Over-Voltage Protection Load Switch with Surge Protection

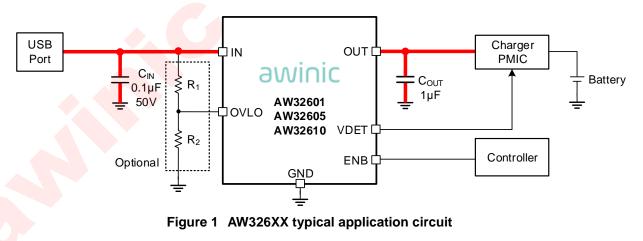
Features

- Surge protection
 - IEC 61000-4-5: ±200V
- Integrated low R_{dson} nFET switch: typical 33mΩ
- 4.5A continuous current capability
- Default Over-Voltage Protection (OVP) threshold
 - > AW32601: 5.95V
 - > AW32605: 6.8V
 - > AW32610: 10.5V
- OVP threshold adjustable range: 4V to 20V
- System ESD protection on IN pin
 - IEC 61000-4-2 Contact discharge: ±8kV
 - IEC 61000-4-2 Air gap discharge: ±15kV
- Input maximum voltage rating: 29V_{DC}
- Fast turn-off response: typical 50ns
- Over-Temperature Protection (OTP)
- Under-Voltage Lockout (UVLO)
- WLCSP 1.288mm × 1.988mm-12B package

General Description

The AW326XX family OVP load switch features surge protection, an internal clamp circuit protects the device from surge voltages up to $\pm 200V$.

The AW326XX features an ultra-low $33m\Omega$ (typ.) R_{dson} nFET load switch. When input voltage exceeds the OVP threshold, the switch is turned off very fast to prevent damage to the protected downstream devices. The IN pin is capable of withstanding fault voltages up to $29V_{DC}$.

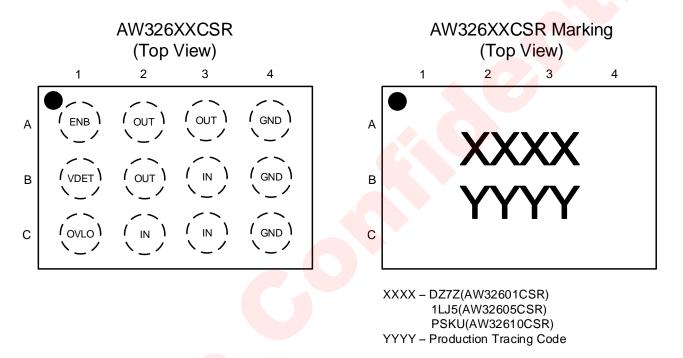

The default OVP threshold is 5.95V (AW32601), 6.8V (AW32605) and 10.5V (AW32610), the OVP threshold can be adjusted from 4V to 20V through external OVLO pin.

This device features over-temperature protection that prevents itself from thermal damaging.

Applications

- Smartphones
- Tablets
- Charging Ports

Typical Application Circuit

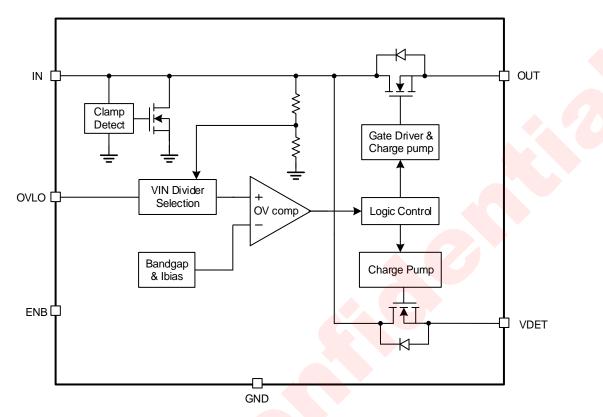


 R_1 and R_2 are used for OVP threshold adjustment, to use default OVP threshold, connect OVLO to ground. All the trademarks mentioned in the document are the property of their owners.

Device Comparison Table

Device		V _{IN_OVLO} (V)						
	Condition	Min.	Тур.	Max.	hysteresis (mV)			
AW32601	V _{IN} rising	5.83	5.95	6.07	130			
AW32605	V _{IN} rising	6.66	6.80	6.94	140			
AW32610	V _{IN} rising	10.29	10.50	10.71	210			

Pin Configuration and Top Mark


Figure 2 Pin Configuration and Top Mark

Pin Definition

Pin	Name	Description
A1	ENB	Enable pin, active low
B1	VDET	Clamped output from IN pin
C1	OVLO	OVP threshold adjustment pin
B3, C2, C3	IN	Switch input and device power supply
A2, A3, B2	OUT	Switch output
A4, B4, C4	GND	Device ground

www.awinic.com.cn

Functional Block Diagram

Typical Application Circuits

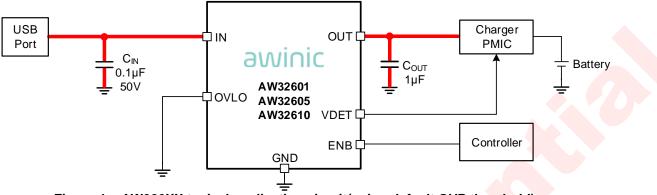


Figure 4 AW326XX typical application circuit(using default OVP threshold)

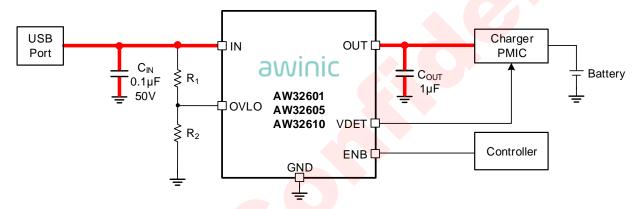


Figure 5 AW326XX typical application circuit(using external OVP threshold)

Notice for Typical Application Circuits:

- 1. When the default OVP threshold is used, connect OVLO pin to GND directly or through a 0Ω resistor. OVLO pin cannot be left floating.
- 2. If R_1 and R_2 are used to adjust the OVP threshold, it is better to use 1% precision resistors to improve the OVP threshold precision.
- 3. $C_{IN} = 0.1 \mu F$ is recommended for typical application, larger C_{IN} is also acceptable. The rated voltage of C_{IN} should be 50V.
- C_{OUT} = 1µF is recommended for typical application, larger C_{OUT} is also acceptable. The rated voltage of C_{OUT} should be larger than the OVP threshold. For example, if the OVP threshold is 6.8V, the rated voltage of C_{OUT} should be 10V or higher.

Ordering Information

Part Number	Temperature	Package	Marking	Moisture Sensitivity Level	Environmental Information	Delivery Form
AW32601CSR	-40°C ~ 85°C	WLCSP 1.288mm × 1.988mm -12B	DZ7Z	MSL1	ROHS+HF	3000 units/ Tape and Reel
AW32605CSR	-40°C ~ 85°C	WLCSP 1.288mm × 1.988mm -12B	1LJ5	MSL1	ROHS+HF	3000 units/ Tape and Reel
AW32610CSR	-40°C ~ 85°C	WLCSP 1.288mm × 1.988mm -12B	PSKU	MSL1	ROHS+HF	3000 units/ Tape and Reel

ƏWINIC 上海艾为电子技术股份有限公司 shanghai awinic technology co.,Itd

Absolute Maximum Ratings (NOTE 1)

Symbol	Parameter	Condition	Min.	Max.	Unit
Vin	Input voltage		-0.3	29	V
Vout	Output voltage		-0.3	See ^(NOTE 2)	V
Vovlo	OVLO voltage		-0.3	6	V
VVDET	VDET voltage		-0.3	7	V
Venb	ENB voltage		-0.3	6	V
I _{SW}	Continuous current of switch IN-OUT ^(NOTE 3)	Continuous current on IN and OUT pin		4.5	A
I _{PEAK}	Peak current	Peak input and output current on IN and OUT pin(10ms pulse width)		7	A
IDIODE	Continuous diode current	Continuous forward current through the nFET body diode		1.5	А
TA	Ambient temperature		-40	85	°C
TJ	Junction temperature		-40	150	°C
T _{STG}	Storage temperature		-65	150	°C
TLEAD	Soldering temperature	At leads, 10 seconds		260	°C
Surge	Input surge protection	IEC61000 <mark>-4-5</mark> test with 2Ω equivalent series resistance	-200	+200	V

NOTE1: Conditions out of those ranges listed in "absolute maximum ratings" may cause permanent damages to the device. In spite of the limits above, functional operation conditions of the device should within the ranges listed in "recommended operating conditions". Exposure to absolute-maximum-rated conditions for prolonged periods may affect device reliability.

NOTE2: 29V or V_{IN}+0.3V, whichever is smaller.

NOTE3: Limited by thermal design.

Thermal Information

Symbol	Parameter	Condition	Value	Unit
R _{θJA}	Thermal resistance from junction to ambient (NOTE 1)	In free air	80	°C/W

NOTE1: Thermal resistance from junction to ambient is highly dependent on PCB layout.

ESD and Latch-up Ratings

Symbol	Parameter	Condition	Value	Unit
	IEC61000-4-2 system ESD on	Contact discharge	±8	kV
N/	IN pin ^(NOTE 1)	Air gap discharge	±15	kV
Vesd	Human Body Model	ANSI/ESDA/JEDEC JS-001	±2	kV
	Charged Device Model	JESD22-C101	±1.5	kV
I _{Latch-up}	Latch-up	JEDEC78	±200	mA

NOTE1: system ESD test board is based on figure 4.

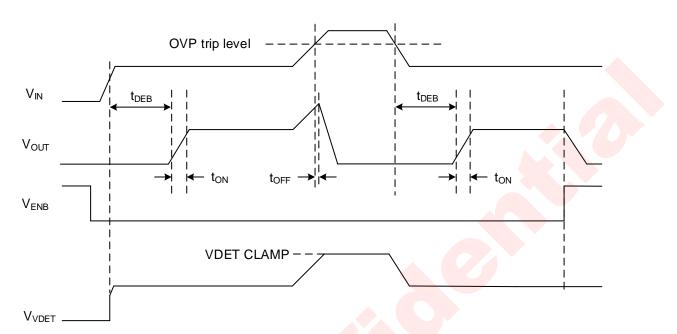
Recommended Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
VIN	Input DC voltage	2.3		28	V
CIN	Input capacitance		0.1		μF
Соит	Output load capacitance		1	100	μF

Electrical Characteristics

 T_A = -40°C to 85°C unless otherwise noted. Typical values are guaranteed for VIN = 5V, CIN = 0.1µF, IIN≤ 4.5A and T_A = 25°C.

Symbol	Description	Test Conditions		Min.	Тур.	Max.	Units
VIN_CLAMP	Input clamp voltage	$I_{IN} = 10 mA$,		30.6		V	
R _{dson}	Switch on resistance	$V_{IN} = 5V, I_O$		33	45	mΩ	
ΙQ	Input quiescent current	$V_{IN} = 5V, V_{C}$		80	150	μA	
lin_ovlo	Input current at over- voltage condition	$V_{IN} = 5V, V_{OVLO}=3V, V_{OUT} = 0V$			77	150	μA
Vovlo_th	OVLO set threshold			1.16	1.20	1.24	V
V _{OVLO_RNG}	OVP threshold adjustable range			4		20	V
Maria	External OVLO select	OVLO rising Hysteresis		0.19	0.26	0.33	V
Vovlo_sel	threshold				0.06		V
IOUT_LEAK	OUT leakage current	VIN > VIN_O	vlo, <mark>Vout = 5</mark> V		10	30	μA
Ιονίο	OVLO pin leakage current	Vovlo = Vovlo_th		-0.2		0.2	μA
Protection							•
		AW32601	V _{IN} rising	5.83	5.95	6.07	
		AVV 3260 I	Hysteresis		0.13		
N		AVA/22005	V _{IN} rising	6.66	6.80	6.94	- V
Vin_ovlo	OVP trip level	AW32605	Hysteresis		0.14		
		000000	V _{IN} rising	10.29	10.50	10.71	
		AW32610	Hysteresis		0.21		
Mar		V _{IN} rising			2.2	2.3	v
VIN_UVLO	UVLO trip level	Hysteresis			0.1		
TSDN	Shutdown temperature				150		°C
Tsdn_hys	Shutdown temperature hysteresis				20		°C

