8.5V Large Volume Ultra Low Bass 2-in-1 TLTR-AGC 2nd Smart K Audio Amplifier

FEATURES

- Triple-Level Triple-Rate AGC algorithm:
- Enhance the bass, improve the dynamic range
- Increase volume, eliminate noise, timely and effectively protect the speaker
- 8.5V Boost
- Output Power: 4.1W@8Ω 4.6W@6Ω
- Low Noise: 47µV
- Low THD+N: 0.015%
- Overall efficiency up to 72%
- Support speaker, receiver 2-in-1 application
- Receiver mode: Noise 20µV, THD+N 0.02%
- Support 1.8V I²C Control Interface
- Battery tracking AGC, for low-voltage protection
- Over current protection, over-temperature protection and short-circuit protection
- Super TDD-Noise suppression
- Excellent pop-click suppression
- High PSRR: -70dB (217Hz)
- Small 2.76mm*2.36mm CSP-19 package

APPLICATIONS

Smart phone

APPLICATION DIAGRAM

www.awinic.com.cn

DESCRIPTION

AW87319 is specifically designed to improve the musical output dynamic range, enhance the overall sound quality, which is a new high efficiency, low noise, constant large volume, 2nd Smart K audio amplifiers. AW87319 integrates the high-voltage synchronous Boost with efficiency up to 84% as the Class D power stage supply. It significantly improves the output dynamic range of music. AW87319 integrates Awinic's proprietary Triple-Level Triple-Rate AGC audio algorithm, effectively eliminating music noise and improving sound quality and volume. AW87319 noise floor is as low as to 47uV, with 102dB high signal-to-noise-ratio (SNR). The ultra-low distortion 0.015% and unique Triple-Level Triple-Rate AGC technology bring high quality music enjoyment. AW87319 supports speaker and receiver 2-in-1 applications. In the receiver application, Class D power stage voltage is straightly supplied by battery. AW87319 controls internal registers through the I²C interface. Register parameters include Boost Output Voltage, Boost maximum input peak current, Class D gain, Triple-Level Triple-Rate AGC parameters. protection. AW87319 built-in over current over-temperature protection and short circuit protection function, effectively protect the chip. uses small 2.76mm*2.36mm CSP-19 AW87319 package.

awinic technology co.,Itd 上海艾为电子技术股份有限公司 Aw8731 bhanghai awinic technology co.,Itd De

AW87319 datasheet Dec. 2016 V1.2

Figure2 AW87319 Receiver Mode Application Diagram

All trademarks are the property of their respective owners.

PIN CONFIGURATION AND TOP MARK

AW87319CSR TOP VIEW

AW87319 CSR MARKING

AW87319 - AW87319 CSR XXXX - Production tracking code

PIN DESCRIPTION

Number	Symbol	Description			
A1	VOP	Positive audio output terminal			
A2,B2,C2	PVDD	Boost charge pump output voltage			
A4,B3	SW	Boost Switch pin			
B1	PGND	Amplifier power ground			
B4,C4	BGND	Boost power ground			
C1	VON	Negative audio output terminal			
C3	AD2	I ² C address pin2			
D1	GND	Ground			
D2	AD1	I ² C address pin1			
D3	RSTN	Reset pin			
D4	VDD	Power supply			
E1	INP	Positive audio input terminal			
E2	INN	Negative audio input terminal			
E3	SDA	I ² C-bus data input/output			
E4	SCL	I ² C-bus clock input			

ORDERING INFORMATION

Product Type	Operation temperature range	Package	Device Marking	Moisture Sensitivity Level	Environmental Information	Device Marking	Delivery Form
AW87319CSR	-40°C~85°C	CSP-19	AW87319	MSL1	ROHS+HF	AW87319	Tape and Reel 6000 pcs

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATING(Note1)

Parameter	Range					
Supply Voltage	Supply Voltage VDD					
Input Pin Voltage	INN, INP	-0.3V to VDD+0.3V				
Boost output voltage	PVDD	-0.3V to 15V				
SW		-0.3V to PVDD+2V				
VOP, VON		-0.3V to PVDD+0.3V				
Minimum load resista	Minimum load resistance R∟					
Package Thermal Resi	Package Thermal Resistance θ _{JA}					
Ambient Temperature	e Range	-40°C to 85°C				
Maximum Junction Tempe	erature T _{JMAX}	125°C				
Storage Temperature R	ange T _{STG}	-65°C to 150°C				
Lead Temperature (Solderin	g 10 Seconds)	260°C				
	ESD Rating (Note 2)					
HBM(human body r	HBM(human body model)					
CDM (charge device	CDM (charge device mode)					
Latch-up						

www.awinic.com.cn

ƏWINIC 上海艾为电子技术股份有限公司 AW87319 datasheet shanghai awinic technology co.,Itd Dec. 2016 V1.2

Tool Condition IEDEC STANDARD NO 788 DECEMBER 2008	+IT: 450mA
Test Condition: JEDEC STANDARD NO. 768 DECEMBER 2006	-IT: -450mA

Note 1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Note 2: The human body model is a 100pF capacitor discharged through a $1.5k\Omega$ resistor into each pin. Test method: MIL-STD-883G Method 3015.7

ELECTRICAL CHARACTERISTICS

Test condition: $T_A=25^{\circ}C$, VDD=3.6V, PVDD=8V, $R_L=8\Omega+33\mu$ H, f=1kHz (unless otherwise noted)

	Parameter	Test condi	Min	Тур	Max	Units	
V _{DD}	Power supply voltage			3.3		5.5	V
	Under-voltage protection voltage				2.9		V
UVP	Under-voltage protection hysteresis voltage				150		mV
V _{IH}	RSTN, SCL, SDA, AD1, AD2 high-level input voltage			1.3		V_{DD}	V
V _{IL}	RSTN, SCL, SDA, AD1, AD2 low-level input voltage			0		0.35	V
I _{SD}	Shutdown current	V _{DD} =3.6V, RS	TN=0V		0.1	1	μA
T _{SD}	Over temperature protection threshold				160		°C
T _{SDR}	Over temperature protection recovery threshold				130		°C
T _{ON}	Turn-On time				40		ms
T _{OFF}	Turn-Off time			150		500	μs
Boost							
PVDD	The maximum Output voltage	V _{DD} =3.3V to		8.5 ((Note1)		V	
01/5	OVP voltage	V _{DD} =3.3V to		$1.1*V_{PVDD}$		V	
OVP	OVP hysteresis voltage				400		mV
E1	Operating Frequency	V _{DD} =3.3V to		1.6		MHz	
	Soft-start Switching frequency				0.4		MHz
D _{MAX}	The maximum duty cycle				90%		
T _{ST}	Soft-start time	No load, C _{OUT} =22µF			1		ms
η	Boost converter efficiency	V _{DD} =3.6V, R _L =80	2,P ₀ =1W		84%		
I _{L_PEAK}	Inductor peak current limit	V _{DD} =3.3V to	5.5V		4 (Note1)		А
I _{SHORT}	Current limit when PVDD short to ground				300		mA
Class D	•	·		•			
Vos	Output offset voltage	Vin=0V, V _{DD} =3.3	/ to 5.5V	-30	0	30	mV
η	total efficiency (Boost+Class D)	V _{DD} =4.2V, Po= R _L =8Ω+33μH, PV	=2.5W, 'DD=8.5V		72		%
1	Speaker Quiescent current	V _{DD} =3.6V, inp grounded, R _L =8	out ac Ω+33µH		14		mA
Iq	Receiver Quiescent current	V _{DD} =3.6V, inp grounded, R _L =89	out ac Ω+33µH		6		mA
Fosc	Modulation frequency	V _{DD} =3V to 5	5.5V		800		kHz
DCDD	Rower supply rejection ratio	V _{DD} =4.2V,	217Hz		-70		dB
FORK		Vp-p_sin=200mV	1kHz		-65		dB

AW87319 datasheet
shanghai awinic technology co.,ItdAW87319 datasheet
Dec. 2016 V1.2

		V _{DD} =4.2V, Po=4.1W,	PVDD=8.5V, R _L =8Ω+33μH, ⁄=8V/V		102		dB
SNR	Signal-to-noise ratio	V _{DD} =4.2V, Po=0.8W, Av	PVDD=8.5V, R _L =8Ω+33μH, /=8V/V		94		dB
	Parameter	Test c	onditions	Min	Тур	Max	Units
-	Speaker Output poing	Av=16 V/V	20Hz to		58		
E _N	Speaker Output hoise	Av=8 V/V	20kHz, input ac grounded,		47		μV
	Receiver Output noise	Av=1 V/V	A-weighting		20		
Av	Speaker gain				24 (Note1)		dB
	Receiver gain				0 ^{((Note1)}		
	Speaker Inner input resistance	Av	=16 V/V		9		
Rini	Speaker Inner input resistance	Av	=8 V/V		18		kΩ
	Receiver Inner input resistance	Av	=1 V/V		95		
	Speaker input Cut-off frequency	Cin=47	nF, Av=16 V/V		376		
	Speaker input Cut-off frequency	Cin=47	nF, Av=8 V/V		188		
Fin	Receiver input Cut-off frequency	Cin=47	nF, Av=1 V/V		36		Hz
	Speaker input Cut-off frequency	Cin=68	nF, Av=16 V/V		260		ΗZ
	Speaker input Cut-off frequency	Cin=68	nF, Av=8 V/V		130		
	Receiver input Cut-off frequency	Cin=68	nF, Av=1 V/V		25		
THD+N	Total harmonic distortion plus noise	V _{DD} =4.2 R _L =8Ω+33 PVI	V, Po=0.6W, 3µH, f=1kHz, DD=8.5V		0.015		%
		THD+N=1% VDD=4.2V	, RL=8Ω+33μH, , PVDD=8.5V		4.1		W
		THD+ RL=8Ω+33μ PVDD=8.	·N=10%, H, V _{DD} =4.2V, 5V I _{L_PEAK} =4A		4.9		W
Po	Speaker Output Power	THD+N=1% V _{DD} =4.2V	, R∟=6Ω+33μΗ, , PVDD=8.5V _{⊃EAK} =4A		4.6		W
		THD+ R∟=6Ω+33μ PVI I∟	N=10%, H, V _{DD} =4.2V, DD=8.5V _{PEAK} =4A		5.1		W
Battery Tra	cking AGC						
V_{BSGD}	Battery protection threshold voltage				3.5 ^{((Note1)}		V
V_{BSGD_HYS}	Battery protection Hysteresis voltage				100		mV
Triple-Leve	I Triple-Rate AGC	1		T		r	
T_{AT1}	AGC1 Attack Time				0.08 ((Note1))		ms/dB
T _{AT2}	AGC2 Attack Time				0.64 ((Note1)		ms/dB
T _{AT3}	AGC3 Attack Time				41 (Note1)		ms/dB
T _{RLT}	Release time				21 (Note1)		ms/dB
A _{MAX}	The maximum attenuation gain				-13.5		dB

Note 1: Registers are adjustable; Refer to the list of registers.

MEASUREMENT SETUP

AW87319 features switching digital output, as shown in Figure 5. Need to connect a low pass filter to VOP/VON output respectively to filter out switch modulation frequency, then measure the differential output of filter to obtain analog output signal.

Figure 5 AW87319 test setup

Low pass filter uses resistance and capacitor values listed in Table 1.

R _{filter}	Cfilter	Low-pass cutoff frequency
500Ω	10nF	32kHz
1kΩ	4.7nF	34kHz

Table 1 AW87319 recommended values for low pass filter

Output Power Calculation

According to the above test methods, the differential analog output signal is obtained at the output of the low pass filter. The valid values Vo_rms of the differential signal as shown below:

Figure 6 Output RMS value

The power calculation of Speaker is as follows:

$$P_{L} = \frac{(Vo_rms)^2}{R_{L}} \quad (R_{L}: \text{ load impedance of the speaker})$$

TYPICAL CHARACTERISTICS

ƏWINIC 上海艾为电子技术股份有限公司 shanghai awinic technology co.,Itd

www.awinic.com.cn

ƏWINIC 上海艾为电子技术股份有限公司 shanghai awinic technology co.,Itd

AW87319 datasheet Dec. 2016 V1.2

THD+N vs frequency

THD+N vs frequency

www.awinic.com.cn

(%) N+DHT

0.1

0.01

0.1

0.2 0.3

0.5

frequency(w)

5

2

1

3

AW87319 datasheet
shanghai awinic technology co.,ItdAW87319 datasheet
Dec. 2016 V1.2

Start-up sequence

Triple-Level Triple-Rate AGC Attack Timing

Triple-Level Triple-Rate AGC Release Timing

www.awinic.com.cn

DETAILED FUNCTIONAL DESCRIPTION

AW87319 is specifically designed to improve the musical output dynamic range, enhance the overall sound quality, which is a new high efficiency, low noise, constant large volume, 2nd Smart K audio amplifiers.

AW87319 integrates the high-voltage synchronous Boost with efficiency up to 84% as the Class D power stage supply. It significantly improves the output dynamic range of music. AW87319 integrates Awinic's proprietary Triple-Level Triple-Rate AGC audio algorithm, effectively eliminating music noise and improving sound quality and volume. AW87319 noise floor is as low as to 47uV, with 102dB high signal-to-noise-ratio (SNR). The ultra-low distortion 0.015% and unique Triple-Level Triple-Rate AGC technology bring high quality music enjoyment.

AW87319 supports speaker and receiver 2-in-1 applications. In the receiver application, Class D power stage voltage is straightly supplied by battery.

AW87319 controls internal registers through the I2C interface. Register parameters include Boost Output Voltage, Boost maximum input peak current, Class D gain, Triple-Level Triple-Rate AGC parameters. AW87319 built-in over current protection, over-temperature protection and short circuit protection function, effectively protect the chip. AW87319 uses small 2.76mm*2.36mm CSP-19 package.

CONSTANT OUTPUT POWER

In the mobile phone audio applications, the AGC function to promote music volume and quality is very attractive, but as the lithium battery voltage drops, general power amplifier output power will reduce gradually. So, it is hard to provide high quality music within the battery voltage range. AW87319 uses unique Triple-Level Triple-Rate technology, within lithium battery voltage range (3.3V~ 4.35V), to guarantee that output power is constant, and the output power will not drop along with the decrease of lithium battery voltage. Even if the battery voltage drops, AW87319 can still provide high quality large volume music enjoyment. The output power of AW87319 can be configured from 0.5W to 1.5W via I²C, matching general speakers. Unique Triple-Level Triple-Rate AGC technology can bring high-quality music enjoyment.

Triple-Level Triple-Rate AGC technology

Awinic proprietary Triple-Level Triple-Rate AGC technology is designed for the protection of the high voltage power amplifier, which is divided into AGC1, AGC2 and AGC3 power levels, to obtain a large volume while maintaining excellent sound quality.

In practical applications, speaker can continuously work long hours at rated power, and also can work short-term at high power. For example, in the standard reliability of the loudspeaker experiment, the powder of peak power reached around four times of the rated power. For achieving larger volume and better sound quality, speakers need to work at high power for short periods of time, in order to improve the performance of the speaker. AW87319 Triple-Level Triple-Rate AGC technology can fit the speaker better. AGC1 prevents output signal clipping by detecting output voltage in a very short time after clipping, which can effectively restrain the noise clipping; AGC2 can improve the dynamic range of the music in a relatively short period of time; AGC3 can make the speaker work under rated power, which can effectively improve the volume and protect the speaker. Triple-Level Triple-Rate AGC can obtain more excellent overall performance.

Triple-Level Triple-Rate AGC detects the peak output voltage of the power amplifier, when the output peak voltage is higher than the compression threshold voltage, the amplifier gain decreases in 0.5dB step. When the output peak voltage is lower than the release threshold voltage, the amplifier gain is recovery to the initial gain in 0.5dB step. The detailed process can be described as follows:

OWINC上海艾为电子技术股份有限公司
shanghai awinic technology co.,ItdAW87319 datasheet
Dec. 2016 V1.2

Figure 7 Triple-Level Triple-Rate AGC Operation Principle

- A: The output voltage is lower than threshold voltage Vth_at3, AGC don't work.
- B: Input voltage becomes large. It leads to the output voltage clipping, AGC1 starts work, the attack time is set through the I²C register 0x09h [2:1], when the output voltage is higher than Vth_at1, and gain register began to decrease. Gain decreases when the output signal passes through the zero. It eliminates the clipping noise as soon as possible.
- C: When the output voltage is not clipping and higher than threshold voltage Vth_at2, AGC2 starts work, the attack time is set through the I²C register 0x08h [4:2], gain register begins to decrease at a certain rate. Gain register began to decrease. Gain decreases when the output signal passes through the zero. The output voltage gradually decreases to below the AGC2 attack threshold voltage Vth_at2, which can protect the speaker and enhance the sound.
- D: When the output voltage is lower than the AGC2 attack threshold voltage Vth_at2 and higher than the AGC3 attack threshold voltage Vth_at3, AGC3 starts work, the attack time is set through the I²C register 0x07h [4:2], and gain register began to decrease at a certain rate. Gain decreases when the output signal passes through the zero, so the output voltage gradually decreases to below the AGC3 attack threshold voltage Vth_at3.
- E: Attack time ends, Amplifier output power is close to the speaker rated power.
- F: Input voltage decreases, the output voltage becomes lower than the release threshold voltage Vth_rt, at this point, gain remains the same in the maintain time (10 ms~20 ms).
- G: Gain increases When the time of output voltage lower than the release threshold voltage Vth_rt is

awinic technology co.,Itd 上海艾为电子技术股份有限公司 AW87319 datasheet Dec. 2016 V1.2

longer than the holding time. The release time can be set through I²C register 0x07h [7:5].

H: Stop release when the output signal is larger than the release threshold or the gain is equal to the initial value. The output voltage remains constant.

Triple-Level Triple-Rate AGC can switch independently according to different application requirements. Such as close AGC1 and AGC2, retain only AGC3, this is the single-AGC mode, similar to AW8736(AGC3 attack time is set to 1.28ms/dB; release time is set to 41ms/dB); Close AGC2, open AGC1 and AGC3, this is Multi_level AGC. It can be set similar to AW8738 (AGC1 attack time is set to 80us/dB; AGC3 attack time is set to 0.64ms/dB; release time is set to 10.24ms/dB).

Zero-Crossing Adjustment Technology

Traditional AGC doesn't contain zero adjustment technology; AGC gain changes generally at the peak, the gain variation at the peak would generate a certain transient distortion, such distortions are audibly imperceptible.

Figure 8 Zero-adjust Comparison

As shown above, when there is no zero-adjustment technology, it can be seen the obvious step change at the peak of large signal, the steps sound slightly perceived in special audio. Gain changes at zero. The steps disappear by using zero-crossing detection technology. Using zero detection technology can make the music pure and natural.

Low-voltage protection AGC technology

Mobile phone battery voltage will decrease in use, but the current will increase. When the battery voltage is low, high current maybe cause the battery protection or mobile phone automatically shut down. Awinic proprietary low voltage protection AGC technology can solve the problems, to prevent high current when the battery voltage is too low.

AW87319 is built-in low voltage protection AGC technology to real-time detection the battery voltage. Gain decreases rapidly when the battery voltage is below the safety threshold, so as to decrease the output voltage and the power supply current, which effectively prevents high current.

Figure 11 Low voltage protection

The protection safety threshold voltage is set to 3.5 V~3.6 V through the I²C register 0x02h [4:3]. The maximum protection output voltage is set to 5Vp ~ 6.5Vp through I²C register 0x02h [1:0]. Only when the register 0x02h [2] is set to 1, low voltage protection AGC technology is enabled.

Synchronous Boost technology

AW87319 integrated peak current mode synchronous PWM Boost as Class D power stage supply, significantly increase the output voltage dynamic range. Reduces the size of external components and saves PCB space by using 1.6 MHz switching frequency. Boost output voltage can be set through the I²C register 0x03h [2:0]; Boost current limit can be set through register 0x04h [2:0].

AW87319 synchronous Boost with soft-start function to prevent overshoot current at powering-on; integrated the output protection circuit and self-recovery function; integrated Anti-Ring circuit to reduce EMI in DCM mode; built-in substrate switching shutdown circuit, effectively preventing the input and output leakage current anti-irrigation.

2-in-1 application

AW87319 is easy to realize the speaker and receiver 2-in-1 application, better save cost and board space. AW87319 can set the gain through the I²C register 0x05h [3:0].

The typical value of input capacitance is a 47nF, gain is 16V/V in default in speaker mode; the cutoff frequency is 376Hz; the gain is 1V/V in default in receiver mode; the noise is 20μ V; the cutoff frequency is 36Hz. Realize 2-in-1 application without changing any hardware.

Class D power stage voltage is straightly supplied by battery in receiver mode.

RNS (RF TDD Noise Suppression)

GSM radios transmit using time-division multiple access with 217Hz intervals. The result is an RF signal with strong amplitude modulation at 217Hz and its harmonics that is easily demodulated by audio amplifiers.

