公TDK

July 2019

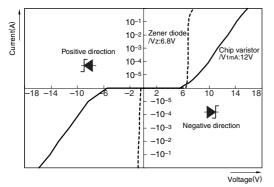
Chip varistors

Voltage Protection Devices

Automotive grade

JIS 1608 [EIA 0603]
JIS 2012 [EIA 0805]
JIS 1005 [EIA 0402]
JIS 1608 [EIA 0603]
JIS 1005 [EIA 0402]

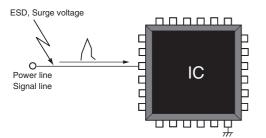
Product compatible with RoHS directive Compatible with lead-free solders AEC-Q200


Overview of the AVR series

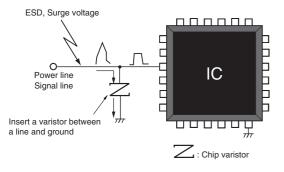
CHARACTERISTICS OF CHIP VARISTOR

Varistors are voltage dependent nonlinear resistive elements with a resistance that decreases rapidly when the voltage is over the constant value.

Varistors become zener diode of 2 serial connection and equivalent, and does not have polarity.


CURRENT vs. VOLTAGE CHARACTERISTICS

□THE EFFECT OF THE VARISTOR

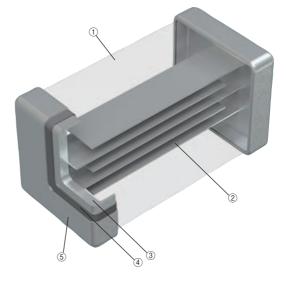

Without varistor

A malfunction and failure of electronic equipment

With Varistor

Suppress transient voltage by inserting varistor in a circuit

EQUIVALENT CIRCUIT OF CHIP VARISTORS


A capacitance content

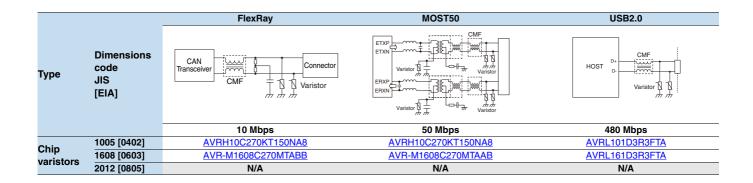
CHIP VARISTORS FEATURE FOR AUTOMOTIVE

GRADE

- Reliability characteristics evaluated based on AEC-Q200 condition.
- High ESD withstanding voltage
- Small-sized products are available
- 125°C, 150°C Supported

Figure 1 internal structure of multilayer chip varistors

No.	Name				
(1)	Semiconductor ceramic				
(2)	Internal electrode(Pd))			
(3)		Ag			
(4)	Terminal electrode	Ni			
(5)		Sn			


(2/14)

Product compatible with RoHS directive Compatible with lead-free solders AEC-Q200

Overview of the AVR series

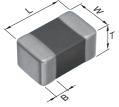
COMMUNICATION STANDARD, CIRCUIT EXAMPLE AND COMMUNICATION STANDARD

		LIN/CXPI	Classical CAN	CAN/CAN-FD	
Туре	Dimensions code JIS [EIA]	LIN/CXPI Transceiver	CAN Transceiver	CAN Transceiver	
		20 kbps	1 Mbps	2-8 Mbps	
Chin	1005 [0402]	N/A	AVRH10C270KT150NA8	AVRH10C270KT150NA8	
Chip varistors	1608 [0603]	AVRM1608C270KT221M	AVR-M1608C270MTAAB	AVR-M1608C270MTABB	
varistors	2012 [0805] N/A		N/A	N/A	

		One-Pair Ethernet 100BASE-T1	One-Pair Ethernet 1000BASE-T1	Motors
Туре	Dimensions code JIS [EIA]	100BASE-T1 PHY Varistor	1000BASE-T1 PHY Varistor	•Varistor(ESD)
		100Mbps	1000Mbps	-
Chip	1005 [0402]	AVRH10C101KT4R7FA8	AVRH10C101KT1R1NE8 AVRH10C221KT1R5YA8	N/A
varistors	1608 [0603]	N/A	N/A	AVR-M1608C270KT6AB
	2012 [0805]	N/A	N/A	AVR-M2012C390KT6AB

A Please be sure to request delivery specifications that provide further details on the features and specifications of the products for proper and safe use. Please note that the contents may change without any prior notice due to reasons such as upgrading.

公TDK


Automotive grade

Product compatible with RoHS directive Compatible with lead-free solders AEC-Q200

Overview of the AVR series

PART NUMBER CONSTRUCTION

2012 2 160 L x dimen. (mr 1608 2 2012 2	sions m) 1.6×0.8 2.0×1.2 08 W sions	C C	ture code General structure	390 220 270 390	tor voltage (V) =39×10 ⁰ 22 27 39 270 tor voltage (V) =27×10 ⁰ 22 27 27 27 27 27 27 27 27 27	K M N	I ±1 ± Tristor vo toleran (%) ± I ±	10 20 30 0ltage 10	Pac T B	kaging Tapi Bul T kaging Tapi	ing Ik style	2711 221 271 271	citance hal spec ymbol (pF) =27×10 220 270 AAB mpany al symb		toler	± 10 ±20 ±30
2012 2 160 L x dimen. (mr 1608 2 2012 2	2.0×1.2 08 w sions m) 1.6×0.8	C struct	C ture code General	220 270 390 Varist 270 220 270	22 27 39 270 tor voltage (V) =27×10 ⁰ 22	M N Var	I ±1 ± Tristor vo toleran (%) ± I ±	=20 =30 oltage nce	Pac	Bul T kaging	style	221 271	220 270		М	±20
160 L x dimen (mr 1608 2012 2	08 w sions m) 1.6×0.8	Struct	C ture code General	270 390 2 Varist 270 220 270	27 39 270 tor voltage (V) =27×10 ⁰ 22	Var K	mistor vo toleran (%) ±	oltage ice	Pac	T kaging	style	271	AB			
L x dimen (mr 1608 2012 2	W sions m) 1.6×0.8	Struct	ture code General	390 Varist 270 220 270	39 270 tor voltage (V) =27×10 ⁰ 22	Var K M	M ristor vo toleran (%) ±	oltage nce ⊧10	Pac T	kaging Tapi		A	AB	pol	N	±30
L x dimen (mr 1608 2012 2	W sions m) 1.6×0.8	Struct	ture code General	Varist 270 220 270	tor voltage (V) =27×10 ⁰ 22	ĸ	ristor vo toleran (%) ±	oltage nce 10	Pac T	kaging Tapi		Co	ompany	pol		
L x dimen (mr 1608 2012 2	W sions m) 1.6×0.8	Struct	ture code General	Varist 270 220 270	tor voltage (V) =27×10 ⁰ 22	ĸ	ristor vo toleran (%) ±	oltage nce 10	Pac T	kaging Tapi		Co	ompany	ool		
dimen (m) 1608 - 2012 2	sions m) 1.6×0.8	6	General	270 220 270	(V) =27×10 ⁰ 22	ĸ	toleran (%) ± ±	n ce ⊧10	Pac T	Тарі				ool		
2012 2		(:		220 270	22	М	l ±				ng					
-	2.0×1.2			270				-20	D							
					27	N		-	Б	Bul	lk	_				
				390	39		±	:30	-							
1	0		1A		3R	3		F			Т			4		
	sions		Maximum nuous volt (Vdc)	age	•					Packa	aging	ı style			1	
		1A	10				F			Т		Ū.			_	
16	1.6×0.8				6R8 6	5.8	G	±	:2	В	Вι	lk				
10	C	2	270		K		Т		15	50		Ν		4		8
_ x W ensions	5		voltage	r		Pack	kaging s	style	•		•		amo IEC61	ount 000-4-2	temp I	erating peratur limit (°C)
			.,	10 ⁰ F		т	Tanin	na			N	+30%	(K	<u>,</u>		150
	- str	ructure					•	<u> </u>								
			390 39	9		5	Duin	-	500	50		- 191	-			
- e	dimen (m) 10 16 10 x W ensions	dimensions (mm) 10 1.0×0.5 16 1.6×0.8 10 (x W ensions nm) 1.0×0.5 C	dimensions (mm) 10 1.0×0.5 16 1.6×0.8 10 C 10 C x W ensions nm) Conti	dimensions (mm) continuous volt (Vdc) 10 1.0×0.5 1A 10 16 1.6×0.8 1A 10 10 C 270 x W ensions nm) Structure code Varisto voltage (V) 1.0×0.5 C General structure 270=27× 270 2 390 3	dimensions (mm) continuous voltage (Vdc) 10 1.0×0.5 1A 10 16 1.6×0.8 1A 10 10 C 270 x W ensions nm) Structure code Varistor voltage (V) t 1.0×0.5 C General structure 270=27×10° t 270 27 390 39 39 39	dimensions (mm) continuous voltage (Vdc) Capacita (pF) 10 1.0×0.5 1A 10 3R3 3 6R8 6 16 1.6×0.8 1A 10 3R3 6 6 6 10 C 270 K 6	dimensions (mm) continuous voltage (Vdc) Capacitance (pF) 10 1.0×0.5 1A 10 3R3 3.3 16 1.6×0.8 1A 10 3R3 3.3 10 C 270 K 6R8 6.8 x W msions nm) Structure code Varistor voltage (V) Varistor voltage (V) Pack tolerance (%) 1.0×0.5 C General structure 270=27×10° K ±10 T 270 27 390 39 B B	dimensions (mm) continuous voltage (Vdc) Capacitance (pF) t 10 1.0×0.5 1A 10 3R3 3.3 F 16 1.6×0.8 1A 10 3R3 3.3 F 10 C 270 K T x W msions nm) Structure code Varistor voltage (V) Varistor voltage tolerance (%) Packaging 1.0×0.5 C General structure 270=27×10° K ±10 T Tapic 270 27 B Bul B Bul B B	dimensions (mm) continuous voltage (Vdc) Capacitance (pF) toleran (pF) 10 1.0×0.5 1A 10 3R3 3.3 F ± 16 1.6×0.8 1A 10 3R3 3.3 F ± 10 C 270 K T G ± x W msions nm) Structure code Varistor voltage (V) Varistor voltage (%) Packaging style 1.0×0.5 C General structure 270=27×10° K ±10 T Taping 270 27 B Bulk B Bulk B	dimensions (mm) continuous voltage (Vdc) Capacitance (pF) tolerance (pF) 10 1.0×0.5 1A 10 3R3 3.3 F ±1 16 1.6×0.8 1A 10 3R3 6R8 6.8 G ±2 10 C 270 K T 15 x W msions nm) Structure code Varistor voltage (V) Varistor voltage tolerance (%) Packaging style Capacitance (pF) 1.0×0.5 C General structure 270=27×10° K ±10 T Taping 150=1 270 27 390 39 500 500	dimensions (mm) continuous voltage (Vdc) Capacitance (pF) tolerance (pF) Pack 10 1.0×0.5 1A 10 3R3 3.3 F ±1 T 16 1.6×0.8 1A 10 3R3 3.3 F ±1 T 10 C 270 K T 150 x W ensions nm) Structure code Varistor voltage (V) Varistor voltage tolerance (%) Packaging style Capacitance (pF) Capacitance 1.0×0.5 C General structure 270=27×10° K ±10 T Taping 150=15×10° 270 27 390 39 500 50	CapacitanceCapacitanceCapacitancePackaging101.0×0.51A10 $3R3$ 3.3 F ± 1 TTap161.6×0.81A10 $3R3$ 3.3 F ± 1 TTap101.6×0.8C270KT15010C270KT150CapacitancePackaging style10C270K±10TTapCapacitanceCapacitancex W msions nm)Structure codeVaristor voltage (V)Varistor voltage tolerance (%)Packaging styleCapacitance (pF)Capacitance tol (pF)Capacitance tol tol1.0×0.5CGeneral structure $270=27\times10^{\circ}$ K ± 10 TTaping $150=15\times10^{\circ}$ N27027 39039 B Bulk 150 15 F	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	dimensions (mm) continuous voltage (Vdc) Capacitance (pF) tolerance (pF) Packaging style Company special symbo 10 1.0×0.5 1A 10 3R3 3.3 F ±1 T Taping 16 1.6×0.8 1A 10 3R3 3.3 F ±1 T Taping 10 C 270 K T 150 N A x W ensions Structure code Varistor voltage (V) Varistor voltage tolerance (%) Packaging style Capacitance (pF) Capacitance (pF) ESD voltage amount IEC61000-4-2 (kV) 1.0×0.5 C General structure 270=27×10° K ±10 T Taping 150=15×10° N ±30% A 25 270 27 390 39 500 50 F ±1pF	dimensions (mm) continuous voltage (Vdc) Capacitance (pF) tolerance (pF) Packaging style Company special symbol 10 1.0×0.5 1A 10 3R3 3.3 F ±1 T Taping 16 1.6×0.8 1A 10 3R3 6R8 6.8 G ±2 B Bulk 10 C 270 K T 150 N A x W insions nm) Structure code Varistor voltage (V) Varistor voltage tolerance (%) Packaging style Capacitance (pF) Capacitance tolerance ESD voltage amount IEC61000-4-2 (kV) Option 1.0×0.5 C General structure 270=27×10° K ±10 T Taping 150=15×10° N ±30% A 25 8 270 27 390 39 500 50 50 50 50 50

Shape symbol(JIS)	L	W	т	В
1005	1.00±0.05	0.50±0.05	0.50±0.05	0.1min.
1608	1.60±0.1	0.80±0.1	0.80±0.1	0.2min.
2012	2.00±0.2	1.25±0.2	1.00±0.2	0.2min.

A Please be sure to request delivery specifications that provide further details on the features and specifications of the products for proper and safe use. Please note that the contents may change without any prior notice due to reasons such as upgrading.

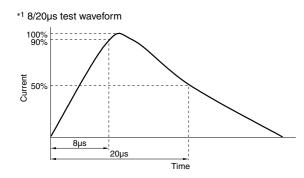
公TDK

Automotive grade

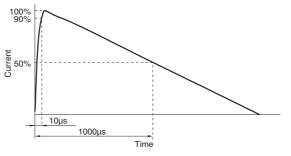
Product compatible with RoHS directive Compatible with lead-free solders AEC-Q200

Overview of the AVR series

OPERATING TEMPERATURE RANGE, PACKAGE QUANTITY, PRODUCT WEIGHT


	Temperat	ure range	Package quantity	Individual weight
Туре	Type Operating temperature* Storage temperature** (°C) (°C)		(pieces/reel)	(mg)
AVRM1005 AVR-M1005 AVRL10	-40 to +125	-40 to +125	10,000	1.2
AVRH10	-55 to +150	-55 to +150		
AVRM1608 AVRL16 AVR-M1608	-40 to +125	-40 to +125	4,000	5
AVR-M2012	-		2,000	13

* Operating temperature range includes self-temperature rise.


** The storage temperature range is for after the assembly.

TERMINOLOGY

Item	Unit	Description
Varistor voltage	V1mA	Chip varistor-terminal voltage when DC1mA was flowed
(Breakdown voltage)	(V)	Chip various terminal volage when Do min was nowed
	Vdc	DC voltage that is continuously applied between chip varistor terminals
Maximum continuous voltage	(V)	Terminal chip varistors leakage current-value: 50µA max
	(v)	Voltage appearing across the varistor when a pulse current (8/20µs*1) of specified peak value is applied.
Clamping voltage	Vcl	Voltage between terminal chip varistors of the Specified peak current value of the impulse current(8/
Clamping voltage	(V)	20μs*1) is applied
Movimum operav	E	When applied specified peak impulse current-value current(10/1000µs*2) once, maximum energy that
Maximum energy	(Joule)	electrical property of chip varistors be not deteriorated
Movimum pools ourront	lp	When applied impulse current(8/20µs*1) once, maximum current that electrical property of chip varistors
Maximum peak current	(A)	be not deteriorated
Canacitanaa	С	Oscillator frequency 1kHz or 1MHz, Capacitance between chip varistor-terminal in oscillator voltage
Capacitance	(pF)	1Vrms

*2 10/1000µs test waveform

A Please be sure to request delivery specifications that provide further details on the features and specifications of the products for proper and safe use. Please note that the contents may change without any prior notice due to reasons such as upgrading.

公TDK

Automotive grade

AVR series (Automotive grade) Product characteristics list

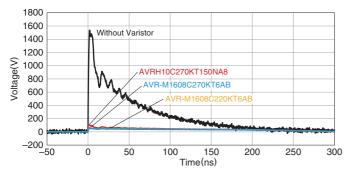
PRODUCT CHARACTERISTICS LIST

Item	V1mA	C1kHz * C1MHz	Vdc	Clamping voltage 8/20µs Pulse	Maximum energy 10/1000µs Pulse	Maximum peak current 8/20µs Pulse	IEC61000-4-2 (Contact)
	(V)	(pF)	DC (V)	Vcl (V)	E (J)	lp (A)	150pF/330 Ω
AVRL101D3R3FTA	27(21.6 to 32.4)	3.3(2.3 to 4.3)*	20	62(0.5A)	0.01	0.5	8kV
AVRL101D6R8GTA	27(21.6 to 32.4)	6.8(4.8 to 8.8)*	20	58(1A)	0.01	1	8kV
AVRH10C270KT150NA8	27(24.0 to 30.0)	15(10.5 to 19.5)	19	52(2A)	0.02	2	25kV
AVRH10C270KT350NA8	27(24.0 to 30.0)	35(24.5 to 45.5)	19	52(2A)	0.02	8	25kV
AVRH10C390KT500NA8	39(35.0 to 43.0)	50(35 to 65)	28	72(2A)	0.02	15	25kV
AVRH10C101KT4R7FA8	100(90 to 110)	4.7(3.7 to 5.7)*	70	190(1A)	0.03	1	25kV
AVRH10C101KT1R1NE8	110(100 to 120)	1.1(0.8 to 1.4)*	70	190 (0.3A)	0.01	0.3	8kV
AVRH10C221KT1R5YA8	220 (198 to 242)	1.5(1.37 to 1.63)*	70	400 (0.5A)	0.01	0.5	25kV
AVRL161D3R3FTA	27(21.6 to 32.4)	3.3(2.3 to 4.3)*	20	62(0.5A)	0.01	0.5	8kV
AVRL161D6R8GTA	27(21.6 to 32.4)	6.8(4.8 to 8.8)*	20	58(1A)	0.01	1	8kV
AVR-M1608C220KT2AB	22(19.8 to 24.2)	210(147 to 273)	16	37(2A)	0.03	10	25kV
AVR-M1608C220KT6AB	22(19.8 to 24.2)	560(392 to 728)	16	34(2A)	0.10	30	25kV
AVR-M1608C270MTABB	27(21.6 to 32.4)	15(10.5 to 19.5)	17	52(2A)	0.05	2	25kV
AVR-M1608C270MTAAB	27(21.6 to 32.4)	30(21 to 39)	17	52(2A)	0.05	2	25kV
AVR-M1608C270KTACB	27(24.0 to 30.0)	60(42 to 78)	19	54(2A)	0.05	10	25kV
AVRM1608C270KT800M	27(24.0 to 30.0)	80(64 to 96)	19	53(2A)	0.02	28	25kV
AVR-M1608C270KT2AB	27(24.0 to 30.0)	160(112 to 208)	19	42(2A)	0.10	20	25kV
AVRM1608C270KT221M	27(24.0 to 30.0)	220(176 to 264)	19	52(2A)	0.10	40	25kV
AVR-M1608C270KT6AB	27(24.0 to 30.0)	430(301 to 339)	19	42(2A)	0.10	48	25kV
AVRM1608C390KT271N	39(35.0 to 43.0)	270(189 to 351)	28	69(2A)	0.10	78	25kV
AVR-M2012C220KT6AB	22(19.8 to 24.2)	800(560 to 1040)	16	38(5A)	0.30	100	25kV
AVRM2012C330KT801N	33(29.7 to 36.3)	800(560 to 1040)	24	59(5A)	0.50	240	25kV
AVR-M2012C390KT6AB	39(35.0 to 43.0)	430(301 to 559)	28	62(5A)	0.30	100	25kV

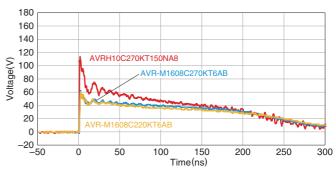
A Please be sure to request delivery specifications that provide further details on the features and specifications of the products for proper and safe use. Please note that the contents may change without any prior notice due to reasons such as upgrading.

⊗TDK

Product compatible with RoHS directive Compatible with lead-free solders AEC-Q200

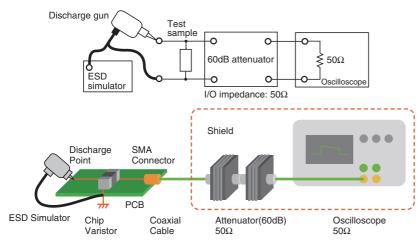

Product compatible with RoHS directive Compatible with lead-free solders AEC-Q200

⊗TDK


AVR series Electrostatic absorption characteristics

DISCHARGE VOLTAGE WAVEFORM (EXAMPLE)

□ WITHOUT VARISTOR, WAVEFORM AT VARISTOR INSTALLATION



□ WAVEFORM AT VARISTOR INSTALLATION

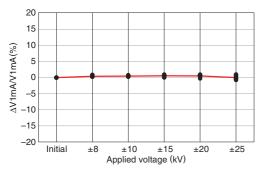
Test conditions
150pF/330Ω (IEC61000-4-2)
Contact discharge, Charged voltage 8kV

TEST CIRCUIT DIAGRAM

(8/14)

Product compatible with RoHS directive Compatible with lead-free solders AEC-Q200

+25kV/-25kV


1000


Automotive grade

AVR series Electrostatic discharge tests

APPLIED VOLTAGE STEP(VOLTAGE 10TIMES APPLIED)

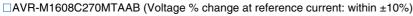
□AVRH10C270KT150NA8 (Voltage % change at reference current: within ±10%)

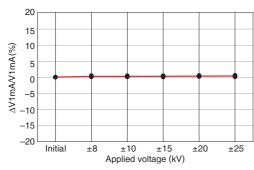
20

15

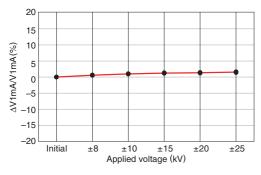
10

0

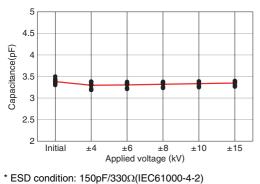

-5

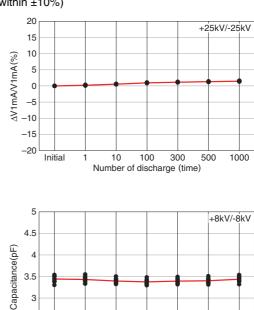

-10

-15


-20 Initial

ΔV1mA/V1mA(%) 5

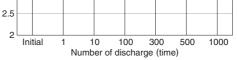




□AVR-M2012C390KT6AB (Voltage % change at reference current: within ±10%)

□AVRL101D3R3FTA(Capacitance: 5pF or less)

10


1

100

Number of discharge (time)

300

500

Please be sure to request delivery specifications that provide further details on the features and specifications of the products for proper and safe use. Please note that the contents may change without any prior notice due to reasons such as upgrading.

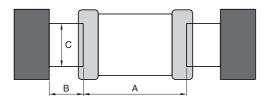
■ REPEATED VOLTAGE APPLICATION(~1000 times)

20190704 / vpd_automotive_varistors_avr_en

Product compatible with RoHS directive Compatible with lead-free solders AEC-Q200

(9/14)

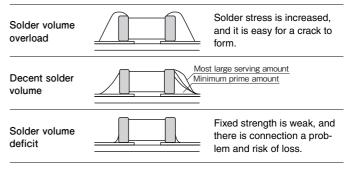
⊗TDK

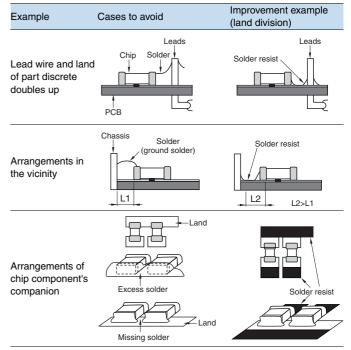

Attention on a circuit board design

Board design

When attached to chip varistors, amount of silver used (fillet size) has direct impact on chip varistors after mounting. Thus, sufficient consideration is necessary.

Set of land dimensions


(1) As the stress rises in the chip varistors owing to the increase in silver, breakage and cracks will occur. Cause including crack, as caution on board land design, configure the shape and dimensions so that the amount of silver is appropriate. If you installed 2 or more parts in the Common Land, separated by a solder resist and special land of each component.

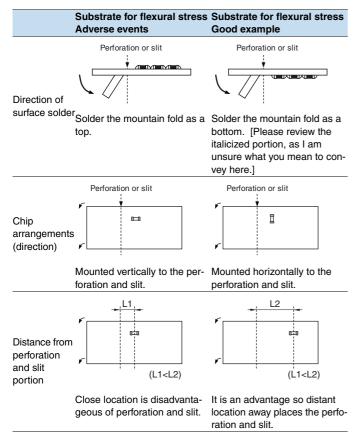

Dimensions shape	Symbol		
Dimensions shape	A	В	С
1005	0.30 to 0.50	0.35 to 0.45	0.40 to 0.60
1608	0.60 to 0.80	0.60 to 0.80	0.60 to 0.80
2012	0.90 to 1.20	0.70 to 0.90	0.90 to 1.20

(2) When peak levels panning-at soldering is excessive, by solder contraction stress, mechanical-thermal stress causes a Yasuku chip crack. In addition, when the peak level is underestimated, terminal electrode fixed strength is insufficient. This causes chip dropouts and may affect circuit reliability. Representative example of the panning of peak levels is shown in the following.

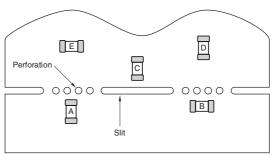
Recommended silver dose

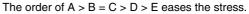
Case and suggested protocol want to avoid

Product compatible with RoHS directive Compatible with lead-free solders AEC-Q200


(10/14)

⊗TDK


Attention on a circuit board design

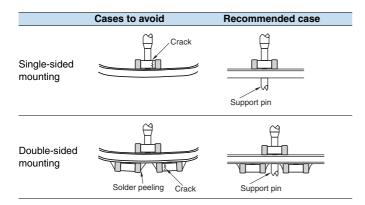

Arrangements of components

(1) I was based on camber of substrate and suggested protocol of chip varistors arrangement, as stress does not join to the utmost is shown in following.