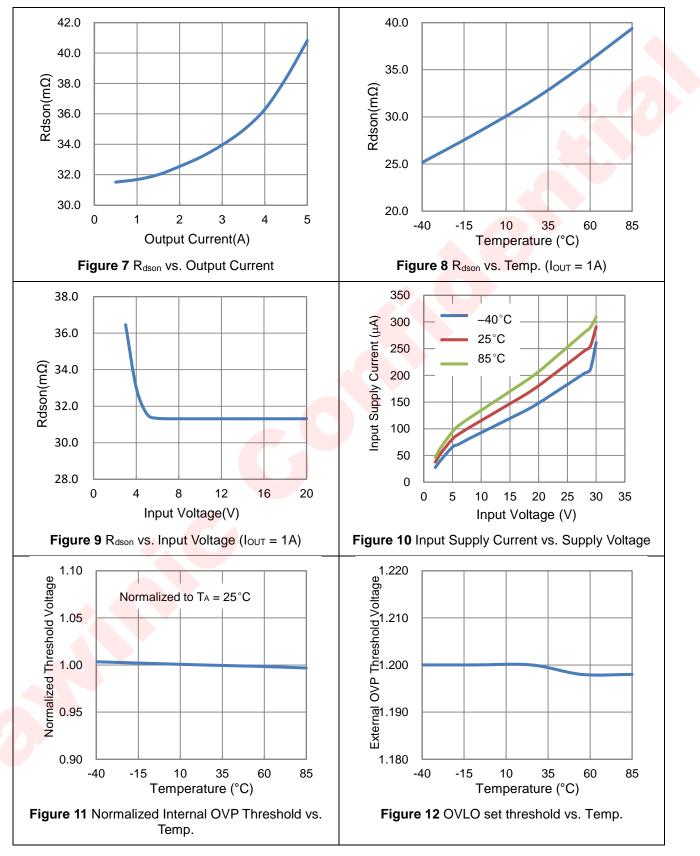

www.awinic.com.cn

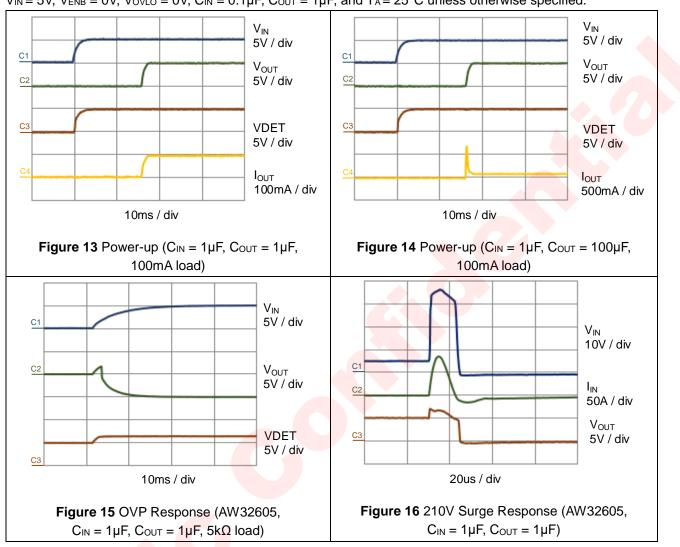
Electrical Characteristics (continued)

 T_A = -40°C to 85°C unless otherwise noted. Typical values are guaranteed for VIN = 5V, CIN = 0.1µF, IIN≤ 4.5A and T_A = 25°C.

