Over-Voltage Protection Load Switch

FEATURES

- Integrated low R_{dson} nFET switch: typical 30mΩ
- 4.5A continuous current capability
- Over-Voltage Protection (OVP) threshold
 - > AW33201: 6.2V
 - > AW33205: 6.8V
 - > AW33209: 10.5V
- Input maximum voltage rating: 32V_{DC}
- Fast turn-off response: typical 100ns
- Over-Temperature Protection (OTP)
- Under-Voltage Lockout (UVLO)
- 1.245mm × 1.245mm WLCSP-9 package

APPLICATIONS

- Smartphones
- Tablets
- Charging Ports

GENERAL DESCRIPTION

The AW332XX features an ultra-low $30m\Omega$ (typ.) R_{dson} nFET load switch. When input voltage exceeds the OVP threshold, the switch is turned off very fast to prevent damage to the protected downstream devices. The IN pin is capable of withstanding fault voltages up to $32V_{DC}$.

The OVP threshold is 6.2V(AW33201), 6.8V(AW33205), 10.5V(AW33209).

This device features over-temperature protection that prevents itself from thermal damaging.

The AW332XX is available in a RoHS compliant 9bump 1.245mm × 1.245mm WLCSP.

TYPICAL APPLICATION CIRCUIT

Figure 1 AW332XX typical application circuit

All the trademarks mentioned in the document are the property of their owners.

DEVICE COMPARISON TABLE

Dovico		V _{IN_OVLO}					
Device	Condition	Min.	Тур.	Max.	Hysteresis(mV)		
AW33201	V _{IN} rising	6.0	6.2	6.4	110		
AW33205	V _{IN} rising	6.66	6.80	6.94	150		
AW33209	V _{IN} rising	10.2	10.5	10.8	220		

PIN CONFIGURATION AND TOP MARK

MARKING

(Top View)

32XX – AW33201/AW33205/AW33209 YYYY – Production tracking code

Figure 2 Pin Configuration and Top Mark

PIN DEFINITION

Pin	Name	Description
B2,C1,C2	IN	Switch input and device power supply
A3,B3,C3	GND	Device ground
A1,A2,B1	OUT	Switch output

FUNCTIONAL BLOCK DIAGRAM

TYPICAL APPLICATION CIRCUITS

Figure 4 AW332XX typical application circuit

Notice for Typical Application Circuits:

- 1. $C_{IN} = 0.1 \mu F$ is recommended for typical application, larger C_{IN} is also acceptable. The rated voltage of C_{IN} should be larger than the TVS maximum clamping voltage, if no TVS is applied and only AW332XX is used, the rated voltage of C_{IN} should be 50V.
- 2. $C_{OUT} = 1\mu F$ is recommended for typical application, larger C_{OUT} is also acceptable. The rated voltage of C_{OUT} should be larger than the OVP threshold. For example, if the OVP threshold is 6.8V, the rated voltage of C_{OUT} should be 10V or higher.

3

www.awinic.com.cn

ORDERING INFORMATION

Part Number	Temperature	Package	Marking	Moisture Sensitivity Level	Environmental Information	Delivery Form
AW33201CSR	-40°C – 85°C	1.245mm × 1.245mm × 0.597mm WLCSP-9	3201	MSL1	ROHS+HF	Tape and Reel 3000pcs/Reel
AW33205CSR	-40°C – 85°C	1.245mm × 1.245mm × 0.597mm WLCSP-9	3205	MSL1	ROHS+HF	Tape and Reel 3000pcs/Reel
AW33209CSR	-40°C – 85°C	1.245mm × 1.245mm × 0.597mm WLCSP-9	3209	MSL1	ROHS+HF	Tape and Reel 3000pcs/Reel

ABSOLUTE MAXIMUM RATINGS (NOTE 1)

Symbol	Parameter	Condition	Min.	Max.	Unit
Vin	Input DC voltage		-0.3	32	V
Vin_pul	Input peak pulse voltage	20µs pulse width, repeat 100 times		45	V
Vout	Output voltage		-0.3	See(NOTE 2)	V
lin	Switch current ^(NOTE 3)	Continuous current		4.5	А
TA	Ambient temperature		-40	85	°C
TJ	Junction temperature		-40	150	°C
Tstg	Storage temperature		-55	150	°C
TLEAD	Soldering temperature	At leads, 10 seconds		260	°C

NOTE1: Conditions out of those ranges listed in "absolute maximum ratings" may cause permanent damages to the device. In spite of the limits above, functional operation conditions of the device should within the ranges listed in "recommended operating conditions". Exposure to absolute-maximum-rated conditions for prolonged periods may affect device reliability.

NOTE2: 29V or VIN+0.3V, whichever is smaller.

NOTE3: Limited by thermal design.

THERMAL INFORMATION

Symbol	Parameter	Condition	Value	Unit
$R_{\theta JA}$	Thermal resistance from junction to ambient (NOTE 1)	In free air	85	°C/W

NOTE1: Thermal resistance from junction to ambient is highly dependent on PCB layout.

ESD AND LATCP-UP RATINGS

Symbol	Parameter	Condition	Value	Unit
	Human Body Model	All pins, per MIL-STD-883J Method 3015.9	±3	kV
V _{ESD}	Charged Device Model	All pins, per JEDEC EIA/JESD22-C101F	±2	kV
	Machine Model	All pins, per JEDEC EIA/JESD22-A115	±200	V
ILatch-up	Latch-up	All pins, per JEDEC STANDARD NO.78E SEPTEMBER 2016, I Trigger	±800	mA

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{IN}	Input DC voltage	2.5		30	V
CIN	Input capacitance		0.1		μF
Соит	Output load capacitance		1	100	μF

ELECTRICAL CHARACTERISTICS

 T_A = -40°C to 85°C unless otherwise noted. Typical values are guaranteed for V_{IN} = 5V, C_{IN} = 0.1µF, I_{IN} ≤ 4.5A and T_A = 25°C.

Symbol	Description	Test Condition	ons	Min.	Тур.	Max.	Units
Rdson	Switch on resistance	VIN = 5V, IOUT	= 1A, T _A = 25°C		30	40	mΩ
ΙQ	Input quiescent current	$V_{IN} = 5V, I_{OUT}$	= 0A		78	120	μΑ
Protection							
		A\A/22201	V _{IN} rising	6.0	6.2	6.4	
		AVV33201	Hysteresis		0.11		
	OV/P trip lovel	A\A/22205	V _{IN} rising	6.66	6.80	6.94	V
VIN_OVLO		AVV 33205	Hysteresis		0.15		v
		A\A/22200	V _{IN} rising	10.2	10.5	10.8	
		AVV 33209	Hysteresis		0.22		
	AW33201/	V _{IN} rising		2.3	2.5		
	$ / O trip _{O}$	AW33209	Hysteresis		0.14		V
VIN_UVLO		A\A/22205	V _{IN} rising		2.2	10.8 2.5 2.4	
		AVV 33205	Hysteresis		0.08		
т	Shutdown tomporature	AW33201/AW	/33209		140		°C
I SDN	I SDN Shutdown temperature				150		
T _{SDN_HYS}	Shutdown temperature hysteresis				20		°C
Timing Cha	aracteristics (Figure 5)						
tdeb	Debounce time	From $V_{IN} > V_{IN_UVLO}$ to 10% V_{OUT}			15		ms
ton	Switch turn-on time	$\label{eq:RL} \begin{array}{l} R_{L} = 100\Omega, \ C_{L} = 22\muF, \ V_{OUT} \\ \text{from 10\% V_{IN} to 90\% V_{IN}} \end{array}$			2		ms
toff	Switch turn-off time	$R_L = 100\Omega$, $C_L = 0\mu$ F, $V_{IN} > V_{IN_OVLO}$ to V_{OUT} stop rising, V_{IN_I} rise at 10V/μs			100		ns

TIMING DIAGRAM

TYPICAL CHARACTERISTICS

	_
INDEX	Figure No
Normalized Rdson vs. Output Current	FIGURE 6
Normalized R _{dson} vs. Temp. (I _{OUT} = 1A)	FIGURE 7
Normalized R _{dson} vs. Input Voltage (Iout = 1A)	FIGURE 8
Input Supply Current vs. Supply Voltage	FIGURE 9
Normalized OVP Threshold	FIGURE 10
Normalized Debounce Time vs. Temp	FIGURE 11
Power-up ($C_{OUT} = 1\mu F$, 100mA load)	FIGURE 12
Power-up ($C_{OUT} = 100 \mu F$, 100mA load)	FIGURE 13
OVP Response (AW33201)	FIGURE 14
Recovery from OVP(AW33201)	FIGURE 15

Table 1 Table of Figures

 V_{IN} = 5V, C_{IN} = 0.1 $\mu\text{F},$ C_{OUT} = 1 $\mu\text{F},$ and T_{A} = 25 °C unless otherwise specified.

Figure 6 Normalized Rdson vs. Output Current

Figure 7 Normalized Rdson vs. Temp. (IOUT = 1A)

TYPICAL CHARACTERISTICS (CONTINUED)

Figure 8 Normalized Rdson vs. Input Voltage (IOUT = 1A)

Figure 10 Normalized OVP Threshold vs. Temp.

Figure 9 Input Supply Current vs. Supply Voltage

Figure 11 Normalized Debounce Time vs. Temp.

Figure 13 Power-up ($C_{OUT} = 100 \mu F$, 100mA load)

TYPICAL CHARACTERISTICS (CONTINUED)

 V_{IN} = 5V, C_{IN} = 0.1 $\mu\text{F},$ C_{OUT} = 1 $\mu\text{F},$ and T_{A} = 25 °C unless otherwise specified.

Figure 14 OVP Response (AW33201)

Figure 15 Recovery from OVP(AW33201)

FUNCTIONAL DESCRIPTION

Device Operation

If the input voltage is between UVLO and OVP threshold, the internal charge pump begins to work after debounce time, the gate of the nFET switch will be slowly charged high till the switch is fully on. If the input voltage exceeds the OVP trip level, the switch will be turned off in about 100ns. If input voltage falls below UVLO threshold, or over-temperature happens, the switch will also be turned off.

Over-Voltage Protection

If the input voltage exceeds the OVP rising trip level, the switch will be turned off in about 100ns. The switch will remain off until V_{IN} falls below the OVP falling trip level.

USB On-The-Go (OTG) Operation

If $V_{IN} = 0V$ and OUT is supplied by OTG voltage, the body diode of the load switch conducts current from OUT to IN and the voltage drop from OUT to IN is approximately 0.7V. When $V_{IN} > V_{IN_UVLO}$, internal charge pump begins to open the load switch after debounce time. After switch is fully on, current is supplied through switch channel and the voltage drop from OUT to IN is minimum.

PCB LAYOUT CONSIDERATION

To make fully use of the performance of AW332XX, the guidelines below should be followed.

1. All the peripherals should be placed as close to the device as possible. Place the input capacitor C_{IN} on the top layer (same layer as the AW332XX) and close to IN pin, and place the output capacitor C_{OUT} on the top layer (same layer as the AW332XX) and close to OUT pin.

2. IN pin routing passes through the external TVS firstly, and then connect AW332XX.

3. Red bold paths on figure 4 and 5 are power lines that will flow large current, please route them on PCB as straight, wide and short as possible.

4. The power trace from USB connector to AW332XX may suffer from ESD event, keep other traces away from it to minimize possible EMI and ESD coupling.

5. Use rounded corners on the power trace from USB connector to AW332XX to decrease EMI coupling.

TAPE AND REEL INFORMATION

CARRIER TAPE

Unit: mm

Pin 1 direction

REEL

Item	Value&Tolerance
A	179±1.0
В	2.0±0.1
С	13.5±0.2
N	54.8±0.2
W2	9.0±0.2
W3	9.2+1.0
T1	1.2±0.2
T2	1.5±0.2

NOTE:

- 1. Unit: mm;
- 2. Surface resistivity: 10⁵ to 10¹¹ ohms/sq;
- 3. Restriction criterion of hazardous substance for packing material follow GP-M001.

PACKAGE DESCRIPTION

e1→ +e3+ e2→+ 0.239±0.020 еЗ∙

BOTTOM VIEW

		-
Symbol	NOM	Tolerance
А	0.597	±0.055
A1	0.177	±0.020
A2	0.380	±0.025
A3	0.040	±0.010
D	1.245	±0.025
E	1.245	±0.025
e1	0	NA
e2	0	NA
e3	0.400	NA
60	0.400	

Unit: mm

LAND PATTERN DATA

14

Unit: mm

REFLOW

Figure 16 Package Reflow Oven Thermal Profile

Reflow Note	Spec
Average ramp-up rate (217°C to Peak)	Max. 3°C /sec
Time of Preheat temp.(from 150°C to 200°C)	60-120sec
Time to be maintained above 217°C	60-150sec
Peak Temperature	>260°C
Time within 5°C of actual peak temp	20-40 sec
Ramp-down rate	Max. 6°C /sec
Time from 25°C to peak temp	Max. 8min

NOTE 1: All data are compared with the package-top temperature, measured on the package surface; NOTE 2: AW332XX adopted the Pb-Free assembly.

REVISION HISTORY

Vision	Date	Change Record
V0.9	January 2017	Datasheet V0.9 Released
V1.0	March 2017	Added Typical Characteristics
		1. Added PCB layout consideration.
V1.1	April 2017	2. Added ROHS and MSL statements.
		3. Added Reflow Information.
V1.2	June 2017	Added AW33205 part number
V1.3	January 2018	Added Land Pattern Data

DISCLAIMER

Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements.