains information about the interrupt cause encoding.

TABLE 55. Interrupt Cause Encoding


IID	Priority	Туре	Source
0	5 (lowest)	Modem Status	DD, TRI, DR or DC of uart_mdmstat
1	4	Transmit Buffer Available	TT of uart_linestat
2	3	Receive Data Available	The receive FIFO having greater than RFT (of uart_fifoctrl) bytes in it if FIFOs are enabled. DR of uart_linestat if FIFOs are disabled.
3	1 (highest)	Receive Line Status	OE, PE, FE, BI in uart_linestat register
4		Reserved	
5		Reserved	
6	2	Character Time Out	Character has been in receive FIFO for 0x300 UART clocks (set by uart_clkdiv)
7		Reserved	

FIFO Control Register

The **uart_fifoctrl** register provides control of character buffering options.

uart_fifoctrl - FIFO Control Register

Offset = 0x0010

Bit(s)	Name	Description	R/W	Default
31:8	RES	These bits are reserved and should be written a 0.	R	0
7:6	RFT	Receiver FIFO Threshold A receiver threshold interrupt will be generated when the number of characters in the receiver FIFO is greater than or equal to the trigger level listed in Table 57. If using DMA it is important that the Receiver FIFO threshold and Transmit FIFO threshold are the same and programmed consistently with the Transfer Size for the DMA channel being used. See Chapter 4, DMA Controller for more information.	R/W	0
5:4	TFT	Transmit FIFO Threshold A threshold interrupt will be generated if the number of valid characters contained in the transmit FIFO is less than or equal to the trigger depth. The encoding of trigger depth for each value of TFT is shown in Table 56. If using DMA it is important that the Receiver FIFO threshold and Transmit FIFO threshold are the same and programmed consistently with the Transfer Size for the DMA channel being used. See Chapter 4, DMA Controller for more information.	R/W	0
3	MS	Mode Select If the MS bit is clear interrupts will be generated by the receiver when any data is available and by the transmitter when there is no data to transmit. Setting the MS bit causes interrupts to be generated based on FIFO threshold levels.	R/W	0
2	TR	Transmitter Reset Writing a one to the TR bit will clear the transmit FIFO and reset the transmitter. The transmit shift register is not cleared.	R/W	0

Bit(s)	Name	Description	R/W	Default
1	RR	Receiver Reset Writing a one to the RR bit will clear the receiver FIFO and reset the receiver. The receiver shift register is not cleared.	R/W	0
0	FE	FIFO Enable The FE bit enables the 16 byte FIFOs on transmit and receive. When the FE bit is clear both FIFOs will have an effective depth of 1 byte.	R/W	0

Table 56 provides trigger depth encoding information for the transmit FIFO.

TABLE 56. Transmit FIFO Trigger Depth Encoding

TFT	Trigger Depth
0	0
1	4
2	8
3	12

Table 57 provides trigger depth encoding information for the receiver FIFO.

TABLE 57. Receiver FIFO Trigger Depth Encoding

RFT	Trigger Depth
0	1
1	4
2	8
3	14

Line Control Register

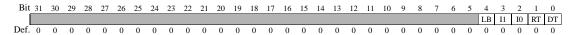
The **uart_linectrl** register provides control over the data format and parity options.

uart_linectrl - Line Control Register

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																										SB	PA	R	PE	ST	WI	LS
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	R/W	Default
31:7	RES	These bits are reserved and should be written a 0.	R	0
6	SB	Send Break	R/W	0
		Setting the SB bit will force the transmitter output to zero.		
5:4	PAR	Parity Select	R/W	0
		The PAR field selects parity encoding for the transmitter and receiver. Valid encodings are listed in Table 58.		
3	PE	Parity Enable	R/W	0
		If the PE bit is clear parity will not be sent or expected. If the PE bit is set parity is selected according to the PAR field.		
2	ST	Stop Bits	R/W	0
		If the ST bit is clear one stop bit will be sent and expected. Setting the ST bit selects 1.5 stop bits for 5 bit characters and 2 stop bits for all other character lengths.		
1:0	WLS	Word Length Select	R/W	0
		The WLS field selects the number of data bits in each character. The number of bits is WLS+5.		

Table 58 describes parity encoding for the **uart_line_control** register.


TABLE 58. Parity Encoding

PAR	Parity
0	Odd Parity
1	Even Parity
2	Mark Parity
3	Zero Parity

Modem Control Register

The **uart_mdmctrl** register allows the state of the output modem control signals to be set. The external modem signals are only available on UART3.

uart_mdmctrl - Modem Control Register

Bit(s)	Name	Description	R/W	Default
31:5	RES	These bits are reserved and should be written a 0.	R	0
4	LB	Loop Back When the LB bit is low the UART operates in normal mode. When this bit is set a loopback mode is established. This mode can be used for self-test. Table 59 lists the internal connections made in loop back mode.	R/W	0
3	I1	Internal Line 1 State When the I1 bit is set the internal I1 line for this port is driven low. This can be used in loopback mode.	R/W	0
2	10	Internal Line 0 State When the I0 bit is set the external I0 line for this port is driven low. This can be used in loopback mode.	R/W	0

Bit(s)	Name	Description	R/W	Default
1	RT	Request To Send When the RTS bit is set the external RTS line for this port is driven low. NOTE: This bit has no effect if uart_autoflow[AE] is set.	R/W	0
0	DT	Data Terminal Ready When the DTR bit is set the external DTR line for this port is driven low.	R/W	0

Table 59 lists the internal connections made in loop back mode.

TABLE 59. Loop Back Mode Connections

Output Signal	Wrapped Back To
TXD	RXD
DTR	DSR
RTS	CTS
10	RIN
I1	DCD

Line Status Register

The **uart_linestat** register reflects the state of the interface.

Bits in this register are set when the listed condition and cleared when this register is read.

uart_linestat - Line Status Register

Offset = 0x001C

Bit(s)	Name	Description	R/W	Default
31:8	RES	These bits are reserved and should be written a 0.	R	0
7	RF	Receiver FIFO Contains Error This bit is set when one of the characters in the receive FIFO contains a parity error, framing error, or break indication.	R	0
6	TE	Transmit Shift Register Empty This bit is set when the transmit shift register is empty and there are no more characters in the FIFO.	R	0
5	TT	Transmit Threshold This bit is set when the transmitter FIFO depth is less than or equal to the value of the TFT field in the FIFO control register. When FIFOs are not enabled this bit will be set when the transmitter data register is empty	R	0
4	BI	Break Indication This bit is set if a break is received. When a break is detected a single zero character will be received. The BI bit is valid when the zero character is at the top of the receive FIFO. This bit is cleared by a read to the uart_line_status register.	R	0
3	FE	Framing Error The FE bit is set when a valid stop bit is not detected. This bit reflects the state of the character at the top of the receive FIFO. The FE bit is cleared by a read to the uart_line_status register.	R	0
2	PE	Parity Error The PE bit is set when the received character at the top of the FIFO contains a parity error. This bit is cleared by reading the uart_line_status register.	R	0
1	OE	Overrun Error The OE bit is set when a receiver overrun occurs. This bit is cleared when the uart_line_status register is read.	R	0
0	DR	Data Ready The DR bit is set when the receive FIFO contains valid characters.	R	0

Modem Status Register

The **uart_mdmstat** register reflects the state of the external modem signals. Reading this register will clear any delta indications and the corresponding interrupt. External modem signals are only present on UART3.

uart_mdmstat - Modem Status Register

Offset = 0x0020

Bit(s)	Name	Description	R/W	Default
31:8	RES	These bits are reserved and should be written a 0.	R	0
7	CD	Data Carrier Detect The CD bit reflects the status of the external DCD pin.	R	0
6	RI	Ring Indication The RI bit reflects the status of the external RI pin.	R	0
5	DS	Data Set Ready The DS bit reflects the status of the external DSR pin.	R	0
4	СТ	Clear To Send The CT bit reflects the status of the external CTS pin.	R	0
3	DD	Delta DCD The DD bit is set when a change occurs in the state of the external DCD pin.	R	0
2	TRI	TRI - Terminate Ring Indication The TRI bit is set when a positive edge occurs in the state of the external RI pin.	R	0
1	DR	Delta DSR The DR bit is set when a change occurs in the state of the external DSR pin.	R	0
0	DC	Delta CTS The DC bit is set when a change occurs in the state of the external CTS pin.	R	0

Automatic Hardware Flow Control Register

The **uart_autoflow** register controls automatic hardware flow control using modem control signals CTS and RTS on UART 3. Upon enabling this mode RTS becomes and output signal

and CTS becomes an input signal. RTS is asserted low to request data until the internal FIFO reaches its preset fullness threshold. The UART will transmit and data in its internal FIFO while the CTS signal is low.

Bit(s)	Name	Description	R/W	Default
31:1	RES	These bits are reserved and should be written a 0.	R	0
0	AE	Autoflow Enable	R/W	0
		Setting this bit will enable automatic hardware flow control on UART3. Enabling this mode will override software software control of the pins.		

Clock Divider Register

The **uart_clkdiv** contains the divider used to generate the baud rate clock. The input to the clock divider is the internal pbus clock. The actual baud rate of the interface will be:


Baudrate =
$$CPU/(SD * 2 * CLKDIV * 16)$$

CPU = CPU clock

SD = System bus divider (see Section 7.4, "Power Management" information on changing SD).

uart clkdiv - Clock Divider Register

Offset = 0x0028

Uart Enable

The **uart_enable** register controls reset and clock enable to the UART

The correct routine for bringing the USB Device out of reset is as follows:

1. Set the CE bit to enable clocks.

2. Set the E bit to enable the peripheral.

$uart_enable - UART \ Enable \ Register$

Offset = 0x0100

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																															Е	CE
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	R/W	Default
31:2	RES	These bits are reserved and should be written a 0.	R	0
1	E	Enable When the E bit is clear the entire module is held in reset. After enabling clocks, this bit should be set to enable normal operation.	R/W	0
0	CE	Clock Enable When the CE bit is clear the module clock source is inhibited. This can be used to place the module in a low power stand-by state. The CE bit should be set before the module is enabled for proper bringup.	R/W	0

6.7.2.1 Hardware Considerations

The UARTs consists of the signals listed in Table 60.

TABLE 60. UART Signals

Pin Name	Input/ Output	Definition
UART0		
U0TXD	0	UART0 transmit Muxed with GP212 which controls the pin out of hardware reset, runt- ime reset and sleep.
U0RXD	I	UART0 receive
UART1		
U1TXD	0	UART1 transmit Muxed with GP213 which controls the pin out of hardware reset, runt- ime reset and sleep.
U1RXD	I	UART1 receive

TABLE 60. UART Signals

Pin Name	Input/ Output	Definition
UART3		
U3TXD	0	UART3 transmit Muxed with GP214 which controls the pin out of hardware reset, runt- ime reset and sleep.
U3RXD	I	UART3 receive
U3CTS	I	Clear to Send Muxed with GPIO9 which controls the pin out of hardware reset, runt- ime reset and sleep.
U3DSR	I	Data Set Ready Muxed with GPIO10 which controls the pin out of hardware reset, runt- ime reset and sleep.
U3DCD	I	Data Carrier Detect Muxed with GPIO11 which controls the pin out of hardware reset, runtime reset and sleep.
U3RI	I	Ring Indication Muxed with GPIO12 which controls the pin out of hardware reset, runtime reset and sleep.
U3RTS	0	Request to Send Muxed with GPIO13 which controls the pin out of hardware reset, runt- ime reset and sleep.
U3DTR	0	Data Terminal Ready Muxed with GPIO14 which controls the pin out of hardware reset, runt- ime reset and sleep.

For changing pin functionality please refer to the $\mathbf{sys_pinfunc}$ register in Section 7.3, "Primary General Purpose I/O".

6.8 SSI Interfaces

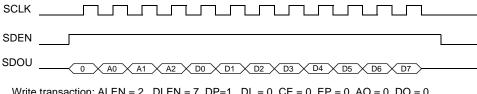
The Au1100 contains two synchronous serial interfaces (SSIs) designed to provide a simple connection to external serial devices. These serial channels support the SSI protocol and a subset of the SPI protocol.

Each serial channel is independently programmable for various address and data lengths, clock rates, and behavior.

Each channel has a data in pin, data out pin, a clock pin, and an enable pin. Only master mode is supported. The Au1100 will always drive the clock and enable pins when the interface is enabled.

The data out pin will tristate during a read, thus the data out pin and data in pin can be tied together for a bidirectional data pin.

6.8.1 Operation


The SSI generates the clock output SCLK. The clock is derived from the peripheral bus clock by a divider controlled by the **ssi_config** register. The clock only transitions when a transaction is in progress.

The SSI contains a status register that reflects the current state. A busy bit is set when a transfer is initiated and cleared when SSI returns to idle. A done bit is set when the transfer is complete. The done bit may be used to signal an interrupt.

6.8.1.1 Write Transactions

Write transactions transfer data from the Au1100 to a peripheral device attached to the SSI. The transaction consists of a data field and optional address and direction fields. The order of the address and direction fields is configurable. The address and direction fields may also be omitted from the transaction. The data field is always the last field transmitted. The order of bit transmission within a field (MSb first or LSb first) is also configurable.

The SDEN output presents an envelope around the transaction. Figure 27 shows a typical write transaction. For this transaction the address field is 3 bits long, data is 8 bits, and direction precedes address.

Write transaction: ALEN = 2, DLEN = 7, DP=1, DL = 0, CE = 0, EP = 0, AO = 0, DO = 0

FIGURE 27. Typical Write Transaction Timing

6.8.1.2 Read Transactions

A read transaction is initiated by writing the address and direction to the ssi_adat register (the data field is ignored). The busy status bit will be set and will remain set until the done bit is set to indicate completion. Once the transaction is complete the data may be read from the data field in ssi adata.

An extra clock cycle is inserted between the direction/address transmission by the processor and the data field transmission by the external device to avoid contention. The behavior of SCLK may be changed during this extra cycle by programming the BM field in the ssi config register.

Figure 28 shows a typical read transaction where the bus mode is set to hold SCLK high during the bus turnaround.

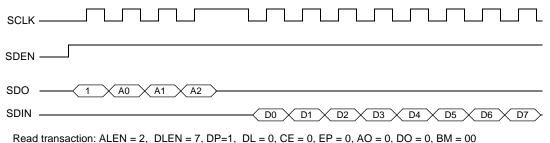


FIGURE 28. Typical Read Transaction Timing

6.8.2 Register Description

Each SSI contains a register block used to configure the interface and to pass data. All registers must be written and read as 32 bit words. The locations of the register blocks for each SSI are shown in the table below.

TABLE 61. SSI Base Addresses

Name	Physical Base Address	KSEG1 Base Address
ssi0_base	0x0 1160 0000	0xB160 0000
ssi1_base	0x0 1168 0000	0xB168 0000

Table 62 shows the offset and function of each register.

TABLE 62. SSI Registers

Offset	Register Name	Description
0x0000	ssi_status	SSI Status Register
0x0004	ssi_int	SSI Interrupt Pending Register
0x0008	ssi_inten	SSI Interrupt Enable Register
0x0020	ssi_config	SSI Configuration Register
0x0024	ssi_adata	SSI Address/Data Register
0x0028	ssi_clkdiv	SSI Clock Divider Register
0x0100	ssi_enable	SSI Channel Enable Register

SSI Interface Status Register

The **ssi_status** register reflects the current status of the interface.

ssi_status - SSI Interface Status

Bit(s)	Name	Description	R/W	Default
31:5	RES	These bits are reserved and should be written a 0.	R	0
4	BF	Buffer Full - This bit indicates that the data buffer is currently full. It is set by either receiving a buffer from the serial interface or a write by the processor. It is cleared by either a transmit on the serial interface or a read by the processor.	R	0
3	OF	Overflow - This bit is set when the serial data register is written multiple times without completing an intervening transfer.	R/W	0
		This bit is sticky. Once set high it must be written a '1' to clear the bit.		
2	UF	Underflow - This bit is set when the serial data register is read multiple times without an intervening serial transfer.	R/W	0
		This bit is sticky. Once set high it must be written a '1' to clear the bit.		
1	D	Done - This bit is set at the completion of an SSI transfer.	R/W	0
		This bit is sticky. Once set high it must be written a '1' to clear the bit.		
0	В	Busy - This bit is set if an SSI transfer is in progress	R	0

Interrupt Pending Register

The **ssi_int** register shows which interrupt indications are currently active.

ssi_int - SSI Interrupt Pending Register

Bit(s)	Name	Description	R/W	Default
31:4	RES	These bits are reserved and should be written a 0.	R	0
3	OI	The OI bit indicates that the current interrupt is being generated by an overflow condition. This bit is sticky. Once set high it must be written a '1' to clear the bit.	R	0
2	UI	The UI bit indicates that the current interrupt is being generated by an underflow condition. This bit is sticky. Once set high it must be written a '1' to clear the bit.	R	0
1	DI	The DI bit indicates that the current interrupt is being generated by a done condition. This bit is sticky. Once set high it must be written a '1' to clear the bit.	R	0
0	RES	This bit is reserved and should be written a 0.	R	0

SSI Interrupt Enable Register

The **ssi_inten** register is writable by the processor and enables certain conditions on the SSI to generate an interrupt. The interrupt will be generated (and indicated in **ssi_int**) when the corresponding bits are both set in **ssi_inten** and **ssi_status**.

ssi_inten - SSI Interrupt Enable Register

Bit(s)	Name	Description	R/W	Default
31:4	RES	These bits are reserved and should be written a 0.	R	0
3	OIE	This bit enables interrupts on an overflow condition.	R/W	0
2	UIE	This bit enables interrupts on an underflow condition.	R/W	0
1	DIE	This bit enables interrupts on a done condition.	R/W	0
0	RES	This bit is reserved and should be written a 0.	R	0

SSI Configuration Register

The **ssi_config** register contains fields which configure the operational parameters of the serial interface.

$ssi_config - SSI \ Configuration \ Register$

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								AO	DO	A	ALEN	1		DL	EN						DD	AD	Bl	M	CE	DP	DL	EP				
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	R/W	Default
31:25	RES	These bits are reserved and should be written as 0.	R	0
24	AO	Address Field Order The AO bit selects the bit order of the address field. If AO is cleared the address field is set LSB first. If AO is set the address field is sent MSB first.	R/W	0
23	DO	Data Field Order The DO field selects the transmission order for the data field. If DO is cleared the data field is sent LSB first. If DO is set the data field is sent MSB first.	R/W	0
22:20	ALEN	Address Field Length The ALEN field selects the length of the address field in the serial stream. The number of bits in the address field will be ALEN+1.	R/W	0
19:16	DLEN	Data Field Length The DLEN field selects the length of the data field in the serial stream. The number of bits in the data field will be DLEN+1. Values of DLEN that result in a length greater than 12 are reserved and will result in undefined behavior.	R/W	0
15:12	RES	These bits are reserved and should be written as 0.	R/W	0
11	DD	Direction Bit Disable If the DD bit is set the direction bit will not be sent.	R/W	0
10	AD	Address Field Disable If the AD bit is set the address field will not be sent.	R/W	0

Bit(s)	Name	Description	R/W	Default
9:8	ВМ	Bus Mode The BM field determines the turnaround behavior for read cycles. Table 63 shows the selection matrix.	R/W	0
7	CE	The CE bit determines which clock edge is active for SCLK. If CE is cleared data and address will be clocked out on the negative edge and captured at the positive edge. If CE is set data and address will be clocked out on the positive edge and captured on the negative edge.	R/W	0
6	DP	Direction Polarity The DP bit determines whether a write is indicated by an active high or active low direction bit. If DP is cleared a write will be indicated by an active high direction bit. If DP is set a write is indicated by a low direction bit.	R/W	0
5	DL	Direction Bit Location If the DL bit is clear the direction bit is sent before the address bits in the serial stream. If DL is set the direction bit will follow the address field.	R/W	0
4	EP	Enable Polarity The EP bit selects the polarity of the enable signal on the interface. A zero value indicates that the enable is active high, a nonzero value indicates an active low enable.	R/W	0
3:0	RES	This bit is reserved and should be written a 0.	R/W	0

Table 63 shows the selection matrix for the **ssi_config** register.

TABLE 63. Bus Turnaround Selection

вм	Turnaround Behavior
0b00	SCLK held high during turnaround
0b01	SCLK held low during turnaround
0b10	SCLK cycle during turnaround
0b11	Reserved

SSI Address/Data Register

The **ssi_adata** register contains the address, data, and direction fields. Writing to **ssi_adata** will initiate a transfer, the direction will be determined by the D bit. If D is clear the transaction will be a read and the data field will contain the value of the serial input at the end of the transaction. If the D bit is set the transaction will be a write.

ssi_adata - SSI address/data Register

Offset = 0x0024

Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	D ADDR																	DA	TA												
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	R/W	Default
31:25	RES	These bits are reserved and should be written a 0.	R	0
24	D	Direction Bit	R/W	0
23:16	ADDR	Address Field	R/W	0
15:12	RES	This bit is reserved and should be written a 0.	R	0
11:0	DATA	Data Field	R/W	0

SSI Clock Divider Register

The **ssi_clkdiv** register determines the baud rate of the serial port. The baud rate is defined as follows:

Baudrate = CPU/(SD * 2 * (CLKDIV + 1))

CPU = CPU clock

SD = System bus divider (see Section 7.4, "Power Management" for information on SD)

ssi clkdiv - SSI clock divider

Bit(s)	Name	Description	R/W	Default
31:16	RES	These bits are reserved and should be written a 0.	R	0
15:0	CLKDIV	The CLKDIV field determines the baud rate of the interface.	R/W	0

SSI Enable Register

The **ssi_enable** register allows the serial interface to be disabled or placed in a low power mode.

The correct routine for bringing the USB Device out of reset is as follows:

- 1. Clear the CD bit to enable clocks.
- 2. Set the E bit to enable the peripheral

ssi_enable - SSI Enable Register

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ																															CD	Е
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

Bit(s)	Name	Description	R/W	Default
31:2	RES	These bits are reserved and should be written a 0.	R	0
1	CD	Clock Disable This bit inhibits the clock to the SSI module when set. This bit should be cleared for normal operation.	R/W	1
0	E	Enable When this bit is clear the SSI module is held in reset.	R/W	0

6.8.2.1 Hardware Considerations

The SSI ports consist of the signals listed in Table 64.

TABLE 64. SSI Signals

Pin Name	Input/ Output	Definition
SSI0		
SOCLK	0	Master only clock output. The speed and polarity of clock edge is programmable.
		Muxed with GP209 which controls the pin out of hardware reset, runtime reset and sleep.
SODIN	I	Serial Data Input. This signal may be tied with S0DOUT to create a single bidirectional data signal.
SODOUT	0	Serial Data Output. This signal is tristated during a read and thus may be tied to SODIN to create a single bidirectional data signal.
		Muxed with GP208 which controls the pin out of hardware reset, runtime reset and sleep.
SODEN	0	Enable signal which frames transaction. The polarity is programmable.
		Muxed with GP210 which controls the pin out of hardware reset, runtime reset and sleep.

TABLE 64. SSI Signals (Continued)

Pin Name	Input/ Output	Definition
SSI1		
S1CLK	0	Master only clock output. The speed and polarity of clock edge is programmable.
		Muxed with ACDO which controls the pin out of hardware reset, runtime reset and sleep.
S1DIN	I	Serial Data Input. This signal may be tied with S0DOUT to create a single bidirectional data signal.
		Muxed with ACBCLK which controls the pin out of hardware reset, runtime reset and sleep.
S1DOUT	0	Serial Data Output. This signal is tristated during a read and thus may be tied to SODIN to create a single bidirectional data signal.
		Muxed with ACSYNC which controls the pin out of hardware reset, runtime reset and sleep.
S1DEN	0	Enable signal which frames transaction. The polarity is programmable. Muxed with ACRST which controls the pin out of hardware reset, runtime reset and sleep.

For changing pin functionality please refer to the **sys_pinfunc** register in Section 7.3, "Primary General Purpose I/O".

6.9 LCD Controller

The Au1100 integrated LCD controller contains the essential elements required to drive the latest industry standard 1-4 bit grayscale or 4-18 bit color LCD panels. The controller performs the basic memory based frame buffer to LCD panel data transfer through use of a dedicated DMA controller with double buffering support. It also supports hardware rotation (for up to 320x240 pixel displays) and spatio-temporal dithering (frame rate modulation) for STN type LCD panels.

The controller is capable of driving both active (TFT) and passive (STN) LCD panels through multiplexed signal pins. Color palette support is accomplished with an on-chip 256 entry 16-bit grayscale palette. TFT 16 bit mode allows the display of up to 65,536 simultaneous colors. A wide variety of LCD panels are supported through the use of user-programmable vertical and horizontal synchronization signals, bias signals and pixel clock rates.

The main features of the Au1100 LCD Controller are:

Panel Support

- 4/8 bit mono single passive matrix STN panels
- 8 bit color single passive matrix STN panels
- 16 bit color dual passive matrix STN panels
- 12/16 bit TFT panels
- 18 bit TFT panels (up to 65,536 colors)
- Panel sizes up to 800x600 are supported

Display Modes

- 1/2/4/8 bpp palletized TFT
- 12/16 bpp non-palletized TFT
- 1/2/4 bpp mono STN
- 1/2/4/8 bpp palletized color STN
- 12 bpp non-palletized color STN

Miscellaneous Features

- Double buffering support
- Hardware Swivel (90, 180, and 270 degrees) for up to 320x240 pixel displays
- Two pulse width modulation clocks to support digital control of contrast and brightness voltages (requires external filter circuits).

6.9.1 LCD Controller Registers

The LCD controller is controlled by a register block whose physical base address is shown in Table 65.

TABLE 65. LCD Base Address

Name	Physical Base Address	KSEG1 Base Address
lcd_base	0x0 1500 0000	0xB500 0000

The register block consists of 5 registers as shown in Table 66.

TABLE 66. LCD Controller Registers

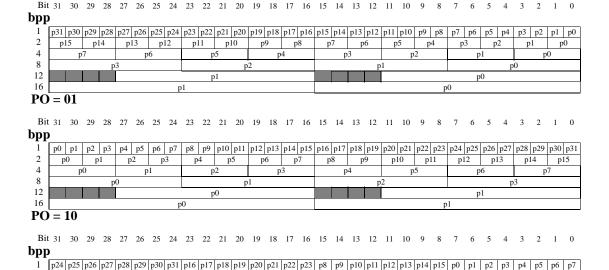
Offset	Register Name	Description
0x0000	lcd_control	Control Register
0x0004	lcd_intstatus	Interrupt Status Register
0x0008	lcd_intenable	Interrupt Enable Register
0x000C	lcd_horztiming	Horizontal Timing Register
0x0010	lcd_verttiming	Vertical Timing Register
0x0014	lcd_clkcontrol	Clock Control Register
0x0018	lcd_dmaaddr0	DMA Start Address 0
0x001C	lcd_dmaaddr1	DMA Start Address 1
0x0020	lcd_words	Frame Buffer Words
0x0024	lcd_pwmdiv	Pulse Width Modulation Frequency Divider
0x0028	lcd_pwmhi	Pulse Width Modulation High Time
0x0400	lcd_pallettebase	Pallette Interface Registers

LCD Control Register

The LCD Control Register contains bits necessary to configure the LCD Controller. With the exception of the GO bit and the Enable White Data bit no fields of the Control Register should be written while the controller is active.

lcd_control - LCD Control

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												S	BPPI	F	WP	WD	С	S	M	DB	CCO	DP	P	О	MPI	PT	PC			BPP		GO
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0


Bit(s)	Name	Description	Read/ Write	Default
31:16	RES	Reserved	R	0
20:18	SBPPF	Sixteen Bits Per Pixel Data Format 000 - 6 bits Red, 5 bits Green, 5 bits Blue 001 - 5 bits Red, 6 bits Green, 5 bits Blue 010 - 5 bits Red, 5 bits Green, 6 bits Blue 011 - 1 bit Intensity, 5 bits Red, 5 bits Green, 5 bits Blue 100 - 5 bits Red, 5 bits Green, 5 bits Blue, 1 bit Intensity	R/W	0
17	WP	101, 110, 111 - Reseved White Data Polarity This is the value which LCD_D[15:0] pins are set to when WD bit is set high.	R/W	0
16	WD	Enable White Data When this bit is high LCD_D[15:0] pins are set to the value set in the White Data Polarity, WP, bit. This bit is used during the startup and shutdown sequence of some LCD panels. This bit may be written at any time.	R/W	0
15	С	Coherent 1- LCD transactions are marked as coherent on the system bus. 0 - LCD transactions are marked as non-coherent on the system bus	R/W	0

Bit(s)	Name	Description	Read/ Write	Default
14:13	SM	Swivel Mode 00 - normal portrait 01 - 90 degree rotate (only supported for panels up to 320x240 pixels) 10 - 180 degree rotate 11 - 270 degree rotate (only supported for panels up to 320x240 pixels)	R/W	0
12	DB	TFT Data bits This bit is used in paletized TFT modes to indicate how many LCD_DATA pins are to be used. 0 - 16 data pins 1 - 12 data pins	R/W	0
11	ссо	Color Channel Orientation 0 - RGB Channel Format 1 - BGR Channel Format	R/W	0
10	DP	STN Panel Type 0 - Single Panel 1 - Dual Panel	R/W	0
9:8	РО	Pixel Order These bits show the order that pixels are packed in to words in the frame buffer. See Table 67.	R/W	0
7	MPI	Monochrome Panel Interface 0 - 4 bit monochrome panel 1 - 8 bit monochrome panel	R/W	0
6	PT	Panel Type 0 - STN Passive: frame rate modulation algorithm used 1 - TFT Active	R/W	0
5	PC	Panel Color 0 - monochrome 1 - color	R/W	0
4	RES	Reserved	R	0

Bit(s)	Name	Description	Read/ Write	Default
3:1	BPP	Bits Per Pixel 000 - 1 bit per pixel 001 - 2 bits per pixel 010 - 4 bits per pixel 011 - 8 bits per pixel 100 - 12 bits per pixel 101 - 16 bits per pixel 110,111 - Reserved	R/W	0
0	GO	LCD Go When this bit is written high the LCD Controller's dma engine starts fetching data for the frame. When data has been received it will begin sending this data along with the proper timing signals to the LCD panel. When this bit is written low the LCD controller will complete scanning out the current frame before shutting down. After completion of the last frame the SD bit in the interrupt status register will go high signaling that the LCD controller is now shutdown and can be reconfigured.	R/W	0

TABLE 67. Pixel Ordering

PO = 00

16 PO - 11

p12

p13

р6

p14

p15

p1

p0

<u>p</u>7

p9

р4

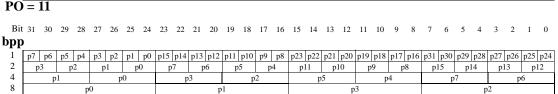
p1

p0

p10

p2

р5


2

4

8

12

12

p11

p5

p1

p2

рб

p3

p0

p0

p1

p1

p0

p1

р0

p0

p1

Interrupt Registers

The Interrupt Status and Interrupt Enable registers have identical formats. If a bit is set in the interrupt enable register and the corresponding condition becomes true then an interrupt will be issued and the corresponding bit in the Interrupt Status register will be set. The interrupt for the LCD Controller should be programmed as a high level type.