In RF applications, improvements to both layout and component selection decrease the AW87319's susceptibility to RF noise and prevent RF signals from being demodulated into audible noise. Minimizing the trace length prevents them from functioning as antennas and coupling RF signals into the AW87319. Additional RF immunity can also be obtained from relying on the self-resonant frequency of capacitors so as to exhibit the frequency response similar to a notch filter. Depending on the manufacturer, 10pF to

awinic technology co.,Itd 上海艾为电子技术股份有限公司 AW87319 datasheet Dec. 2016 V1.2

20pF capacitors typically exhibit self resonance at RF frequencies. These capacitors, when placed at the input pins, can effectively shunt the RF noise at the inputs of the AW87319. For these capacitors to be effective, they must have a low-impedance and low-inductance path to the ground plane.

Some RF energy will couple onto audio traces regardless of the effort to prevent this phenomenon from occurring, form audible TDD Noise. The AW87319 features a unique RNS technology, which effectively reduces RF energy, attenuate the RF TDD-noise, an acceptable audible level to the customer.

Figure 10 RF Radiation coupling schematic diagram

Filter-Free Modulation Scheme

The AW87319 features a filter-free PWM architecture that reduces the LC filter of the traditional Class-D amplifier, increasing efficiency, reducing board area consumption and system cost.

EEE

The AW87319 features a unique Enhanced Emission Elimination (EEE) technology, that controls fast transition on the output, greatly reduces EMI over the full bandwidth.

Pop-Click Suppression

The AW87319 features unique timing control circuit, that comprehensively suppresses pop-click noise, eliminates audible transients on shutdown, wakeup, and power-up/down.

Over temperature protection

AW87319 has automatic temperature detection mechanism. When the chip operates in a fault condition, the chip temperature is too high, up to a preset temperature protection temperature threshold (160°C), the system starts overheating protection, the chip powered off. AW87319 restarts to resume normal work when the chip temperature returns to normal operating range (less than 130°C).

Protection Function

When a short occurs between VOP/VON pin and VDD/GND or VOP and VON, the device will shut down, preventing the device from being damaged. AW87319 can automatically recover when the condition is

www.awinic.com.cn

OVINC 上海艾为电子技术股份有限公司 AW87319 datasheet shanghai awinic technology co.,Itd Dec. 2016 V1.2

removed. The device shuts down when the junction temperature is high. The device returns to normal operation when the temperature decreases to safe levels.

I²C Timing feature

		Parameter		-		
No.	Sym	Name	MIN	IYP	MAX	UNII
1	fscl	SCL Clock frequency			400	kHz
2	tLOW	SCL Low level Duration	0.6			μs
3	t _{ніGн}	SCL High level Duration	1.3			μs
4	trise	SCL, SDA rise time			0.3	μs
5	tFALL	SCL, SDA fall time			0.3	μs
6	t _{SU:STA}	Setup time SCL to START state	0.6			μs
7	thd:sta	START state to STL holding time	0.6			μs
8	tsu:sto	Setup time SCL to STOP state	0.6			μs
9	t _{BUF}	the Bus idle time START state to STOP state	1.3			μs
10	tsu:dat	SDA to SCL setup time	0.1			μs
11	thd:dat	SCL to SDA hold time	10			ns

General I²C Operation

The I²C bus employs two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a system. The device is addressed by a unique 7-bit address; the same device can send and receive data. In addition, Communications equipment has distinguish master from slave device: In the communication process, only the master device can initiate a transfer and terminate data and generate a corresponding clock signal. The devices using the address access during transmission can be seen as a slave device.

SDA and SCL connect to the power supply through the current source or pull-up resistor. SDA and SCL default is a high level. There is no limit on the number of bytes that can be transmitted between start and

OWINC上海艾为电子技术股份有限公司
shanghai awinic technology co.,ItdAW87319 datasheet
Dec. 2016 V1.2

stop conditions. When the last word transfers, the master generates a stop condition to release the bus. START state: The SCL maintain a high level, SDA from high to low level

STOP state: The SCL maintain a high level, SDA pulled low to high level

Start and Stop states can be only generated by the master device. In addition, if the device does not produce STOP state after the data transmission is completed, instead re-generate a START state (Repeated START, Sr), and it is believed that this bus is still in the process of data transmission. Functionally, Sr state and START state is the same. As shown in figure 13.

Figure 13 START and STOP state generation process

In the data transmission process, when the clock line SCL maintains a high level, the data line SDA must remain the same. Only when the SCL maintain a low level, the data line SDA can be changed, as shown in figure 14. Each transmission of information on the SDA is 9 bits as a unit. The first eight bits are the data to be transmitted, and the first one is the most significant bit (Most Significant Bit, MSB), the ninth bit is an confirmation bit (Acknowledge, ACK or A), as shown in figure 15. When the SDA transmits a low level in ninth clock pulse, it means the acknowledgment bit is 1, namely the current transmission of 8 bits data are confirmed, otherwise it means that the data transmission has not been confirmed. Any amount of data can be transferred between START and STOP state.

Figure 14 The data transfer rules on the I²C bus

The whole process of actual data transmission is shown in figure 15. When generating a START condition, the master device sends an 8-bit data, including a 7-bit slave addresses (Slave Address), and followed by a "read / write" flag (R/\overline{W}). The flag is used to specify the direction of transmission of subsequent data. The master device will produce the STOP state to end the process after the data transmission is completed. However, if the master device intends to continue data transmission, you can directly send a Repeated START state, without the need to use the STOP state to end transmission.

www.awinic.com.cn

ƏWINIC 上海艾为电子技术股份有限公司 shanghai awinic technology co.,Itd

Figure 15 Data transmission on the I²C bus

I²C Read/Write Processes

The following describes two kinds of ways of the I²C bus data transmission:

Write Process

Writing process refers to the master device write data into the slave device. In this process, the transfer direction of the data is always unchanged from the master device to the slave device. All acknowledge bits are transferred by the slave device, in particular, AW87319 as the slave device, the transmission process in accordance with the following steps, as shown in figure 16:

Master device generates START state. The START state is produced by pulling the data line SDA to a low level when the clock SCL signal is a high level.

Master device transmits the 7-bits device address of the slave device, followed by the "read / write" flag (flag $R/\overline{W} = 0$):

The slave device asserts an acknowledgment bit (ACK) to confirm whether the device address is correct; The master device transmits the 8-bit AW87319 register address to which the first data byte will written;

The slave device asserts an acknowledgment (ACK) bit to confirm the register address is correct;

Master sends 8 bits of data to register which needs to be written;

The slave device asserts an acknowledgment bit (ACK) to confirm whether the data is sent successfully; If the master device needs to continue transmitting data by sending another pair of data bytes, just need to repeat the sequence from step 6. In the latter case, the targeted register address will have been auto-incremented by the AW87319.

The master device generates the STOP state to end the data transmission.

Read Process

Reading process refers to the slave device reading data back to the master device. In this process, the direction of data transmission will change. Before and after the change, the master device sends START state and slave address twice, and sends the opposite "read/write" flag. In particular, AW87319 as the slave device, the transmission process carried out by following steps listed in figure 17: Master device asserts a start condition;

Master device transmits the 7 bits address of AW87319, and followed by a "read / write" flag (R/W = 0);

OVINC 上海艾为电子技术股份有限公司 AW87319 datasheet shanghai awinic technology co.,Itd Dec. 2016 V1.2

The slave device asserts an acknowledgment bit (ACK) to confirm whether the device address is correct; The master device transmits the AW87319 register address to make sure where the first data byte will read;

The slave device asserts an acknowledgment (ACK) bit to confirm whether the register address is correct or not;

The master device restarts the data transfer process by continuously generating STOP state and START state or a separate Repeated START;

Master sends 7-bits address of the slave device and followed by a read / write flag (flag R/W = 1) again; The slave device asserts an acknowledgment (ACK) bit to confirm whether the register address is correct or not;

Master transmits 8 bits of data to register which needs to be read;

The slave device sends an acknowledgment bit (ACK) to confirm whether the data is sent successfully; AW87319 automatically increment register address once after sent each acknowledge bit (ACK),

The master device generates the STOP state to end the data transmission.

Figure 17 Reading process (data transmission direction remains the same)

ƏWINIC 上海艾为电子技术股份有限公司 shanghai awinic technology co.,Itd

Register List

		0							
name	addr ess	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Chip ID	0x00	1	0	0	1	1	0	1	1
SYSCTRL	0x01	0	0	0	0	0	EN_SW	EN_ClassD	EN_Boost
BATSAFE	0x02	0	0	1	BSTV ⁽¹⁾ [1]	BSTV ⁽¹⁾ [0]	EN_SS ⁽²⁾	BSMOL ⁽³⁾ [1]	BSMOL ⁽³⁾ [0]
BOV ⁽⁴⁾	0x03	0	0	0	0	0	1	BOV ⁽⁴⁾ [1]	BOV ⁽⁴⁾ [0]
BP	0x04	0	0	0	0	0	BMCPC ⁽⁵⁾ [2]	BMCPC ⁽⁵⁾ [1]	BMCPC ⁽⁵⁾ [0]
Gain	0x05	0	0	0	0	Gain[3]	Gain[2]	Gain[1]	Gain[0]
AGC3_Po	0x06	0	0	0	0	AGC3_Po[3]	AGC3_Po[2]	AGC3_Po[1]	AGC3_Po[0]
AGC3	0x07	AGC3_RT[2]	AGC3_R T[1]	AGC3_RT[0]	AGC3_AT[2]	AGC3_AT[1]	AGC3_AT[0]	1	0
AGC2	0x08	AGC2_Po[2]	AGC2_P o[1]	AGC2_Po[0]	AGC2_AT[2]	AGC2_AT[1]	AGC2_AT[0]	0	0
AGC1	0x09	0	0	0	0	0	AGC1_AT[1]	AGC1_AT[0]	PD_AGC1
(1) B	ST//· Bat	tery Safeguard Thre	shold Voltag	0					

(1) EN_SS: EN_Software_Safeguard

(3) BSMOL: Battery_Safeguard_Max_Output_Level

(4) BOV: Boost_Output_Voltage
 (5) BMCPC: Boost Maxim Coil Peak Current

(3)											
register	0x00	0x01	0x02	0x03	0x04	0x05	0x06	0x07	0x08	0x09	
Default		0.000	0,20	0,005	0×04	0x02 (EN_Boost=0)	0.000	0.450	0.20	0.00	
Delault	0390	0x03	UXZO	0x05	0x04	0x0D (EN_Boost=1)	0x03	0x52	0x26	0x02	

Table 2. AW87319 Register Default value

Any register address which is more than 0x09 and all reserved bits are reserved for debugging and testing purposes. Changing their values may affect the normal function of the power amplifier; Reading them will get any possible values. AW87319's I²C address is 10110A2A1, which, in order to avoid conflict with other I²C devices address, you can pull up or pull-down AW87319 of AD2 and AD1 pins to set the value of A2 and A1, respectively. The following lists specific information about all visible registers, including default values and programmable ranges.

CHIP ID Register (address: 0x00)

I ² C Bit	Name	R/W	Default	Description
7:0	IDCODE	R	0x9B	Chip ID will be returned after reading. All configuration registers will be reset to default values after 0xAA is written.

SYSTEM CONTROL (SYSCTRL) Register (address: 0x01)

I ² C Bit	Name	R/W	Default	Description
7:3			00000	Reserved and Unused
				Chip Software Enable
2			0	0: Chip Software Disable:
2	EN_SW	r////	0	Shutdown the whole chip except BIAS and OSC.
				1: Chip Software Enable
		R/W	1	Class D Enable
1	EN_ClassD			0: Class D Disable
				1: Class D Enable
				Boost Enable:
0		R/W	1	This bit must be unchanged when EN_SW=1.
0	EN_BOOSI			0: Boost Disable
				1: Boost Enable

www.awinic.com.cn

版权所有© 2016 上海艾为电子技术有限公司

BATTERY SAFEGUARDS (BATSAFE) Register (address: 0x02)

I ² C Bit	Name	R/W	Default	Description
7:5			001	Reserved and Unused
				Setting Battery Threshold Voltage for Triggering Battery Safeguard Mode: When EN_Boost=0, these bits are fixed in '00'.
4:3	Battery_Safeguard_	R/W	01	00: On-Chip Threshold Detect Disable:
	Threshold_Voltage		•	Use off-chip signal to control mode switch.
				01: Threshold Voltage is 3.50V
				10: Threshold Voltage is 3.55V
				11: Threshold Voltage is 3.60V
			0	Battery Safeguard Mode Software Enable
2	EN_Software_Safeguard	R/W		0: Battery Safeguard Mode Software Disable
				1: Battery Safeguard Mode Software Enable
				Setting Maximum Output Level when Battery
				Safeguard Mode Triggered
1:0	Battery_Safeguard_Max_		00	<u>00</u> : 5.5Vp
	Output_Level	K/VV	00	01: 5.0Vp
				10: 6.0Vp
				11: 6.5Vp

BOOST OUTPUT VOLTAGE (BOV) Register (address: 0x03)

I ² C Bit	Name	R/W	Default	Description
7:3			0000 0	Reserved and Unused
				Setting Boost Output Voltage
	Boost_Output_Voltage	R/W		111: 8.5V
2.0			101	110: 8.25V
2.0			101	<u>101</u> : 8.0V
				100: 7.75V
				0XX: Unavailable

BOOST PARAMETER (BP) Register (address: 0x04)

I ² C Bit	Name	R/W	Default	Description
7:3			00000	Reserved and Unused
				Setting Boost Max Inductor Peak Current
				000: 1.50A
	Boost_Max_Coil_Peak_Current			001: 2.00A
				010: 2.50A
2:0		R/W	100	011: 3.00A
				<u>100</u> : 3.25A
				101: 3.50A
				110: 3.75A
				111: 4.00A

CLASS D GAIN (Gain) Register (address: 0x05)

For EN_Boost=0 (Receiver Mode):

I ² C Bit	Name	R/W	Default	Description	
7:4			0000	Reserved and Unus	ed
				Setting Class D Amp	olifying Gain
				0000: -3.0dB	R _{ini} =134kΩ
				0001: -1.5dB	R _{ini} =113kΩ
				<u>0010</u> : 0.0dB	R _{ini} =95kΩ
				0011: 1.5dB	R _{ini} =80kΩ
3:0	Class_D_Gain	R/W	0010	0100: 3.0dB R _{ini} =67kΩ	R _{ini} =67kΩ
				0101: 4.5dB	R _{ini} =57kΩ
				0110: 6.0dB	R _{ini} =47kΩ
				0111: 7.5dB	R _{ini} =40kΩ
				1000: 9.0dB	R _{ini} =34kΩ
				1XXX (XXX≠000): U	navailable

For EN_Boost=1 (Boost Mode):

I ² C Bit	Name	R/W	Default	Description
7:4			0000	Reserved and Unused
				Setting Class D Amplifying Gain
				0XXX: Unavailable
	Class_D_Gain			1000: Unavailable
			1101	1001: 18.0dB R _{ini} =18kΩ
2.0				1010: 19.5dB R _{ini} =15kΩ
5.0		r///	1101	1011: 21.0dB R _{ini} =13kΩ
				1100: 22.5dB R _{ini} =11kΩ
				<u>1101</u> : 24.0dB R _{ini} =9kΩ
				1110: 25.5dB R _{ini} =8kΩ
				1111: 27.0dB R _{ini} =6.5kΩ

CLASS D AGC3 OUTPUT POWER (AGC3_Po) Register (address: 0x06)

I ² C Bit	Name	R/W	Default	Description
7:4			0000	Reserved and Unused
				Setting AGC3 Output Power for Protecting Speaker
				0000: 0.5W@8Ω 0.67W@6Ω
				0001: 0.6W@8Ω 0.80W@6Ω
				0010: 0.7W@8Ω 0.93W@6Ω
	AGC3_Output_Power	R/W	0011	<u>0011</u> : 0.8W@8Ω 1.07W@6Ω
				0100: 0.9W@8Ω 1.20W@6Ω
2.0				0101:1.0W@8Ω 1.33W@6Ω
3.0				0110: 1.1W@8Ω 1.47W@6Ω
				0111: 1.2W@8Ω 1.60W@6Ω
				1000: 1.3W@8Ω 1.73W@6Ω
				1001: 1.4W@8Ω 1.87W@6Ω
				1010: 1.5W@8Ω 2.00W@6Ω
				1011: AGC3 Disable
				1100~1111: Unavailable

CLASS D AGC3 PARAMETER (AGC3) Register (address: 0x07)

I ² C Bit	Name	R/W	Default	Description
				Setting Release Time of AGC3:
				000: 5.12ms/dB
				001: 10.24ms/dB
				<u>010</u> : 21 ms/dB
7:5	AGC3_Release_Time	R/W	010	011: 41 ms/dB
				100: 82 ms/dB
				101: 164 ms/dB
				110: 328 ms/dB
				111: Unavailable
				Setting Attack Time of AGC3:
				000: 0.64ms/dB
				001: 1.28ms/dB
4:2	AGC3_Attack_Time	R/W	100	010: 2.56ms/dB
				011: 10.24ms/dB
				<u>100</u> : 41ms/dB
				101~111: Unavailable
1:0	-	-	10	Reserved and Unused

CLASS D AGC2 PARAMETER (AGC2) Register (address: 0x08)

I ² C Bit	Name	R/W	Default	Description
				Setting AGC2 Output Power:
				000: 1.2W@8Ω 1.6W@6Ω
				<u>001</u> : 1.5W@8Ω 2.0W@6Ω
7.5	ACC2 Output Bower		001	010: 1.8W@8Ω 2.4W@6Ω
7.5	AGC2_Output_Power	R/VV	001	011: 2.1₩@8Ω 2.8₩@6Ω
				100: 2.4W@8Ω 3.2W@6Ω
				101: AGC2 Disable
				110~111: Unavailable
				Setting Attack Time of AGC2:
				000: 0.16ms/dB
				001: 0.32ms/ dB
1.2	ACC2 Attack Time		010	<u>010</u> : 0.64ms/dB
4.2	AGC2_Allack_Time		010	011: 2.56ms/dB
				100: 10.24ms/dB
				101: 41ms/dB
				110~111: Unavailable
1:0			00	Reserved and Unused

CLASS D AGC1 PARAMETER (AGC1) Register (address: 0x09)

I ² C Bit	Name	R/W	Default	Description
7:3			0000	Reserved and Unused
				Setting Fastest Level AGC Attack Time:
2:1				00: 0.04ms/dB
	Fastest_Level_AGC_Attack_Time	R/W	01	<u>01</u> : 0.08ms/dB
				10: 0.16ms/dB
				11: 0.32ms/dB
				Fastest Level AGC Disable:
0	PD_Fastest_Level_AGC	R/W	0	0: Fastest Level AGC Enable
				1: Fastest Level AGC Disable

www.awinic.com.cn

APPLICATION INFORMATION

Boost Inductor Selection

Selecting inductor needs to consider Inductance, size, magnetic shielding, saturation current and temperature current.

a) Inductance

Inductance value is limited by the boost converter's internal loop compensation. In order to ensure phase margin sufficient under all operating conditions, recommended 1µH inductor.

b) Size

For a certain value of inductor, the smaller the size, the greater the parasitic series resistance of the inductor DCR, the higher the loss, corresponds to the lower efficiency.

c) Magnetic shielding

Magnetic shielding can effectively prevent the inductance of the electromagnetic radiation interference. It is much better to choose inductance with magnetic shielding in the application of EMI sensitive environment.

d) Saturation current and temperature rise of current

Inductor saturation current and temperature rise current value are important basis for selecting the inductor. As the inductor current increases, on the one hand, since the magnetic core begins to saturate, inductance value will decline; on the other hand, the inductor's parasitic resistance inductance and magnetic core loss can lead to temperature rise. In general, the current value is defined as the saturation current ISAT when the inductance value drops to 70%; the current value is defined as temperature rise current I_{RMS} when inductance temperature rise 40°C.

For particular applications, need to calculate the maximum IL_PEAK and IL_RMS, which is a basis of selecting the inductor. When VDD = 4.2V, PVDD=8.5V, $R_L = 8\Omega_\gamma$ amplifier $R_{DSON} = 250m\Omega_\gamma$, when THD = 1% (the maximum power without distortion), the output power is calculated as follows:

$$P_{OUT} = \frac{\left(V_{OUT} \times \frac{R_L}{R_L + 2 \times R_{DSON}}\right)^2}{2 \times R_L \times (1 - 2.3\%)} = \frac{\left(8.5 \times \frac{8}{8 + 2 \times 0.25}\right)^2}{2 \times 8 \times 0.977} W = 4.1W$$

Where the coefficients in the denominator of (0.977) is the power ratio of no truncation maximum output (the power at THD = 1%). In such a large output power, the overall efficiency of the power amplifier is typically 68%, in order to calculate the maximum average current IMAX_AVG_VDD and maximum peak current IMAX_PEAK_VDD drawn from VDD:

$$I_{MAX_{AVG_{VDD}}} = \frac{P_{OUT}}{V_{DD} \times \eta} = \frac{4.1}{4.2 \times 0.68} \text{ A} = 1.436 \text{ A}$$
$$I_{MAX_{PEAK_{VDD}}} = 2 \times I_{MAX_{AVG_{VDD}}} = 2 \times 1.436 \text{ A} = 2.872 \text{ A}$$

If inductor DCR is $50m\Omega$, then when the output power of 4.1W, the inductor power loss is:

$$P_{DCR,LOSS} = 1.5 \cdot I_{MAX_AVG_VDD}^2 \cdot DCR = 1.5 \times 1.436^2 \times 0.05W = 155 \text{mW}$$

Wherein the coefficient 1.5 is the square of the ratio of the sine wave current RMS value and average value (there is no consideration of the impact of the inductor ripple, the actual DCR loss will be even greater). If the loss which is resulting from DCR is less than 1% at maximum efficiency ($P_{OUT} = 2.5W$, $\eta =$

www.awinic.com.cn

72%), then:

$$I_{AVG_VDD} = \frac{P_{OUT}}{V_{DD} \times \eta} = \frac{2.5}{4.2 \times 0.72} \text{ A} = 0.827 \text{ A}$$
$$DCR = \frac{P_{DCR,LOSS}}{1.5 \cdot I_{AVG_VDD}^2} \le 0.01 \times \frac{P_{OUT}}{1.5 \cdot I_{AVG_VDD}^2 \cdot \eta} = \frac{0.01 \times 2.5}{1.5 \times 0.827^2 \times 0.72} \Omega = 34 \text{ m}\Omega$$

According to the working principle of the Boost, we can calculate the size of the inductor current ripple Δ_{IL} :

$$\Delta I_{L} = \frac{V_{IN} \times (V_{OUT} - V_{IN})}{V_{OUT} \times f \times L} = \frac{4.2 \times (8.5 - 4.2)}{8.5 \times 1.6 \times 1} \text{A} = 1.328 \text{A}$$

Thus, the maximum peak inductor current IL_PEAK and maximum effective inductor current IL_RMS is:

$$I_{L_PEAK} = I_{MAX_PEAK_VDD} + \frac{\Delta I_L}{2} = 2.872 + \frac{1.328}{2} \text{ A} = 3.54\text{ A}$$
$$I_{L_RMS} = \sqrt{I_{MAX_PEAK_VDD}^2 + \frac{\Delta I_L^2}{12}} = \sqrt{2.872^2 + \frac{1.328^2}{12}} \text{ A} = 2.90\text{ A}$$

From the above calculation results:

- 1) For typical DCR about $50m\Omega$ inductance, the efficiency loss caused by around 1.5%;
- Need to choose AW87319 inductance input current limit value ILIMIT is greater than IL PEAK = 3.54 A (< $I_{\text{LIMIT}} = 4A$), to guarantee the amplifier output power can be achieved when THD = 1% (= 4.1W) but not limited by value ILIMIT;
- 3) In practice, the maximum output power of the amplifier is likely to reach 4.1W in an instant, so the selected inductor saturation current ISAT requires more than the maximum inductor peak current IL_PEAK, and cannot be less than 3.6A;
- 4) In some cases, if the IL_PEAK calculated according to the above method is greater than the set of input inductor current limit value ILIMIT, shows the power amplifier is restricted by inductance input current limit, the actual maximum output power is less than the calculated value, the measured value shall prevail, and I_{SAT} need greater than the set current limiting value I_{LIMIT}, and cannot be less than 3.6A;
- 5) Take PVDD = 8.5V for example, under different conditions, the typical method of selecting I_{SAT} in the following table:

V _{DD} (V)	PVDD (V)	R∟ (Ω)	I _{LIMIT} (A)	Efficiency(η) (%)	P ₀ @THD=1% (W)	IL_PEAK (note2) (A)	Inductor saturation current ISAT minimum value (A)	
4.2	8.5	8	4	68	4.1 (4.1) (note1)	3.54	3.6	
3.6	8.5	8	4	60	3.6 (4.1) (note1)	4.44	4.0	
4.2	8.5	6	4	67	4.7 (5.3) (note1)	4.40	4.0	
3.6	8.5	6	4	60	3.7 (5.3) (note1)	5.51	4.0	

www.awinic.com.cn

版权所有© 2016 上海艾为电子技术有限公司

Note 1: The values in parentheses are calculated PO @ THD = 1% when there is no "inductor input current limit"

Note 2: IL_PEAK is in parentheses in the "note 1" for power and actual efficiency calculated, if its value is greater than ILIMIT, then triggers the inductance input current limit.

- 6) As the result of the action of TLTR-AGC, amplifier will not work long hours at maximum power without distortion (4.1W), the actual average inductor current is far less than the maximum inductor current effective I_{L_RMS}, so when selecting the inductor, the inductor temperature rise current is not usually a limiting factor;
- 7) Inductor Selection example: Sunlord WPN252012H1R0MT inductance. The inductor package size is 252012, inductance value is 1µH, DCR Typical value is 48mΩ, the typical saturation current I_{SAT} is 4.2A, the typical temperature rise current I_{RMS} is 3.4A, suitable for VDD=3.6V, PVDD=8.5 V, speaker impedance R_L=8Ω, inductor input current limit I_{LIMIT}= 4A. If you choose I_{SAT} or I_{RMS} of the inductance is too small, it is possible to cause the chip don't work properly, or the temperature of the inductance is too high.

Model	Inductance value	producer	size	DCR (Q)	$I_{SAT}\left(\bm{A}\right)$	I _{RMS} (A)
WPN252012H1R0MT	1uH	Sunlord	2.5×2.0×1.2mm	0.054	4.2	3.4

Boost capacitor Selection

Boost output capacitor is usually within the range 0.1uF~47uF. It needs to use Class II type (EIA) multilayer ceramic capacitors (MLCC). Its internal dielectric is ferroelectric material (typically BaTiO₃), a high the dielectric constant in order to achieve smaller size, but at the same Class II type (EIA) multilayer ceramic capacitors has poor temperature stability and voltage stability as compared to the Class I type (EIA) capacitance. Capacitor is selected based on the requirements of temperature stability and voltage stability, considering the capacitance material, capacitor voltage, and capacitor size and capacitance values.

A) temperature stability

Class II capacitance have different temperature stability in different materials, usually choose X5R type in order to ensure enough temperature stability, and X7R type capacitance has better properties, the price is relatively more expensive; X5R capacitance change within ± 15% in temperature range of 55°C to 85°C, X7R capacitance change within ±15% in temperature range of -55°C~125°C. The Boost output capacitance of AW87319 recommends X5R ceramic capacitors.

B) Voltage Stability

Class II type capacitor has poor voltage stability Capacitance values falling fast along with the DC bias voltage applied across the capacitor increasing. The rate of decline is related to capacitance material, capacitors rated voltage, capacitance volume. Take for TDK C series X5R for example, its pressure voltage value is 16V or 25V; the package size is 0805, 1206 or 0603, the capacitance value is 10uF. The capacitor's voltage stability of different types of capacitor is as shown below:

Figure 18 Different types of capacitive voltage stability

Among them, the space remaining value of different types of capacitors at V_{DC} = 8.5 V as shown in the

```
www.awinic.com.cn
```

版权所有© 2016 上海艾为电子技术有限公司

OWINIC 上海艾为电子技术股份有限公司 shanghai awinic technology co.,Itd

figure 19:

It can be found that the rate of capacitance capacity value descent becomes slow along with "large capacitor size, capacitance pressure voltage rise". The larger the package size, the better voltage stability. the higher the height, the better voltage stability with the same length and width of the capacitance. Voltage stability of smaller package size (0603) capacitor change affected by the pressure value is very small.