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
VDET						
RVDET	VDET switch on- resistance	V_{IN} =4.5V to 5.5V, V_{ENB} =0V, I_{IDET} =1mA		33	55	Ω
Vvdet_out	VDET clamp voltage	V _{IN} =20V, V _{ENB} =0V, VDET no load		6.6		v
IVDET_LIM	VDET current limit			28	45	mA
Digital Logi	cal Interface					
VIH	ENB input high voltage		1.4			V
VIL	ENB input low voltage				0.4	V
Ienb_H	ENB input high current	IN unconnected, V _{ENB} =3V, VDET=2.5V		0.5	2	μA
I _{ENB_L}	ENB input low current	V _{ENB} =0V	-1	0	1	μA
Timing Cha	racteristics (Figure 6)			•		
tdeb	Debounce time	From VIN > VIN_UVLO to 10%		15		ms
ton	Switch turn-on time	Rout = 100Ω, Cout = 22μF, Vout from 10% V _{IN} to 90% V _{IN}		1		ms
toff	Switch turn-off time			50		ns

Timing Diagram




ƏWINIC 上海艾为电子技术股份有限公司 shanghai awinic technology co.,Itd

Typical characteristics

 $V_{IN} = 5V$, $V_{ENB} = 0V$, $V_{OVLO} = 0V$, $C_{IN} = 0.1\mu$ F, $C_{OUT} = 1\mu$ F, and $T_A = 25^{\circ}C$ unless otherwise specified.

Typical characteristics (continued)

12

 $V_{IN} = 5V$, $V_{ENB} = 0V$, $V_{OVLO} = 0V$, $C_{IN} = 0.1\mu$ F, $C_{OUT} = 1\mu$ F, and $T_A = 25^{\circ}$ C unless otherwise specified.

Detailed Functional Description

Device Operation

If the AW326XX is enabled and the input voltage is between UVLO and OVP threshold, the internal charge pump begins to work after 15ms debounce time, the gate of the nFET switch will be slowly charged high till the switch is fully on. The OVP switch features an ultra-low $33m\Omega$ (typ.) on-resistance MOSFET and protects low-voltage system against voltage faults up to $29V_{DC}$. If the input voltage exceeds the OVP trip level, the switch will be turned off in about 50ns.

Surge Protection

The AW326XX integrates a clamp circuit to suppress input surge voltage. For surge voltages between V_{IN_OVLO} and V_{IN_CLAMP} , the switch will be turned off but the clamp circuit will not work. For surge voltages greater than V_{IN_CLAMP} , the internal clamp circuit will detect surge voltage level and discharge the surge energy to ground. The device can suppress surge voltages up to ±200V.

Over-Voltage Protection

If the input voltage exceeds the OVP rising trip level, the switch will be turned off in about 50ns. The switch will remain off until V_{IN} falls below the OVP falling trip level.

OVP Threshold Adjustment

If the default OVP threshold is used, OVLO pin must be grounded. If OVLO pin is not grounded, and by connecting external resistor divider to OVLO pin as shown in the typical application circuit, between IN and GND, the OVP threshold can be adjusted as following:

$$V_{IN_OVLO} = \frac{R_1 + R_2}{R_2} \times V_{OVLO_TH}$$

For example, if we select $R_1 = 510k\Omega$ and $R_2 = 51k\Omega$, then the new OVP threshold calculated from the above formula is 13.2V. The OVP threshold adjustment range is 4V to 20V. When the OVLO pin voltage V_{OVLO} exceeds V_{OVLO_SEL} (0.26V typical), V_{OVLO} is compared with the reference voltage V_{OVLO_TH} (1.2V typical) to judge whether input supply is over-voltage.

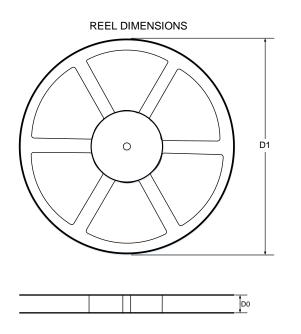
USB On-The-Go (OTG) Operation

If $V_{IN} = 0V$ and OUT is supplied by OTG voltage, the body diode of the load switch conducts current from OUT to IN and the voltage drop from OUT to IN is approximately 0.7V. It is recommend to pull ENB low in OTG mode, When $V_{IN} > V_{IN}_{UVLO}$, internal charge pump begins to open the load switch after debounce time. After switch is fully on, current is supplied through switch channel and the voltage drop from OUT to IN is minimum.