All Interrupts except for shutdown must be cleared by writing a 1 to the corresponding bit in the Interrupt Status register. These registers may be read and written while the LCD Controller is active.

lcd_status - LCD Interrupt Status

Offset = 0x0004

lcd_enable - LCD Interrupt Enable

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																									SD	OF	UF		SA	SS	S1	S0
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	Read/ Write	Default
31:8	RES	Reserved	R	0
7	SD	Shutdown This condition occurs when the controller's GO bit is written low and the controller has finished displaying the last frame. After this bit goes high all registers of the controller can be written.	R/W	0
6	OF	Output Fifo Overflow	R/W	0
5	UF	Output Fifo Underflow This can occur when there is too much traffic on the system bus, causing the LCD Controller to be unable to fetch data fast enough to refresh the LCD panel.	R/W	0
4	RES	Reserved	R	0
3	SA	Start Of Active Video Occurs at the end of the vertical retrace	R/W	0
2	SS	Start Vertical Sync Period	R/W	0

Bit(s)	Name	Description	Read/ Write	Default
1	S1	Start Address 1 Latched This interrupt is used for "double buffering". When this interrupt occurs it means that the LCD controller has latched DMA Start Address 1 and software is now free to change it. In this way software can be writing to one frame buffer while the controller is reading from the other. Start Address 1 is only used with Dual Panel STN displays.	R/W	0
0	S0	Start Address 0 Latched This interrupt is used for "double buffering". When this interrupt occurs it means that the LCD controller has latched DMA Start Address 0 and software is now free to change it. In this way software can be writing to one frame buffer while the controller is reading from the other.	R/W	0

Horizontal Timing Register

See Figure 29 and Figure 30 for a graphical description of the LCD timing parameters.

lcd_horztiming - LCD Horizontal Timing

Offset = 0x000C

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				H	N 2							H	N1						HF	W							PF	'L				
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	Read/ Write	Default
31:24	HN2	Horizontal Non Display Period 2 (in pixels) Value programmed is one pixel less than actual value.	R/W	0
23:16	HN1	Horizontal Non Display Period 1 (in pixels) Value programmed is one pixel less than actual value.	R/W	0

Bit(s)	Name	Description	Read/ Write	Default
15:10	HPW	Horizontal Sync Pulse Width (in pixels) Value programmed is one pixel less than actual value.	R/W	0
9:0	PPL	Pixels Per Line (in pixels) Value programmed is one pixel less than actual value.	R/W	0

Vertical Timing Register

See Figure 29 and Figure 30 for a graphical description of the LCD timing parameters. The "vertical retrace" time (STN: VN1, TFT: VN1+VN2+VPW) must be large enough for the LCD Controller's DMA engine to fetch the start of the next frame. The number of lines which is required is system dependent. The number of lines required is typically larger in 90 & 270 degree swivel modes.

lcd_verttiming- LCD Vertical Timing

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Vì	N2							VI	N1						VF	w							LI	PP				
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

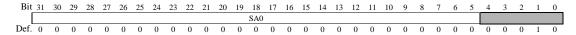
Bit(s)	Name	Description	Read/ Write	Default
31:24	VN2	Vertical Non Display Period 2 (in lines) Value programmed is one line less than actual value. This parameter is not used with STN panels.	R/W	0
23:16	VN1	Vertical Non Display Period 1 (in lines) Value programmed is one line less than actual value.	R/W	0
15:10	VPW	Vertical Sync Pulse Width (in lines) Value programmed is one line less than actual value. This value is not used with STN panels.	R/W	0
9:0	LPP	Lines Per Panel (in lines) Value programmed is one line less than actual value.	R/W	0

LCD Clock Control Register

The LCD Clock Control Register defines the parameters associated with the LCD pins.

lcd_clkcontrol - LCD Clock Control

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														IΒ	IC	IH	IV			BF							PC	D.				
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

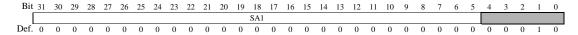

Bit(s)	Name	Description	Read/ Write	Default
31:19	RES	Reserved	R	0
18	IB	Invert Bias	R/W	0
17	IC	Invert Pixel Clock 0: Data is launched on the posedge of pixel clock 1: Data ia launched on the negedge of pixel clock	R/W	0
16	IH	Invert Line Clock	R/W	0
15	IV	Invert Frame Clock	R/W	0
14:10	BF	BIAS Signal Frequency Used only with STN panels. The Bias signal will toggle every BF Line clocks. The value programmed is one line less than the actual number of lines.	R/W	0
9:0	PCD	Pixel Clock Divisor Determines the pixel clock frequency from on chip programmable pll clock where: Fpcd = LCD Clock Generator/ (2 * (PCD+1)). For STN mono 8-bit panels this value must be greater than 2. For STN mono 4-bit panels this value must be greater than zero. For STN color panels this value must be greater than zero.	R/W	0

LCD DMA Start Address 0 Register

This address represents the DMA frame buffer base address for single panel STN or TFT panels. For dual STN panels this is the upper frame buffer start address.

lcd dmaaddr0 - LCD DMA Start Address 0

Offset = 0x0018

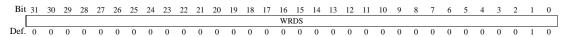

Bit(s)	Name	Description	Read/ Write	Default
31:5	SA0	Frame Buffer Start Address 0 This is a physical address and must be cache line aligned.	R/W	0
4:0	RES	These bits are reserved and must be set to 0.	R/W	0

LCD DMA Start Address 1Register

This address represents the DMA frame buffer base address for the lower frame buffer on dual STN panels. This is not used with TFT panels.

lcd dmaaddr1 - LCD DMA Start Address 1

Offset = 0x001C


Bit(s)	Name	Description	Read/ Write	Default
31:0	SA1	Frame Buffer Start Address 1 This is a physical address and must be cache line aligned.	R/W	0
4:0	RES	These bits are reserved and must be set to 0.	R/W	0

Frame Buffer Words Register

This register represents the number of words in the frame buffer.

lcd_words - Frame Buffer Words

Offset = 0x0020

Bit(s)	Name	Description	Read/ Write	Default
31:0	WRDS	Frame Buffer Words 90 & 270 degree swivel: Words per frame buffer line. The value programmed is 1 less than the actual value.	R/W	0
		0 & 180 degreee swivel: Words in entire frame buffer. In 180 degree swivel this value must be evenly divisable by 8. The value programmed is 1 less than the actual value.		

Pulse Width Modulation Frequency Divider

This register controls the frequency of the 2 PWM clocks.

lcd_pwmdiv - PWM Frequency Divider

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																				EN						PWN	1DIV					
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

Bit(s)	Name	Description	Read/ Write	Default
31:11	RES	Reseved	R	0
12	EN	Enable	R/W	0
		1 : Enable PWM clocks		
		0 : Disable PWM clocks		
11:0	PWMDIV	PWM Frequency Divider	R/W	0

Pulse Width Modulation High Time

This register controls the duty cycle of the 2 PWM clocks.

lcd_pwmhi - PWM High Time

Offset = 0x0028

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														PWN	ИНІ 1											PWN	ИНІ 0					
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

Bit(s)	Name	Description	Read/ Write	Default
31:24	RES	Reseved	R	0
23:12	PWMHI1	PWM High time for clock 1	R/W	0
11:0	PWMHI0	PWM High time for clock 0	R/W	0

LCD Pallette Interface Registers

The 256 color pallette entries in the controller are read and written through the following 16 bit pallette interface registers mapped to offset range 0x0400 - 0x4FF. All register must be accessed as words.

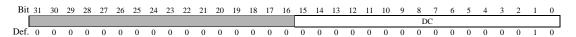
lcd pallettebase MONOCHROME MODE

Offset Mapped = 0x0400 - 0x04FF

Bit(s)	Name	Description	Read/ Write	Default
31:4	RES	Reserved	R	0
3:0	MI	Monochromatic Panel Intensity	R/W	0

lcd_pallettebase COLOR STN MODE

Offset Mapped = 0x0400 - 0x04FF



Bit(s)	Name	Description	Read/ Write	Default
31:12	RES	Reserved	R	0
11:8	RI	Red Channel Intensity*	R/W	0
7:4	GI	Green Channel Intensity	R/W	0
3:0	BI	Blue Channel Intensity*	R/W	0

^{*}Note: these values are swapped when lcd_control[CCO] bit is set.

lcd_pallettebase COLOR TFT PALLETIZED

Offset Mapped = 0x0400 - 0x04FF

Bit(s)	Name	Description	Read/ Write	Default
31:16	RES	Reserved	R	0
15:0	DC	16 bit Direct True Color Value. The bit fields of this value are described by SBPPF.	R/W	0

6.9.2 Hardware Considerations

The LCD Controller interface consists of the signals listed in Table 68.

TABLE 68. LCD Controller Signals

Pin Name	Input/ Output	Definition
LCD_FCK	0	Frame Clock
LCD_LCK	0	Line Clock
LCD_PCK	0	Pixel Clock
LCD_D[15:0]	0	LCD Data Bus
LCD_BIAS	0	BIAS Clock

TABLE 68. LCD Controller Signals

Pin Name	Input/ Output	Definition						
LCD_LEND	0	Line End						
LCD_PWM0	0	Pulse Width Modulation Clock 0						
LCD_PWM1	0	Pulse Width Modulation Clock 1						

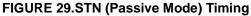
The usage of the 16 LCD_D pins is summarized in Table 69.

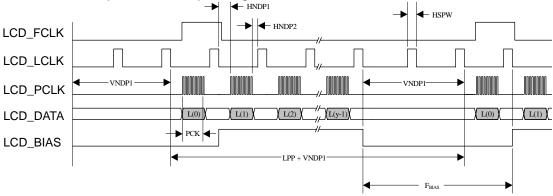
TABLE 69. LCD Controller Data Pin Usage

LCD Pin	Mono S Panel	TN	Color STN	N Panel	Color TFT Panel					
Name	4-bit	8-bit	Single	Dual	12-bit	18-bit				
LCD_D[0]	D0	D0	D0	D0	R0	R1				
LCD_D[1]	D1	D1	D1	D1	R1	R2				
LCD_D[2]	D2	D2	D2	D2	R2	R3				
LCD_D[3]	D3	D3	D3	D3	R3	R4				
LCD_D[4]	driven low	D4	D4	D4	G0	R5				
LCD_D[5]	driven low	D5	D5	D5	G1	G0				
LCD_D[6]	driven low	D6	D6	D6	G2	G1				
LCD_D[7]	driven low	D7	D7	D7	G3	G2				
LCD_D[8]	driven low	driven low	driven low	D8	В0	G3				
LCD_D[9]	driven low	driven low	driven low	D9	B1	G4				
LCD_D[10]	driven low	driven low	driven low	D10	B2	G5				
LCD_D[11]	driven low	driven low	driven low	D11	В3	B1				
LCD_D[12]	driven low	driven low	driven low	D12	driven low	B2				
LCD_D[13]	driven low	driven low	driven low	D13	driven low	В3				
LCD_D[14]	driven low	driven low	driven low	D14	driven low	B4				
LCD_D[15]	driven low	driven low	driven low	D15	driven low	В5				

Note: For TFT panels the R and B pin will be reversed if CCO bit is set.

6.9.3 Programming Considerations


6.9.3.1 Enabling the LCD Controller


The first step in enabling the LCD controller is to program the LCD clock generator to the desired frequency.

The LCD Controller's configuration should not be changed while the controller is enabled. When starting the LCD controller the configuration for the panel should be programmed then the GO bit should be written high. In order to disable the controller the GO bit should be written low then software should wait for the SD bit to go high before re-configuring the the controller.

6.9.3.2 Definition Of Timing Parameters

The timing diagrams shown in figure Table 29 and figure Table 30 show the definitions of the timing registers plus an example for each mode.

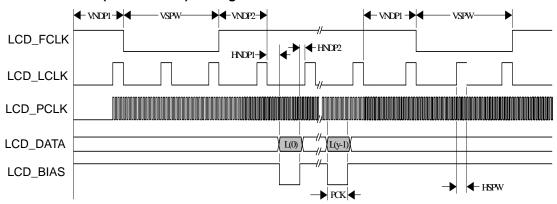
Notes: PCK_{color} = (PixelsPerLine*3)/DataBusWidth

 $PCK_{mono} = (PixelsPerLine)/DataBusWidth$

F_{PCLK} = (LCD Clock Generator*2)/(PCD+1)

In this diagram: $F_{BIAS} = 3$ (Icd_clkcontrol[BF] = 'b00010)

HNDP1 = 4 (lcd_horztiming[HN1] = 'b00000011) HNDP2 = 2 (lcd_horztiming[HN2] = 'b00000001) HSPW = 3 (lcd_horztiming[HPW] = 'b000010) VNDP1 = 2 (lcd_verttiming[VN1] = 'b000001)


LPP = v

FRAME ↑ transitions at the same time as first PCLK ↑

FRAME \downarrow transitions one PCLK period after LCLK \downarrow

FRAME, LCLK, PCLK shown here with lcd clkcontrol[IV:IH:IC] = 'b000

FIGURE 30.TFT (Active Mode) Timing

Notes: PCK = PixelsPerLine

 $F_{PCLK} = (LCD \ Clock \ Generator^*2)/(PCD+1)$ In this diagram: $F_{BIAS} = NA \quad (Icd_clkcontrol[BF] = 'bXXXXX)$

VSPW = 2LPP = y

FRAME transitions at the same time as LCLK goes

inactive

FRAME, LCLK, PCLK, and BIAS shown here with lcd_clkcontrol[IV:IH:IC:IO] = 'b1001

6.10 Secure Digital Controller

The Au1100 has two Secure Digital Controllers which incorporate both SD and SDIO interfaces.

6.10.1 SD Registers

The SD controller has two block IDs (ID=0 and ID=1). Each are controlled by a register block whose physical base address is shown in Table 70.

TABLE 70. SD Base Address

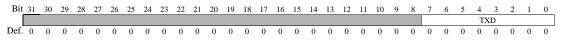
Name	Physical Base Address	KSEG1 Base Address
sd0_base	0x0 1060 0000	0xB060 0000
sd1_base	0x0 1068 0000	0xB068 0000

The register block consists of 5 registers as shown in Table 71.

TABLE 71. SD Registers

Offset	Register Name	Description						
0x0000	sd_txport	Destination data port for PIO or DMA writes						
0x0004	sd_rxport	Source data port for PIO or DMA reads						
0x0008	sd_config	Interrupt and Clock Configuration						
0x000C	sd_enable	SD Peripheral Control						
0x0010	sd_config2	Protocol and data transfer mode configuration						
0x0014	sd_blksize	data block transfer size						
0x0018	sd_status	Interrupt Status						
0x001C	sd_debug	Debug Info						
0x0020	sd_cmd	SD Command Register						
0x0024	sd_cmdarg	SD Command Argument Register						
0x0028	sd_resp3	SD Report Response 3						
0x002C	sd_resp2	SD Report Response 2						

TABLE 71. SD Registers


Offset	Register Name	Description
0x0030	sd_resp1	SD Report Response 1
0x0034	sd_resp0	SD Report Response 0
0x0038	sd_timeout	SD NAC Timeout Value

SD Transmit Data Port Register

The Transmit Data Port Register is used to send data to the SD interface for either PIO or DMA write modes.

sd_txport - SD Transmit Data Port

Offset = 0x0000



Bit(s)	Name	Description	Read/ Write	Default
31:8	RES	Reserved	R	0
7:0	TXD	Transmit Data	W	0

SD Receive Data Port Register

The Receive Data Port Register is used to read data from the SD interface from either PIO or DMA read modes.

sd rxport - SD Receive Data Port

Bit(s)	Name	Description	Read/ Write	Default
31:8	RES	Reserved	R	0
7:0	RXD	Received Data	R	0

SD Configuration Register

This register is used to program interrupts and configure SD clocks.

sd_config - SD Configuration

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SI	CD	RA	RF	RH	TA	TE	TH		WC	RC	SC	DT	DD	RA	CR	I	RO	RU	TO	TU	NE	DE					DIV				
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	Read/ Write	Default
31	SI	Slot 0 device insertion interrupt enable	R/W	0
30	CD	Slot 0 card detect interrupt enable	R/W	0
29	RA	RX buffer almost full interrupt enable	R/W	0
28	RF	RX buffer full interrupt enable	R/W	0
27	RH	RX buffer at least half full interrupt enable	R/W	0
26	TA	TX buffer almost empty interrupt enable	R/W	0
25	TE	TX buffer empty interrupt enable	R/W	0
24	TH	TX buffer at most half empty interrupt enable	R/W	0
23	RES	Reserved. Must be written with zero.	R/W	0
22	WC	Write CRC error interrupt enable	R/W	0
21	RC	Read CRC error interrupt enable	R/W	0
20	SC	Response CRC error interrupt enable	R/W	0
19	DT	Data access timeout interrupt enable (NAC)	R/W	0
18	DD	Data transfer done interrupt enable	R/W	0
17	RA	Command-response response access time- out interrupt enable (NCR)	R/W	0
16	CR	Command-response transfer done interrupt enable (or command only if the command does not require a response).	R/W	0
15	1	Master interrupt enable	R/W	0
14	RO	RX FIFO overrun interrupt enable	R/W	0
13	RU	RX FIFO underrun interrupt enable	R/W	0
12	то	TX FIFO overrun interrupt enable	R/W	0
11	TU	TX FIFO underrun interrupt enable	R/W	0
10	NE	RX FIFO not empty interrupt enable	R/W	0

Bit(s)	Name	Description	Read/ Write	Default
9	DE	Divider enable: 0 - divider maximum count not changed 1 - divider maximum count changed to value written in bits [8:0].	R/W	0
8:0	DIV	Number of source clock cycles in one phase of derived clock is DIV[8:0] + 1. For example: if DIV[8:0] = 0x000, clock is divided by 2; if DIV[8:0] = 0x1FF, clock is divided by 1024. Note: this value must be written simultaneously with DE to take effect.	R/W	0

SD Enable Register

The SD Enable register contains bits necessary to enable clocks to and reset the SD interface.

sd_enable - SD Enable

Offset = 0x000C

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																															R	CE
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	Read/ Write	Default
31:2	RES	Reserved.	R	0
1	R	Peripheral reset. Clearing this bit will reset the entire peripheral. After enabling the clock using bit CE, this bit should be set for normal operation.	R/W	0
0	CE	Peripheral clock enable. This bit is set for normal operation and my be cleared to disable the clock for low power mode.	R/W	0

SD Configuration 2 Register

The SD Configuration 2 register is used to set up the PIO or DMA mode and state machine master enable.

$sd_config2$ - SD Configuration 2

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																						WP	RW	WB				DC	DF		FF	EN
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	Read/ Write	Default
31:11	RES	Reserved	R	0
10	WP	Write protect enable. This bit is set by software to prevent writing to the card.	R/W	0
9	RW	Read wait enable. When this bit is set serial clock-based flow control is not used. This bit is valid for SDIO mode only.	R/W	0
8	WB	Wide bus transfer mode: 0 - one wire data transfer 1 - four wire data transfer	R/W	0
7:5	RES	Reserved	R	0
4	DC	Disable hardware timeout down counter. 0 - normal hardware timeout 1 - no hardware timeout (software timeout)	R/W	0
3	DF	Disable clock freezing for flow control 0 - enable clock freezing 1 - disable clock freezing	R/W	0
2	RES	Reserved. This bit must be written with 0.	R/W	0
1	FF	Force FIFO flush and reset. This bit is sticky and must be manually cleared to resume normal operation.	R/W	0
0	EN	Serial interface state machine and FIFO master enable	R/W	0

SD Block Size Register

The SD Block Size register defines the size and number of blocks to be transmitted by the SD controller..

sd_blksize - SD Block Size

Offset = 0x0014

Bit(s)	Name	Description	Read/ Write	Default
31:25	RES	Reserved	R	0
24:16	ВС	Block I/O count. This field is used for a known number of SDIO read/write blocks.	R/W	0
15:11	RES	Reserved	R	0
10:0	BS	Block size in bytes. The value programmed is one less than the actual number of bytes in the block.	R/W	0

SD Status Register

The SD Status register reports pending interrupts and the cause of the interrupts. Each field has a description of the interrupt type: level triggered (LT) or edge triggered (ET). To clear an edge interrupt bit a '1' must be written to the desired bit. This register also contains the CRC status word resulting from a block write. Note: these bits are not masked by the corresponding **sd_config** bits.

$sd_status - SD Status$ Offset = 0x0018

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SI	CD	RA	RF	RH	TA	TE	TH		WC	RC	SC	DT	DD	RA	CR	I	RO	RU	TO	TU	NE				CF	DB	CB		D	CRCV	N
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	Read/ Write	Default
31	SI	Slot 0 device insertion interrupt (LT)	R/W	0
30	CD	Slot 0 card detect interrupt (LT)	R/W	0
29	RA	RX buffer almost full interrupt (LT)	R/W	0
28	RF	RX buffer full interrupt (LT)	R/W	0
27	RH	RX buffer at least half full interrupt (LT)	R/W	0

Bit(s)	Name	Description	Read/ Write	Default
26	TA	TX buffer almost empty interrupt (LT)	R/W	0
25	TE	TX buffer empty interrupt (LT)	R/W	0
24	TH	TX buffer at most half empty interrupt (LT)	R/W	0
23	RES	Reserved	R/W	0
22	WC	Write CRC error interrupt (ET)	R/W	0
21	RC	Read CRC error interrupt (ET)	R/W	0
20	SC	Response CRC error interrupt (ET)	R/W	0
19	DT	Data access timeout interrupt (NAC) (ET)	R/W	0
18	DD	Data transfer done interrupt enable	R/W	0
17	RA	Command-response response access time- out interrupt enable (NCR)	R/W	0
16	CR	Command-response transfer done interrupt enable (or command only if the command does not require a response).	R/W	0
15	1	Master interrupt enable pending	R	0
14	RO	RX FIFO overrun interrupt enable	R/W	0
13	RU	RX FIFO underrun interrupt enable	R/W	0
12	то	TX FIFO overrun interrupt enable	R/W	0
11	TU	TX FIFO underrun interrupt enable	R/W	0
10	NE	RX FIFO not empty interrupt enable	R/W	0
9:7	RES	These bits are reserved and should be written with zero.	R/W	0x0
6	CF	Clock freezing status: 1 - normal clocking 0 - clock frozen (potential overrun/underrun)	R	0
5	DB	SD data-response busy status	R	0
4	СВ	SD command-response busy status	R	0

Bit(s)	Name	Description	Read/ Write	Default
3	RES	This bit is reserved and should be written with zero.	R/W	0
2:0	DCRCW	Device CRC status word: 010 - no error 101 - transmission error 111 - no CRC response	R	0x0

SD Debug Register

The SD Debug register is used primarily for debugging the read and write pointers for both transmit and receive FIFOs..

sd_debug - SD Debug

Offset = 0x001C

Bit :	31 3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																			RXR			1	RXW	,			TXR				TXW	
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	Read/ Write	Default
31:15	RES	Reserved.	R	0
14:12	RXR	Receive FIFO read pointer.	R	0
11	RES	Reserved.	R	0
10:8	RXW	Receive FIFO write pointer.	R	0
7	RES	Reserved.	R	0
6:4	TXR	Transmit FIFO read pointer.	R	0
3	RES	Reserved.	R	0
2:0	TXW	Transmit FIFO write pointer.	R	0

SD Command Register

The SD Command register contains fields used to build an SD command sequence.

sd_cmd - SD Command

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												R	Т							C	I					C	T				RY	GO
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	Read/ Write	Default
31:24	RES	These bits are reserved and should be written a 0.	R/W	0
23:16	RT	Response Type 0000 - no response 0001 - R1 response (48 bits) 0010 - R2 response (136 bits) 0011 - R3 response (48 bits) 0110 - R6 resposne (48 bits) 1001 - R1b response (48 bits) All other values are reserved.	R/W	0
15:8	CI	Command Index	R/W	0
7:4	СТ	Command Type - see Table 33 for valid encoding and descriptions.	R/W	0
3:2	RES	These bits are reserved and should be written a 0.	R/W	0
1	RY	Response Ready. This bit is set by the SD block once the command-response sequence is finished and reset once sd_resp0 is read.	R	0
0	GO	Command Go/Busy This bit is set to initiate a command. The bit is reset once the last bit of the command argument is transmitted.	R/W	0

TABLE 72. Command Type Field Encodings

CT[3:0]	Action applied to SD Memory	Action applied to SDIO
0000b	Non-data-write, non-data-read, non-data-stop, non-io-abort commands.	Non-data-write, non-data-read, non-data-stop, non-io-abort commands.
0001Ь	Single block write. Use when doing a WRITE_BLOCK (CMD24) command. Block size is defined in CSD or programmed by SET_BLOCKLEN (CMD16) command (see p.41 of SD spec) and is also programmed into sd_blksize[BS] field. sd_blksize[BC] field is ignored.	Single block IO write. Use when doing an IO_RW_EXTENDED (CMD53) with fields R/W Flag = 1 (direction is write) and Block Mode = 0 (byte mode). The block size is defined in Byte/Block Count. A 0x0 value in Byte/Block Count is considered to be 256 bytes (see p.18 of SDIO spec). The block size is also programmed into sd_blksize[BS] field. sd_blksize[BC] field is ignored.
0010Ь	Single block read. Use when doing a READ_SINGLE_BLOCK (CMD17) command. Block size is defined in CSD or programmed by SET_BLOCKLEN (CMD16) command (see p.41 of SD spec) and is also programmed into sd_blksize[BS] field. sd_blksize[BC] field is ignored.	Single block IO read. Use when doing an IO_RW_EXTENDED (CMD53) with fields R/W Flag = 0 (direction is read) and Block Mode = 0 (byte mode). the block size is defined in Byte/Block Count. A 0x0 value in Byte/Block Count is considered to be 256 bytes (see p.18 of SDIO spec). The block size is also programmed into sd_blksize[BS] field. sd_blksize[BC] field is ignored.
0011Ь	Multiple block write requiring STOP command to end transfer. Use when doing a WRITE_MULTIPLE_BLOCK (CMD25) command. Block size is defined in CSD or programmed by SET_BLOCKLEN (CMD16) command (see p.41 of SD spec) and is sd_blksize[BS] field. sd_blksize[BC] field is ignored. The transfer has to be terminated by issuing a STOP_TRANSMISSION (CMD12) command.	Multiple block IO write requiring writing to CCCR to end transfer. Use when doing an IO_RW_EXTENDED (CMD53) with fields R/W Flag = 1 (direction is write) and Block Mode = 1 (block mode) and Byte/Block Count = 0x0 (infinite block count) (see p.18 of SDIO spec). For function 0, block size is programmed by using the IO_RW_DIRECT (CMD52) command to write to FNO Block Size registers (2 of them) inside CCCR (see p.26 of SDIO spec). For functions 1 to 7, block size is programmed by using the IO_RW_DIRECT (CMD52) command to write to the I/O Block Size registers (2 of them) inside FBR (see p.28 of SDIO spec). The block size is also programmed into sd_blksize[BS] field. sd_blksize[BC] field is ignored. The transfer has to be terminated by issuing a IO_RW_DIRECT (CMD52) command to write to the abort register in CCCR (bits [2:0] of register 6) (see p.23 of SDIO spec).
0100Ь	Multiple block read requiring STOP command to end transfer. Use when doing a READ_MULTIPLE_BLOCK (CMD18) command. Block size is defined in CSD or programmed by SET_BLOCKLEN (CMD16) command (see p.41 of SD spec) and is programmed into sd_blksize[BS] field. sd_blksize[BC] field is ignored. The transfer has to be terminated by issuing a STOP_TRANSMISSION (CMD12) command.	Multiple block IO read requiring writing to CCCR to end transfer. Use when doing an IO_RW_EXTENDED (CMD53) with fields R/W Flag = 0 (direction is read) and Block Mode = 1 (block mode) and Byte/Block Count = 0x0 (infinite block count) (see p.18 of SDIO spec). For function 0, block size is programmed by using the IO_RW_DIRECT (CMD52) command to write to FN0 Block Size registers (2 of them) inside CCCR (see p.26 of SDIO spec). For functions 1 to 7, block size is programmed by using the IO_RW_DIRECT (CMD52) command to write to the I/O Block Size registers (2 of them) inside FBR (see p.28 of SDIO spec). The block size is also programmed into sd_blksize[BS] field. sd_blksize[BC] field is ignored. The transfer has to be terminated by issuing a IO_RW_DIRECT (CMD52) command to write to the abort register in CCCR (bits [2:0] of register 6) (see p.23 of SDIO spec).