In AW87319 typical applications, it is necessary to ensure the output value of the capacitor Boost≥5uF when PVDD=8.5V. Take the above TDK capacitor for example; recommend the following capacitance combination as the Boost of the output capacitor:

model	value	material	size (mm³)	rated voltage (V)	quantity	value@8.5V
C1608X5R1C106M080AB	10uF	X5R	1.60×0.80×0.80 (0603)	16	3	5.1uF
C1608X5R1E106M080AC	10uF	X5R	1.60×0.80×0.80 (0603)	25	3	5.2uF
C2012X5R1E106M125AB	10uF	X5R	2.00×1.25×1.25 (0805)	25	2	5.4uF
C3216X5R1C106M160AA	10uF	X5R	3.20×1.60×1.60 (1206)	16	1	6.4uF
C3216X5R1E106M085AC	10uF	X5R	3.20×1.60×0.85 (1206)	25	1	6.5uF

Notice that the analysis is only for TDK capacitors, when elected other manufacturers' capacitance, it still need to determine the type and quantity of the capacitors through the capacitor voltage stability data provided by the manufacturer. Different manufacturer's approximate specifications of the capacitor may still have some difference. Construing a different circumstance needs deducting in a different approach.

Input Capacitor-C_{in} (input high-pass cutoff frequency)

The input coupling capacitor blocks the DC voltage at the amplifier input terminal. The input capacitors

and input resistors form a high-pass filter with the corner frequency:

$$f_{H}(-3dB) = \frac{1}{2*\pi*R_{intotal}*C_{in}}(Hz)$$

Setting the high-pass filter point high can block the 217Hz GSM noise coupled to inputs. Better matching of the input capacitors improves performance of the circuit and also helps to suppress pop-click noise. Take typical application as an example, the input high-pass cutoff frequency is calculated as below:

$$f_{\rm H}(-3\rm{d}B) = \frac{1}{2*\pi*R_{\rm{intotal}}*C_{\rm{in}}}(\rm{H}z) = \frac{1}{2*\pi*9\rm{k}\Omega*47\rm{n}F}(\rm{H}z) = 376\rm{H}z$$

Supply Decoupling Capacitor (C_S)

The AW87319 is a high-performance audio amplifier that requires adequate power supply decoupling. Place a low equivalent-series-resistance (ESR) ceramic capacitor, typically 0.1μ F. This choice of capacitor and placement helps with higher frequency transients, spikes, or digital hash on the line. Additionally, placing this decoupling capacitor close to the AW87319 is important, as any parasitic resistance or inductance between the device and the capacitor causes efficiency loss. In addition to the 0.1μ F ceramic capacitor, place a 10μ F capacitor on the VBAT supply trace. This larger capacitor acts as a charge reservoir, providing energy faster than the board supply, thus helping to prevent any droop in the supply voltage.

Output beads, capacitors, TVS

The AW87319 passed FCC and CE radiated emissions with no ferrite chip beads and capacitors. Use ferrite chip beads and capacitors if device near the EMI sensitive circuits and/or there are long leads from amplifier to speaker, placed as close as possible to the output pin.

In the class K mode, the output is a square wave signal, which causing switch current at the output capacitor, increasing static power consumption, and therefore output capacitor should not be too large, 0.1nF ceramic capacitors is recommended.

Figure 20 Ferrite Chip Bead and capacitor

www.awinic.com.cn

awinic technology co.,Itd 上海艾为电子技术股份有限公司 AW87319 datasheet Dec. 2016 V1.2

Amplifier output is a square wave signal. The voltage across the capacitor will be much larger than the PVDD voltage after increasing the bead capacitor. It suggested the use of rated voltage above 16V capacitor. At the same time a square wave signal at the output capacitor switching current form, the static power consumption increases, so the output capacitance should not be too much which is recommended 0.1nF ceramic capacitor rated voltage of 16V. If you want to get better EMI suppression performance, can use 1nF, rated voltage 16V capacitor, but quiescent current will increase.

Power amplifier output PWM signals of high voltage to PVDD voltage, voltage to 8.5 V, will produce some ringing after bead capacitor, resulting in higher peak voltage. Recommended choose the operating voltage of 12V TVS.

PCB AND DEVICE LAYOUT CONSIDERATION

In order to obtain excellent performance of AW87319, PCB layout must be carefully considered. The design consideration should follow the following principles:

- 1. In AW87319 peripheral device layout, you first need to guarantee the Boost output capacitance close to PVDD pin.
- 2. Try to provide a separate short and thick power line to AW87319, the copper width is recommended to be larger than 0.75mm. The decoupling capacitors should be placed as close as possible to boost power supply pin.
- 3. The input capacitors and resistors should be close to AW87319 INN and INP input pin, the input line should be parallel to suppress noise coupling.
- 4. The beads and capacitor should be placed near to AW87319 VON and VOP pin. The output line from AW87319 to speaker should be as short and thick as possible. The width is recommended to be larger than 0.5mm.

PACKAGE DESCRIPTION

Tape Description

Carrier Tape

Reel

Note:

- 1. surface resistivity: 10^5 to 10^{11} ohms/sq.
- 2. The colour of reel is deep blue.
- 3. Restriction criterion of hazardous substance for packing

material follow GP-M001.

www.awinic.com.cn

版权所有© 2016 上海艾为电子技术有限公司

Reflow Soldering curve

Reflow Note	Spec
Average ramp-up rate (217°Cc to Peak)	Max. 3°C/sec
Time of Preheat temp.(from 150°C to 200°C)	60-120sec
Time to be maintained above 217°C	60-150sec
Peak Temperature	>260°C
Time within 5°C of actual peak temp	20-40sec.
Ramp-down rate	Max. 6°C/sec
Time from 25℃ to peak temp	Max. 8min.

www.awiiiic.com.cn	www.	awinio	c.com.	cn
--------------------	------	--------	--------	----

版权所有© 2016 上海艾为电子技术有限公司

awinic technology co.,.ltd 上海艾为电子技术股份有限公司 AW87319 datasheet Dec. 2016 V1.2

VERSION INFORMATION

Version	Date	Description
V1.0	2015-11-30	AW87319CSR datasheet V1.0
V1.1	2016-11-10	 Boost inductor Selection IL_PEAK cannot be less than 3.5A modified to not less than 3.6A (page 26) Tape description increase the position description of pin1 (page 34) Add Reflow soldering curve (page35) Product information added MSL instructions (page3) "the SDA transmits a high level in ninth clock pulse" modify to "the SDA transmits a low level in ninth clock pulse" (page18) The functional block diagram add feedback loop (page4)
V1.2	2016-12-10	Add PVDD,SW,VON,VOP absolute maximum rating Add information about CDM Add Environmental Information

awinic technology co.,Itd 上海艾为电子技术股份有限公司 AW87319 datasheet Dec. 2016 V1.2

AWINIC Technology cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AWINIC Technologies product. No intellectual property or circuit patent licenses are implied. AWINIC Technology reserves the right to change the circuitry and specifications without notice at any time.