(2) In payment near by board, depending on mount position of chip varistors, as mechanical stress varies, please refer to the following diagram.

Product compatible with RoHS directive Compatible with lead-free solders AEC-Q200

⊗TDK


Local precautions

Application to board

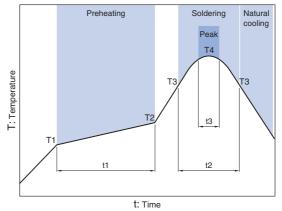
Mounting head pressure

Under suction nozzle if dead point too, during implementation, excessive force joins of chip varistors low, as cause causes of crack, please use with reference to something about following.

- Being set to top surface of substrate so that under suction nozzle as for dead center, substrate does not bend back, and adjust, please.
- 2) Nozzle pressure at implementation is 0.1 to 0.3N in static load, please.
- Substrate fixes up back surface of substrate with support pin in impact of suction nozzle to wely deflection to the utmost, and substrate hold deflection, please. A representative example is shown in the following.

Mechanical shock that, if positioning your nail to wear, ragged edge of positionings, participates in chip varistors are locally, and chip varistors, as there is possibility of crack generated, cut the closed positioning, and maintenance and inspection, and, exchange of manage dimensions and position nail periodically, please.

Soldering


Significant impact is possible on the performance of chip varistors, flux checks something about follow, please use.

(1) Flux uses one with 0.1wt % (Cl conversion) or less halide substance contains amounts, please. In addition, do not do this with strongly acidic objects.

Flux during is soldered (2) Chip varistors is applied the smalleset amount necessary, please.

(3) If Used soluble flux, perform thorough wash particularly, please.

Reflow temperature profile

	Specification				
Item	For eutectic mixture	Use of lead-free			
	solder	solder			
Preheating temperature	160 to 180°C	150 to 180°C			
Solder melting temperature	200°C	230°C			
Maximum temperature	240°C max.	260°C max.			
Preheating time	100s max.	120s max.			
Time to reach higher than the solder melting temperature	30s max.	40s max.			
number of possible reflow cycles	2 max.	2 max.			

Soldering iron

The tip temperature and also by (1) types of soldering irons, the size of the substrate, and the geometry of the land pattern. Being earlier, but when as there is possibility that crack occurs in the heat anderson impaction, point soldering iron temperature is high, please do solder work within the following conditions.

Temperature of iron tips (°C)	Wattage (W)	Pallet point shape (mm)	Soldering time (Second)	Frequency
350max.	30max.	ø3.0max.	5 max.	Within each terminal once (Within total of twice)

Direct iron tip is in contact with the (2) chip varistors body, and the strain owing to thermal shock in particular grows even if a crack is generated. Therefore, please do not touch it directly to the terminal electrodes.

Voltage Protection Devices

Chip varistors Automotive grade

Product compatible with RoHS directive Compatible with lead-free solders AEC-Q200

Attention after implementation

Cleaning

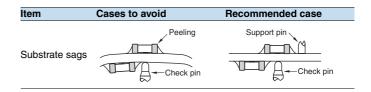
(1) If cleaning liquid is inappropriate, residues and other foreign body of fluxes builds up on chip varistors, and can degrade the performance of chip varistors (particularly the insulation resistance).
(2) Wash conditions may compromise performance of chip varistors if they are improper (wash due, wash excess).

2-1) For wash due

- (a) By substance of a system in flux residue halide, metal including terminal electrodes may experience corrosion.
- (b) Substance of a system in flux residue halide builds up on chip varistors, and reduces the insulation resistance.
- (c) Soluble flux makes comparisons of colophony series flux, and there is event with trends of significant (1) and(2).

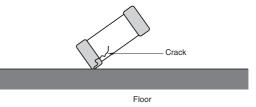
2-2) For excess wash

- Owing to lavage, chip varistors deteriorates, and reduces performance of chip varistors.
- (2) In ultrasonography, when output is passed, substrate resonates size, and crack occurs in body and sprang of chip varistors in vibration of substrate. Since this may reduce the strength of the terminal electrode, please note the following conditions. [Please review the italicized portion, as I am unsure what you mean to convey here.]

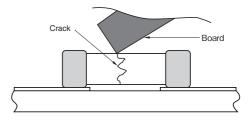

Ultrasound output Ultrasonic frequency Ultrasound cleaning time

2-3) Concentration including halogen that when cleaning liquid to pollution, when you released is higher, and may cause similar of results into wash due.

Substrate handling after component mounting


(1) When substrate is divided, a flexible so that show in following diagram to substrate, and is given by stress including twist, as there is possibility that crack occurs of chip varistors, please check that stress is within acceptable limits.

Bends Twist (2) During each substrate operational check, push pressure with contact failure of check pin of boards checkers of check pin may be toned up to be prevented. As substrate is bent under loading, chip varistors is broken owing to stress. There is also the possibility that solder on the terminal electrode will peel off. Follow the diagram for reference, and check that the substrate bends, please.



Single-part component handling

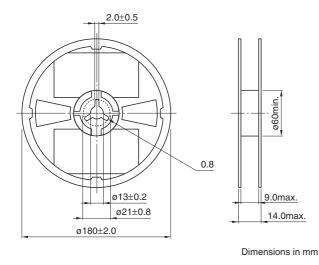
To drop impact, as there is possibility that breakage and crack is entered, do not chip varistors that(1) chip varistors falls.

(2) At stacking storage after implementation and treatment of substrate, corner of boards is regarded as chip varistors. Please be careful, as there is the possibility that breakage and cracks will occur on impact.

(12/14)

⊗TDK

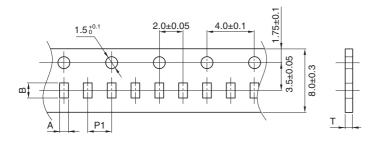
公TDK

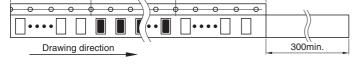

Chip varistors

Automotive grade

Product compatible with RoHS directive Compatible with lead-free solders AEC-Q200

Packaging style


REEL DIMENSIONS


PACKAGE QUANTITY / INDIVIDUAL WEIGHT

Tuno	Package quantity	ntity Individual weight	
Туре	(pieces/reel)	(mg)	
1005	10,000	1.3	
1608	4,000	5.3	
2012	2,000	13.0	

TAPE DIMENSIONS

			Dim	ensions in mm
Туре	A	В	P1	Т
1005	0.65+0.05/-0.1	1.15+0.05/-0.1	2±0.05	0.65max.
1608	1.1±0.2	1.9±0.2	4±0.1	1.1max.
2012	1.6±0.2	2.3±0.2	4±0.1	1.7max.
160min.	Taping	200min.		

Dimensions in mm

REMINDERS FOR USING THESE PRODUCTS

Before using these products, be sure to request the delivery specifications.

SAFETY REMINDERS

Please pay sufficient attention to the warnings for safe designing when using this products.

▲ REMINDERS Please pay careful attention to the precautions and follow safe designing practices when using these products. O Please observe the following precautions in order to avoid problems with chip varistors such as characteristic degradation and element destruction Please store these products in an environment with a temperature of 5 to 40°C and humidity level of 20 to 70%RH, and use them within six months Poor storage conditions may lead to the deterioration of the solderability of the edge electrodes, so please be careful to avoid contact with humidity, dew condensation, dust, toxic gas (hydrogen, hydrogen sulfide, sulfurous acid, chlorine, ammonia, etc.), direct sunlight, and so on. Please do not use products that have been dropped or detached when mounting. Please solder with the reflow soldering method, and not the flow (dip) soldering method. O Please observe the following precautions to avoid problems with varistors such as characteristic degradation and element destruction. which ultimately lead to the generation of heat and smoke with the elements. Do not use in locations where the temperatures exceed the operating temperature range such as under direct sunlight or near sources of heat. Do not use in locations where there are high levels of humidity such as under direct exposure to weather and areas where steam is released. Do not use in locations such as dusty areas, high-saline environments, places where the atmosphere is contaminated with corrosive gas, etc. Avoid powerful vibrations, impact (such as by dropping), pressure, etc. that may lead to splitting in the products. Do not use with a voltage that exceeds the maximum allowable circuit voltage. When resin coating (including modular) a varistor, do not use a resin that will cause deterioration of the varistor. Be sure never to use resin that generates hydrogen as palladium is used for the inner electrode. Avoid attachment near combustible materials. O Please contact our sales offices when considering the use of the products listed on this catalog for applications, whose performance and/or quality require a more stringent level of safety or reliability, or whose failure, malfunction or trouble could cause serious damage to society, person or property ('specific uses' such as automobiles, airplanes, medical instruments, nuclear devices, etc.) as well as when considering the use for applications that exceed the range and conditions of this catalog. Please also contact us when using these products for automotive applications. O As range of catalog, conditions are transcended, or for damage that generated by was used in application specific, etc, accept no the responsibility, wish. O Please take appropriate measures such as acquiring protective circuits and devices that meet the uses, applications, and conditions of the instruments and keeping backup circuits.