TABLE 72. Command Type Field Encodings

CT[3:0]	Action applied to SD Memory	Action applied to SDIO
0101b	Not applicable.	Multiple block IO write with fixed number of blocks. Use when doing an IO_RW_EXTENDED (CMD53) with fields R/W Flag = 1 (direction is write) and Block Mode = 1 (block mode) and Byte/Block Count set to the desired number of blocks to transfer (must be non-zero) (see p.18 of SDIO spec). For function 0, block size is programmed by using the IO_RW_DIRECT (CMD52) command to write to FN0 Block Size registers (2 of them) inside CCCR (see p.26 of SDIO spec). For functions 1 to 7, block size is programmed by using the IO_RW_DIRECT (CMD52) command to write to the I/O Block Size registers (2 of them) inside FBR (see p.28 of SDIO spec). The block size is also programmed into the sd_blksize[BS] field. Based on the Byte/Block Count, the sd_blksize[BC] field is programmed with the correct number of blocks. Using either 1-bit or 4-bit wire will not affect this number because in the 4-bit wire case, 1 block of data is split into 4 sub-blocks (each 1/4 of the original block size) on each data wire. The start and stop bits still define the boundary of a block. The transfer will be terminated when the correct number of blocks have been transmitted. No abort action is required.
0110ь	Not applicable.	Multiple block IO read with fixed number of blocks. Use when doing an IO_RW_EXTENDED (CMD53) with fields R/W Flag = 0 (direction is read) and Block Mode = 1 (block mode) and Byte/Block Count set to the desired number of blocks to transfer (must be non-zero) (see p.18 of SDIO spec). For function 0, block size is programmed by using the IO_RW_DIRECT (CMD52) command to write to FNO Block Size registers (2 of them) inside CCCR (see p.26 of SDIO spec). For functions 1 to 7, block size is programmed by using the IO_RW_DIRECT (CMD52) command to write to the I/O Block Size registers (2 of them) inside FBR (see p.28 of SDIO spec). The block size is also programmed into the sd_blksize[BS] field. Based on the Byte/Block Count, the sd_blksize[BS] field. Based on the Correct number of blocks. Using either 1-bit or 4-bit wire will not affect this number because in the 4-bit wire case, 1 block of data is split into 4 sub-blocks (each 1/4 of the original block size) on each data wire. The start and stop bits still define the boundary of a block. The transfer will be terminated when the correct number of blocks have been transmitted. No abort action is required.
0111b	Terminate transfer of a multiple block write or read. Use when doing a STOP_TRANSMISSION (CMD12) command (see p.41 of SD spec).	Not applicable.
1000Ь	Not applicable.	Terminate transfer of a multiple block IO write or read without a fixed desired number of block count. Use when issuing a IO_RW_DIRECT (CMD52) command to write to the abort register in CCCR (bits [2:0] of register 6) to stop the transfer (see p.23 of SDIO spec).
1001b to 1111b	Reserved.	Reserved.

SD Command Argument Register

The SD Command Argument register holds the argument used in an SD command-response sequence..

sd_cmdarg - SD Command Argument

Offset = 0x0024

Bit(s)	Name	Description	Read/ Write	Default
31:0	CARG	Command argument. Must write this register first, then write sd_cmd [BY] to issue the command.	R/W	0

SD Response 3 Register

The SD Response 3 register contains the response from an issued command-response sequence. Valid only when the response is of type 128 bit..

sd resp3 - SD Response 3

Offset = 0x0028

Bit(s)	Name	Description	Read/ Write	Default
31:0	RESP3	Response from device.	R	0

SD Response 2 Register

The SD Response 2 register contains the response from an issued command-response sequence. Valid only when the response is of type 128 bit..

sd_resp2 - SD Response 2

Offset = 0x002C

Bit(s)	Name	Description	Read/ Write	Default
31:0	RESP2	Response from device.	R	0

SD Response 1 Register

The SD Response 1 register contains the response from an issued command-response sequence. Valid only when response size is of type 128 bits or (6 + 32) bits

sd_resp1 - SD Response 1

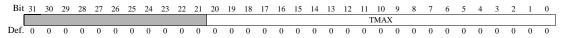
Offset = 0x0030

Bit(s)	Name	Description	Read/ Write	Default
31:0	RESP1	Response from device.	R	0

SD Response 0 Register

The SD Response 0 register contains the response from an issued command-response sequence. Valid for all modes where a response is expected.

sd resp0 - SD Response 0


Bit(s)	Name	Description	Read/ Write	Default
31:0	RESP0	Response from device.	R	0

SD Timeout Register

The SD Timeout register defines the timeout value for NAC.

sd_timeout - SD Timeout

Offset = 0x0038

Bit(s)	Name	Description	Read/ Write	Default
31:21	RES	Reserved.	R	0
20:0	TMAX	Maximum timeout value for NAC where: NAC = TAAC + NSAC (see SD specification) Maximum timeout value is 81.02 ms. Counter is based upon 25 MHz clock.	R/W	0

6.10.2 Hardware Considerations

The SD interface consists of the signals listed in Table 73.

TABLE 73. SD Signals

Pin Name	Input/ Output	Definition
SDMS_MS_EN	1	Reserved for future use. Must be 0.
SDMS0_CLK	0	SD Card 0 Interface Clock
SDMS0_CMD	I/O	SD Card 0 Half Duplex Command and Response
SDMS0_DAT[3:0]	I/O	SD Card 0 Data Bus
SDMS1_CLK	0	SD Card 1 Interface Clock
SDMS1_CMD	I/O	SD Card 1 Half Duplex Command and Response
SDMS1_DAT[3:0]	I/O	SD Card 1 Data Bus

6.10.3 Programming Considerations

TBD.

6.11 Secondary General Purpose I/O

The Au1100 contains two seperate GPIO sections. This section describes the secondary GPIO block which corresponds to pins labeled GP200 through GP215. For a description of the primary GPIO block refer to Section 7.3, "Primary General Purpose I/O" in the system control block description.

6.12 Programming Model

The secondary GPIO block is controlled by a register block referenced from the base address described in Table 74.

TABLE 74. GPIO2 Register Base Addresses

Name	Physical Base Address	KSEG1 Base Address
gpio2_base	0x0 1170 0000	0xB170 0000

6.12.1 GPIO2 Registers

Each register block contains the registers listed in Table 75.

TABLE 75. GPIO2 Registers

Offset	Register Name	Description
0x0000	gpio2_dir	GPIO2 Direction
0x0004	reserved	
0x0008	gpio2_output	GPIO2 Data Output
0x000C	gpio2_pinstate	GPIO2 Pin State
0x0010	gpio2_inten	GPIO2 Interrupt Enable
0x0014	gpio2_enable	GPIO2 Enable

Direction Register

The **gpio2_dir** register controls the direction of each GPIO2 signal. Note that this register only controls the output enable for the output buffer. Clearing a bit in this register disables the output for the corresponding pin making it possible to read an externally driven input. Output enable control can also be used to emulate an open drain driver.

gpio2_dir - Direction Register

Bit(s)	Name	Description	R/W	Default
31:16	RES	These bits are reserved and should be written a 0.	R	0
15:0	DIR	Direction Control. Each bit controls the I/O direction of one GPIO in the secondary block. Bits 15:0 correspond to GP[215200].	R/W	0
		0 = pin is an input (output disabled)		
		1 = pin is an output		

Data Output Register

The **gpio2_output** register controls the output data for the secondary GPIOs. Data bits 15:0 will be output to the corresponding GPIO when the enable bit is set for that bit during a write to this register

gpio2_output - Data Output Register

Offset = 0x0008

Bit(s)	Name	Description	R/W	Default
31:16	ENA	Data Output Enable. Bits [31:16] correspond to GP[215:200]. 1 - Data output is enabled 0 - Data output is disabled	R/W	0
15:0	DATA	Output Data. Bits 15:0 correspond to GP[215:200].	R/W	0

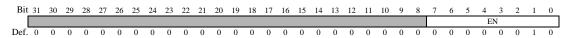
Pin State Register

The **gpio2_pinstate** register reflects the current state of the corresponding secondary GPIO pin.

gpio2_pinstate - Pin State

Offset = 0x000c

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																								DA	TA							
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0


Bit(s)	Name	Description	R/W	Default
31:16	RES	These bits are reserved and will be read 0.	R	0
15:0	DATA	Current Pin State for GP[215:200]	R	0

Interrupt Enable Register

The **gpio2_inten** register contains bits which enable interrupts under certain operational conditions.

gpio2_inten - Interrupt Enable Register

Offset = 0x0010

Bit(s)	Name	Description	R/W	Default
31:8	RES	These bits are reserved and should be written a 0.	R	0
7:0	EN	Interrupt Enable Bits [7:0] correspond to GP[215:208]	R/W	0

Enable Register

The **gpio2_enable** register controls the clocks and reset to the secondary GPIO block.

gpio2_enable - Enable Register

Bit(s)	Name	Description	R/W	Default
31:2	RES	These bits are reserved and should be written a 0.	R	0
1	MR	Module Reset. When this bit is set the module is held in reset.	R/W	1
0	CE	Clock Enable. When this bit is clear the module clocks are disabled.	R/W	0

System Control

The Au1100 contains a robust system control strategy that includes the means to control the following:

- Clocking
- Time of Year and Real Time Clock counters
- · GPIO control
- Power management

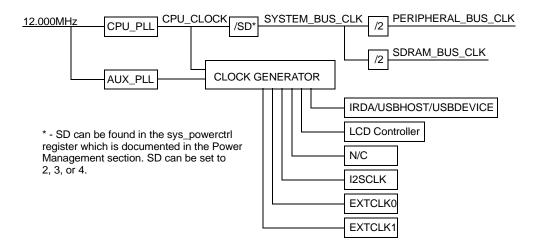
All registers in the system control block are located off of the base address shown in Table 76.

TABLE 76. System Control Block Base Address

Name	Physical Base Address	KSEG1 Base Address
sys_base	0x0 1190 0000	0xB190 0000

The registers in the system control block are affected differently by events such as power-on hardware reset, sleep and runtime reset (see Chapter 8, Powerup, Reset and Boot for a discussion on the different reset types). Each register is documented with how it will be affected by the different system states. Care should be taken by the system designer to observe what registers will and will not revert to defaults when the different events occur.

7.1 Clocks


The Au1100 supports two oscillator inputs, 12MHz and 32.768kHz. This section documents the clock domains driven directly and indirectly by the 12MHz input. Please see Section 11.5, Crystal Specifications for the Crystal specification.

The Au1100 contains 2 PLLs driven by the 12MHz input and a clocking block from which the following are derived:

- CPU Clock
- Core Cycle Counter register clocked by the CPU clock
- System Bus clock
- Peripheral Bus Clock
- SDRAM Bus Clock
- Programmable frequency clocks needed by certain peripherals
- Programmable frequency clocks for external use (provided on pins shared with GPIO2 and GPIO3)

The 32.768kHz clock input drives the 2 programmable counters intended for use as a Real Time Clock and Time of Year Clock. The programmable counters are documented in Section 7.2.

Figure 31 shows the basic clocking topology and the relationship between the CPU Clock, the System bus clock and the Peripheral Clock. As shown the System bus frequency is derived by dividing the CPU Clock by the value SD. SD is a bit field in the **sys_powerctrl** register. This register is documented in Section 7.4. The Peripheral Bus clock and the SDRAM bus are fixed at the System Bus frequency divided by 2. The blocks driven by the Peripheral Bus clock and the System Bus clock are shown in Figure 32.

FIGURE 31. Clocking Topology

7.1.1 Clock Register Descriptions

The clock manager registers and their associated offsets are listed in Table 77.

TABLE 77. Clock Generation Registers

Offset	Register Name	Description	Reset Type
0x0020	sys_freqctrl0	Controls frequency generator 0 through 2 divider and enable	Hardware
0x0024	sys_freqctrl1	Controls frequency generator 3 through 5 divider and enable	Hardware
0x0028	sys_clksrc	Controls source of the 6 derived clocks	Hardware
0x0060	sys_cpupII	Changes CPU PLL frequency	Hardware
0x0064	sys_auxpll	Changes Auxiliary PLL frequency	Hardware & Runtime

7.1.2 Clock Generation

This section documents registers for the clock generation block which provides clocks to some peripheral devices and as well as two externally available clocks. The clock generation subsystem is split into two sets of distinct blocks which allows up to six distinct frequencies to drive up to six clock sources. Figure 32 shows a logical representation of one of the six identical frequency generators and how the six frequency sources are mapped to one of the six identical internal clock sources. The names in the figure correspond to the bit names in the control registers. Figure 33 shows a pictorial representation of the relationship between the frequency generator blocks to the clock source blocks.

Each peripheral has clock restrictions as follows (if these restrictions are not met then the peripheral will not operate correctly).

The USB Host Clocks, USB Device Clock and IrDA Clock must be programmed to 48MHz. Additionally, the **ir_config2**[CS] bit that specifies the PHY Layer clock speed field must be set to match 48 MHz. See Section 6.4, "IrDA" for more information.

The I2SCLK must be set to match the effective bit rate which will be determined by the sampling frequency (system dependent) times the bit rate (2 * SZ). SZ is the Size field in the **i2s config** register.

The EXTCLK[1:0] clocks can be programmed for system use. If the I2S peripheral is being used, typically one of these clocks will be programmed to provide the system oversampling clock for the CODEC (i.e. 128Fs, 256Fs, or 512Fs where Fs is the system sampling frequency).

EXTCLK0 shares a pin with GPIO2. If EXTCLK0 is to be used the *EX0* bit in the **sys_pinfunc** register must be set to allow the clock to drive this pin. In addition the *CS* bit in the **sys_pinfunc** register must be cleared.

EXTCLK1 shares a pin with GPIO3. If EXTCLK1 is to be used the *EX1* bit in the **sys_pinfunc** register must be set to allow the clock to drive this pin.

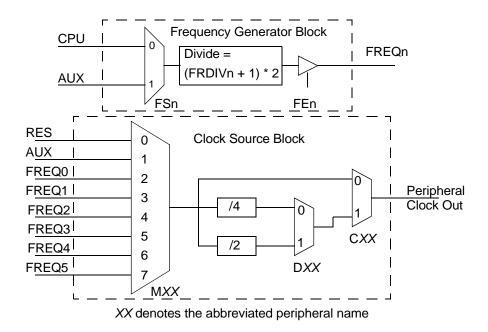
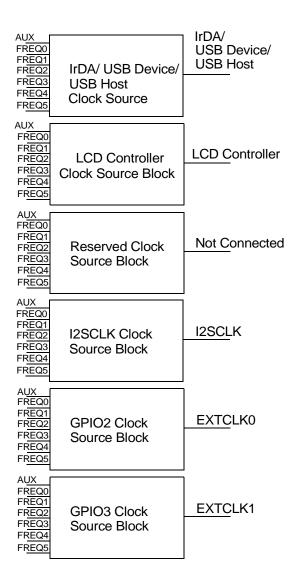



FIGURE 32. Frequency Generator and Clock Source Block Diagram

FIGURE 33. Frequency Generator and Clock Source Mapping

Frequency Control 0

This register controls the frequency generator block for output frequencies 0, 1, and 2.

This register will reset to defaults only on a hardware reset. During a runtime reset and during sleep this register will retain its value.

 $sys_freqctrl0$ Offset = 0x0020

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					F	RDIV	/2[7:0)]			FE2	FS2			F	RDIV	71[7:0)]			FE1	FS1			F	RDIV	70[7:0)]			FE0	FS0
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	Read/ Write	Default
31:30	RES	These bits are reserved and should be written a 0.	R	0
29:22	FRDIV2	Frequency Divider 2 These bits set the frequency divider. The actual divide value is (FRDIV + 1) * 2.	R/W	0
21	FE2	Frequency Generator Output Enable 2 0 - Disable output 1 - Enable output	R/W	0
20	FS2	Frequency Generator Source 2 0 - CPU Core clock 1 - Auxiliary Clock Input	R/W	0
19:12	FRDIV1	Frequency Divider 1 These bits set the frequency divider. The actual divide value is (FRDIV + 1) * 2.	R/W	0
11	FE1	Frequency Generator Output Enable 1 0 - Disable output 1 - Enable output	R/W	0
10	FS1	Frequency Generator Source 1 0 - CPU Core clock 1 - Auxiliary Clock Input	R/W	0

Bit(s)	Name	Description	Read/ Write	Default
9:2	FRDIV0	Frequency Divider 0 These bits set the frequency divider.	R/W	0
		The actual divide value is (FRDIV + 1) * 2.		
1	FE0	Frequency Generator Output Enable 0 0 - Disable output	R/W	0
		1 - Enable output		
0	FS0	Frequency Generator Source 0 0 - CPU Core clock	R/W	0
		1 - Auxiliary Clock Input		

Frequency Control 1

This register controls the frequency generator block for output frequencies 3, 4, and 5.

This register will reset to defaults only on a hardware reset. During a runtime reset and during sleep this register will retain its value.

 $sys_freqctrl1 Offset = 0x0024$

Bi	t 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					F	RDIV	V5[7:	0]				FS5			F	RDIV	/4[7:0	0]				FS4			F	RDIV	/3[7:	0]			FE3	FS3
Def	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	Read/ Write	Default
31:30	RES	These bits are reserved and should be written a 0.	R	0
29:22	FRDIV5	Frequency Divider These bits set the frequency divider. The actual divide value is (FRDIV + 1) * 2.	R/W	0
21	FE5	Frequency Generator Output Enable 0 - Disable output 1 - Enable output	R/W	0
20	FS5	Frequency Generator Source 0 - CPU Core clock 1 - Auxiliary Clock Input	R/W	0

Bit(s)	Name	Description	Read/ Write	Default
19:12	FRDIV4	Frequency Divider	R/W	0
		These bits set the frequency divider.		
		The actual divide value is (FRDIV + 1) * 2.		
11	FE4	Frequency Generator Output Enable	R/W	0
		0 - Disable output		
		1 - Enable output		
10	FS4	Frequency Generator Source	R/W	0
		0 - CPU Core clock		
		1 - Auxiliary Clock Input		
9:2	FRDIV3	Frequency Divider	R/W	0
		These bits set the frequency divider.		
		The actual divide value is (FRDIV + 1) * 2.		
1	FE3	Frequency Generator Output Enable	R/W	0
		0 - Disable output		
		1 - Enable output		
0	FS3	Frequency Generator Source	R/W	0
		0 - CPU Core clock		
		1 - Auxiliary Clock Input		

Clock Source Control

This register controls the clock source for all 6 output clocks.

This register will reset to defaults only on a hardware reset. During a runtime reset and during sleep this register will retain its value.

 sys_clksrc Offset = 0x0028

Bit(s)	Name	Description	Read/ Write	Default
31:30	RES	These bits are reserved and should be written a 0.	R	0
29:27	ME1	EXTCLK1 Clock Mux input select See Table 78.	R/W	000 _b
26	DE1	EXTCLK1 Clock Divider Select 0 - divide by 4 1 - divide by 2	R/W	0
25	CE1	EXTCLK1 Clock Select 0 - Clock is taken directly from mux (DIVSEL has no effect for this choice). 1 - Clock is taken from 2/4 divider.	R/W	0
24:22	MEO	EXTCLK0 Clock Mux input select See Table 78.	R/W	000 _b
21	DE0	EXTCLK0 Clock Divider Select 0 - divide by 4 1 - divide by 2	R/W	0
20	CE0	EXTCLK0 Clock Select 0 - Clock is taken directly from mux (DIVSEL has no effect for this choice). 1 - Clock is taken from 2/4 divider.	R/W	0
19:17	MI2	I2S Clock Mux input select See Table 78.	R/W	000 _b
16	DI2	I2S Clock Divider Select 0 - divide by 4 1 - divide by 2	R/W	0
15	CI2	I2S Clock Select 0 - Clock is taken directly from mux (DIVSEL has no effect for this choice). 1 - clock is taken from 2/4 divider	R/W	0
14:10	RES	Reserved		
9:7	ML	LCD Controller Clock Mux input select See Table 78.	R/W	000 _b

Bit(s)	Name	Description	Read/ Write	Default
6	DL	LCD Controller Clock Divider Select	R/W	0
		0 - Divide by 4.		
		1 - Divide by 2.		
5	CL	LCD Controller Clock Select	R/W	0
		0 - Clock is taken directly from mux (DIVSEL has no effect for this choice).		
		1 - Clock is taken from 2/4 divider.		
4:2	MIR	IrDA/ USB Host/ USB Device Clock Mux input select	R/W	000 _b
		See Table 78.		
1	DIR	IrDA/ USB Host/ USB Device Clock Divider Select	R/W	0
		0 - Divide by 4.		
		1 - Divide by 2.		
0	CIR	IrDA/ USB Host/ USB Device Clock Clock Select	R/W	0
		0 - Clock is taken directly from mux (DIVSEL has no effect for this choice).		
		1 - Clock is taken from 2/4 divider.		

The specific values written to the Clock Mux Input Select field are shown in Table 78. The inputs to all CMn are shown in Figure 32. The FREQn selections come from the output of the corresponding frequency generators.

TABLE 78. Clock Mux Input Select Values

Value	Meaning
000b	Reserved
001b	Auxiliary Clock
010b	FREQ0
011b	FREQ1
100	FREQ2
101	FREQ3
110	FREQ4
111	FREQ5

7.1.3 PLL Control

There are two registers for controlling the two PLLs integrated into the Au1100. Each PLL is independently programmable. Care should be taken when programming the registers that the limits of the Au1100 being used are observed. Although it is possible to program the PLL outside this frequency range, care should be taken so as not to violate the limits or undefined results could occur.

For higher frequencies the Au1100 core requires a higher core voltage, VDDI. Care should be taken that the system is providing the correct voltage for the operating frequency before changing the CPU. See Chapter 11, Electrical Specifications, for full information about the voltage /frequency requirements of the Au1100.

There is a Core Cycle Counter register located at CP0 register 9 that can be used to count core cycles. Please see Section 2.7, "Coprocessor 0", for more information.

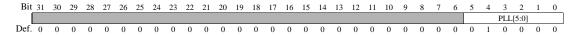
The two PLLs in the Au1100 drive the CPU clock and the Auxiliary clock.

The default PLL multiplier value is 16 for the CPU clock and 0 for the AUXPLL which has the following implications assuming a 12MHz crystal on XTI and XTO:

- CPU Clock = 192MHz
- AUX Clock = Disabled
- System Bus Clock = 96MHz (SD System bus divider defaults to 2)
- Peripheral Bus = 48MHz
- SDRAM bus = 48MHz.

When changing core frequency approximately 20 microseconds will pass while the clocks shut off and the PLL is re-synced with the new frequency. During this period no CPU execution will occur. Interrupts will not be serviced in this time. They will be serviced once execution begins at the new frequency.

CPU PLL Control


The CPU PLL will reset to its default value only at power up. After sleep, and during a runtime reset the **sys_cpupll** will retain its previous value.

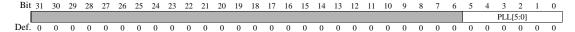
It should be noted that certain values may produce a clock speed that is higher than allowable for the CPU and System Clock. Care should be taken to avoid this or undefined results may occur.

This register is read/write, however the value read is only valid after initialization. After coming out of reset, hardware reset or sleep, this register must first be written for the value read back to be valid. For this reason it is suggested that this register be initialized at boot time regardless if the value is changed from default.

After the **sys_cpupll** register is written any value, the system will automatically halt for 20uS to allow for the PLL to relock and clocks to become stable.

Bit(s)	Name	Description	Read/ Write	Default
31:6	RES	These bits are reserved and should be written a 0.	R/W	0
5:0	PLL	The PLL value determines the integer multiplier that is used to multiply the clock coming from the oscillator.	R/W	0x10
		For example, with the default of 16 and a 12MHz OSC frequency, the CPU frequency will be 192MHz.		
		Only values from 16-46 are supported. All other values are reserved.		
		These values represent the limits of the CPU PLL and may place the actual CPU frequency outside the limits of the Au1100.		

Auxiliary PLL Control


This AUX PLL will reset to its default value on hardware reset, after sleep, and during a runtime reset.

This register is read/write, however the value read is only valid after initialization.

For this reason it is suggested that this registers be initialized at hardware reset, runtime reset and sleep, even if with its default value.

Writing the sys_auxpll will not cause the system to halt and and clocks taken from the AUX PLL may be unstable for up to 20uS. To guarantee stable clocks during AUX PLL lock time the **sys_cpupll** register can be written with its current value to force the system to halt for 20uS.

sys_auxpll Offset = 0x0064

Bit(s)	Name	Description	Read/ Write	Default
31:6	RES	These bits are reserved and should be written a 0.	R/W	0
5:0	PLL	The PLL value determines the integer multiplier that is used to multiply the clock coming from the oscillator.	R/W	0x00
		For example, with a value of 12 and a 12MHz OSC frequency, the CPU frequency will be 144MHz.		
		Only values from 8-46 and 0 are supported. All other values are reserved.		
		A value of 0 (default) disables the AUX PLL.		

7.1.4 Hardware Considerations

When using the external clocks from the clock generation block, the **pin_function** register must be programmed such that GPIO2 and/or GPIO3 are configured to be driven by EXTCLK0 and/or EXTCLK1.

Section 11, "Electrical Specifications", should be referenced for the crystal specifications.

7.1.5 Programming Considerations

When changing the CPU PLL value through the sys_cpupll register the system will automatically halt for 20uS to allow clocks to stabilize. During this time no interrupts will be serviced potentially affecting real time systems.

Writing the sys_auxpll will not cause the system to halt and and clocks taken from the AUX PLL may be unstable for up to 20uS. To guarantee stable clocks during AUX PLL lock time the **sys_cpupll** register can be written with its current value to force the system to halt for 20uS.

7.2 Time of Year Clock and Real Time Clock

The Au1100 contains two programmable counters designed for use as a Time of Year Clock (TOY) and Real Time Clock (RTC). One counter will continue counting through sleep thus making it ideal for use as a TOY. The other counter will power down in sleep mode and can be used as an RTC.

Both counters are driven by a 32.768kHz clock input. Please see Section 11.5, "Crystal Specifications" for the crystal specifications.

Each programmable counter employs a register to initialize the counter or load a new value, a trim divider to adjust the incoming 32.768kHz clock and 3 match registers which have associated interrupts that will trigger on a match. Each counter is also able to generate an interrupt on every tick. All interrupts are maintained through the interrupt controller. Both programmable counters share a status register.

Figure 34 shows a functional block diagram of both the TOY and the RTC (only one block diagram is shown that is applicable to each). The naming of the bits correspond to control bits presented in the next section.

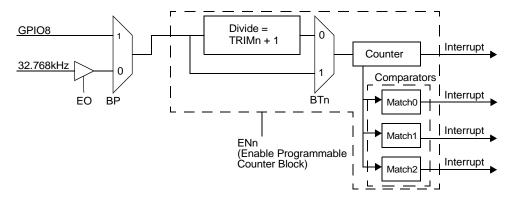


FIGURE 34. TOY and RTC Block Diagram

7.2.1 Time of Year Clock and Real Time Clock Registers

Each counter operates identically with the only difference being that the TOY will continue counting through sleep and the RTC will not.

The programmable counter control registers and their associated offsets are listed in Table 79. When functionality is identical for registers in the different programmable counters, only

one register description is presented with both offsets of the respective registers presented above the register.

TABLE 79. Programmable Counter Registers

Offset	Register Name	Description	Reset Type
0x0000	sys_toytrim	Trim value for 32.768kHz input to TOY	Hardware
0x0004	sys_toywrite	the TOY counter value is written through this register	Hardware
0x0008	sys_toymatch0	TOY match 0 value for interrupt generation	Hardware
0x000C	sys_toymatch1	TOY match 1 value for interrupt generation	Hardware
0x0010	sys_toymatch2	TOY match 2 value for interrupt generation	Hardware
0x0014	sys_cntrctrl	Control register for TOY and RTC	Hardware
0x0040	sys_toyread	TOY counter value is read from this register	Hardware
0x0044	sys_rtctrim	Trim value for 32.768kHz input to RTC	Hardware
0x0048	sys_rtcwrite	the RTC counter value is written through this register	Hardware
0x004C	sys_rtcmatch0	RTC match 0 value for interrupt generation	Hardware
0x0050	sys_rtcmatch1	RTC match 1 value for interrupt generation	Hardware
0x0054	sys_rtcmatch2	RTC match 2 value for interrupt generation	Hardware
0x0058	sys_rtcread	RTC counter value is read from this register.	Hardware

Trim Register

The TOY Trim Write Status (bit 4 in the sys_cntrctrl) must be clear before writing **sys_toytrim**. It will be set upon writing this register and cleared by hardware when the write takes effect.

The RTC Trim Write Status (bit 20 in the sys_cntrctrl) must be clear before writing **sys_rtctrim**. It will be set upon writing this register and cleared by hardware when the write takes effect.

This register is unpredictable at power on. During a runtime reset and during sleep this register will retain its value.

sys_toytrim - TOY Trim

Offset = 0x0000

sys_rtctrim - RTC Trim

Offset = 0x0044

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																							7	RIM	[15:0]						
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X

Bit(s)	Name	Description	Read/ Write	Default
31:16	RES	These bits are reserved and should be written a 0.	R	0
15:0	TRIM	Divide value for 32.768kHz input. Divide = TRIM + 1	R/W	UNPRED

Counter Write

The TOY Value Write Status (bit 0 in the sys_cntrctrl) must be clear before writing **sys_toytrim**. It will be set upon writing this register and cleared by hardware when the write takes effect.

The RTC Value Write Status (bit 16 in the sys_cntrctrl) must be clear before writing **sys_rtcwrite**. It will be set upon writing this register and cleared by hardware when the write takes effect.

This register is unpredictable at power on. During a runtime reset and during sleep this register will retain its value.

sys_toywrite - TOY counter value write

Offset = 0x0004

svs rtcwrite - RTC counter value write

Offset = 0x0048

BII	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															C	OUN	T[31:	0]														
Def.	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X

Bit(s)	Name	Description	Read/ Write	Default
31:0	COUNT	Counter Write The respective counter will be updated with the value written to this register at the next trimmed clock.	W	UNPRED

Match Registers

The corresponding write status bit in the sys_cntrctrl register must be clear before writing the below registers. It will be set upon writing the register and cleared by hardware when the write takes effect.

Each match register is capable of causing an interrupt as shown in Chapter 5, Interrupt Controller. The **sys_toymatch2** can be used to wake up from sleep, see Section 7.2.2.

These registers are unpredictable at power on. During a runtime reset and during sleep these registers will retain their value.

sys_	to	ym	atc	h0	- T	O	Z M	late	ch ()																	(Off	set	=0	x0(800
sys_	to	ym	atc	h1	- T	O	/ M	late	ch i	1																	C	Offs	et :	= 0	x00	0C
sys_	toy	ym	atc	h2	- T	YO'	/ M	late	ch 2	2																	(Off	set	= 0	x00	010
sys_	rto	ema	atc	h0	- R	TC	M	ato	h ()																	C	Offs	et :	= 0	x00	4C
sys_	rto	ema	atc	h1	- R	TC	M	ato	h 1																		(Off	set	= 0	x00)50
sys_	rto	ema	atc	h2	- R	TC	M	ato	h 2	2																	(Off	set	= 0	x00)54
Bi	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															M	IATC	H[31	:0]														
Def	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X

Bit(s)	Name	Description	Read/ Write	Default
31:0	MATCH	A match with the counter and the value in this register will cause an interrupt.	R/W	UNPRED

TOY and RTC Counter Control

The TOY and RTC counter control register contains control bits and status bits to configure and control both programmable counters.

Write Status Bits: these bits indicate the status of the latest update to the respective register/field. When the corresponding register/field is written, this bit is set to 1 indicating that there is a write pending. When this bit is reset to 0 the write has taken place. Software should poll the correct bit and insure that it is 0 before updating the respective register/field.

This register will reset to defaults only on a hardware reset. During a runtime reset and during sleep this register will retain its value.

 $sys_cntrctrl$ Offset = 0x0014

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									ERS			RTS	RM2	RM1	RM0	RS		BP	REN	BRT	TEN	BTT		EO	ETS		32S	TTS	TM2	TM1	TM0	TS
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	X	0	0	0	0	0

Bit(s)	Name	Description	Read/ Write	Default
31:24	RES	These bits are reserved and should be written a 0.	R	0
23	ERS	REN (bit 13) write status.	R	0
22:21	RES	These bits are reserved and should be written a 0.	R	0
20	RTS	sys_rtctrim Write Status	R	0
19	RM2	sys_rtcmatch2 Write Status	R	0
18	RM1	sys_rtcmatch1 Write Status	R	0
17	RM0	sys_rtcmatch0 Write Status	R	0
16	RS	sys_rtcwrite Write Status	R	R
15	RES	This bit is reserved and should be written a 0.	R	0
14	ВР	Bypass the 32.768k OSC 0 - Select Oscillator Input 1 - GPIO8 will drive counters. This is a test mode where GPIO8 can drive the counters from an external source or through software using the GPIO controller.	R/W	0
13	REN	Enable RTC 0 - RTC is disabled 1 - RTC is enabled	R/W	0
12	BRT	Bypass RTC Trim 0 - normal operation 1 - The RTC is driven directly by the 32.768k clock, bypassing the trim.	R/W	0

Bit(s)	Name	Description	Read/ Write	Default
11	TEN	Enable TOY 0 - TOY is disabled 1 - TOY is enabled	R/W	0
10	ВТТ	Bypass TOY Trim 0 - normal operation 1 - The TOY is driven directly by the 32.768k clock, bypassing the trim.	R/W	0
9	RES	This bit is reserved and should be written a 0.	R	0
8	EO	Enable 32.768kHz Oscillator 0 - 32.768kHz osc. is disabled 1 - 32.768kHz osc. is enabled The enable controls the OSC going to both the RTC and TOY. The 32S (OSC status) should be polled until set after the OSC is enabled.	R/W	0
7	ETS	TEN (bit 11) write status	R	0
6	RES	This bit is reserved and should be written a 0.	R	0
5	32\$	32.768kHz Oscillator Status 0 - Oscillator is not running 1 - Oscillator is running	R	0
4	TTS	sys_toytrim Write Status	R	0
3	TM2	sys_toymatch2 Write Status	R	0
2	TM1	sys_toymatch1 Write Status	R	0
1	TM0	sys_toymatch0 Write Status	R	0
0	TS	sys_toywrite Write Status	R	0

7.2.2 Programming Considerations

To change the values of the counter and match registers, software must poll the state of the corresponding state bit in the Status register. When the Write Status bit is 0 it is okay to write

a new value. Once the new value is written to the register the State bit will change to a 1. When the State bit is 1 the new value is being updated in supporting hardware. When the State value changes to a 0 then the new value is active in the device.

7.3 Primary General Purpose I/O

This section covers the Primary General Purpose I/O (GPIO) pins of the Au1100 and also documents how to change the functionality of certain pins between being a GPIO or being part of a peripheral device.

The Au1100 supports 48 GPIOs, 32 of which are controlled by the Primary GPIO block. For a description of the Secondary GPIO block see Section 6.11, "Secondary General Purpose I/O". Each Primary GPIO can be configured as either an input or an output. The GPIO ports also can be connected to the internal interrupt controllers to generate an interrupt from input signals. Please see Chapter 5, Interrupt Controller for information on interrupts.

7.3.1 Pin Functionality and Drive Strength

To maximize the functionality of the Au1100, many of the pins have multiple uses. It should be noted that if a pin is programmed for a certain use, any other functionality associated with that pin can not be utilized at the same time. In other words, a pin can not be used as a GPIO at the same time it is assigned to a peripheral device.

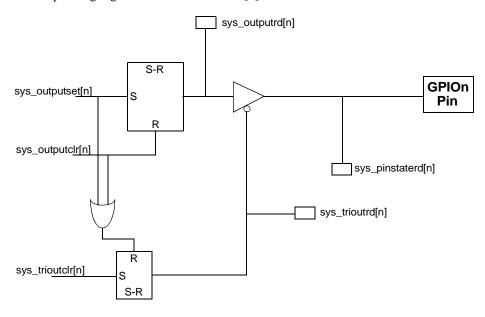
Chapter 10, Signal Description shows a block diagram and description of multiplexed signals.

Pin Function

This register will reset to its default state at hardware reset, runtime reset and sleep.

 $sys_pinfunc Offset = 0x002C$

Bit(s)	Name	Description	Read/ Write	Default
31:19	RES	These bits are reserved and should be written a 0.	R	0
18	PC	PCMCIA/GP[207:204] 1 - PREG, PCE1, PCE2 and PWEN will drive pins. 0 - GP[207:204] will drive pins.	R/W	1
17	LCD	External LCD Controller/GP[203:200] 0 - LRD, LRD1, LWR0 and LWR1 will drive pins. 1 - GP[203:200] wil drive pins.	R/W	1


Bit(s)	Name	Description	Read/ Write	Default
16	CS	Clock Select 0 - EXTCLK0 will be routed to the GP02 output 1 - 32kHz OSC clock will be routed to the GP02 output This bit's functionality applies only when EX0 = 1	R/W	0
15	USB	USB Functionality 0 - USBDP and USBDM will drive pins (pins are connected to USB device module). 1 - USBHP and USBHM will drive pins (pins are connected to USB root hub port 0).	R/W	0
14	U3	UART3/GP214 0 - U3TXD drives pin. 1 - Pin is configured for GP214.	R/W	1
13	RES	This bit is reserved and should be written as 1.	R/W	1
12	U1	UART1/GP213 0 - U1TXD drives pin. 1 - Pin is configured for GP213.	R/W	1
11	SRC	GP06/SMROMCKE 0 - Pin is configured for GP06. 1 - SMROMCKE drives pin.	R/W	0
10	EX1	GP03/EXTCLK1 0 - Pin is configured for GP03. 1 - EXTCLK1 will drive pin.	R/W	0
9	EX0	GP02 / (EXTCLK0 or 32kHz OSC) 0 - Pin is configured for GP02. 1 - EXTCLK0 or 32kHz OSC will drive pin. Bit 16, CS, will select whether EXTCLK0 or the 32kHz OSC will drive pin	R/W	0
8	IRF	GP15/IRFIRSEL 0 - Pin is configured for GP15. 1 - IRFIRSEL will drive pin.	R/W	0

Bit(s)	Name	Description	Read/ Write	Default
7	UR3	GP[14:9]/UART3 0 - Pins are configured as GP[14:9]. 1 - Pins are configured for UART3 flow control. U3DTR, U3RTS, U3RI, U3DCD, U3DSR, U3CTS will drive pins.	R/W	0
6	I2D	GP8/I2SDI 0 - Pin is configured for GP8. 1 - Pin is configured as I2SDI. NOTE: The I2S port can operate without I2SDI if this input is not needed.	R/W	0
5	12\$	I2S/GP[29:31] 0 - Pins are configured for I2S mode. I2SWORD, I2SCLK, I2SDIO will drive pins. 1 - Pins are configured as GP[31:29].	R/W	1
4	NI	MAC0/GPIO 0 - Pins are configured as Ethernet port 0. N0TXD[3:0], N0TXEN and N0MDC will drive port. 1 - Pins are configured as GP[28:24] and GP215.	R/W	1
3	U0	UART0/GP212 0 - Pin is configured for U0TXD (necessary for UART0 operability). 1 - Pin is configured as GP212.	R/W	1
2	IRD	IRDA/GP211 0 - Pin is configured for IRTXD (necessary for IRDA operability). 1 - Pin is configured as GP211.	R/W	1
1	A97	AC97/SSI_1 0 - Pins are configured for AC97 mode. ACSYNC, ACBCLK, ACDO, ACRST will drive pins. 1 - Pins are configured for SSI_1 mode. S1DOUT, S1DIN, S1CLK and S1DEN will drive pins.	R/W	0
0	S0	SSI_0/GP[210:208] 0 - Pins are configured for SSI_0 mode. S0CLK, S0DOUT and S0DEN will drive pins. 1 - Pins are configured as GP[210:208].	R/W	1

7.3.2 GPIO Control Registers

The Primary GPIOs on the Au1100 have been designed to simplify the GPIO control process by removing the need for a semaphore to control access to the registers. This is because there is no need to read, modify, write, as there are separate registers for setting and clearing a bit. In this way a function can freely manipulate the GPIOs associated with that function.

Figure 35 shows the logical implementation of each GPIO. The names represent bit n of the corresponding register which affect GPIO[n].

FIGURE 35. GPIO Logic Diagram

The following table shows the GPIO control registers and the associated offsets from sys_base. Certain offsets are shared have different functionality depending on whether the access is a read or a write. The register descriptions detail the functionality of each register. Bit *n* of a particular register should be associated with GPIO[n] for all registers except **sys_pininputen**.

TABLE 80. GPIO Control Registers

Offset	Register Name	Register Description	Default		
0x0100	sys_trioutrd	The Tristate/Output state register shows the	0x0000000		
0x0100	sys_trioutclr	current state of the GPIO 0 - GPIO[n] is tristated. Tristating GPIO[n] is accomplished by setting the corresponding bit in the sys_tristateclr	(all GPIOs are tristated)		
		1 - Output is enabled. Enabling GPIO[n] as an output is accomplished by programming GPIO[n] as a 0 or 1 using the respective sys_outputset or sys_outputclr registers.			
		If the pin is not an output it should be tristated.			
0x0108	sys_outputrd	Controls the state of the GPIO as an output.	UNPRED		
0x0108	sys_outputset	0 - output low			
0x010C	sys_outputclr	1 - output high Setting or clearing bits in the output register will bring the pin out of tristate mode and enable the output.			
0x0110	sys_pinstaterd	Allows the pin state to be read when an input. This register will also give the output state.	UNPRED		
0x0110	sys_pininputen	Writing a zero to this register will allow GPIO[31:0] to be used as inputs. This register must be written a 0 before any GPIO can be used as an input an interrupt source or for use as a wake up source. Please see description below for more information.	UNPRED		

GPIO Control Registers

Each register is 32 bits wide with bit *n* in each register affecting GPIO[n].

These registers will reset to defaults only on a hardware reset. During a runtime reset and during sleep this register will retain its value.

Please see Table 80 for the default values at hardware reset.

*rd

*set

*clr

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 FUNC[31:0]

Bit(s)	Name	Description	Read/Write	Default
31:0	FUNC[n]	The function of each register is given in the previous table. FUNC[n] controls the functionality of GPIO[n].	*_read - read only *_set - write only *_clear - write only See the following text.	0

Certain registers in the list have the same offset but offer different functionality depending on whether a read or a write is being performed.

Registers ending in *rd, *set and *clr have the following functionality:

- *rd registers are read only registers will read back the current value of the register.
- *set registers are write only registers and will set to 1 all bits that are written 1. Writing a value of 0 will have no impact on the corresponding bit.
- *clr registers are write only registers and will clear to zero all bits that are written 1. Writing a value of 0 will have no impact on the corresponding bit.

GPIO Input Enable

The **sys_pinputen** is a 32 bit write only register. When this register is written a 0 all GPIO's input functionality is enabled. This register will enable GPIOs for use as an input but will not explicitly make all GPIOs inputs. The value of the GPIO control registers and the pin function register will define the state of each GPIO. GPIOs can not be used as inputs until this register is written a 0.

This write is only required once per hardware reset (i.e. sleep and a runtime reset will not require another write to this register).

sys_gpinputen Offset = 0x0110

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																																EN
Def.	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X

Bit(s)	Name	Description	Read/Write	Default
31:1	RES	These bits are reserved and should be written a 0.	W	N/A
0	EN	A write of 0 will enable all GPIOs to be used as inputs.	W	N/A

7.3.3 Hardware Considerations

The Pin Function register controls the functionality of many GPIO/peripheral pins. If a pin is programmed for a certain functionality, all other functionality associated with that pin can not be used at the same time.

For example, if bit 14 in the **sys_pinfunc** register is cleared configuring the pin as U3TXD, GPIO23 can not be used as a GPIO nor can the GPIO be configured as an interrupt.

Conversely if bit 14 is set configuring the pin as GPIO23, U3TXD and thus UART3 is not usable. GPIO23 can be used as a GPIO and to generate interrupts.

7.3.4 Using GPIO Lines as External DMA Requests

See Section 4.2, "Using GPIO Lines as External DMA Requests" for information.

7.4 Power Management

The Au1100 contains a robust power management scheme allowing multiple levels of power conservation to enable the system designer options depending on whether power conservation or system responsiveness is more critical.

In the Au1100, power management can be broken into three different areas:

- CPU
- Peripherals
- Device

The lowest power state consists of putting the entire device into a sleep state. The CPU also supports two idle states that differ as to whether bus snooping is supported. In addition each peripheral can have its clocks disabled when not in use thus significantly reducing the power draw by those blocks not in use.

The flow chart in Figure 36 shows the different stages of power management for the CPU (IDLE0,1) and the device (SLEEP) and how each state is entered and left. It should be noted that any interrupt can be used to bring the CPU out of either idle state while only a GPIO[7:0] or **sys_toymatch2** interrupt can be enabled (in **sys_wakesrc** register) to bring the device out of sleep.

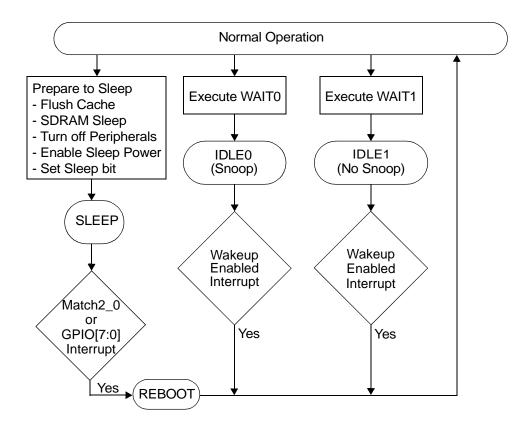


FIGURE 36. Sleep and Idle Flow Diagram

7.4.1 CPU Power Management

The CPU can be put into 2 different low power modes. This is accomplished through the instruction. The wait instruction and at least 4 instructions following it must be in the cache for the wait to occur. See Section 2.6.3, "WAIT Instruction" for more information.

In the IDLE0 state the CPU snoops the bus and cache coherency is maintained.

In the IDLE1 state the CPU does not snoop the bus and cache coherency is lost.

At all times the MMU, Data Cache, execution and multiply and accumulate block are placed in a low power state if they are not being used.

7.4.2 Peripherals

Peripheral power management is handled through clock management and disabling of unused peripherals. Table 81 shows a peripheral list and the relative register(s) containing any Power Management function(s).

The actual register descriptions should be referred to for programming details. When both a reset/block enable bit and clock enable bit are provided it is suggested that the reset be applied and the clocks disabled when trying to conserve power. This will simplify programming, as the suggested bring up sequence is typically to enable clocks and then subsequently to bring the peripheral out of reset.

TABLE 81. Peripheral Power Management

Peripheral	Power Management Register	Power Management Strategy
USB Host	usbh_enable	When the USB host is not in use the E bit can be cleared to disable the host. The CE bit should also be cleared to disable clocks to the block.
USB Device	usbd_enable	When the USB device is not in use the E bit can be cleared to disable the host. The CE bit should also be cleared to disable clocks to the block.
Ethernet MAC	macen_mac[0]	When this block is not being used then the bit should be cleared to disable the MAC and the CE bit should be cleared to gate clocks to the MAC.
UART[3:0]	uart_enable[3:0]	When a UART is not being used the E bit should be cleared to hold the part in reset and the CE bit should be cleared to gate clocks from the block.
SSI	ssi_enable	When the SSI is not being used the E bit should be cleared to hold the part in reset and the CD bit should be set to gate clocks from the block.
IRDA	ir_enable	The HC bit can be used to run the IRDA at half the system bus. The CE should be disabled when not using the IRDA to gate clocks from this peripheral.
GPIO Controller	tristate_state_set	Although there is not a specific low power register for the GPIOs, tristating all GPIOs not in use will minimize the power used by the GPIOs

TABLE 81. Peripheral Power Management (Continued)

Peripheral	Power Management Register	Power Management Strategy
Programmable Counters (TOY and RTC)	sys_cntrctrl	If either counter is not being used then its respective enable bit (EN0 or EN1) should be left disabled. If both counters are not being used then both bits should be disabled as well as the oscillator
AC97	ac97_enable	If the AC97 block is not in use then the D bit should be used to disable the module and the CE bit should be disabled to gate clocks from the block
12S	i2s_enable	If the I2S block is not in use then the E bit should be used to place the part in reset and the CE bit should be disabled to gate clocks from the block
LCD Controller		#### then the E bit should be used to place the part in reset and the CE bit should be disabled to gate clocks from the block
SD Controller	[1:0]	### then the E[1:0] bits should be used to place the part in reset and the CE bit should be disabled to gate clocks from the block

7.4.3 Device Power Management - Sleep

The sleep state of the Au1100 puts the entire device into a low power sleep state. This is the lowest power state of the part and requires a complete initialization on wakeup. There are multiple steps to take when going into sleep and waking up to insure data integrity. During this state all registers values outside the system control block are lost and cache coherency is not maintained.

The programmable counter 0 (intended for TOY) will continue clocking and will remain functional during sleep. The programmable counter 1 as well as other clocks throughout the Au1100 will be disabled during sleep.

When coming out of sleep there is a delay set by bit V_{put} in the **sys_powerctrl** register. This is the time that the system designer has to guarantee VDDI is stable from the rising edge of PWREN.

To enter Sleep the following steps should be taken. This code should be run from flash, or conversely the system programmer should guarantee that this code will run from CACHE as after SDRAM is put into autorefresh, memory accesses will no longer work.

- 1. Enable Sleep Power by writing to the **sys_slppwr** register.
- 2. Turn off all peripherals. Explicitly turning off all peripheral in use will insure a graceful transition to sleep mode.
- 3. Push dirty data out of the cache. During sleep all data in the caches will be lost.
- 4. If SDRAM contents are to be kept through sleep, SDRAM should be put into a self refresh mode. See Section 3.1, "SDRAM Memory Controller" for more information.
 - If SDRAM is not needed through to be kept through sleep, disable the SDRAM.
- 5. If using one of GPIO[7:0] as a wakeup source, **sys_gpinputen** must be written a 0 to enable the GPIO as an input if this has not already been done by the system at startup.
- 6. The **sys_wakemsk** register should be set with the appropriate value according to what signal(s) should wake the processor up.
- 7. The **sys_wakesrc** register should be written to explicitly clear any pending wake interrupts.
- 8. Enable Sleep by writing to the **sys_sleep** register. This will put system to sleep.
- 9. When the system is going to sleep, the PWR_EN pin will go low. This can be used to disable VDDI and VDDY if desired.

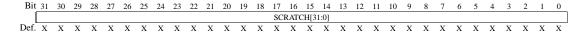
When the processor takes a sleep interrupt to wake up, the following steps should be followed:

- 1. After the sleep interrupt is taken, the PWR_EN pin will be asserted by hardware. Within the time indicated by Vput (bits [3:2] sys_powerctrl register), the system must ensure that VDDI is stable. If VDDY has been disabled during sleep it must also be stable within this time.
- 2. The processor will then boot from physical address 0x1fc0 0000 as normal.
- 3. If sleep is to be used by the system and a different flow should be followed when coming out of sleep the **sys_wakesrc** should be read to determine if the processor is coming out of sleep and what caused the wakeup. The system should then write the **sys_wakesrc** register to clear this information
- The processor will need to perform complete system initialization. All registers
 except those described as otherwise in the System Control Block will be at their
 default values.

The power management registers and their associated offsets are listed in Table 82. These registers are located off of the base shown in Table 76.

TABLE 82. Power Management Registers

Offset	Register Name	Description	Reset Type
0x0018	sys_scratch0	User definable register will retain value through sleep	Hardware
0x001C	sys_scratch1	User definable register will retain value through sleep	Hardware
0x0034	sys_wakemsk	Sets which GPIO or whether TOY match can cause sleep wakeup	Hardware
0x0038	sys_endian	Sets Big or Little Endian	Hardware & Runtime
0x003C	sys_powerctrl	Sets System Bus divider and powerup time	Mixed - see register description
0x005C	sys_wakesrc	Gives source of sleep wakeup	Hardware
0x0078	sys_slppwr	Initiates power state for sleep mode	Hardware
0x007C	sys_sleep	Initiates sleep mode	Hardware


Scratch Registers

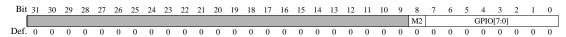
The Scratch registers are kept through sleep and are user definable.

The intention of these registers is to allow the system programmer to save state information or a pointer to a context so that the previous context can be resumed when coming out of sleep if desired.

This register will reset to defaults only on a hardware reset. During a runtime reset and during sleep this register will retain its value.

sys_scratch0Offset = 0x0018sys_scratch1Offset = 0x001C

Bit(s)	Name	Description	Read/ Write	Default
31:0	SCRATCH	The scratch registers are user definable and retain their value through sleep.	R/W	UNPRED


Wakeup Source Mask Register

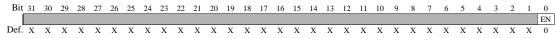
For each individual bit that is set, the corresponding signal or event (for the case of the match) can be used to cause a sleep wakeup.

A high level on the enabled GPIO will cause the interrupt to trigger.

This register will reset to defaults only on a hardware reset. During a runtime reset and during sleep this register will retain its value.

Bit(s)	Name	Description	Read/ Write	Default
31:9	RES	These bits are reserved and should be written a 0.	R	0
8	M20	Setting this bit will enable Programmable Counter 0 Match Register 2 to cause a wakeup interrupt.	R/W	0
7:0	GPIO	Setting bit n will cause GPIO[n] to cause a sleep wakeup.	R/W	0

Endianess Register


To change the endianess of the Au1100 is a three step process as follows:

- 1. Set Endianess bit in the **sys_endian** register
- 2. Read sys_endian register (this is required to ensure the final write to the CP0 register will update the endian value).
- 3. Read the CP0 register **Config0**

4. Write the value read back into the CP0 **Config0** register. The act of writing the CP0 register will put the processor into the Endian state set by the Endianess bit in the **sys_endian** register.

This register as well as the processor Endianness will reset to Big Endian after a hardware reset, runtime reset and after sleep.

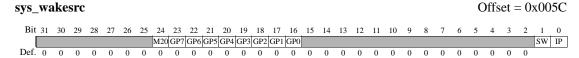
Bit(s)	Name	Description	Read/ Write	Default
31:1	RES	These bits are reserved and should be written a 0.	R	UNPRED
0	EN	Endianess	R/W	0
		0 - Big Endian		
		1 - Little Endian		

Power Control Register

This register will reset to defaults only on a hardware reset. During a runtime reset and during sleep these bits will retain their value.

 $sys_powerctrl$ Offset = 0x003C

Bit(s)	Name	Description	Read/ Write	Default
31:4	RES	These bits are reserved and should be written a 0.	R	0


Bit(s)	Name	Description	Read/ Write	Default
3:2	VPUT	VDDI Power Up Time 00 - 20ms 01 - 5ms 10 - 100ms 11 - 2us	R/W	Hard- ware Reset 00_b
1:0	SD	System Bus Clock Divider 00 - 2 01 - 3 10 - 4 11 - reserved	R/W	Hard- ware Reset 00 _b

Wakeup Cause Register

Before setting the sleep bit this register should be cleared. This register will retain pending interrupts according to the setting in the **sys_wakemsk** register even if those events did not occur during sleep. In other words if a GPIO's functionality is multiplexed between multiple functions, a high level could cause the associated **sys_wakesrc** bit to be set even if the action did not occur during sleep.

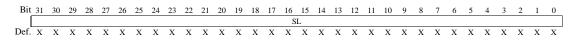
The bits in this register must be explicitly cleared as they will hold their values through sleep and a runtime reset.

All bits in this register are set by hardware and cleared by any write to this register.

Bit(s)	Name	Description	Read/ Write	Default
31:25	RES	These bits are reserved and should be written a 0.	R/W	0
24	M20	Programmable Counter 0 Match 2 caused wakeup from sleep	R/W	0
23	GP7	GPIO7 caused wakeup from sleep	R/W	0
22	GP6	GPIO6 caused wakeup from sleep	R/W	0
21	GP5	GPIO5 caused wakeup from sleep	R/W	0

Bit(s)	Name	Description	Read/ Write	Default
20	GP4	GPIO4 caused wakeup from sleep	R/W	0
19	GP3	GPIO3 caused wakeup from sleep	R/W	0
18	GP2	GPIO2 caused wakeup from sleep	R/W	0
17	GP1	GPIO1 caused wakeup from sleep	R/W	0
16	GP0	GPIO0 caused wakeup from sleep	R/W	0
15:2	RES	These bits are reserved and should be written a 0.	R/W	0
1	sw	Sleep Wakeup This bit is set by hardware on a sleep wakeup and cleared by software by a write to this register. A runtime reset can be detected if both SW and IP are 0 at boot. This bit must be explicitly cleared by software as it will hold its value through sleep and runtime reset.	R/W	0
0	IP	Initial Powerup This bit is set by hardware on a hardware reset and cleared by software by a write to this register. A runtime reset can be detected if both SW and IP are 0 at boot. This bit must be explicitly cleared by software as it will hold its value through sleep and runtime reset.	R/W	1

Sleep Power Register sys_slppwr


Offset = 0x0078

Bit(s)	Name	Description Rea Writ		Default
31:0	SP	A write to this register will prepare the internal power supply for going to sleep.	W	UNPRED

Sleep Register sys_sleep

Offset = 0x007C

Bit(s)	Name	Description	Read/ Write	Default
31:0	SL	A write to this register will put system to sleep.	W	UNPRED

Powerup, Reset and Boot

This section presents the powerup, hardware reset and runtime reset sequence for the Au1100. In addition the boot vector is described.

8.1 Powerup Sequence

The Au1100 power structure is designed such that the external I/O voltage, VDDX, is driven separately from the core voltage, VDDI. In this way the core voltage can be sourced at lower voltages saving power. In addition the Au1100 was designed to allow the system designer to remove the core voltage during sleep to maximize power efficiency.

Two signals VDDXOK and PWREN are used to facilitate this power strategy. VDDXOK is used as a signal to the processor that power on VDDX is stable. Stable is defined as having reached 90% of it's nominal value. PWREN is an output from the Au1100 that is asserted after VDDXOK is asserted and can be used as an enable to the regulator that is providing the core voltage, VDDI.

The following describes the powerup sequence for the Au1100:

- 1. Apply VDDX and VDDY (3.3V I/O power).
- 2. When VDDX and VDDY have reached 90% of nominal, assert VDDXOK.
- 3. The Au1100 will assert PWREN which can be used to enable the regulator driving VDDI (CPU Power).
- 4. VPUT defines the amount of time to ensure that VDDI has reached its nominal value. VPUT is defined in the **sys_powerctrl** register in Section 7.4, Power Management.

Figure 37 shows the power up sequence pictorially. Actual timing numbers are given in Section 8.3

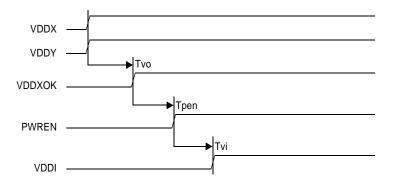


FIGURE 37. Powerup Sequence

8.2 Reset

A hardware reset is is defined as a reset in which both VDDXOK and RESETIN and are toggled. Typically this happens only at power on but a system designer can choose to tie VDDXOK and RESETIN together in which case all resets will be a hardware reset.

Runtime reset is that in which power remains applied and only the RESETIN signal is toggled. It should be noted that certain registers, specifically some of those in the System Control Block, will not be affected by this type of reset. Please see the register description for the register in question for more information. If a register is not reset to defaults by both hardware reset and software reset then it will be noted in the register description.

The state of ROMSEL and ROMSIZE will determine where the CPU boots from and the width of the boot ROM according to Table 83. This applies to both runtime reset and hardware reset. ROMSEL and ROMSIZE should be terminated appropriately as these signals should not change during runtime.

TABLE	83.	Boot	Type
--------------	------------	-------------	------

ROMSEL	ROMSIZE	Boot Type
0	0	Boot from 32 bit ROM interface
0	1	Boot from 16 bit ROM interface
1	0	Boot from 32 bit SMROM interface and Sync Flash boot
1	1	Reserved

8.2.1 Hardware Reset

As previously mentioned a hardware reset is defined as one in which VDDXOK makes a transition from low to high followed by RESETIN deassserting (transitioning from low to high).

The following sequence describes a hardware reset. Figure 38 shows this sequence pictorially. Actual timing numbers are given in Section 8.3.

- 1. ROMSEL and ROMSIZE should be terminated in the design so the appropriate boot type occurs. These values should not change during runtime.
- 2. At the same time or after VDDXOK is asserted, RESETIN can be deasserted. In other words, RESETIN can not be deasserted before VDDXOK is asserted. This allows VDDXOK and RESETIN to be tied together.
- 3. $\overline{RESETOUT}$ will be deasserted T_{vro} after VDDI is applied.

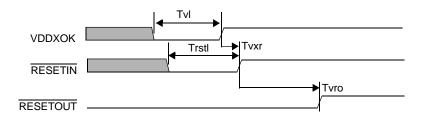


FIGURE 38. Hardware Reset Sequence

8.2.2 Runtime Reset

During runtime (after power is stable) the reset sequence can be broken down as follows. It should be noted that certain registers (specifically those in the System Control Block will not be affected by this type of reset). Figure 38 shows this sequence pictorially. Actual timing numbers are given in Section 8.3.

- 1. ROMSEL and ROMSIZE should be terminated in the design so the appropriate boot type occurs. These values should not change during runtime.
- During a runtime reset it is assumed that VDDX and VDDI remain at their nominal voltage. In addition, VDDXOK must remain asserted or a hardware reset will occur. PWREN will remain asserted by the Au1100.
- 3. $\overline{\text{RESETIN}}$ must be held low long enough to satisfy T_{rstl} .
- 4. T_{ror} and T_{rof} will apply when resetting during runtime

VDDX(at nominal voltage)

VDDY(at nominal voltage)

VDDXOK(asserted high)

PWREN(remains asserted)

VDDI(at nominal volatage)

RESETIN

RESETOUT

Trof

Trof

FIGURE 39. Run time Reset Sequence

8.3 Powerup and Reset Timing

Table 84 describes the timing signals defining the reset sequence as shown in the three reset different scenarios.

TABLE 84. Reset Timing Parameters

Parameter	Description	Min	Max
T _{vo}	VDDX at 90% of nominal to VDDXOK asserted	0ns	
T _{pen}	VDDXOK asserted to PWREN driven high		TBD
T _{vi}	PWREN to VDDI stable VPUT is bits [3:2] in the sys_powerctrl register. See Section 7.4, Power Management, for more information.		VPUT
T _{vxr}	VDDXOK asserted to RESETIN deasserted	0ns	
T _{vl}	VDDXOK low time	1us	
T _{rstl}	RESETIN low time	1us	

TABLE 84. Reset Timing Parameters

Parameter	Description Min		Max
T _{vro}	RESETIN to RESETOUT delay MAX: {min[750nS,150mS + Vput - Tvxr(actual)]} 600ns		see desc.
T _{rof}	RESETIN falling to RESETOUT falling MAX: 25nS + (0.5 * (CPU Clock/2))		see desc.
T _{ror}	RESETIN rising to RESETOUT rising MAX: 25nS + (0.5 * (CPU Clock/2)) + (120 * CPU Clock)		see desc.

8.4 Boot

The CPU will boot from KSEG1 address 0xBFC0 0000 which is translated to physical address 0x1FC0 0000. The processor can be set to boot from the EJTAG probe through the EJTAG port. Please see Chapter 9 for more information.

The system designer should set the ROMSEL and ROMSIZE pins appropriately so boot width and ROM type will match that designated in Table 84 and have the start of the boot code located at 0x1FC0 0000.

RCEO is configured to be enabled for 0x1FCO 0000 at default when booting from a ROM device. Please see Section 3.2, Static Bus Controller, for more information about the default timing and size of the address enabled at reset.

SDCS0 is configured to be enabled for 0x1FC0 0000 at default when booting from a SMROM device. Please see Section 3.1, SDRAM Memory Controller, for more information about the default timing and size of the address enabled at reset.

The Au1100 implements EJTAG following the MIPS' EJTAG 2.5 Specification. This section presents the Au1100 EJTAG implementation while concentrating on those features implemented from the EJTAG 2.5 specification which are implementation specific. In addition, those features which have not been implemented or any differences in the Au1100 implementation of EJTAG from the rev 2.5 specification are also noted.

It is assumed that the EJTAG 2.5 specification will be referenced for implementation details not covered here. If a particular bit is not implemented it can be assumed that the functionality associated with the bit is not implemented or not applicable unless otherwise noted.

The following features comprise the EJTAG implementation on the Au1100:

- Extended instructions SDBBP and DERET
- Debug Exceptions
- Extended CP0 registers DEBUG, DEPC and DESAVE
- EJTAG Memory Range 0xFF200000 0xFF3FFFF
- Instruction/Data Breakpoints through the watch exception (Au1100 specific)
- Processor Bus Breakpoints (from EJTAG 2.0)
- Memory Overlay (from EJTAG 2.0)
- EJTAG tap per IEEE1149.1

9.1 EJTAG Instructions

Both SDBBP and DERET are supported by the Au1100.

SDBBP causes a Debug Breakpoint exception.

DERET is used to return from a Debug Exception.

9.2 Debug Exceptions

The following exceptions will cause entry into debug mode.

- DSS debug single step
- DINT debug interrupt, processor bus break
- DBp execution of SDBBP instruction
- DWATCH debug watch exception. Au1100 specific implementation allowing CPU watch exception to cause debug exception. See description of the "EJWatch Register (TAP Instruction EJWATCH)" on page 334 register.

It should be noted that other normal exceptions, when taken in debug mode, will be handled by the debug exception handler.

9.3 Coprocessor 0 Registers

The Coprocessor 0 Registers for EJTAG are shown in Table 85.

TABLE 85. Coprocessor 0 registers for EJTAG

Register Number	Select	Name	Description
23	0	debug	Debug indications and controls for the processor
24	0	depc	Program Counter at last debug exception or exception in debug mode
31	0	desave	Debug exception save register

Debug Register (CP0 Register 23, Select 0)

The Debug register contains the cause of the most recent debug exception and exception in Debug Mode. It also controls single stepping.

Only the DM bit and the EJTAGver field are valid when read from the Debug register in Non-Debug Mode; the value of all other bits and fields is UNPREDICTABLE.

The following bits and fields are only updated on debug exceptions and/or exceptions in Debug Mode:

- DSS, DBp, DINT are updated on both debug exceptions and on exceptions in Debug Modes.
- DExcCode is updated on normal exceptions in Debug Mode, and is undefined after a debug exception.
- DBD is updated on both debug and on normal exceptions in Debug Modes.

debug

CP0 Register 23, Select 0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DD	DM	ND	LS			CD									VER			DE	XCO	SE		NS	SS			DI				DB	DS
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	Read/ Write	Default
31	DD	DBD	R	UNPRED
		Indicates whether the last debug exception or exception in Debug Mode occurred in a branch or jump delay slot.		
		0: Not in delay slot		
		1: In delay slot		
30	DM	Indicates that the processor is operating in Debug Mode.	R	0
		0: Processor is operating in Non-Debug Mode		
		1: Processor is operating in Debug Mode		
29	ND	NoDCR	R	0
		0: DSEG is present.		
28	LS	LSNM	R/W	0
		Controls access of loads/stores between dseg and remaining memory when dseg is present and while in debug mode.		
		0: Loads/stores in dseg address range go to dseg		
		1: Loads/stores in dseg address range go to system memory		
27	RES	This bit is reserved and should be written a 0. This bit is called Doze in the EJTAG 2.5 specification and was not implemented.	R	0

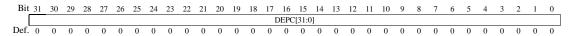
Bit(s)	Name	Description	Read/ Write	Default
26	RES	This bit is reserved and should be written a 0. This bit is called Halt in the EJTAG 2.5 specification and was not implemented.	R	0
25	CD	CountDM This bit is 0, indicating that the counter will be stopped in debug mode.	R	0
24	RES	This bit is reserved and should be written a 0. This bit is called IBusEP in the EJTAG 2.5 specification and was not implemented.	R	0
23	RES	This bit is reserved and should be written a 0. This bit is called MCheckP in the EJTAG 2.5 specification and was not implemented.	R	0
22	RES	This bit is reserved and should be written a 0. This bit is called CacheEP in the EJTAG 2.5 specification and was not implemented.	R	0
21	RES	This bit is reserved and should be written a 0. This bit is called DBusEP in the EJTAG 2.5 specification and was not implemented.	R	0
20	RES	This bit is reserved and should be written a 0. This bit is called IEXI in the EJTAG 2.5 specification and was not implemented.	R	0
19	RES	This bit is reserved and should be written a 0. This bit is called DDBSImpr in the EJTAG 2.5 specification and was not implemented.	R	0
18	RES	This bit is reserved and should be written a 0. This bit is called DDBLImpr in the EJTAG 2.5 specification and was not implemented.	R	0
17:15	VER	EJTAGver 1: EJTAG Version 2.5	R	1
14:10	DEX- CODE	DExcCode Indicates the cause of the latest exception in Debug Mode. The field is encoded as the ExcCode field in the Cause register for those exceptions that can occur in Debug Mode (the encoding is shown in the MIPS32 specification), with addition of code 30 with the mnemonic CacheErr for cache errors. This value is undefined after a debug exception.	R	UNPRED

Bit(s)	Name	Description	Read/ Write	Default
9	NS	NoSSt 0: Single step is implemented.	R	0
8	SS	SSt Controls whether single-step feature is enabled: 0: No enable of single-step feature 1: Single-step feature enabled	R/W	0
7:6	RES	These bits are reserved and should be written a 0.	R	0
5	DI	Indicates that a Debug Interrupt exception occurred. This could be either a Processor Bus Break (indicated by BS0 in the Processor Bus Break Status Register) or EJTAG break. The BS0 bit should be checked to see what caused the exception. Cleared on exception in Debug Mode. 0: No Debug Interrupt exception 1: Debug Interrupt exception	R	UNPRED
4	RES	This bit is reserved and should be written a 0. This bit is called DIB in the EJTAG 2.5 specification and was not implemented.	R	0
3	RES	This bit is reserved and should be written a 0. This bit is called DDBS in the EJTAG 2.5 specification and was not implemented.	R	0
2	RES	This bit is reserved and should be written a 0. This bit is called DDBL in the EJTAG 2.5 specification and was not implemented.	R	0
1	DB	DBp Indicates that a Debug Breakpoint exception occurred. Cleared on exception in Debug Mode. 0: No Debug Breakpoint exception 1: Debug Breakpoint exception	R	UNPRED
0	DS	DSS Indicates that a Debug Single Step exception occurred. Cleared on exception in Debug Mode. 0: No debug single-step exception 1: Debug single-step exception	R	UNPRED

Debug Exception Program Counter Register

The Debug Exception Program Counter (DEPC) register is a read/write register that contains the address at which processing resumes after the exception has been serviced.

Hardware updates this register on debug exceptions and exceptions in Debug Mode.


For precise debug exceptions and precise exceptions in Debug Mode, the DEPC register contains either:

- the virtual address of the instruction that was the direct cause of the exception; or
- the virtual address of the immediately preceding branch or jump instruction, when the exception-causing instruction is in a branch delay slot, and the Debug Branch Delay (BDB) bit in the Debug register is set.

For imprecise debug exceptions and imprecise exceptions in Debug Mode, the DEPC register contains the address at which execution is resumed when returning to Non-Debug Mode.

depc - Debug Exception Program Counter

CP0 Register 24, Select 0

Bit(s)	Name	Description	Read/ Write	Default
31:0	DEPC	Debug Exception Program Counter	R/W	UNPRED

Debug Exception Save Register - DESAVE

The Debug Exception Save (DESAVE) register is a read/write register that functions as a simple scratchpad register.

The debug exception handler uses this to save one of the GPRs, which is then used to save the rest of the context to a pre-determined memory area, for example, in the dmseg. This register allows the safe debugging of exception handlers and other types of code where the existence of a valid stack for context saving cannot be assumed.

desave - Debug Exception Save Register

CP0 Register 31, Select 0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															DI	ESAV	E[31	:0]														
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	Read/ Write	Default
31:0	DESAVE	Debug Exception Save contents	R/W	UNPRED

9.4 EJTAG Memory Range

In debug mode accesses to virtual 0xFF200000-0xFF3FFFFF bypass translation.

The debug memory is split into two logical divisions:

• dmseg: 0xFF20 0000 - 0xFF2F FFFF

drseg: 0xFF30 0000 - 0xFF3F FFFF

It should be noted that the physical address addr(35:32) of this range is zero.

Dmseg is the memory range that will be serviced by the probe TAP in debug mode for all instruction accesses to this virtual address range and for data accesses if the LSNM in the Debug Register is 0.

Drseg is the memory range containing the EJTAG memory mapped registers and is accessible when LSNM in the Debug Register is 0.

9.4.1 EJTAG Memory Mapped Registers

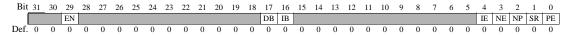
Table 86 shows the EJTAG memory mapped registers located in drseg.

TABLE 86. EJTAG Memory Mapped Registers at 0xFF300000

Offset	Register	Description
0x0000	dcr	Debug Control Register
0x000C	pbs	Processor Break Status
0x0300	pab	Processor Address Bus Break
0x0304	pdb	Processor Data Break
0x0308	pdm	Processor Data Mask
0x030C	pbcam	Processor Control/Address Mask
0x0310	phab	Processor High Address Break
0x0314	pham	Processor High Address Mask

The EJTAG implementation in the Au1100 does not employ data breakpoints and instruction breakpoints as described in the EJTAG 2.5 specification. Instead it offers Processor breakpoints as described in the EJTAG 2.0.0 specification.

The Processor Bus Match registers monitor the bus interface of the MIPS CPU and provide debug exception or trace trigger for a given physical address and data.


In addition, the implementation allows the CPU watchpoints to cause a debug exception. This functionality is enabled through the EJTAG TAP port. Please see "EJWatch Register (TAP Instruction EJWATCH)" on page 334 for details.

Debug Control Register

The Debug Control Register (DCR) controls and provides information about debug issues. The width of the register is 32 bits. The DCR is located in the drseg at offset 0x0000.

dcr - Debug Control Register

Offset = 0x0000

Bit(s)	Name	Description	Read/ Write	Default
31:30	RES	These bits are reserved and should be written a 0.	R	0
29	EN	ENM 1: Processor is big Endian in both debug and kernel mode.	R	1
28:18	RES	These bits are reserved and should be written a 0.	R	0
17	DB	DataBrk 0: No data hardware breakpoints implemented.	R	0
16	IB	InstBrk 0: No instruction hardware breakpoints implemented.	R	0
15:5	RES	These bits are reserved and should be written a 0.	R	0
4	IE	IntE 1: Interrupt enabled in debug mode depending on other enabling mechanisms.	R	1

Bit(s)	Name	Description	Read/ Write	Default
3	NE	NMIE 1: Non-Maskable Interrupt is enable for non-debug mode. The NMI is not implemented in the Au1100 so this bit has no applicability.	R	1
2	NP	NMIPend 0: no NMI pending The NMI is not implemented in the Au1100 so this bit has no applicability.	R	0
1	SR	SRstE 1: Soft reset is fully enabled. Soft Reset is not implemented in the Au1100 so this bit has no applicability.	R	1
0	PE	ProbEn Indicates value of the ProbEn value in the ECR register. 0: No access should occur to dmseg 1: Probe services accesses to dmseg	R	Same value as ProbEN in ECR

Processor Bus Break Status Register pbs - Processor Bus Break Status

Offset = 0x000C

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		OLP				ВС	CN																									BS
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Read/ Bit(s) **Description** Default Name Write 31 **RES** These bits are reserved and should be written a 0. 0 R 30 OLP 1: Memory overlay functionality is implemented for R processor breaks. 29:28 **RES** These bits are reserved and should be written a 0 R 0 27:24 BCN **Number of Processor Breaks** R 1 1: One Channel has been implemented for the Pro-

cessor Bus Break.

Bit(s)	Name	Description	Read/ Write	Default
23:15	RES	These bits are reserved and should be written a 0.	R	0
14:1	RES	These bits are reserved and should be written a 0. These bits are the Bsn bits in the EJTAG 2.0.0 specification and are not needed since only one break is implemented.	R	0
0	BS	Break Status This bit, when set, indicates that a processor bus break or processor bus trigger has occurred. BS can be cleared by activating PrRst (EJTAG CONTROL Register), hard reset and also by writing a '0' to it. The Debug handler must clear this bit before returning from debug mode.	R/W	0

Processor Address Bus Break

This register contains the bits of the physical Processor Address Bus Break.

pab - Processor Address Bus Break

Offset = 0x0300

Bit(s)	Name	Description	Read/ Write	Default
31:0	PAB	Processor Address Bus Break 0. This index contains the lower 32 bits of the physical address. In combination with the high order address bits, these bits make up the break address.	R	UNPRED

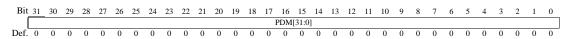
Processor Data Bus Break

This register specifies the data value for the Processor Data Bus match.

pdb - Processor Data Bus Break

Offset = 0x0304

Bit(s)	Name	Description		Default
31:0	PDB	Processor Data Bus Break 0	R	UNPRED
		This index contains the 32 bits of the data bus match.		


Processor Data Mask/Upper Overlay Address Mask

This register is dual purpose depending on the value of the Overlay Enable bit in the Bus Break Control and Address Mask.

This register specifies the mask value for the Processor Data Mask register. Each bit corresponds to a bit in the data register.

pdm_uoam - Processor Data Mask

Offset = 0x0308

Bit(s)	Name	Description	Read/ Write	Default
31:0	PDM	When OE not enabled	R	UNPRED
		Processor Data Mask 0 When OE in the pbcam register is not enabled. 0: Data bit is not masked, data bit is compared. 1: Data bit is masked, data bit is not compared.		
31:24	UOAM	When OE is enabled	R/W	UNPRED
		Upper Overlay Address Mask These bits represent bits 31:24 of the address mask and are combined with the LAM and HAM fields to create a complete 36 bit address mask.		
		0: Address bit is not masked, address bit is compared.		
		Address bit is masked, address bit is not compared.		
		It should be noted that bits 23:0 are not used when OE is set and should be written 0.		

Processor Bus Break Control and Address Mask

This register selects the Processor Bus match function to enable debug break or trace trigger. It also includes control bits to enable comparison as well as mask bits to exclude address bits from comparison.

It should be noted that all processor break exceptions are imprecise.

pbcam - Bus Break Control and Address Mask

Offset = 0x030C

Bit(s)	Name	Description	Read/ Write	Default		
31:8	LAM	Address Mask These bits specify the mask value for the 24 lower	R/W	UNPRED		
		bits of the Processor Address register (PBA0[230]). Each bit corresponds to the same bit in PBA0.				
		0: Address bit is not masked, address bit is compared.				
		1: Address bit is masked, address bit is not compared.				
7	DC	Data Store to Cached Area	R/W	UNPRED		
		This bit enables the comparison on Processor Address and Data Bus for Data Store to the Cached area.				
		0: Processor Address and Data is not compared for storing data to the Cached area.				
		Processor Address and Data is compared for storing data to the Cached area.				
6	DU	Data Store To Uncached Area	R/W	UNPRED		
		This bit enables the comparison on Processor Address and Data Bus for Data Store to the uncached area.				
		0: Processor Address and Data is not compared for storing data into the un-cached area.				
		Processor Address and Data is compared for storing data into the un-cached area.				

Bit(s)	Name	Description	Read/ Write	Default
5:4	DIU	Data or Instruction fetch or load from Uncached Area These bits enable the comparison on Processor Address and Data Bus for Data or Instruction load and fetch from the un-cached area. O0: Processor Address and Data is not compared for loading data or fetching instruction from the uncached area. 11: Processor Address and Data is compared for loading data or fetching instruction from the uncached area. Bits 5 and 4 were named ILUC and DFUC in the EJTAG 2.0.0 specification and were implemented separately for instruction and data fetches.	R	UNPRED
3	OE	Overlay Enable When this bit is 1 and the processor physical address, masked by the HAM, UOAM and the LAM fields (all 36 bits of the address mask), matches the PHAB and PAB registers, then the memory request is redirected to the EJTAG Probe. The processor bus break can not be used for normal break, function if the OLE bit is set, so BE must be set to 0. The behavior is otherwise undefined. Overlay is only valid for memory regions. It is not valid for I/O or debug space and the behavior is unpredictable if addresses within this space are used.	R/W	0
2	RES	This bit is reserved and should be written a 0. This bit is called TE in the EJTAG 2.0.0 specification and was not implemented.	R	0

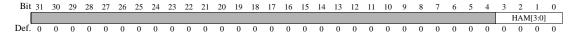
Bit(s)	Name	Description	Read/ Write	Default
1	RES	This bit is reserved and should be written a 0. This bit is called CBE in the EJTAG 2.0.0 specification and was not implemented.	R	0
0	BE	Break Enable This bit enables the Processor Bus break function. 0: Processor Bus break function is disabled 1: Processor Bus break function is enabled	R/W	0
		If Break Enable is set and the processor physical address, masked by the HAM and the LAM fields (UOAM is only for overlay so bits 31:24 are not masked here), matches the PHAB and PAB registers, and the processor data bus matches the PDB register (masked by PDM), then a debug exception to the processor is generated.		
		The BS bit in the Processor Bus Break Status register is set and the DINT bit in the Debug Register is set. If the debug exception handler is already running (DM='1'), then the debug exception will not be taken until DM = 0.		
		This functionality is mutually exclusive to OLE so only one of OLE or BE should be set at any time.		

Processor High Address Bus Break

This register specifies the high order address for the processor address bus break.

pha - Processor High Address Bus Break

Offset = 0x0310


Bit(s)	Name	Description	Read/ Write	Default
31:4	RES	These bits are reserved and should be written a 0.	R	0
3:0	НА	These bits map to the high physical address bits 35:31.	R/W	UNPRED

Processor High Address Mask

This register specifies the high order address mask for the processor address bus break.

pham - Processor High Address Mask

Offset = 0x0314

Bit(s)	Name	Description	Read/ Write	Default
31:4	RES	These bits are reserved and should be written a 0.	R	0
3:0	HAM	High Address Mask for address bits 35:31 0: Data bit is not masked, data bit is compared 1: Data bit is masked, data bit is not compared	R/W	UNPRED

9.4.2 EJTAG Test Access Port (TAP)

The EJTAG TAP contains the 5 TAP pins and a 16 state controller with a 5 bit instruction register.

Table 87 shows the 5-bit instructions supported by the Au1100.

TABLE 87. EJTAG Instruction Register Values

Hex Value	Instruction	Function
0x00	EXTEST	Boundary Scan
0x01	IDCODE	Selects ID Register
0x02	SAMPLE	Boundary Scan Sample/Preload (IEEE JTAG Instruction)
0x03	IMPCODE	Selects Implementation Register
0x04	RES	Reserved
0x05	RES	This reserved register is for test mode HIZ - Tristate all output pins and Select Bypass register.
0x06	RES	This reserved register is for test mode CLAMP - IEEE Clamp pins and select bypass register.

TABLE 87. EJTAG Instruction Register Values (Continued)

Hex Value	Instruction	Function
0x07	RES	Reserved
0x08	ADDRESS	Selects Address Register.
0x09	DATA	Selects Data Register.
0x0A	CONTROL	Selects EJTAG Control Register.
0x0B	ALL	Selects the Address, Data and EJTAG Control registers.
0x0C	EJTAGBOOT	Makes the processor take a debug exception after reset.
0x0D	NORMALBOOT	Makes the processor execute the reset handler after reset.
0x0E- 0x1B	RES	Reserved
0x1C	EJWATCH	Selects Watch register
0x1D- 0x1E	RES	Reserved
0x1F	BYPASS	Bypass mode

Device Identification (ID) Register

The Device ID register is a 32-bit read-only register that identifies the specific device implementing EJTAG.

IDCODE - Device Identification

TAP Instruction IDCODE

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ĺ		VI	ΞR									PN	UM								MANID											
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Bit(s)	Name	Description	Read/ Write	Default
31:28	VER	Identifies the version of the device.	R	0
27:12	PNUM	Identifies the part number of the device.	R	0x03E8

Bit(s)	Name	Description	Read/ Write	Default
11:1	MANID	Identifies the manufacturer ID code for the device. MANID[6:0] are derived from the last byte of the JEDEC code with the parity bit discarded. MANID[10:7] provides a binary count of the number of bytes in the JEDEC code that contain the contin- uation character (0x7F). When the number of con- tinuations characters exceeds 15, these four bits contain the modulo-16 count of the number of con- tinuation characters.	R	0x147
0	RES	This bit is reserved and should be written a 1.	R	1

Implementation Register

The Implementation register is a 32-bit read-only register that identifies features implemented in this EJTAG compliant processor, mainly those accessible from the TAP.

IMPCODE - Implementation

TAP Instruction IMPCODE

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		VER		R3				DI		A	.S					M16		ND														M32
Def	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	Read/ Write	Default
31:29	EJTAGver	1: EJTAG version 2.5	R	1
28	R3	0: R3k privileged environment	R	0
27:25	RES	These bits are reserved and should be written a 0.	R	0
24	DI	0: DINT signal from the probe is not supported.	R	0
23	RES	This bit is reserved and should be written a 0.	R	0
22:21	AS	10 _b : 8 bit ASID	R	10 _b
20:17	RES	These bits are reserved and should be written a 0.	R	0
16	M16	0: no MIPS16 support	R	0
15	RES	This bit is reserved and should be written a 0.	R	0

Bit(s)	Name	Description	Read/ Write	Default
14	ND	1: No EJTAG DMA support	R	1
13:1	RES	These bits are reserved and should be written a 0.	R	0
0	MIPS32/64	0: 32-bit processor	R	0

Data Register

The read/write Data register is used for opcode and data transfers during processor accesses. The width of the Data register is 32 bits.

The value read in the Date register is valid only if a processor access for a write is pending, in which case the data register holds the store value. The value written to the Data register is only used if a processor access for a pending read is finished afterwards, in which case the data value written is the value for the fetch or load. This behavior implies that the Data register is not a memory location where a previously written value can be read afterwards.

DATA TAP Instruction DATA or ALL

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															I	DATA	[31:0]														
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	Read/ Write	Default
31:0	DATA	Data used by processor access	R/W	UNPRED

Address Register

The read-only Address register provides the address for a processor access. The width of the register is 36 bits.

The value read in the register is valid if a processor access is pending, otherwise the value is undefined. The two LSBs of the register are used with the Psz field from the EJTAG Control register to indicate the size and data position of the pending processor access transfer. These

bits are not taken directly from the address referenced by the load/store (i.e. these bits are encoded with Psz).

ADDRESS

TAP Instruction ADDRESS or ALL

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															Ι	OATA	[36:0]														
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	Read/ Write	Default
36:0	Address	Address used by processor access	R	UNPRED

EJTAG Control Register (ECR)

The 32-bit EJTAG Control Register (ECR) handles processor reset, Debug Mode indication, access start, finish, and size and read/write indication. The ECR also:

- controls debug vector location and indication of serviced processor accesses.
- allows debug interrupt request.
- indicates processor low-power mode.

The EJTAG Control register is not updated/written in the Update-DR state unless the Reset occurred; that is Rocc (bit 31) is either already 0 or is written to 0 at the same time. This condition ensures proper handling of processor accesses after a reset.

Bits that are R/W in the register return their written value on a subsequent read, unless other behavior is defined. Internal synchronization hardware thus ensures that a written value is updated for reading immediately afterwards, even when the TAP controller takes the shortest path from the Update-DR to Capture-DR state.

Note: To ensure a write is successful to the PE, PT and EB bits when the processor is undergoing a clock change (i.e. for PLL lock/relock), the host must continue writing these bits until the write is verified by reading the change. Failure to do this could result in the write of these bits being lost.

Reset of the processor can be indicated in the TCK domain a number of TCK cycles after it is removed in the processor clock domain in order to allow for proper synchronization between the two clock domains.

ECR - EJTAG Control Register

TAP Instruction CONTROL or ALL

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RO	PS	SZ							DZ			PRW	PA		PR	PE	PT		EB									DM			
Def	. 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description	Read/ Write	Default
31	RO	Indicates if a processor reset has occurred since the bit was cleared:	R/W0	1
		0: No reset occurred		
		1: Reset occurred		
		The Rocc bit stays set as long as reset is applied.		
		This bit must be cleared to acknowledge that the reset was detected. The EJTAG Control register is not updated in the Update-DR state unless Rocc is 0 or written to 0 at the same time. This is in order to ensure correct handling of the processor access after reset.		
30:29	PSZ	Indicates the size of a pending processor access, in combination with the Address register.	R	UNPRED
		0: Byte		
		1: Halfword		
		2: Word		
		3: Triple		
		This field is valid only when a processor access is pending; otherwise, the read value is undefined.		
28:23	RES	These bits are reserved and should be written a 0.	R	0
22	DZ	Doze	R	0
		Indicates if the processor is in a WAIT state:		
		0: Processor is not in a wait state.		
		1: Processor is in a wait state.		
21	RES	This bit is reserved and should be written a 0. This bit is called Halt in the EJTAG 2.0.0 specification and was not implemented.	R	0
20	RES	This bit is reserved and should be written a 0. This bit is called PerRst in the EJTAG 2.0.0 specification and was not implemented.	R	0

Bit(s)	Name	Description	Read/ Write	Default
19	PRW	Indicates read or write of a pending processor access. 0: Read processor access, for a fetch/load access	R	UNPRED
		Write processor access, for a store access This value is defined only when a processor access		
		is pending.		
18	PA	Indicates a pending processor access and controls finishing of a pending processor access. When read:	R/W0	0
		0: No pending processor access		
		1: Pending processor access		
		A write of 0 finishes a processor access if pending; otherwise operation of the processor is UNDE-FINED if the bit is written to 0 when no processor access is pending. A write of 1 is ignored.		
17	RES	This bit is reserved and should be written a 0.	R	0
16	PR	Controls the processor reset.	R/W	0
		0: No processor reset applied		
		1: Processor reset applied		
		Setting this bit to 1 will apply a processor reset. When this bit is read back it will always read a 0. It should be noted that startup latencies should be observed when applying reset.		

Bit(s)	Name	Description	Read/ Write	Default
15	PE	Controls indication to the processor of whether the probe expects to handle accesses to EJTAG memory through servicing of processors accesses.	R/W	Deter- mined by EJTAG- BOOT
		Probe does not service processors accesses Probe will service processor accesses		
		The ProbEn bit is reflected as a read-only bit in the Debug Control Register (DCR) bit 0.		
		When this bit is changed, then it is guaranteed that the new value has taken effect in the DCR when it can be read back here. This handshake mechanism ensures that the setting from the TCK clock domain takes effect in the processor clock domain.		
		However, a change of the ProbEn prior to setting the EjtagBrk bit is ensured to affect execution of the debug handler due to the debug exception.		
		Not all combinations of ProbEn and ProbTrap are allowed.		
		Please see the previous note about writing this bit (in "EJTAG Control Register (ECR)" on page 329).		

Bit(s)	Name	Description	Read/ Write	Default
14	PT	Controls location of the debug exception vector: 0: Normal memory 0xBFC0 0480 1: EJTAG memory 0xFF20 0200 When this bit is changed, then it is guaranteed that the new value is indicated to the processor when it can be read back here. This handshake mechanism ensures that the setting from the TCK clock domain takes effect in the processor clock domain. However, a change of the ProbTrap prior to setting the EjtagBrk bit is ensured to affect execution of the debug handler due to the debug exception. Not all combinations of ProbEn and ProbTrap are allowed. Please see the previous note about writing this bit (in "EJTAG Control Register (ECR)" on page 329).	R/W	Deter- mined by EJTAG- BOOT
13	RES	This bit is reserved and should be written a 0.	R	0
12	ЕВ	Requests a Debug Interrupt exception to the processor when this bit is written as 1. The debug exception request is ignored if the processor is already in debug at the time of the request. A write of 0 is ignored. The debug request restarts the processor clock if the processor was in a wait mode, which stopped the processor clock. The read value indicates a pending Debug Interrupt exception requested through this bit: 0: No pending Debug Interrupt exception requested through this bit 1: Pending Debug Interrupt exception The read value can, but is not required to, indicate other pending DINT debug requests (for example, through the DINT signal). This bit is cleared by hardware when the pro-cessor enters Debug Mode. Please see the previous note about writing this bit (in "EJTAG Control Register (ECR)" on page 329).	R/W1	Deter- mined by EJTAG- BOOT

Bit(s)	Name	Description	Read/ Write	Default
11:4	RES	These bits are reserved and should be written a 0	R	0
3	DM	Indicates if the processor is in Debug Mode: 0: Processor is in Non-Debug Mode 1: Processor is in Debug Mode	R	0
2:0	RES	These bits are reserved and should be written a 0.	R	0

EJWatch Register (TAP Instruction EJWATCH)

The EJWatch register is used to enable CPU watchpoints to cause a debug exception. This functionality is unique to the Au1100.

EJWATCH

TAP Instruction EJWATCH

Bit(s)	Name	Description	Read/ Write	Default
7:3	RES	These bits are reserved and should be written a 0.	R	0
2	RES	These bits are reserved and should be written a 0. This bit is the Global Scan test bit.	R	0
1	RES	These bits are reserved and should be written a 0. This bit is a Test Mode bit.	R	0
0	WATCH	This bit controls the debug functionality of the CPU watch register.	R/W	0
		0: normal Watch Exception Mode		
		1: Debug Watch Exception Mode		
		- Blocks writes to Watch register in non-debug mode		
		- Watch Exception will become debug exceptions with DEXCODE=23		
		- The PC will be saved in the DEPC (not in the EPC as with a normal watch exception).		
		It should be noted that the Status, Cause, and EPC will not be affected by a debug watch exception when this bit is enabled.		

Bypass Register (TAP Instruction BYPASS)

RVPASS

The Bypass register is a one-bit read-only register, which provides a minimum shift path through the TAP. This register is also defined in IEEE 1149.1.

DIIMOD	1711 Instruction B 117.05
Bit	0
	BP
Def.	0

Bit(s)	Name	Description	Read/ Write	Default
0	BP	Ignored on writes; returns zeros on reads.	R	0

9.4.3 EJTAG TAP Hardware Considerations

The EJTAG interface consists of the signals listed in Table 88.

TABLE 88. EJTAG Signals

Pin Name	Input/ Output	Definition
TRST	I	Asynchronous TAP reset
TDI	1	Test data input to the instruction or selected data registers. This signal will be sampled on the rising edge of TCK
TDO	0	Test data output from the instruction or data register. This signal will transition on the falling edge (valid on rising edge) of TCK
TMS	I	Control signal for TAP controller. This signal is sampled on the wising edge of TCK.
тск	I	Control clock for updating TAP controller and shifting data through instruction or selected data register.

TAP Instruction BYPASS

It should be noted that the EJTAG TAP signal TCK must always be less than 1/4 the system bus clock speed for proper operation. In addition, termination as shown in EJTAG 2.5 spec must be followed.

Signal Description

This section describes the external I/O signals on the Au1100.

In order to maximize the functionality of the Au1100, many of the pins have multiple uses. It should be noted that if a pin is configured for one use, any other functionality associated with that pin can not be utilized at the same time. In other words a pin can not be used as a GPIO at the same time it is assigned to a peripheral device. The configuration of the multiplexed signals is discussed in Table 89.

Figure 40 shows a block diagram of the Au1100 from an external signal perspective. All signals are grouped functionally according to the block in which they are a part. Signals that share a pin with multiple functionality are designated with a * with the alternative signal following the name in parentheses.

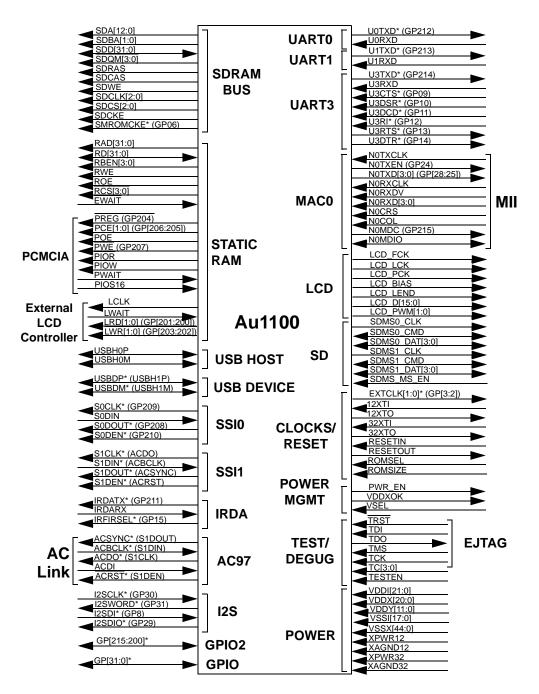


FIGURE 40. Au1100 Block Diagram

Table 89 gives a description of all external signals on the Au1100. The signals have been grouped by functionality. The signals that share a pin with multiple functionality are designated by a * appended to their name.

The type description can be decoded as follows:

- I Input
- O Output
- IO Bidirectional
- Z Tristatable
- P Power
- G Ground

RES - Reserved

The last columns represent default values during and coming out of Hardware Reset (HR), Runtime Reset (RR), and Sleep (S). The values can be decoded as follows:

- 0 driven low
- 1 driven high
- IN Signal is an input
- LV driven at the last value before the reset
- HIZ Tristated
- ON Clock remains on
- NC Not Connected
- NA Defaults are not applicable because the alternate function of the pin controls the pin coming out of reset.

TABLE 89. Signal Description

Interface Type	Туре	Description	HR	RR	s
SDRAM Interface:					
SDA[12:0]	0	Address Outputs: A0-A12 are sampled during the ACTIVE command (row-address A0-A12) and READ/WRITE command to select one location out of the memory array in the respective bank. The address outputs also provide the opcode during a LOAD MODE REGISTER command.	0	LV	LV
SDBA[1:0]	0	Bank Address Inputs: BA0 and BA1 define to which bank the ACTIVE, READ, WRITE or PRECHARGE command is being applied.	0	LV	LV

TABLE 89. Signal Description (Continued)

Interface Type	Туре	Description	HR	RR	s
SDD[31:0]	IO	SDRAM data bus Hardware Reset Description: 0 - after VDDXOK is asserted tristated when VDDI is on and RESETIN is asserted 0 after hardware reset sequence is complete	See desc . at left	HIZ	HI Z
SDQM[3:0]	0	Active Low Input/Output Mask: SDQM is an input mask signal for write accesses and an output enable signal for read accesses. SDQM0 masks SDD7:0, SDQM1 masks SDD15:8, SDQM2 masks SDD23:16, SDQM3 masks SDD31:24.	1	1	1
SDRAS	0	Active Low Command Output. SDRAS, SDCAS and SDWE (along with SDCSn) define the command being sent to the SDRAM rank.	1	1	1
SDCAS	0	Active Low Command Output. SDRAS, SDCAS and SDWE (along with SDCSn) define the command being sent to the SDRAM rank.	1	1	1
SDWE	0	Active Low Command Output. SDRAS, SDCAS and SDWE (along with SDCSn) define the command being sent to the SDRAM rank.	1	1	1
SDCLK[2:0]	0	Clock output corresponding to each of the three chip selects. Clock speed is 1/2 system bus frequency when corresponding SDCSn is set to SDRAM, 1/4 system bus frequency when corresponding SDCSn is set to SMROM.	0	ON	0
SDCS[2:0]	0	Active Low Programmable Chip selects	1	1	1
SDCKE	0	Clock enable for SDRAM	1	1	0
SMROMCKE	0	Synchronous Mask ROM Clock Enable. This signal must be pulled high if the system is booting from SMROM. Muxed with GPIO6. If ROMSEL and ROMSIZE are configured to boot from Synchronous Mask ROM, SMROMCKE will control the pin out of reset, else GPIO6 will control the pin out of reset.	NA	NA	NA
Static Bus (SRAM/IO/PCMCIA/Flash/ROM/LCD) Interface - Common Signals					
RAD[31:0]	0	Address bus	0	LV	LV

TABLE 89. Signal Description (Continued)

Interface Type	Туре	Description	HR	RR	s
RD[31:0]	Ю	Data bus	0	LV	LV
RBEN[3:0]	0	Active Low Byte Enable. RBEN0 corresponds to RD7:0, RBEN1 corresponds to RD15:8, RBEN2 corresponds to RD23:16, RBEN3 corresponds to RD31:24.	1	1	1
RWE	0	Write enable	1	1	1
ROE	0	Output enable	1	1	1
RCS[3:0]	0	Programmable Chip Selects. RCSn is not used when configured as a PCMCIA device.	1	1	1
EWAIT	1	This active low input can be used to stretch the bus access time when enabled. This input is not recognized for chip selects configured as LCD or PCMCIA as these buses have their own wait mechanisms.	IN	IN	IN
PCMCIA					
PREG	0	Active low register only access signal.	NA	NA	NA
		Muxed with GPIO204 which controls the pin out of hardware reset, runtime reset and sleep.			
PCE[1:0]	0	Card Enables (Active Low)	NA	NA	NA
		Muxed with GP[206:205] which controls the pins out of hardware reset, runtime reset and sleep.			
POE	0	Output enable	1	1	1
PWE	0	Write Enable Muxed with GP207 which controls the pin out of hardware reset, runtime reset and sleep.	NA	NA	NA
PIOR	0	Read Cycle Indication	1	1	1
PIOW	0	Write Cycle Indication	1	1	1
PWAIT	I	Extend Cycle	IN	IN	IN
PIOS16	I	16 bit port select	IN	IN	IN
LCD Control	LCD Controller Chip Interface				
LCLK	0	Interface Clock	0	0	0
LWAIT	1	Extend Cycle	IN	IN	IN

Interface Type	Туре	Description	HR	RR	s
LRD[1:0]	0	Read Indicators Muxed with GP[201:200] which controls the pins out of hardware reset, runtime reset and sleep.	NA	NA	NA
LWR[1:0]	0	Write Indicators Muxed with GP[203:202] which controls the pins out of hardware reset, runtime reset and sleep.	NA	NA	NA
USB (Host)					
USBH1P	Ю	Positive signal of differential USB host port 1 driver. Requires 15k pulldown to be USB 1.1 compliant.	IN	IN	IN
USBH1M	Ю	Negative signal of differential USB host port 1 driver. Requires 15k pulldown to be USB 1.1 compliant.	IN	IN	IN
USBH0P	Ю	Positive signal of differential USB host port 0 driver Requires 15k pulldown to be USB 1.1 compliant. Muxed with USBDP which controls the pin out of hardware reset, runtime reset and sleep.	NA	NA	NA
USBH0M	Ю	Negative signal of differential USB host port 0 driver Requires 15k pulldown to be USB 1.1 compliant. Muxed with USBDP which controls the pin out of hardware reset, runtime reset and sleep.	NA	NA	NA
USB (Device	·)				
USBDP	Ю	Positive signal of differential USB device driver Muxed with <i>USBH1P</i> .	IN	IN	IN
USBDM	Ю	Negative signal of differential USB device driver Muxed with <i>USBH1M</i> .	IN	IN	IN
SSI0					
SOCLK	О	Master only clock output. The speed and polarity of clock edge is programmable. Muxed with GP209 which controls the pin out of hardware reset, runtime reset and sleep.	NA	NA	NA
SODIN	I	Serial Data Input. This signal may be tied with S0DOUT to create a single bidirectional data signal.	IN	IN	IN

Interface Type	Туре	Description	HR	RR	S
SODOUT	0	Serial Data Output. This signal is tristated during a read and thus may be tied to S0DIN to create a single bidirectional data signal.	NA	NA	NA
		Muxed with GP208 which controls the pin out of hardware reset, runtime reset and sleep.			
SODEN	0	Enable signal which frames transaction. The polarity is programmable.	NA	NA	NA
		Muxed with GP210 which controls the pin out of hardware reset, runtime reset and sleep.			

Interface Type	Туре	Description	HR	RR	s
SSI1					
S1CLK	0	Master only clock output. The speed and polarity of clock edge is programmable. Muxed with ACDO which controls the pin out of hardware reset, runtime reset and sleep.	NA	NA	NA
S1DIN	I	Serial Data Input. This signal may be tied with S0DOUT to create a single bidirectional data signal. Muxed with ACBCLK which controls the pin out of hardware reset, runtime reset and sleep.	NA	NA	NA
S1DOUT	0	Serial Data Output. This signal is tristated during a read and thus may be tied to S0DIN to create a single bidirectional data signal. Muxed with ACSYNC which controls the pin out of hardware reset, runtime reset and sleep.	NA	NA	NA
S1DEN	0	Enable signal which frames transaction. The polarity is programmable. Muxed with ACRST which controls the pin out of hardware reset, runtime reset and sleep.	NA	NA	NA
IrDA					
IRDATX	0	Serial IrDA output Muxed with GP211 which controls the pin out of hardware reset, runtime reset and sleep.	NA	NA	NA
IRDARX	1	Serial IrDA input	IN	IN	IN
IRFIRSEL	0	Output which will signal at which speed the IrDA is currently set. This signal is not necessary for IrDA operation. This pin will be driven high when IrDA is configured for FIR or MIR. This pin will be driven low for SIR mode.	NA	NA	NA
		Muxed with GPIO15 which controls the pin out of hardware reset, runtime reset and sleep.			
UART0					

TABLE 89. Signal Description (Continued)

Interface Type	Туре	Description	HR	RR	s
UOTXD	0	UART0 transmit Muxed with GP212 which controls the pin out of hardware reset, runtime reset and sleep.	NA	NA	NA
U0RXD	1	UART0 receive	IN	IN	IN
UART1					
U1TXD	0	UART1 transmit Muxed with GP213 which controls the pin out of hardware reset, runtime reset and sleep.	NA	NA	NA
U1RXD	I	UART1 receive	IN	IN	IN
UART3					
U3TXD	0	UART3 transmit Muxed with GP214 which controls the pin out of hardware reset, runtime reset and sleep.	NA	NA	NA
U3RXD	1	UART3 receive	IN	IN	IN
U3CTS	1	Clear to Send Muxed with GPIO9 which controls the pin out of hardware reset, runtime reset and sleep.	NA	NA	NA
U3DSR	1	Data Set Ready Muxed with GPIO10 which controls the pin out of hardware reset, runtime reset and sleep.	NA	NA	NA
U3DCD	1	Data Carrier Detect Muxed with GPIO11 which controls the pin out of hardware reset, runtime reset and sleep.	NA	NA	NA
U3RI	1	Ring Indication Muxed with GPIO12 which controls the pin out of hardware reset, runtime reset and sleep.	NA	NA	NA
U3RTS	0	Request to Send Muxed with GPIO13 which controls the pin out of hardware reset, runtime reset and sleep.	NA	NA	NA
U3DTR	0	Data Terminal Ready Muxed with GPIO14 which controls the pin out of hardware reset, runtime reset and sleep.	NA	NA	NA

Interface Type	Туре	Description	HR	RR	s
Ethernet Controller 0					
NOTXCLK	I	Continuous clock input for synchronization of transmit data. 25 MHz when operating at 100-Mb/s and 2.5 MHz when operating at 10-Mb/s.	IN	IN	IN
NOTXEN	0	Active high. Indicates that the data nibble on N0TXD[3:0] is valid. Muxed with GP24 which controls the pin out of hardware reset, runtime reset and sleep.	NA	NA	NA
N0TXD[3:0]	0	Nibble wide data bus synchronous to N0TXCLK. For each N0TXCLK period in which TX_EN is asserted, TXD[3:0] will have the data to be accepted by the PHY. While TX_EN is de-asserted the data presented on TXD[3:0] should be ignored. Muxed with GP[28:25] which control the pins out of hardware reset, runtime reset and sleep.	NA	NA	NA
NORXCLK	I	Continuous clock that provides the timing reference for the data transfer from the PHY to the MAC. NORXCLK is sourced by the PHY. The NORXCLK shall have a frequency equal to 25% of the data rate of the received signal data stream (typically 25 MHz at 100-Mb/s and 2.5 MHz at 10-Mb/s).	IN	IN	IN
N0RXDV	I	Active high. Indicates that a receive frame is in process and that the data on NORXD[3:0] is valid.	IN	IN	IN
N0RXD[3:0]	I	RXD[3:0] is a nibble wide data bus driven by the PHY to the MAC synchronous with N0RXCLK. For each N0RXCLK period in which N0RXDV is asserted, RXD[3:0] will transfer four bits of recovered data from the PHY to the MAC. While RX_DV is de-asserted, RXD[3:0] will have no effect on the MAC.	IN	IN	IN
N0CRS	I	NOCRS shall be asserted by the PHY when either transmit or receive medium is non idle. NOCRS shall be deasserted by the PHY when both the transmit and receive medium are idle. NOCRS is an asynchronous input.	IN	IN	IN

Interface Type	Туре	Description	HR	RR	s
N0COL	I	NOCOL shall be asserted by the PHY upon detection of a collision on the medium, and shall remain asserted while the collision condition persists. NOCOL is an asynchronous input. The NOCOL signal is ignored by the MAC when operating in the full duplex mode.	IN	Ξ	IZ
NOMDC	0	NOMDC is sourced by the MAC to the PHYas the timing reference for transfer of information on the NOMDIO signal. NOMDC is an aperiodic signal that has no maximum high or low times. The minimum high and low times for NOMDC will be 160 ns each, and the minimum period for NOMDC will be 400 ns. Muxed with GP215 which controls the pin out of hardware reset, runtime reset and sleep.	NA	NA	NA
NOMDIO	Ю	NOMDIO is the bidirectional data signal between the MAC and the PHY that is clocked by N0MDC.	0	LV	LV

Interface Type	Туре	Description	HR	RR	s
External Clocks					
EXTCLK[1:0]	0	General purpose clock outputs mapped from internal clock generator clocks 5 and 4.	NA	NA	NA
		Muxed with GPIO[3:2] which controls the pin out of hardware reset, runtime reset and sleep.			

TABLE 89. Signal Description (Continued)

Interface Type	Туре	Description	HR	RR	S
LCD Controller					
LCD_PWM1	0	Pulse Width Modulation Clock 1	0	0	0
LCD_PWM0	0	Pulse Width Modulation Clock 0	0	0	0
LCD_BIAS	0	Bias Clock	0	0	0
LCD_FCK	0	Frame Clock	0	0	0
LCD_LCK	0	Line Clock	0	0	0
LCD_LEND	0	Line End	0	0	0
LCD_PCK	0	Pixel Clock	0	0	0
LCD_D[15:0]	0	LCD Data	0	0	0

TABLE 89. Signal Description (Continued)

Interface Type	Туре	Description		RR	s
Secure Digita	Secure Digital Controller				
SDMS_MS_E N	1	Reserved for future use. Must be 0.	HIZ	HIZ	HI Z
SDMS0_CLK	0	SD Card 0 Interface Clock	0	0	0
SDMS0_CM D	I/O	SD Card 0 Half Duplex Command and Response	HIZ	HIZ	HI Z
SDMS0_DAT[3:0]	I/O	SD Card 0 Data Bus	HIZ	HIZ	HI Z
SDMS1_CLK	0	SD Card 1 Interface Clock	0	0	0
SDMS1_CM D	I/O	SD Card 1 Half Duplex Command and Response	HIZ	HIZ	HI Z
SDMS1_DAT[3:0]	I/O	SD Card 1 Data Bus	HIZ	HIZ	HI Z
I ² S					
I2SCLK	0	Serial bit clock. Muxed with GPIO30	0	LV	LV
I2SWORD	0	Word clock typically configured to the sampling frequency (Fs). Muxed with GPIO31	0	LV	LV
I2SDI			NA	NA	NA
I2SDIO	Ю	Configurable as input or output. As input data should be presented on rising edge. As output, data will be valid on rising edge. Muxed with GPIO29	0	LV	LV
AC-Link					
ACSYNC	0	Fixed rate sample sync Muxed with S1DOUT		0	0
ACBCLK	I	Serial data clock.	IN	IN	IN

TABLE 89. Signal Description (Continued)

Interface Type	Туре	Description		RR	s
ACDO	0	TDM output stream	0	0	0
		Muxed with S1CLK			
ACDI	I	TDM input stream	IN	IN	IN
ACRST	0	CODEC reset	0	0	0
		Muxed with S1DEN			
EJTAG					
TRST	I	Asynchronous TAP reset	IN	IN	IN
TDI	I	Test data input to the instruction or selected data registers. This signal will be sampled on the rising edge of TCK	IN	IN	IN
TDO	0	Test data output from the instruction or data register. This signal will transition on the falling edge (valid on rising edge) of TCK	HIZ	LV	LV
TMS	I	Control signal for TAP controller. This signal is sampled on the wising edge of TCK.		IN	IN
TCK	I	Control clock for updating TAP controller and shifting data through instruction or selected data register.	IN	IN	IN
Test					
TC[3:0]	1	Test clock inputs (not used in typical application)	IN	IN	IN
		These pins should be pulled low for normal operation.			
TESTEN	I	Test Enable (not used in typical applications)	IN	IN	IN
		This pin should be pulled low for normal operation.			
RESERVED					
RESVD[5:4]	RES	Reserved.		IOZ	IO Z
RESVD[3]	RES	Reserved.	I	I	I
RESVD[2:0]	RES	Reserved.	IOZ	IOZ	IO Z
GPIO					

TABLE 89. Signal Description (Continued)

Interface Type	Туре	Description	HR	RR	s
GPIO[2:0]	IOZ	General Purpose IO	HIZ	HIZ	HI Z
GPIO[3:2]	IOZ	General Purpose IO Muxed with EXTCLK[1:0]	HIZ	HIZ	HI Z
GPIO6	IOZ	General Purpose IO Muxed with SROMCKE. If ROMSEL and ROMSIZE are configured to boot from Synchronous Mask ROM, SMROMCKE will control the pin out of reset, else GPIO6 will control the pin out of reset.	HIZ	HIZ	HI Z
GPIO7	IOZ	General Purpose IO	HIZ	HIZ	HI Z
GPIO8	IOZ	General Purpose IO Muxed with I2SDI	HIZ	HIZ	HI Z
GPIO9	IOZ	General Purpose IO Muxed with U3CTS	HIZ	HIZ	HI Z
GPIO10	IOZ	General Purpose IO Muxed with U3DSR	HIZ	HIZ	HI Z
GPIO11	IOZ	General Purpose IO Muxed with U3DCD	HIZ	HIZ	HI Z
GPIO12	IOZ	General Purpose IO Muxed with U3RI	HIZ	HIZ	HI Z
GPIO13	IOZ	General Purpose IO Muxed with U3RTS	HIZ	HIZ	HI Z
GPIO14	IOZ	General Purpose IO Muxed with U3DTR	HIZ	HIZ	HI Z
GPIO15	IOZ	General Purpose IO Muxed with IRFIRSEL	HIZ	HIZ	HI Z
GPIO[23:16]	IOZ	General Purpose IO	HIZ	HIZ	HI Z
GPIO24	IOZ	General Purpose IO Muxed with N1TXEN	HIZ	HIZ	HI Z
GPIO[28:25]	IOZ	General Purpose IO Muxed with N1TXD[3:0]	HIZ	HIZ	HI Z

TABLE 89. Signal Description (Continued)

Interface Type	Туре	Description	HR	RR	s
GPIO29	IOZ	General Purpose IO Muxed with I2SDIO	HIZ	HIZ	HI Z
GPIO30	IOZ	General Purpose IO Muxed with I2SCLK	HIZ	HIZ	HI Z
GPIO31	IOZ	General Purpose IO Muxed with I2SWORD	HIZ	HIZ	HI Z
GPIO200	IOZ	General Purpose IO Muxed with LRD0	HIZ	HIZ	HI Z
GPIO201	IOZ	General Purpose IO Muxed with LRD1	HIZ	HIZ	HI Z
GPIO202	IOZ	General Purpose IO Muxed with LWR0	HIZ	HIZ	HI Z
GPIO203	IOZ	General Purpose IO Muxed with LWR1	HIZ	HIZ	HI Z
GPIO204	IOZ	General Purpose IO Muxed with PREG	HIZ	HIZ	HI Z
GPIO205	IOZ	General Purpose IO Muxed with PCE0	HIZ	HIZ	HI Z
GPIO206	IOZ	General Purpose IO Muxed with PCE1	HIZ	HIZ	HI Z
GPIO207	IOZ	General Purpose IO Muxed with PWE	HIZ	HIZ	HI Z
GPIO208	IOZ	General Purpose IO Muxed with S0DOUT	HIZ	HIZ	HI Z
GPIO209	IOZ	General Purpose IO Muxed with S0CLK	HIZ	HIZ	HI Z
GPIO210	IOZ	General Purpose IO Muxed with S0DE	HIZ	HIZ	HI Z
GPIO211	IOZ	General Purpose IO Muxed with IRDATX	HIZ	HIZ	HI Z

TABLE 89. Signal Description (Continued)

Interface Type	Туре	Description	HR	RR	s
GPIO212	IOZ	General Purpose IO Muxed with U0TXD	HIZ	HIZ	HI Z
GPIO213	IOZ	General Purpose IO Muxed with U1TXD	HIZ	HIZ	HI Z
GPIO214	IOZ	General Purpose IO Muxed with U3TXD	HIZ	HIZ	HI Z
GPIO215	IOZ	General Purpose IO Muxed with N0MDC	HIZ	HIZ	HI Z
Clocks and I	Reset				
12XTI	1	Internally compensated 12MHz (typical) crystal input			
12XTO	0	Internally compensated 12MHz (typical) crystal output			
32XTI	I	Internally compensated 32.768kHz (typical) crystal input			
32XTO	0	Internally compensated 32.768kHz (typical) crystal output			
RSTIN	I	CPU reset input	IN	IN	IN
RSTOUT	0	Buffered output of CPU reset input	0	0	0
ROMSEL	I	Determines if boot is from ROM or SMROM. ROMSEL should be terminated appropriately as these signals should not change during runtime.	IN	IN	IN
ROMSIZE	I	Latched at the rising edge of reset to determine if ROM width is 16 bit or 32 bit.	IN	IN	IN
		ROMSIZE should be terminated appropriately as these signals should not change during runtime.			
Power Mana	gement				
PWR_EN	0	Active high power enable output. This signal is intended to be used as the regulator enable for the VDDI (core power).		1	0
VDDXOK	1	Active high input to signal that VDDX is stable.	IN	IN	IN
Power/Groui	nd				

TABLE 89. Signal Description (Continued)

Interface Type	Туре	Description	HR	RR	s
VDDI	Р	Internal core voltage.			
VDDX	Р	External I/O voltage.			
VDDY	Р	Individual External I/O voltage for SDRAM only.			
VSEL	I	External SDRAM voltage type: 1 - 3.3V 0 - 2.5V	IN	IN	IN
VSS	G	Ground			
XPWR12	Р	12MHz (typical) oscillator and PLL power. This pin should be connected to VDDX through a 10 Ohm resistor. In addition a 22uF CAP in parallel with a .01uF CAP should be placed from this pin to XAGND12.			
XAGND12	G	12MHz (typical) oscillator and PLL ground.			
XPWR32	Р	32.768kHz (typical) oscillator power. This pin should be connected to VDDX through a 10 Ohm resistor. In addition a 22uF CAP in parallel with a .01uF CAP should be placed from this pin to XAGND32.			
XAGND32	G	32.768kHz (typical) oscillator ground			

Electrical Specifications

This chapter provides the following electrical specifications for the Au1100:

- Absolute Maximum Ratings
- DC Parameters
- AC Parameters
- Crystal Specifications

This chapter contains preliminary information that is subject to full Au1100 characterization.

11.1 Absolute Maximum Ratings

Table 90 shows the absolute maximum ratings for the Au1100. These ratings are stress ratings, operating at or beyond these ratings for extended periods of time may result in damage to the Au1100.

Unless otherwise designated all voltages are relative to VSS.

TABLE 90. Absolute Maximum Ratings

Paramet er	Description	Minimum	Maximum	Units
VDDI	Core Voltage	VSS5	1.2	Volts
VDDX	I/O Voltage	VSS5	3.6	Volts
VDDY	I/O Voltage	VSS5	3.6	Volts
XPWR12, XPWR32	Oscillator Voltage	VSS5	3.6	Volts
Vin	Voltage applied to any pin	VSS5	VDDX + .5	Volts
Ts	Storage Temperature	-40	125	Deg. C

11.2 DC Parameters

Table 91 shows the DC parameters for the Au1100.

Unless otherwise designated all voltages are relative to VSS. The operating requirements for VDDX and VDDI are given in the sections describing the DC characteristics for the different operating frequencies. For the SDRAM interface any parameters specified as functions of VDDX are assumed to be functions of VDDY unless noted otherwise.

TABLE 91. DC Parameters

Parameter	Description	Min	Nominal	Max	Units
Vihx	Input High Voltage	0.8 * VDDX			Volts
Vilx	Input Low Voltage			0.2 * VDDX	Volts
Vohx @ 2mA	Output High Voltage	0.8 * VDDX			Volts
Volx @ 2mA	Output Low Voltage			0.2 * VDDX	Volts
Vihy	SDRAM Input High Voltage	0.8 * VDDY			Volts
Vily	SDRAM Input Low Voltage			0.2 * VDDY	Volts
Vohy @ 2mA	SDRAM Output High Voltage	0.8 * VDDY			Volts
Voly @ 2mA	SDRAM Output Low Voltage			0.2 * VDDY	Volts
li	Input Leakage Current			25	uA
Cin	Input Capacitance (This parameter is by design and not tested)		5		pF
Та	Operating Temperature	0		70	Deg. C
lxpwr12	XPWR12 Current		1	3	mA

TABLE 91. DC Parameters (Continued)

Parameter	Description	Min	Nominal	Max	Units
lxpwr32	XPWR32 Current		1	3	mA
VDDX - VDDI	Difference between I/O voltage and core voltage during operation.	1			V
VDDY - VDDI	Difference between I/O voltage and core voltage during operation.	0			V

11.2.1 CPU Frequency <= 333 MHz

Table 90 shows the power and voltage requirements for the Au1100 with a CPU frequency less than or equal to 333 MHz.

TABLE 92. DC Parameters for CPU frequency <= 333 MHz

Parameter	Min	Typical	Max	Units
VDDI	TBD	1.0	TBD	Volts
VDDX, XPWR12, XPWR32	2.7	3.3	3.6	Volts
XPWR12 and XPWR32 should be connected to VDDX through the circuit descibed in Chapter 10				
VDDY (VSEL=1)	2.7	3.3	3.6	Volts
VDDY (VSEL=0)	TBD	2.5	TBD	Volts
Power: VDDI	TBD	TBD	TBD	mW
Power: VDDX+VDDY where VDDX=VDDY	TBD	75	TBD	mW
IDLE0 Power		TBD		mW
IDLE1 Power		TBD		mW
Sleep Current (VDDI = VSS)			50	uA

11.2.2 CPU Frequency <= 400 MHz

Table 93 shows the power and voltage requirements for the Au1100 with a CPU frequency less than or equal to 400 MHz.

TABLE 93. DC Parameters for CPU frequency <= 400 MHz

Parameter	Min	Typical	Max	Units
VDDI	TBD	1.0	TBD	Volts
VDDX, XPWR12, XPWR32	3.0	3.3	3.6	Volts
XPWR12 and XPWR32 should be connected to VDDX through the circuit descibed in Chapter 10				
VDDY (VSEL=1)	TBD	3.3	3.6	Volts
VDDY (VSEL=0)	TBD	2.5	TBD	Volts
Power: VDDI	TBD	TBD	TBD	mW
Power: VDDX+VDDY where VDDX=VDDY	TBD	75	TBD	mW
IDLE0 Power		TBD		mW
IDLE1 Power		TBD		mW
Sleep Current (VDDI = VSS)			50	uA

11.2.3 CPU Frequency <= 500 MHz

Table 94 shows the power and voltage requirements for the Au1100 with a CPU frequency less than or equal to 500 MHz.

TABLE 94. DC Parameters for CPU frequency <= 500 MHz

Parameter	Min	Typical	Max	Units
VDDI	TBD	1.2	TBD	Volts
VDDX, XPWR12, XPWR32	3.0	3.3	3.6	Volts
XPWR12 and XPWR32 should be connected to VDDX through the circuit descibed in Chapter 10				
VDDY (VSEL=1)	TBD	3.3	3.6	Volts
VDDY (VSEL=0)	TBD	2.5	TBD	Volts
Power: VDDI	TBD	TBD	TBD	mW
Power: VDDX+VDDY where VDDX=VDDY	TBD	200	TBD	mW
IDLE0 Power		TBD		mW
IDLE1 Power	_	TBD	_	mW
Sleep Current (VDDI = VSS)			50	uA

11.3 AC Parameters

This chapter describes the AC parameters for I/O devices in the Au1100. Each class of output has different capacitive loads. As the capacitance on the load increases the propagation delay will increase. The capacitive load of all I/O other than the SDRAM interface is 50pF.

The timing of those signals which have synchronous relationships or have a defined requirement are given. The timing diagrams are shown to illustrate the timing only and should not necessarily be interpreted as the functional timing of the port.

It is assumed that the timing and/or functionality of the protocol related to the port is adhered to by the external system. The protocol timing is not necessarily presented here and the appropriate section or specification should be referenced for complete functional timing parameters.

Timing measurements are made from 50% threshold to 50% threshold.

Certain timing parameters are based off of the internal system bus clock. When this is the case the symbol Tsys will be used which is defined in nanoseconds as:

Tsys = SD/CPU

The symbol CPU should be interpreted as the CPU clock speed in MHz as set by the CPU PLL. See Section 7.1, Clocks for details. The symbol SD should be interpreted as the system bus divider. See section Section 7.4, Power Management for details.

11.3.1 SDRAM Timing

All SDRAM outputs are assumed to have a load of 35pF capacitive load, except for the clocks which are 15pF.

Each chip select can support a maximum of two loads.

The SDRAM is a high speed interface. Reflection and propagation delays should be accounted for in the system design. As a general rule of thumb, unterminated etches should be kept to 6" or less.

TABLE 95. SDRAM Controller Interface

Signal	Symbol	Parameter	Min	Max	Units
SDCLK[n]	Tsdclk	SDCLK[n] Clock Cycle	$\frac{T_{s}}{2}$	$\frac{T_{sys}}{2}$	
SDCS[n], SDRAS, SDCAS, SDWE, SDBA[1:0], SDA[12:0], SDQM[3:0], SDD[31:0] (output)	Tsdd	Delay from SDCLK[n]	$\frac{T_{sdclk}}{4} - 1.5$	$\frac{T_{sdclk}}{4} + 2$	ns
SDD[31:0] (input)	Tsdsu	Data setup to SDCLK[n]	3		ns
SDD[31:0] (input)	Tsdh	Data hold from SDCLK[n]	2		ns

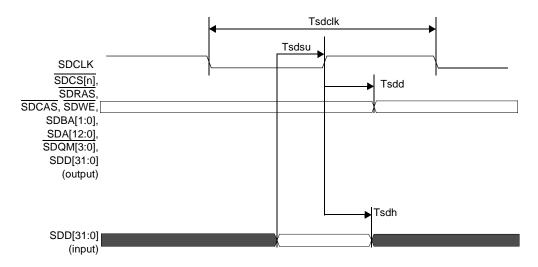


FIGURE 41. SDRAM Timing

11.3.2 Static Bus Controller Timing

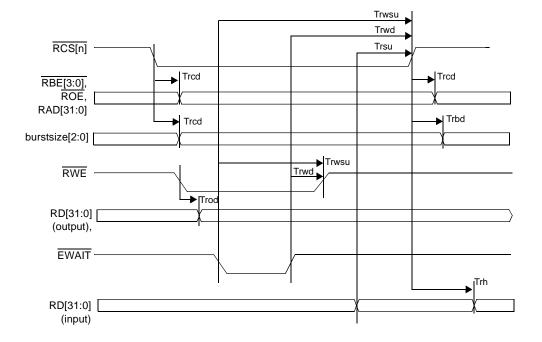
The timing presented in registers **mem_sttime***n* are not presented here. The parameters in these registers are presented in a certain number of clock cycles and and will be accurate within +/- 2ns.

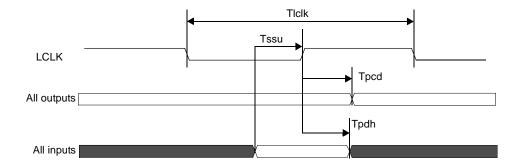
TABLE 96. Static Ram, I/O Device and Flash timing

Signal	Symbol	Parameter	Min	Max	Units
RBE[3:0], ROE, RAD[31:0], burstsize[2:0]	Trcd	Delay from RCSn	-2	+2	ns
RD[31:0] (read)	Trsu	Data setup to RCSn	5		ns
RD[31:0] (read)	Trh	Data hold from RCSn	0		ns
RD[31:0] (write)	Trod	Delay from RWE to data out	-2	2	ns

TABLE 96. Static Ram, I/O Device and Flash timing

Signal	Symbol	Parameter	Min	Max	Units
EWAIT	Trwsu	EWAIT setup to RCS[n], RWE If EWAIT does not meet this setup time the cycle will not be held	3 * Tsys + 15		ns
ROE, RWE	Trwd	ROE and RCS[n] delay from EWAIT		3 * Tsys + 15	
burstsize[2:0]	Trbd	Delay from RCSn		Tsys + 2	




FIGURE 42. Static Ram, I/O Device and Flash timing

11.3.3 Synchronous Static Bus Timing

When the static bus is operating in synchronous mode all timing is reference with respect to LCLK. .

IABLE 97.	PCI	Controller	interrace

Signal	Symbol	Parameter	Min	Max	Units
LCLK	Ticlk	LCLK Clock Cycle	20		ns
All outputs	Tcd	Delay from LCLK	2	10	ns
All inputs	Tsu	Data setup to LCLK	10		ns
	Tdh	Data hold from LCLK	0		ns

11.3.4 PCI Timing

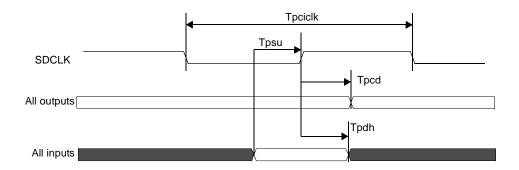

The PCI controller conforms to the PCI 2.2 Local Bus Specification. The PCI timing shown assumes a maximum of 3 PCI loads with no more than one slot. Trace lengths of PCI signals should be kept to a maximum of 9 inches.

TABLE 98. PCI Controller Interface

Signal	Symbol	Parameter	Min	Max	Units
PCICLK	Tpclk	PCICLK Clock Cycle	15		ns

TABLE 98. PCI Controller Interface

Signal	Symbol	Parameter	Min	Max	Units
All outputs	Tpcd	Delay from PCICLK	2	6	ns
All inputs	Tpsu	Data setup to PCICLK	3		ns
	Tpdh	Data hold from PCICLK	0		ns

TABLE 99. PCMCIA Timing

Signal	Symbol	Parameter	Min	Max	Units
PREG, RAD[31:0], RD[31:0] (out- put)	Tpcd	Delay from PCE[n]	-2	+2	ns
PIOS16	Tpios	PIOS16 setup to PIOR, PIOW	TBD		ns
PIOS16	Tpioh	PIOS16 hold from PIOR, PIOW	TBD		ns
ŌĒ	Tpoed	OE delay from POE, PIOR	-2	+2	ns
RD[31:0] (input)	Tpsu	Data setup to POE, PIOR	Tsys + 15		ns

TABLE 99. PCMCIA Timing

Signal	Symbol	Parameter	Min	Max	Units
RD[31:0]	Tph	Data hold from POE, PIOR	0		ns
PWAIT	Tpwsu	PWAIT setup to POE, PWE, PIOR, PIOW If PWAIT does not meet this setup time the cycle will not be held	4 * Tsys + 15		ns
POE, PWE, PIOR, PIOW	Tpwd	POE, PWE, PIOR, PIOW delay from PWAIT.		4 * Tsys + 2	ns

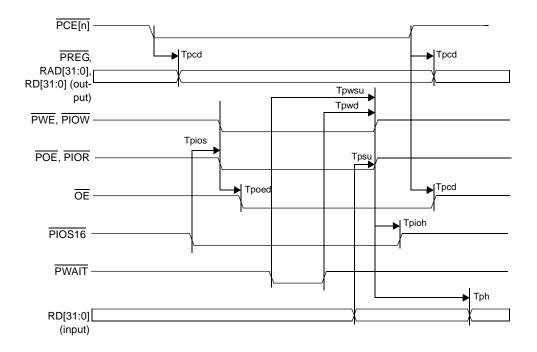


FIGURE 43. PCMCIA Host Adapter Timing

TABLE 100.LCD Timing

Signal	Symbol	Parameter	Min	Max	Units
LCLK	Ticik	LCLK Period This parameter is set with the D5 bit in the mem_stcfg0. Please see Section 3.2, Static Bus Controller for information	Tsys/5	Tsys/4	ns
RCS[n], RAD[31:0], RD[31:0] (out- put)	Tlcd	Delay from LCLK	-2	2	ns
RD[31:0] (input)	Tlsu	Data setup to LRD[n]	Tsys + 15		ns
RD[31:0] (input)	Tlh	Data hold from LRD[n]	0		ns
LWAIT	Tlwsu	LWAIT setup to LRD[n], LWR[n]. If LWAIT does not meet this setup time the cycle will not be held	4 * Tsys + Ticik + 15		
LRD[n], LWR[n]	Tlwd	LRD[n], LWR[n] delay from LWAIT		4 * Tsys + Tlclk + 15	

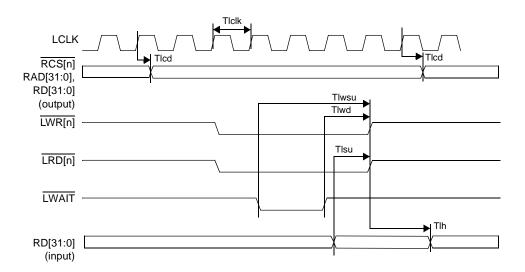


FIGURE 44. LCD Interface Timing

11.3.5 Peripheral Timing

TABLE 101.Ethernet MII Interface

Signal	Symbol	Parameter	Min	Max	Units
NOTXCLK NORXCLK N1TXCLK N1RXCLK	T _{eth}	Ethernet Transmit/ Receive Clock Cycle Time (25% of data rate)	40 +/- 10 (for 100 400 +/- (for 10N	Mbs) 100ppm	ns
		Ethernet Transmit/ Receive Clock Duty Cycle	35	65	%
N0TXEN, N0TXD[3:0] N1TXEN N1TXD[3:0]	Ted	Delay from TXCLK to TXEN, TXD[3:0]	0	25	ns
N0RXD[3:0] N0RXDV	Tesu	Setup Time before RXC- CLK for RXD, and RXDV	10		ns
N1RXD[3:0] N1RXDV	Teh	Hold time from RXCLK for RXD, and RXDV	10		ns
N0MDC,	Tmdc	MDC cycle time	system bus clock / 160		k / 160
N1MDC		MDC Duty Cycle	40	60	%
N0MDIO, N1MDIO	Tmdd	Delay from MDC to MDIO	0	300	ns
	Tmsu	Setup time before MDC for MDIO	10		ns
	Tmh	Hold time from MDC for MDIO	10		ns
	Tmz	Delay from MDC to MDIO tristate	0	300	ns
NOCRS, NOCOL, N1CRS, N1COL	Та	Minimum active time			

Note: Both Ethernet MACs offer identical timing. The Nn prefix on each of the signals should be taken as referring to MAC N0 or N1 with all timing relative to signals within the same MAC.

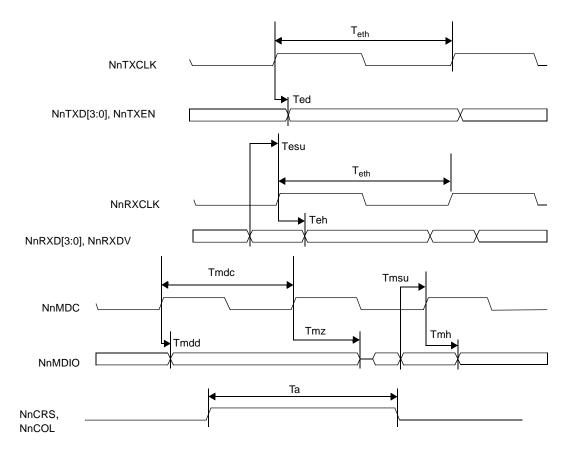


FIGURE 45. MII Interface Timing

TABLE 102.AC-Link Interface

Signal	Symbol	Parameter	Min	Max	Units
ACBCLK	Tabc	AC97 bit clock cycle time	12.288 (typical)		MHz
	Tabh	AC97 bit clock high time	36	45	ns
	Tabl	AC97 bit clock low time	36	45	ns

TABLE 102.AC-Link Interface

Signal	Symbol	Parameter	Min	Max	Units
ACSYNC	Tacs	AC97 sync cycle	48 (typical)		kHz
	Tacsh	AC97 sync high time	1.3 (typical)		us
	Tacsl	AC97 sync low time	19.5 (typical)		us
ACSYNC ACDO ACDI	Tad	Delay from ACBCLK to ACSYNC and ACDO on output		15	ns
	Tasu	Setup before ACBCLK for ACDI	10		ns
	Tah	Hold after ACBCLK for ACDI	10		ns

NOTE ACRST is an Asynchronous signal controlled by software through the register ac97_config. It has no relationship to other AC97 signals.

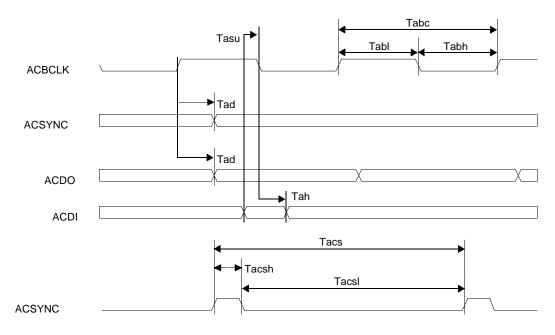


FIGURE 46. AC-Link Timing

TABLE 103.GPIO Timing for interrupt

Signal	Symbol	Parameter	Min	Max	Units
GPIO[n]	Tmin	Minimum high or low time for interrupt.	10		ns
		The level is programma- ble, this timing reflects the minimum active period for the level programmed			

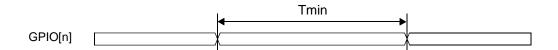


FIGURE 47. GPIO Interrupt Timing

TABLE 104.EJTAG Interface

Signal	Symbol	Parameter	Min	Max	Units
тск	Tec	EJTAG TCK cycle time *see note below	35		ns
	Tech	TCK high time	10		ns
	Tecl	TCK low time	10		ns
TMS TDI	Tesu	Setup before TCK for TMS and TDI	5		ns
	Teh	Hold after TCK for TMS and TDI	3		ns
TDO	Teco	Delay from TCK to TDO on output		15	ns
	Tecz	Delay from TCK to TDO tristate		15	ns
TRST	Trstl	TRST low time	25		ns

Note: T_{ec} minimum is the greater of 25ns or 1/4 the period of the system bus clock.

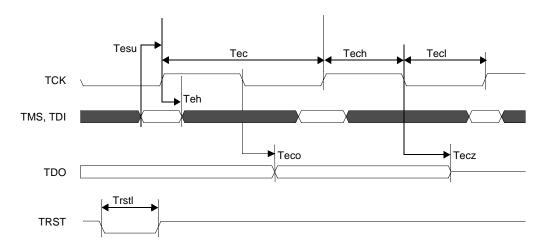


FIGURE 48. EJTAG Timing

11.4 Asynchronous Signals

GPIO

The GPIO signals are driven by software.

Reset

Reset timing and all signals relative to reset are shown in the Reset section.

UART

All UART signals are asynchronous to other external signals.

USB

All USB signals are asynchronous to other external signals. The USB protocol should be followed for appropriate operation.

11.5 Crystal Specifications

Table 105 provides the specification for the parallel resonant 12MHz crystal to be placed between XTI12 and XTO12. Load capacitors for this oscillator are integrated into the Au1100.

TABLE 105.12MHz Crystal Specification

Specification	Min	Тур	Max	Unit
Resonant Frequency	11	12	15	MHz
Motional Resistance			60	Ohms
Shunt Capacitance		<5	7	pF
Load Capacitance (this capacitance is integrated on the Au1100)	8	12	20	pF
Drive Level			100	uW
Crystal Type	AT Cut			

Table 106 provides the specification for the parallel resonant 32MHz crystal to be placed between XTI32 and XTO32. Load capacitors for this oscillator are integrated into the Au1100 so no external circuitry is required when using the specified crystal.

TABLE 106.32.768kHz Crystal Specification

Specification	Min	Тур	Max	Unit
Resonant Frequency		32.768		kHz
Equivalent Series Resistance			50k	Ohms
Shunt Capacitance		1.5	2.0	pF
Load Capacitance (this capacitance is integrated on the Au1100)	6		12	pF
Motional Capacitance		3	4	fF
Drive Level			1	uW
Quality Factor	40k			
Crystal Type	Tuning Fork			

Packaging and Pinout

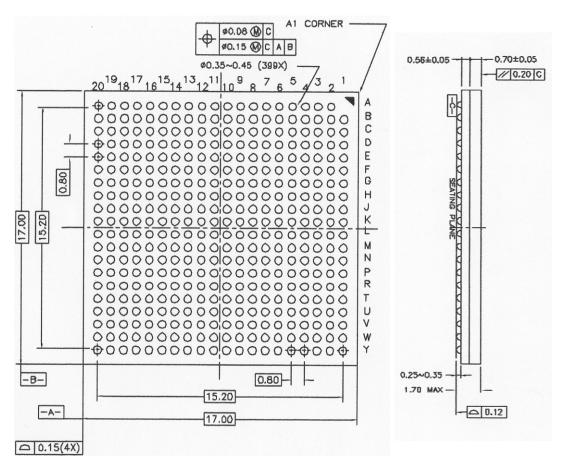


FIGURE 49.Package Dimensions: Bottom View (left) and Side View (right)

TABLE 107.Pin Placement Expanded View (table 1 of 3)

	1	2	3	4	5	6	7
Α	N/C	XTI32	XPWR12	XTO12	XTI12	TC3	PWE (GP207)
В	XPWR32	XAGND32	XTO32	ROMSEL	XAGND12	TC0	PIOWN
С	VSEL	TMS	TSTEN	TRSTN	CVDDXOK	GP00	TC1
D	SDA11	CRSTON	SDA12	ROMSIZ	CRSTN	GP01	GP04
E	SDA5	SDA6	SDA9	SDA8	SDA10	CPWREN	GP02 (EXTCLK0)
F	SDA3	SDA1	SDA2	SDA4	SDA7	VSSI	VDDI
G	SDQM3	SDQM2	SDA0	SDBA0	SDBA1	VSSI	VDDY
Н	SDWEN	SDQM1	SDQM0	SDCASN	SDRASN	VDDI	VDDY
J	SDCSN2	SDCKE	VDDY	SDCLK2	VSSX	VDDI	VDDY
K	SDCSN0	SDCSN1	VSSX	SDCLK1	VDDY	VSSI	VDDY
L	SDD31	SDD28	VDDY	SDCLK0	VSSX	VSSI	VDDY
М	SDD30	SDD27	SDD24	SDD25	SDD26	VDDI	VDDY
N	SDD29	SDD21	SDD20	SDD22	SDD23	VDDI	VDDY
Р	SDD17	SDD15	SDD18	SDD19	SDD14	VSSI	VDDY
R	SDD16	SDD11	SDD12	SDD13	SDD10	VSSI	VDDI
Т	SDD9	SDD7	SDD8	SDMS1_DAT1	VSSX	SDMS0_DAT0	SDMS0_CLK
U	SDD6	SDD1	SDD2	SDD3	SDMS_MS_EN	LCD_PWM1	GP22
٧	SDD5	SDD0	SDMS1_DAT3	SDMS0_DAT1	SDMS0_CMD	LCD_PWM0	GP23
W	SDD4	SDMS1_DAT2	SDMS1_CMD	SDMS1_CLK	RESVD_4	GP17	RESVD_1
Υ	SDMS1_DAT0	SDMS0_DAT3	SDMS0_DAT2	RESVD_5	RESVD_3	GP18	GP16

TABLE 108.Pin Placement Expanded View (table 2 of 3)

	8	9	10	11	12	13	14
Α	PREG (GP204)	PWAITN	EWAIT	LWR1 (GP203)	RD4	RD9	RD11
В	POEN	PIOS16N	PCE1 (GP206)	LRD0 (GP200)	RD0	RD6	RD10
С	GP05	PIORN	LRD1 (GP201)	LWR0 (GP202)	RD5	RD8	RD12
D	TC2	GP07_F	PCE0 (GP205)	VSSX	LWAITN	RD2	RD3
E	GP03 (EXTCLK1)	GP06_F (SROMCKE)	VSSX	LCLK	RD1	RD14	RD7
F	VDDI	VSSI	VSSI	VDDI	VDDI	VSSI	VSSI
G	VDDY	VDDX	VDDX	VDDX	VDDX	VDDX	VDDX
Н	VSSX	VSSX	VSSX	VSSX	VSSX	VSSX	VDDX
J	VSSX	VSSX	VSSX	VSSX	VSSX	VSSX	VDDX
K	VSSX	VSSX	VSSX	VSSX	VSSX	VSSX	VDDX
L	VSSX	VSSX	VSSX	VSSX	VSSX	VSSX	VDDX
М	VSSX	VSSX	VSSX	VSSX	VSSX	VSSX	VDDX
N	VSSX	VSSX	VSSX	VSSX	VSSX	VSSX	VDDX
Р	VDDX	VDDX	VDDX	VDDX	VDDX	VDDX	VDDX
R	VDDI	VSSI	VSSI	VDDI	VDDI	VSSI	VSSI
Т	RESVD_2	GP19	N0RXD3	U3DTR (GP14)	N0RXD2	ACDI	U1RXD
U	N0TXCLK	N0TXD2 (GP27)	NOTXEN (GP24)	N0RXD1	I2SCLK (GP30)	ACBCLK (S1DIN)	ACRST (S1DEN)
V	GP21	N0TXD3 (GP28)	N0TXD1 (GP26)	IRFIRSEL (GP15)	U1TXD (GP213)	I2SWRD (GP31)	ACSYNC (S1DOUT)
w	RESVD_0	N0MDC (GP215)	N0COL	N0RXCLK	U3RTS (GP13)	N0RXD0	ACDO (S1CLK)
Υ	GP20	N0MDIO	NORXDV	N0TXD0 (GP25)	U3TXD (GP214)	U0TXD (GP212)	N0CRS

TABLE 109.Pin Placement Expanded View (table 3 of 3)

	15	16	17	18	19	20
Α	RD16	RD17	RD24	RD25	RD26	RD28
В	RD15	RD18	RD22	RD27	RD31	RAD2
С	RD19	RD21	RD23	RD29	RAD1	RAD10
D	RD13	RD20	RD30	RAD0	RAD5	RAD11
Е	VDDI	VSSX	RAD3	RAD4	RAD9	RAD15
F	VDDI	VDDI	RAD6	RAD8	RAD16	RAD19
G	VDDI	RAD12	RAD7	RAD14	RAD20	RAD21
Н	VSSI	RAD18	RAD13	RAD17	RAD22	RAD27
J	VSSI	RAD25	RAD23	RAD24	RAD26	RAD28
K	VDDI	RBEN0	RAD31	RAD30	RBEN2	RAD29
L	VDDI	VDDX	RBEN3	RWEN	ROEN	RBEN1
M	VSSI	LCD_PCK	LCD_LCK	LCD_D5	RCSN1	RCSN0
N	VSSI	VSSX	LCD_D4	LCD_D3	LCD_D2	RCSN2
Р	VDDI	LCD_D6	LCD_FCK	LCD_D11	LCD_D10	RCSN3
R	VDDI	VDDI	LCD_D7	LCD_D8	LCD_BIAS	LCD_D0
Т	VDDI	VSSX	LCD_LEND	LCD_D9	LCD_D12	LCD_D1
U	S0DE (GP210)	I2SDI (GP08)	U3CTS (GP09)	TDO	TDI	LCD_D13
V	IRDATX (GP211)	U3RI (GP12)	U3DCD (GP11)	TCK	USBH1M	LCD_D14
W	I2SDIO (GP29)	S0CLK (GP209)	USBDP (USBH0P)	SODIN	U0RXD	LCD_D15
Υ	U3RXD	IRDARX	S0DOUT (GP208)	USBDM (USBH0M)	U3DSR (GP10)	USBH1P

Memory Map

The Au1100 is a collection of several devices. The devices contain software visible registers that are memory mapped. Table 110 contains the memory map for the Au1100 peripheral devices and physical memory. The addresses are 36 bits wide.

TABLE 110.Basic Au1100 Physical Memory Map

Start Address	End Address	Size (MB)	Function
0x0 00000000	0x0 0FFFFFF	256	Memory KSEG 0/1
0x0 10000000	0x0 11FFFFFF	32	I/O Devices on Peripheral Bus
0x0 12000000	0x0 13FFFFFF	32	Reserved
0x0 14000000	0x0 17FFFFF	64	I/O Devices on System Bus
0x0 18000000	0x0 1FFFFFF	128	Memory Mapped 0x0 1FC00000 must contain the boot vector so this is typically where flash or ROM is located.
0x0 20000000	0x0 7FFFFFF	1536	Memory Mapped
0x0 80000000	0x0 EFFFFFF	1792	Memory Mapped Currently this space is memory mapped but it should be considered reserved for future use.
0x0 F0000000	0x0 FFFFFFF	256	Debug Probe
0x1 00000000	0xC FFFFFFF	4096	Reserved
0xD 00000000	0xD FFFFFFF	4096	I/O Device
0xE 00000000	0xE FFFFFFF	4096	External LCD Controller Interface
0xF 00000000	0xF FFFFFFF	4096	PCMCIA Interface

The Au1100 System bus devices are mapped at the addresses based at 0x0 14000000. See Table 111 for complete addresses.

TABLE 111. System Bus Devices Physical Memory Map

Start Address	End Address	Size	Function
0x0 14000000	0x0 14000FFF	512KB	SDRAM Memory Controller
0x0 14001000	0x0 14001FFF	512KB	SRAM/FLASH Memory Controller
0x0 14002000	0x0 14002FFF	512KB	DMA
0x0 14004000	0x0 14004FFF	512KB	Ethernet DMA
0x0 15000000	0x0 14007FFF	512KB	LCD Controller

The Au1100 peripheral bus devices are based at 0x0 11000000. The individual memory spaces of those devices are defined in Table 112.

TABLE 112.Peripheral Bus Devices Physical Memory Map

Start Address	End Address	Size	Function
0x0 10000000	0x0 100FFFFF	1MB	AC97 Controller
0x0 10100000	0x0 101FFFFF	1MB	USB Host
0x0 10200000	0x0 102FFFFF	1MB	USB Device
0x0 10300000	0x0 103FFFFF	1MB	IrDA
0x0 10400000	0x0 104FFFFF	1MB	Interrupt Controller 0
0x0 10500000	0x0 105FFFFF	1MB	Ethernet MAC
0x0 10600000	0x0 106FFFFF	1MB	SD Controller
0x0 10700000	0x0 10FFFFFF	9MB	
0x0 11000000	0x0 110FFFFF	1MB	I ² S
0x0 11100000	0x0 111FFFFF	1MB	UART0
0x0 11200000	0x0 112FFFFF	1MB	UART1
0x0 11300000	0x0 113FFFFF	1MB	
0x0 11400000	0x0 114FFFFF	1MB	UART3
0x0 11500000	0x0 115FFFFF	1MB	
0x0 11600000	0x0 116FFFFF	1MB	SSI
0x0 11700000	0x0 117FFFFF	1MB	Secondary GPIO
0x0 11800000	0x0 118FFFFF	1MB	Interrupt Controller 1
0x0 11900000	0x0 119FFFFF	1MB	System Control - RTC, TOY, Timers, Primary GPIO, Power Management

Programming Tips

Memory Mapped Registers

Peripheral, or system device registers should all be marked with the CCA bits to non-cacheable. Access must be on 32 bit boundaries, one 32 bit value at a time.

See Section 2.2, Caches for more information.

Device Memory Map

Table 113 lists all of the devices which are memory mapped to the Au1100 core CPU. These devices are all mapped within kseg1 (non-cached, non-TLB). All 32-bit addresses are translated into 36-bit addresses by changing bits 31:29 to zero and adding bits 35:32 which are set to zero.

TABLE 113. Device Memory Map

Register	KSEG1 Address	Physical Address	Reference
SDRAM Controller			Section 3.1
mem_sdmode0	0xB4000000	0x0 14000000	
mem_sdmode1	0xB4000004	0x0 14000004	
mem_sdmode2	0xB4000008	0x0 14000008	
mem_sdaddr0	0xB400000c	0x0 1400000c	
mem_sdaddr1	0xB4000010	0x0 14000010	
mem_sdaddr2	0xB4000014	0x0 14000014	
mem_sdrefcfg	0xB4000018	0x0 14000018	
mem_sdprecmd	0xB400001c	0x0 1400001c	
mem_sdautoref	0xB4000020	0x0 14000020	
mem_sdwrmd0	0xB4000024	0x0 14000024	
mem_sdwrmd1	0xB4000028	0x0 14000028	
mem_sdwrmd2	0xB400002C	0x0 1400002C	
mem_sdsleep	0xB4000030	0x0 14000030	
mem_sdsmcke	0xB4000034	0x0 14000034	
Static Bus Controller			Section 3.2
mem_stcfg0	0xB4001000	0x0 14001000	
mem_sttime0	0xB4001004	0x0 14001004	
mem_staddr0	0xB4001008	0x0 14001008	
mem_stcfg1	0xB4001010	0x0 14001010	
mem_sttime1	0xB4001014	0x0 14001014	
mem_staddr1	0xB4001018	0x0 14001018	
mem_stcfg2	0xB4001020	0x0 14001020	

TABLE 113. Device Memory Map (Continued)

Register	KSEG1 Address	Physical Address	Reference
mem_sttime2	0xB4001024	0x0 14001024	
mem_staddr2	0xB4001028	0x0 14001028	
mem_stcfg3	0xB4001030	0x0 14001030	
mem_sttime3	0xB4001034	0x0 14001034	
mem_staddr3	0xB4001038	0x0 14001038	
DMA Controller 0			Chapter 4
dma_moderead	0xB4002000	0x0 14002000	
dma_modeset	0xB4002000	0x0 14002000	
dma_modeclr	0xB4002004	0x0 14002004	
dma_peraddr	0xB4002008	0x0 14002008	
dma_buf0addr	0xB400200c	0x0 1400200c	
dma_buf0size	0xB4002010	0x0 14002010	
dma_buf1addr	0xB4002014	0x0 14002014	
dma_buf1size	0xB4002018	0x0 14002018	
DMA Controller 1			Chapter 4
dma_moderead	0xB4002100	0x0 14002100	
dma_modeset	0xB4002100	0x0 14002100	
dma_modeclr	0xB4002104	0x0 14002104	
dma_peraddr	0xB4002108	0x0 14002108	
dma_buf0addr	0xB400210c	0x0 1400210c	
dma_buf0size	0xB4002110	0x0 14002110	
dma_buf1addr	0xB4002114	0x0 14002114	
dma_buf1size	0xB4002118	0x0 14002118	
DMA Controller 2			Chapter 4
dma_moderead	0xB4002200	0x0 14002200	
dma_modeset	0xB4002200	0x0 14002200	
dma_modeclr	0xB4002204	0x0 14002204	

TABLE 113. Device Memory Map (Continued)

Register	KSEG1 Address	Physical Address	Reference
dma_peraddr	0xB4002208	0x0 14002208	
dma_buf0addr	0xB400220c	0x0 1400220c	
dma_buf0size	0xB4002210	0x0 14002210	
dma_buf1addr	0xB4002214	0x0 14002214	
dma_buf1size	0xB4002218	0x0 14002218	
DMA Controller 3			Chapter 4
dma_moderead	0xB4002300	0x0 14002300	
dma_modeset	0xB4002300	0x0 14002300	
dma_modeclr	0xB4002304	0x0 14002304	
dma_peraddr	0xB4002308	0x0 14002308	
dma_buf0addr	0xB400230c	0x0 1400230c	
dma_buf0size	0xB4002310	0x0 14002310	
dma_buf1addr	0xB4002314	0x0 14002314	
dma_buf1size	0xB4002318	0x0 14002318	
DMA Controller 4			Chapter 4
dma_moderead	0xB4002400	0x0 14002400	
dma_modeset	0xB4002400	0x0 14002400	
dma_modeclr	0xB4002404	0x0 14002404	
dma_peraddr	0xB4002408	0x0 14002408	
dma_buf0addr	0xB400240c	0x0 1400240c	
dma_buf0size	0xB4002410	0x0 14002410	
dma_buf1addr	0xB4002414	0x0 14002414	
dma_buf1size	0xB4002418	0x0 14002418	
DMA Controller 5			Chapter 4
dma_moderead	0xB4002500	0x0 14002500	
dma_modeset	0xB4002500	0x0 14002500	
dma_modeclr	0xB4002504	0x0 14002504	

TABLE 113. Device Memory Map (Continued)

Register	KSEG1 Address	Physical Address	Reference
dma_peraddr	0xB4002508	0x0 14002508	
dma_buf0addr	0xB400250c	0x0 1400250c	
dma_buf0size	0xB4002510	0x0 14002510	
dma_buf1addr	0xB4002514	0x0 14002514	
dma_buf1size	0xB4002518	0x0 14002518	
DMA Controller 6			Chapter 4
dma_moderead	0xB4002600	0x0 14002600	
dma_modeset	0xB4002600	0x0 14002600	
dma_modeclr	0xB4002604	0x0 14002604	
dma_peraddr	0xB4002608	0x0 14002608	
dma_buf0addr	0xB400260c	0x0 1400260c	
dma_buf0size	0xB4002610	0x0 14002610	
dma_buf1addr	0xB4002614	0x0 14002614	
dma_buf1size	0xB4002618	0x0 14002618	
DMA Controller 7			Chapter 4
dma_moderead	0xB4002700	0x0 14002700	
dma_modeset	0xB4002700	0x0 14002700	
dma_modeclr	0xB4002704	0x0 14002704	
dma_peraddr	0xB4002708	0x0 14002708	
dma_buf0addr	0xB400270c	0x0 1400270c	
dma_buf0size	0xB4002710	0x0 14002710	
dma_buf1addr	0xB4002714	0x0 14002714	
dma_buf1size	0xB4002718	0x0 14002718	
Interrupt Controller 0			Chapter 5
ic_cfg0rd	0xB0400040	0x0 10400040	
ic_cfg0set	0xB0400040	0x0 10400040	
ic_cfg0clr	0xB0400044	0x0 10400044	

TABLE 113. Device Memory Map (Continued)

Register	KSEG1 Address	Physical Address	Reference
ic_cfg1rd	0xB0400048	0x0 10400048	
ic_cfg1set	0xB0400048	0x0 10400048	
ic_cfg1clr	0xB040004C	0x0 1040004C	
ic_cfg2rd	0xB0400050	0x0 10400050	
ic_cfg2set	0xB0400050	0x0 10400050	
ic_cfg2clr	0xB0400054	0x0 10400054	
ic_req0int	0xB0400054	0x0 10400054	
ic_srcrd	0xB0400058	0x0 10400058	
ic_srcset	0xB0400058	0x0 10400058	
ic_srcclr	0xB040005C	0x0 1040005C	
ic_req1int	0xB040005C	0x0 1040005C	
ic_assignrd	0xB0400060	0x0 10400060	
ic_assignset	0xB0400060	0x0 10400060	
ic_assignclr	0xB0400064	0x0 10400064	
ic_wakerd	0xB0400068	0x0 10400068	
ic_wakeset	0xB040006C	0x0 1040006C	
ic_wakeclr	0xB0400070	0x0 10400070	
ic_maskrd	0xB0400070	0x0 10400070	
ic_maskset	0xB0400074	0x0 10400074	
ic_maskclr	0xB0400078	0x0 10400078	
ic_risingrd	0xB0400078	0x0 10400078	
ic_risingclr	0xB040007C	0x0 1040007C	
ic_fallingrd	0xB040007C	0x0 1040007C	
ic_fallingclr	0xB0400080	0x0 10400080	
Interrupt Controller 1			Chapter 5
ic_cfg0rd	0xB1800040	0x0 11800040	
ic_cfg0set	0xB1800040	0x0 11800040	
ic_cfg0clr	0xB1800044	0x0 11800044	

TABLE 113. Device Memory Map (Continued)

Register	KSEG1 Address	Physical Address	Reference
ic_cfg1rd	0xB1800048	0x0 11800048	
ic_cfg1set	0xB1800048	0x0 11800048	
ic_cfg1clr	0xB180004C	0x0 1180004C	
ic_cfg2rd	0xB1800050	0x0 11800050	
ic_cfg2set	0xB1800050	0x0 11800050	
ic_cfg2clr	0xB1800054	0x0 11800054	
ic_req0int	0xB1800054	0x0 11800054	
ic_srcrd	0xB1800058	0x0 11800058	
ic_srcset	0xB1800058	0x0 11800058	
ic_srcclr	0xB180005C	0x0 1180005C	
ic_req1int	0xB180005C	0x0 1180005C	
ic_assignrd	0xB1800060	0x0 11800060	
ic_assignset	0xB1800060	0x0 11800060	
ic_assignclr	0xB1800064	0x0 11800064	
ic_wakerd	0xB1800068	0x0 11800068	
ic_wakeset	0xB180006C	0x0 1180006C	
ic_wakeclr	0xB1800070	0x0 11800070	
ic_maskrd	0xB1800070	0x0 11800070	
ic_maskset	0xB1800074	0x0 11800074	
ic_maskclr	0xB1800078	0x0 11800078	
ic_risingrd	0xB1800078	0x0 11800078	
ic_risingclr	0xB180007C	0x0 1180007C	
ic_fallingrd	0xB180007C	0x0 1180007C	
ic_fallingclr	0xB1800080	0x0 11800080	
AC97 Controller			Section 6.1
ac97_config	0xB0000000	0x0 10000000	
ac97_status	0xB0000004	0x0 10000004	
ac97_data	0xB0000008	0x0 10000008	

TABLE 113. Device Memory Map (Continued)

Register	KSEG1 Address	Physical Address	Reference
ac97_cmmd	0xB000000C	0x0 1000000C	
ac97_cmmdresp	0xB000000C	0x0 1000000C	
ac97_control	0xB0000010	0x0 10000010	
USB Host Controller			Section 6.2
Open HCI Register Set Base	0xB0100000	0x0 10100000	
usbh_enable	0xB017FFFC	0x0 1017FFFC	
USB Device Controller			Section 6.3
usbd_ep0rd	0xB0200000	0x0 10200000	
usbd_ep0wr	0xB0200004	0x0 10200004	
usbd_ep2wr	0xB0200008	0x0 10200008	
usbd_ep3wr	0xB020000c	0x0 1020000c	
usbd_ep4rd	0xB0200010	0x0 10200010	
usbd_ep5rd	0xB0200014	0x0 10200014	
usbd_inten	0xB0200018	0x0 10200018	
usbd_intstat	0xB020001c	0x0 1020001c	
usbd_config	0xB0200020	0x0 10200020	
usbd_ep0cs	0xB0200024	0x0 10200024	
usbd_ep2cs	0xB0200028	0x0 10200028	
usbd_ep3cs	0xB020002c	0x0 1020002c	
usbd_ep4cs	0xB0200030	0x0 10200030	
usbd_ep5cs	0xB0200034	0x0 10200034	
usbd_ep0rdstat	0xB0200040	0x0 10200040	
usbd_ep0wrstat	0xB0200044	0x0 10200044	
usbd_ep2wrstat	0xB0200048	0x0 10200048	
usbd_ep3wrstat	0xB020004c	0x0 1020004c	
usbd_ep4rdstat	0xB0200050	0x0 10200050	
usbd_ep5rdstat	0xB0200054	0x0 10200054	
usbd_enable	0xB0200058	0x0 10200058	

TABLE 113. Device Memory Map (Continued)

Register	KSEG1 Address	Physical Address	Reference
IrDA Controller			Section 6.4
ir_rngptrstat	0xB0300000	0x0 10300000	
ir_rngbsadrh	0xB0300004	0x0 10300004	
ir_rngbsadrl	0xB0300008	0x0 10300008	
ir_ringsize	0xB030000C	0x0 1030000C	
ir_rngprompt	0xB0300010	0x0 10300010	
ir_rngadrcmp	0xB0300014	0x0 10300014	
ir_intclear	0xB0300018	0x0 10300018	
ir_config1	0xB0300020	0x0 10300020	
ir_sirflags	0xB0300024	0x0 10300024	
ir_statusen	0xB0300028	0x0 10300028	
ir_rdphycfg	0xB030002C	0x0 1030002C	
ir_wrphycfg	0xB0300030	0x0 10300030	
ir_maxpktlen	0xB0300034	0x0 10300034	
ir_rxbytecnt	0xB0300038	0x0 10300038	
ir_config2	0xB030003C	0x0 1030003C	
ir_enable	0xB0300040	0x0 10300040	
Ethernet Controller MAC0			Section 6.5
mac_control	0xB0500000	0x0 10500000	
mac_addrhigh	0xB0500004	0x0 10500004	
mac_addrlow	0xB0500008	0x0 10500008	
mac_hashhigh	0xB050000C	0x0 1050000C	
mac_hashlow	0xB0500010	0x0 10500010	
mac_miictrl	0xB0500014	0x0 10500014	
mac_miidata	0xB0500018	0x0 10500018	
mac_flowctrl	0xB050001C	0x0 1050001C	
mac_vlan1	0xB0500020	0x0 10500020	
mac_vlan2	0xB0500024	0x0 10500024	

TABLE 113. Device Memory Map (Continued)

Register	KSEG1 Address	Physical Address	Reference
Ethernet Controller Enable			Section 6.5
macen_mac0	0xB0520000	0x0 10520000	
Ethernet Controller DMA Channels			Section 6.5
macdma0_tx0stat	0xB4004000	0x0 14004000	
macdma0_tx0addr	0xB4004004	0x0 14004004	
macdma0_tx0len	0xB4004008	0x0 14004008	
macdma0_tx1stat	0xB4004010	0x0 14004010	
macdma0_tx1addr	0xB4004014	0x0 14004014	
macdma0_tx1len	0xB4004018	0x0 14004018	
macdma0_tx2stat	0xB4004020	0x0 14004020	
macdma0_tx2addr	0xB4004024	0x0 14004024	
macdma0_tx2len	0xB4004028	0x0 14004028	
macdma0_tx3stat	0xB4004030	0x0 14004030	
macdma0_tx3addr	0xB4004034	0x0 14004034	
macdma0_tx3len	0xB4004038	0x0 14004038	
macdma0_rx0stat	0xB4004100	0x0 14004100	
macdma0_rx0addr	0xB4004104	0x0 14004104	
macdma0_rx1stat	0xB4004110	0x0 14004110	
macdma0_rx1addr	0xB4004114	0x0 14004114	
macdma0_rx2stat	0xB4004120	0x0 14004120	
macdma0_rx2addr	0xB4004124	0x0 14004124	
macdma0_rx3stat	0xB4004130	0x0 14004130	
macdma0_rx3addr	0xB4004134	0x0 14004134	
macdma1_tx0stat	0xB4004200	0x0 14004200	
macdma1_tx0addr	0xB4004204	0x0 14004204	
macdma1_tx0len	0xB4004208	0x0 14004208	
macdma1_tx1stat	0xB4004210	0x0 14004210	

TABLE 113. Device Memory Map (Continued)

Register	KSEG1 Address	Physical Address	Reference
macdma1_tx1addr	0xB4004214	0x0 14004214	
macdma1_tx1len	0xB4004218	0x0 14004218	
macdma1_tx2stat	0xB4004220	0x0 14004220	
macdma1_tx2addr	0xB4004224	0x0 14004224	
macdma1_tx2len	0xB4004228	0x0 14004228	
macdma1_tx3stat	0xB4004230	0x0 14004230	
macdma1_tx3addr	0xB4004234	0x0 14004234	
macdma1_tx3len	0xB4004238	0x0 14004238	
macdma1_rx0stat	0xB4004300	0x0 14004300	
macdma1_rx0addr	0xB4004304	0x0 14004304	
macdma1_rx1stat	0xB4004310	0x0 14004310	
macdma1_rx1addr	0xB4004314	0x0 14004314	
macdma1_rx2stat	0xB4004320	0x0 14004320	
macdma1_rx2addr	0xB4004324	0x0 14004324	
macdma1_rx3stat	0xB4004330	0x0 14004330	
macdma1_rx3addr	0xB4004334	0x0 14004334	
SD Controller 0			
sd_txport	0xB0600000	0x0 10600000	
sd_rxport	0xB0600004	0x0 10600004	
sd_config	0xB0600008	0x0 10600008	
sd_enable	0xB060000C	0x0 1060000C	
sd_config2	0xB0600010	0x0 10600010	
sd_blksize	0xB0600014	0x0 10600014	
sd_status	0xB0600018	0x0 10600018	
sd_debug	0xB060001C	0x0 1060001C	
sd_cmd	0xB0600020	0x0 10600020	
sd_cmdarg	0xB0600024	0x0 10600024	
sd_resp3	0xB0600028	0x0 10600028	

TABLE 113. Device Memory Map (Continued)

Register	KSEG1 Address	Physical Address	Reference
sd_resp2	0xB060002C	0x0 1060002C	
sd_resp1	0xB0600030	0x0 10600030	
sd_resp0	0xB0600034	0x0 10600034	
sd_timeout	0xB0600038	0x0 10600038	
SD Controller 1			
sd_txport	0xB0680000	0x0 10680000	
sd_rxport	0xB0680004	0x0 10680004	
sd_config	0xB0680008	0x0 10680008	
sd_enable	0xB068000C	0x0 1068000C	
sd_config2	0xB0680010	0x0 10680010	
sd_blksize	0xB0680014	0x0 10680014	
sd_status	0xB0680018	0x0 10680018	
sd_debug	0xB068001C	0x0 1068001C	
sd_cmd	0xB0680020	0x0 10680020	
sd_cmdarg	0xB0680024	0x0 10680024	
sd_resp3	0xB0680028	0x0 10680028	
sd_resp2	0xB068002C	0x0 1068002C	
sd_resp1	0xB0680030	0x0 10680030	
sd_resp0	0xB0680034	0x0 10680034	
sd_timeout	0xB0680038	0x0 10680038	
I ² S Controller			Section 6.6
i2s_data	0xB1000000	0x0 11000000	
i2s_config	0xB1000004	0x0 11000004	
i2s_enable	0xB1000008	0x0 11000008	
UART0			Section 6.7
uart_rxdata	0xB1100000	0x0 11100000	
uart_txdata	0xB1100004	0x0 11100004	

TABLE 113. Device Memory Map (Continued)

Register	KSEG1 Address	Physical Address	Reference
uart_inten	0xB1100008	0x0 11100008	
uart_intcause	0xB110000C	0x0 1110000C	
uart_fifoctrl	0xB1100010	0x0 11100010	
uart_linectrl	0xB1100014	0x0 11100014	
uart_mdmctrl	0xB1100018	0x0 11100018	
uart_linestat	0xB110001C	0x0 1110001C	
uart_mdmstat	0xB1100020	0x0 11100020	
uart_clkdiv	0xB1100028	0x0 11100028	
uart_modctrl	0xB1100100	0x0 11100100	
UART1			Section 6.7
uart_rxdata	0xB1200000	0x0 11200000	
uart_txdata	0xB1200004	0x0 11200004	
uart_inten	0xB1200008	0x0 11200008	
uart_intcause	0xB120000C	0x0 1120000C	
uart_fifoctrl	0xB1200010	0x0 11200010	
uart_linectrl	0xB1200014	0x0 11200014	
uart_mdmctrl	0xB1200018	0x0 11200018	
uart_linestat	0xB120001C	0x0 1120001C	
uart_mdmstat	0xB1200020	0x0 11200020	
uart_clkdiv	0xB1200028	0x0 11200028	
uart_modctrl	0xB1200100	0x0 11200100	
UART3			Section 6.7
uart_rxdata	0xB1400000	0x0 11400000	
uart_txdata	0xB1400004	0x0 11400004	
uart_inten	0xB1400008	0x0 11400008	
uart_intcause	0xB140000C	0x0 1140000C	
uart_fifoctrl	0xB1400010	0x0 11400010	
uart_linectrl	0xB1400014	0x0 11400014	

TABLE 113. Device Memory Map (Continued)

Register	KSEG1 Address	Physical Address	Reference
uart_mdmctrl	0xB1400018	0x0 11400018	
uart_linestat	0xB140001C	0x0 1140001C	
uart_mdmstat	0xB1400020	0x0 11400020	
uart_clkdiv	0xB1400028	0x0 11400028	
uart_modctrl	0xB1400100	0x0 11400100	
SSI0			Section 6.8
ssi_status	0xB1600000	0x0 11600000	
ssi_int	0xB1600004	0x0 11600004	
ssi_inten	0xB1600008	0x0 11600008	
ssi_config	0xB1600020	0x0 11600020	
ssi_adata	0xB1600024	0x0 11600024	
ssi_clkdiv	0xB1600028	0x0 11600028	
ssi_enable	0xB1600100	0x0 11600100	
SSI1			Section 6.8
ssi_status	0xB1680000	0x0 11680000	
ssi_int	0xB1680004	0x0 11680004	
ssi_inten	0xB1680008	0x0 11680008	
ssi_config	0xB1680020	0x0 11680020	
ssi_adata	0xB1680024	0x0 11680024	
ssi_clkdiv	0xB1680028	0x0 11680028	
ssi_enable	0xB1680100	0x0 11680100	
Secondary GPIO			
gpio2_dir	0xB1700000	0x0 11700000	
reserved	0xB1700004	0x0 11700004	
gpio2_output	0xB1700008	0x0 11700008	
gpio2_pinstate	0xB170000C	0x0 1170000C	
gpio2_inten	0xB1700010	0x0 11700010	

TABLE 113. Device Memory Map (Continued)

Register	KSEG1 Address	Physical Address	Reference
gpio2_enable	0xB1700014	0x0 11700014	
Clock Controller			Section 7.1
sys_freqctrl0	0xB1900020	0x0 11900020	
sys_freqctrl1	0xB1900024	0x0 11900024	
sys_clksrc	0xB1900028	0x0 11900028	
sys_cpupII	0xB1900060	0x0 11900060	
sys_auxpll	0xB1900064	0x0 11900064	
TOY & RTC			Section 7.2
sys_toytrim	0xB1900000	0x0 11900000	
sys_toywrite	0xB1900004	0x0 11900004	
sys_matchtoy0	0xB1900008	0x0 11900008	
sys_matchtoy1	0xB190000C	0x0 1190000C	
sys_matchtoy2	0xB1900010	0x0 11900010	
sys_cntrctrl	0xB1900014	0x0 11900014	
sys_toyread	0xB1900040	0x0 11900040	
sys_rtctrim	0xB1900044	0x0 11900044	
sys_rtcwrite	0xB1900048	0x0 11900048	
sys_rtcmatch0	0xB190004C	0x0 1190004C	
sys_rtcmatch1	0xB1900050	0x0 11900050	
sys_rtcmatch2	0xB1900054	0x0 11900054	
sys_rtcread	0xB1900058	0x0 11900058	
Primary GPIO			Section 7.3
sys_pinfunc	0xB190002C	0x0 1190002C	
sys_trioutrd	0xB1900100	0x0 11900100	
sys_trioutclr	0xB1900100	0x0 11900100	
sys_outputrd	0xB1900108	0x0 11900108	
sys_outputset	0xB1900108	0x0 11900108	

TABLE 113. Device Memory Map (Continued)

Register	KSEG1 Address	Physical Address	Reference
sys_outputclr	0xB190010C	0x0 1190010C	
sys_pinstaterd	0xB1900110	0x0 11900110	
sys_pininputen	0xB1900110	0x0 11900110	
Power Management			Section 7.4
sys_scratch0	0xB1900018	0x0 11900018	
sys_scratch1	0xB190001C	0x0 1190001C	
sys_wakemsk	0xB1900034	0x0 11900034	
sys_endian	0xB1900038	0x0 11900038	
sys_powerctrl	0xB190003C	0x0 1190003C	
sys_wakesrc	0xB190005C	0x0 1190005C	
sys_slppwr	0xB1900078	0x0 11900078	
sys_sleep	0xB190007C	0x0 1190007C	
LCD Controller			
lcd_control	0xB5000000	0x0 15000000	
lcd_intstatus	0xB5000004	0x0 15000004	
lcd_intenable	0xB5000008	0x0 15000008	
lcd_horztiming	0xB500000C	0x0 1500000C	
lcd_verttiming	0xB5000010	0x0 15000010	
lcd_clkcontrol	0xB5000014	0x0 15000014	
lcd_dmaaddr0	0xB5000018	0x0 15000018	
lcd_dmaaddr1	0xB500001C	0x0 1500001C	
lcd_words	0xB5000020	0x0 15000020	
lcd_pwmdiv	0xB5000024	0x0 15000024	
lcd_pwmhi	0xB5000028	0x0 15000028	
lcd_pallettebase	0xB5000400	0x0 15000400	

Index

A	Frequency Control 2 272	
AC97 Registers 108, 228, 246	Clock Register Descriptions 267	
AC97 Controller Status 110, 259	Clocks 266	
AC97 Enable 114, 236	Clocks Registers 267	
AC-Link Configuration Register 108, 229,	connectivity system on a chip 1	
247, 248, 249, 251, 253, 254, 257,	contact information ii	
259	Coprocessor 27	
CODEC Command 112, 234	Coprocessor 0 Registers	
TX/RX Data 112, 232	Debug Exception Program Counter Register	
Asynchronous Signals 375	316	
Automatic Suspension 130 B	Debug Exception Save Register - DESAVE 316	
bus interface 337	Debug Register (CP0 Register 23, Select 0) 312	
С	copyright statement ii	
Caches 10	CPU 7, 85	
Data Cache 15	CPU Power Management 294, 357	
Instruction Cache 13	D	
Chip Select Configuration Registers	_	
Auto Refresh Command Register 55	Device Controller	
Chip Select Address Configuration Registers 52	Device Configuration Register 123 Device Controller Enable Register 128	
Chip Select Mode Configuration Registers 49	Endpoint Control Registers 125	
External SDRAM Mode Register Access 55	Endpoint FIFO Read and Write Registers 121	
SDRAM Sleep/Self Refresh Command Reg-	FIFO Status Registers 127	
ister 56	Interrupt Registers 122	
SMROM_CKE Toggle Register 57	Device Power Management - Sleep	
Clock Generation 268	Endianess Register 300	
Clock Source Control 273	Power Up Control Register 300	
Frequency Control 1 271	Scratch Registers 298	

Sleep Power Register 302 Sleep Register 303 Wakeup Cause Register 301 Wakeup Source Mask Register 299	Ethernet Register Descriptions MAC Registers 158 G
disclaimer ii DMA Configuration Registers DMA Buffer Starting Address Registers 93 DMA Channel Buffer Count Registers 93 DMA Channel Mode Registers 88 DMA Peripheral Device Address 92 DMA Registers 172	General Purpose I/O and Pin Functionality 286 GPIO Registers GPIO Control Registers 289 Pin Functionality and Drive Strength 286 H Host Controller USB Host Config Register 117
E EJTAG 311	I IS Controller 102
Coprocessor 0 Registers 312 Debug Exceptions 312 EJTAG Instructions 312 EJTAG Memory Range 317	I2S Controller 192I2S Register Descriptions 192Configuration and Status Register 193I2S Enable 196
EJTAG Instruction Register Values 325 Address Register 328 Bypass Register (TAP Instruction BYPASS) 335	Initialization 189 Instruction Set 25 IrDA 133, 145 Initialization 146
Data Register 328 Device Identification (ID) Register 326 EJTAG Control Register (ECR) 329	Power Management 146 Ring Buffers 149 IrDA Registers
EJWatch Register (TAP Instruction EJ- WATCH) 334 Implementation Register 327	Infrared Configuration Register 1 138 Infrared Configuration Register 2 143 Infrared Enable Register 140 Infrared Interface Configuration Register 144
EJTAG Memory Mapped Registers 317 Debug Control Register 318 Processor Address Bus Break 320	Infrared Maximum Packet Length Register 142 Infrared Read PHY Configuration Register
Processor Bus Break Control and Address Mask 322 Processor Bus Break Status Register 319 Processor Data Bus Break 320 Processor Data Mask/Upper Overlay Address Mask 321	140 Infrared Receive Byte Count Register 142 Infrared Ring Address Compare Register 137 Infrared Ring Base Address High Register 135
Processor High Address Bus Break 324 Processor High Address Mask 325	Infrared Ring Base Address Low Register 135 Infrared Ring Pointer Status Register 134
EJTAG Test Access Port (TAP) 325 Enable Registers MAC0 Enable 170	Infrared Ring Prompt Register 137 Infrared Ring Size Register 136 Infrared SIR Flags Register 139
MAC1 Enable 170 Ethernet 156, 158	Infrared Write PHY Configuration Register 141

IrDa Registers 133	Receive Registers 175
L	Receive Buffer Address/Enable Register 179
LCD 83	Receive Status 175
ECD 00	Removing the controller from RESET 128
M	reset 305
Flow Control Register 167 MAC Address High Register 163 MAC Address Low Register 163 MAC Control Register 159 MII Control Register 165 MII Data Register 167 Multicast Address High Hash Table Register 164 Multicast Address Low Hash Table Register 164 VLAN1 Tag Register 169 VLAN2 Tag Register 170 Memory Controllers 47 Memory Map 1	SDRAM 49 SDRAM Memory Controller 48 SDRAM Timing 58 Signal Description 337 Special Handling of SETUP Transactions 129 SSI CODEC Interfaces 216 SSI Registers Interrupt Pending Register 219 SSI Address/Data Register 223 SSI Clock Divider Register 223 SSI Configuration Register 221 SSI Control Register 224 SSI Interface Status Register 218 SSI Interrupt Enable Register 220
Multiply Accumulate Unit 10	Static 62, 73
0	Static Controller Programming Model 62
opennew www.alchemysemi.com ii	Static Chip Select Address Registers 71
	Static Timing Registers 67
P	Т
Packaging and Pinout 377	TBD 259
peripheral module devices 107 PLL Control & Core Cycle Counter 276 Auxiliary PLL Control 277 CPU PLL Control 277	The 8 Transmit Registers 181 Transmit Buffer Address/Enable Register
Power Management Peripherals 295 Power Management Device Power Management - Sleep 296	184 Transmit Buffer Length Register 185 Transmit Packet Status Register 181
Programmable Counters 279	
Programmable Counters - Time of Year Clock and Real Time Clock Registers Counter Write 281 Match Registers 282 Trim Register 280	UART 201 UART Interfaces 200 UART Registers Clock Divider Register 212 FIFO Control Register 204 Interrupt Cause Register 203
R	Interrupt Enable Register 202
Read Transactions 217	Line Control Register 207

Line Status Register 209
Modem Control Register 208
Modem Status Register 211
Received Data FIFO 202
Transmit Data FIFO 202
Using GPIO Lines as External DMA Requests 94,

W

website ii Write Transactions 216