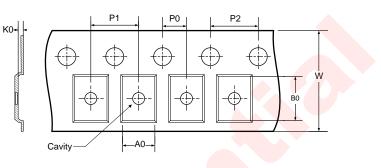
PCB Layout Consideration

To make fully use of the performance of AW326XX, the guidelines below should be followed.

1. All the peripherals should be placed as close to the device as possible. Place the input capacitor C_{IN} on the top layer (same layer as the AW326XX) and close to IN pin, and place the output capacitor C_{OUT} on the top layer (same layer as the AW326XX) and close to OUT pin.


2. Red bold paths on figure 4 and 5 are power lines that will flow large current, please route them on PCB as straight, wide and short as possible.

3. The path from device ground pins to the system ground plane must be as short as possible.

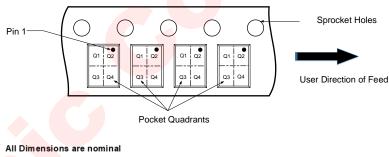

4. The power trace from USB connector to AW326XX may suffer from ESD event, keep other traces away from it to minimize possible EMI and ESD coupling.

5. Use rounded corners on the power trace from USB connector to AW326XX to decrease EMI coupling.

Tape and Reel Information

TAPE DIMENSIONS

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- K0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P0: Pitch between successive cavity centers and sprocket hole
- P1: Pitch between successive cavity centers

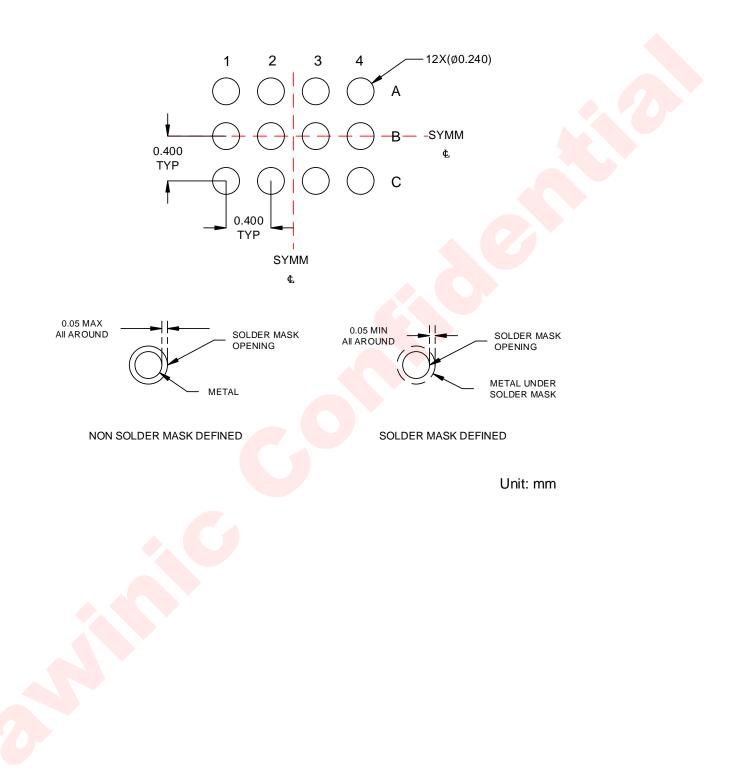

Pin1 Quadrant

Q2

P2: Pitch between sprocket hole

- D1: Reel Diameter
- D0: Reel Width

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



D1	D0	A0	B0	K0	P0	P1	P2	W
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
179.00	9.00	1.40	2.10	0.76	2.00	4.00	4.00	

Package Description

Land Pattern Data

	ni	上海艾为电子技术股份有限公司	
0001	111	上海艾为电子技术股份有限公司 shanghai awinic technology co.,Itd	AW32601/A

Revision History

Version	Date	Change Record	
V1.0	November 2018	Datasheet V1.0 Officially Released	

ƏWINIC 上海艾为电子技术股份有限公司 shanghai awinic technology co.,Itd

Disclaimer

Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements.