

Features

MCU

- 8-bit pipelined RISC, single cycle per instruction with maximum operating frequency of 100Mhz (100 MIPS)
- 100% software compatible with standard 8051/80390
- 2 GPIO ports of 8 bits each
- 2 external interrupt sources with 2 priority levels
- Support power management unit, programmable watchdog timer, and 3 16-bit timer/counters
- Debug port for connecting to In-Circuit Emulation (ICE) adaptor
- 5 channels of programmable counter array

On-chip Program and Data Memory

- Embed 128K (AX11001) or 512KB (AX11005) Flash memory without bank select, and 16KB SRAM for program code mirroring
- Support initial Flash memory programming via UART or ICE adaptor, the so-called In System Programming (ISP)
- Support reprogrammable boot code and In Application Programming (IAP) to update run-time firmware or boot code through Ethernet or UART (US Patent Pending)
- Embed 32KB SRAM for data memory

Buffer Management

- Embed DMA engine and memory arbiter. Support 3 DMA channels for high performance data movement needed for network protocol stack processing
- On-chip 10/100M Fast Ethernet MAC and PHY
 - Integrate IEEE 802.3 10BASE-T/100BASE-TX compatible Fast

Document No: AX1100x/V1.09/06/14/2011

Ethernet MAC and PHY with dedicated 12KB SRAM for Ethernet packet buffering. Support full-duplex and half-duplex operations

- Support twisted pair crossover detection and auto-correction (HP Auto-MDIX)
- Support wakeup via Link-up, Magic packet, Wakeup frame, external input pin or UART

TCP/IP

- Build in TCP/IP accelerator in hardware to improve network transfer throughput. Support IP/TCP/UDP/ICMP/IGMP checksum and ARP in hardware
- Support TCP, UDP, ICMP, IPv4, DHCP, BOOTP, ARP, DNS, SMTP, SNTP, uPNP, PPPoE and HTTP in software

• Communication Interface

- 3 UART interface (with 1 supporting 921.6Kbps and Modem control)
- 1 I2C interface (master and slave mode)
- SPI/Micro wire interface (3 masters or 1 slave mode)
- 1 1-Wire controller interface (master mode)
- 10/100 Ethernet PHY interface
- Support network boot over Ethernet using BOOTP and TFTP
- Integrate on-chip voltage regulator and require single power supply of 3.3V only
- Integrate on-chip oscillator and PLL. Require only one 25Mhz crystal to operate
- Integrate on-chip power-on reset circuit
- 80-pin LQFP RoHS package
- Operating temperature: 0 to 70°C or -40 to 85°C
- *IEEE is a registered trademark of the Institute of Electrical and Electronic Engineers, Inc.
- *All other trademarks and registered trademark are the property of their respective holders.

Product Description

The AX11001/AX11005, Single Chip Micro-controller with TCP/IP and 10/100M Fast Ethernet MAC/PHY, is a System-on-Chip (SoC) solution which offers a high performance embedded micro-controller and rich communication peripherals for wide varieties of application which need access to the LAN or Internet. With built-in network protocol stack, the AX11001/AX11005 provides very cost effective networking solution to enable simple, easy, and low cost Internet connection capability for many applications such as consumer electronics, networked home appliances, industrial equipments, security systems, remote data collection equipments, remote control, remote monitoring, and remote management. In addition to stand-alone application, the AX11001/AX11005 with popular TCP/IP protocol suite on-chip and built-in I2C bus or SPI bus, can be used as network co-processor to offload TCP/IP protocol processing loading from system CPU in an embedded system.

Always contact ASIX Electronics for possible updates before starting a design. This data sheet contains new products information. ASIX Electronics reserves the rights to modify product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sale of the product.

Target Applications

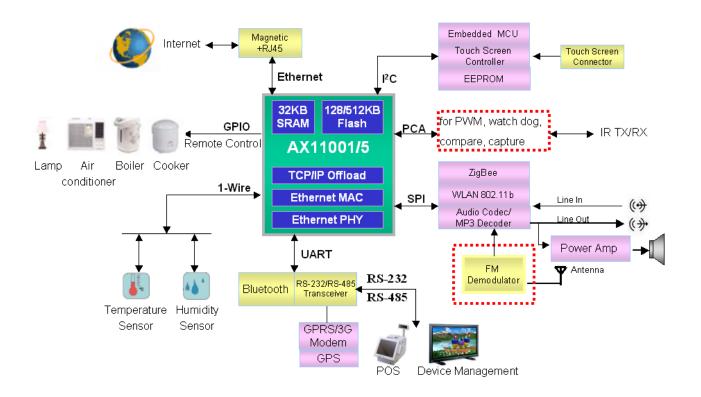


Figure 1: Target Application Diagram

Typical System Block Diagrams

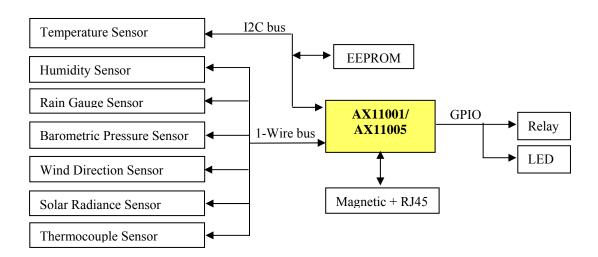


Figure 2: Environment Monitoring or Network Sensor and Remote Control

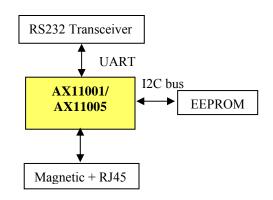


Figure 3: Serial to Ethernet Converter

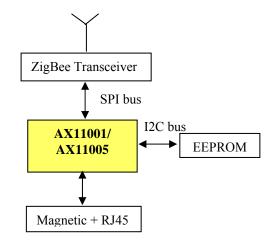


Figure 4: ZigBee to Ethernet Converter

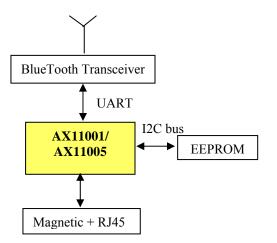


Figure 5: BlueTooth to Ethernet Converter

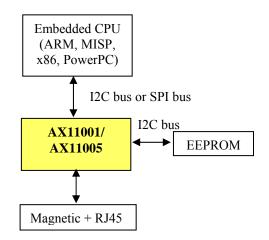


Figure 6: Network Co-processor for Embedded CPU

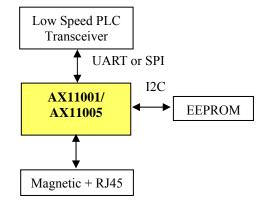


Figure 7: Low Speed PLC (Power Line Communication) to Ethernet Converter

Copyright © 2006-2011 ASIX Electronics Corporation. All rights reserved.

DISCLAIMER

No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express written permission of ASIX. ASIX may make changes to the product specifications and descriptions in this document at any time, without notice.

ASIX provides this document "as is" without warranty of any kind, either expressed or implied, including without limitation warranties of merchantability, fitness for a particular purpose, and non-infringement.

Designers must not rely on the absence or characteristics of any features or registers marked "reserved", "undefined" or "NC". ASIX reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Always contact ASIX to get the latest document before starting a design of ASIX products.

TRADEMARKS

ASIX, the ASIX logo are registered trademarks of ASIX Electronics Corporation. All other trademarks are the property of their respective owners.

Table of Contents

1.0	INTRODUCTION		
1.1	GENERAL DESCRIPT	ION	
1.2		BLOCK DIAGRAM	
1.3		PINOUT DIAGRAM	
1.4	SIGNAL DESCRIPTION	N	
2.0	FUNCTION DESCR	IPTION	
2.1	CLOCK GENERATION	٨	20
2.2			
2.3		OR	
2.4	CPU CORE AND DEE	BUGGER	
2	.4.1 CPU Core		
2			
2.5		MORY	
2.6		AND BOOT LOADER	
_			
_		<i>r</i>	
-		ming Controller	
2.7			
2.8		LLER	
2.9			
2.10		NT UNIT	
-			
-		TD <i>A</i>	
2.11		ERS	
		ART 1	
_			
2.13			
2.14		NGINE	
2.15		MAC	
2.16		PHY	
2.10		DUNTER ARRAY	
2.18			
2.19		R	
2.20			
3.0	MEMORY MAP DE	SCRIPTION	
3.1	12C CONFIGURATION	N EEPROM MEMORY MAP	37
	ě (
-		<i>Pin Setting (0x02~0x03)</i>	
		Output Driving Strength (0x04)	
3		~0x0B)	
3		ket Size (0x0C~0x0D)	
3		Type and PHY ID (0x0E)	
3		ow Water and High Water Mark (0x10~0x11)	
3		Tag (0x14~0x15)	
3	1.10 TOE RX VLAN	Tag (0x16~0x17)	
3	.1.11 TOE ARP Cacl	he Timeout (0x18)	
3	.1.12 TOE Source IP	P Address (0x19~0x1C)	
		ask (0x1D~0x20)	
		Transfer Gap (0x21)	
3.2		MAP	
3.3	External Data (X	DATA) MEMORY MAP	

3.4	I IN	ERNAL DATA MEMORY AND SFR REGISTER MAP	
4.0	DET	AILED FUNCTION DESCRIPTION	
4.1	CL	OCK GENERATION	
4.2	2 Re	SET GENERATION	
4.3		LTAGE REGULATOR	
4.4		U CORE AND DEBUGGER	
	4.4.1	CPU Core SFR Register Map	
	4.4.2	CPU Core SFR Register Description	
	4.4.3	Memory Allocation	
	4.4.4	Performance Improvement	
	4.4.5	Debugger	
4.5		-CHIP FLASH MEMORY	
4.6	о мн 4.6.1	MORY ARBITER & BOOT LOADER	
	4.0.1 4.6.2	Boot Loader Memory Arbiter	
	4.0.2 4.6.3	Flash Memory Address Re-mapping for the Lower 16KB Boot Sector	
	4.0.3 4.6.4	Flash Programming Controller	
		IA Engine	
	4.7.1	DMA Transfers for Ethernet Packet Receive and Transmit	
	4.7.2	Software DMA	
	4.7.3	DMA Arbitration	
4.8		ERRUPT CONTROLLER	
	4.8.1	Interrupt Controller SFR Register Map	
4.9		ATCHDOG TIMER	
	4.9.1	Watchdog SFR Register Map	
	4.9.2	Watchdog Interrupt	
	4.9.3	Watchdog Timer Reset	
4	4.9.4	Simple Timer	
4	4.9.5	System Monitor	
4	4.9.6	Clock Control	
4	4.9.7	Timed Access Register	
4.1	lo Po	wer Management Unit	
4	4.10.1	Power Management Unit SFR Register Map	
4	4.10.2	Power Management Mode	
4	4.10.3	STOP Mode	
4.1	1 Tr	MERS AND COUNTERS	
	4.11.1	Timers 0, 1, 2 Related SFR Register Map	
	4.11.2	<i>Timer 0, 1</i>	
	4.11.3	Timer 2	
	4.11.4	Millisecond Timer	
4.1	-	RTs.	
	4.12.1	UART 0, 1 SFR Register Map	
	4.12.2	UART 0	
	4.12.3	UART 1	
	4.12.4	UART 2	
4.1	4.13.1	IOS GPIO SFR Register Map	
4.1		P/IP OFFLOAD ENGINE	
	4.14.1	TOE SFR Register Map	
	4.14.2	L2_Engine Function Description	
	4.14.3	L3_Engine Function Description	
	4.14.4	L3_Engine Function Description	
	4.14.5	Packet Buffer Ring in xDATA Memory of 1T 80390 CPU	
	4.14.6	Packet Format in Packet Buffer Ring	
4.1		100M Ethernet MAC	
	4.15.1	10/100M Ethernet MAC SFR Register Map	
	4.15.2	Ethernet MAC Receive Filtering	
	4.15.3	Ethernet MAC Packet Transmit	

7

5.1 DC CHARACTERISTICS 229 5.1.1 Absolute Maximum Ratings 229 5.1.2 Recommended Operating Condition 229 5.1.3 Leakage Current and Capacitance 230 5.1.4 DC Characteristics of 3.3V I/O Pins 230 5.1.5 DC Characteristics of 3.3V with 5V Tolerant I/O Pins 230 5.1.6 DC Characteristics of Voltage Regulator 231 5.2 POWER CONSUMPTION 232 5.3 POWER-UP SEQUENCE 233 5.4 AC TIMING CHARACTERISTICS 234 5.4.1 Clock Timing 234 5.4.2 I2C Interface Timing 236 5.4.3 SPI Interface Timing 236 5.4.4 I-Wire Interface Timing 236 5.4.5 Programmable Counter Array Interface Timing 238 5.4.5 Programmable Counter Array Interface Timing 241 5.4.6 Timer 0/1/2 Interface Timing 242 5.4.7 10/100M Ethernet PHY Interface Timing 243 6.0 PACKAGE INFORMATION 244	4.15.4	Ethernet MAC Buffer Management	
4.16.1 MI Station Management Function. 185 4.16.2 10/100M Ethernet PHY SFR Register Map. 185 4.17 PROGRAMMABLE COUNTER ARRAY 191 4.17.1 Programmable Counter Array SFR Register Map. 191 4.17.2 PCA Timer/Counter. 192 4.17.3 Compare/Capture Modules. 193 4.18.1 12C Controller SFR Register Map. 203 4.18.1 12C Controller SFR Register Map. 204 4.18.1 12C Controller SFR Register Map. 204 4.18.1 12C CONTROLLER. 209 4.18.1 12C CONTROLLER. 211 4.19.1 I-Wire Controller SFR Register Map. 211 4.20 SPI CONTROLLER. 211 4.20.1 SPI SFR Register Map. 219 4.20.2 SPI SIAve Mode Function Description. 225 5.0 ELECTRICAL SPECIFICATIONS 229 5.1 DC CHARACTERISTICS 229 5.1.2 Recommended Operating Condition. 229 5.1.3 Leakage Current and Capacitance. 230 5.1.4 DC Characteristics of 3.3V VO Pins.	4.15.5	Magic Packet and Wakeup Frame	
4.16.2 10/100M Ethernet PHY SFR Register Map 185 4.17 PROGRAMMABLE COUNTER ARRAY 191 4.17.1 Programmable Counter Array SFR Register Map 191 4.17.2 PCA Timer/Counter Array SFR Register Map 192 4.17.3 Compare/Capture Modules 193 4.18 12C Controller SFR Register Map 203 4.18.1 12C Controller SFR Register Map 203 4.18.2 12C Controller SFR Register Map 201 4.19.1 I-Wire ControlLER 202 4.19.1 I-Wire ControlLER 211 4.20.2 SPI Solve Mode Function Description 229 5.10 DC CONTROLLER 211 4.20.1 SPI Solve Mode Function Description 229 5.10 DC CHARACTERISTICS 229 5.11 DASolute Maximum Ratings 229 5.1.2 Recommended Operating Condition 220 5.1.3 Leakage Current and Capacitance 230 5.1.4 DC Characteristics of 3.3V V/O Pins 230 5.1.5 DC Characteristics of Voltage Regulator 231 5.2 POWER CON	4.16 10	/100M Ethernet PHY	
4.17 PROGRAMMABLE COUNTER ARRAY 191 4.17.1 Programmable Counter Array SFR Register Map 191 4.17.3 Compare/Capture Modules 193 4.18 I2C CONTROLLER 192 4.18.1 I2C CONTROLLER 203 4.18.2 I2C Controller SFR Register Map 203 4.18.1 I2C Controller SFR Register Map 203 4.18.2 I2C Slave Mode Function Description 209 4.19 1-Wire Controller SFR Register Map 211 4.20 SPI ControlLER 211 4.20 SPI Slave Mode Function Description 229 5.1 DC CONTROLLER 217 4.20.2 SPI Slave Mode Function Description 225 5.0 ELECTRICAL SPECIFICATIONS 229 5.1.1 Absolute Maximum Ratings 229 5.1.2 Recommended Operating Condition 229 5.1.3 Leakage Current and Capacitance 230 5.1.4 DC Characteristics of 3.3V l/O Pins 230 5.1.5 DC Characteristics of 3.3V l/O Pins 230 5.1.6 DC Characterististics of Voltage Regulator	4.16.1	MII Station Management Function	
4.17.1 Programmable Counter Array SFR Register Map 191 4.17.2 PCA Timer/Counter 192 4.17.3 Compare/Capture Modules 193 4.18 12C Controller SFR Register Map 202 4.18.1 12C Controller SFR Register Map 203 4.18.2 12C Slave Mode Function Description 209 4.19 1 1-Wire ControlLER 211 4.19.1 1-Wire ControlLER SFR Register Map 211 4.20.2 SPI SFR Register Map 217 4.20.1 SPI SFR Register Map 219 4.20.2 SPI SFR Register Map 219 4.20.2 SPI SFR Register Map 219 5.1 DC CHARACTERISTICS 229 5.1 DC CHARACTERISTICS 229 5.1.1 Absolute Maximum Ratings 230 5.1.4 DC Characteristics of 3.3V VIO Pins 230 5.1.5 DC Characteristics of 3.3V VIO Pins 230 5.1.4 DC Characteristics of 3.3V VIO Pins 230 5.1.5 DC Characteristics of 3.3V VIO Pins 230 5.1.4 DC Characteristics of 3.3V With 5V To	4.16.2	10/100M Ethernet PHY SFR Register Map	
4.17.2 PCA Timer/Counter	4.17 Pr		
4.17.3 Compare/Capture Modules 193 4.18 I2C CONTROLLER 202 4.18.1 I2C Controller SFR Register Map 203 4.18.2 I2C Slave Mode Function Description 209 4.19 1-Wire CONTROLLER 211 4.19.1 I-Wire ControlLER 211 4.20 SPI CONTROLLER 217 4.20.1 SPI SFR Register Map 219 4.20.2 SPI SIAve Mode Function Description 225 5.0 ELECTRICAL SPECIFICATIONS 229 5.1 DC CHARACTERISTICS 229 5.1.1 Absolute Maximum Ratings 229 5.1.2 Recommended Operating Condition 229 5.1.3 Leakage Current and Capacitance 230 5.1.4 DC Characteristics of 3.3V V/O Pins 230 5.1.5 DC Characteristics of 3.3V with SV Tolerant I/O Pins 230 5.1.6 DC Characteristics of Voltage Regulator 231 5.2 Power Consummation of Voltage Regulator 231 5.3 Power Consummation of Voltage Regulator 232 5.4 A CTIMING CHARACTERISTICS	4.17.1	Programmable Counter Array SFR Register Map	
4.18 I2C CONTROLLER 202 4.18.1 I2C Controller SFR Register Map 203 4.18.2 I2C Slave Mode Function Description 209 4.19 1-WIRE CONTROLLER 211 4.19.1 I-Wire Controller SFR Register Map 211 4.20 SPI CONTROLLER 217 4.20.2 SPI CONTROLLER 219 4.20.2 SPI SPECONTROLLER 219 4.20.2 SPI CONTROLLER 229 5.1 DC CHARACTERISTICS 229 5.1 DC CHARACTERISTICS 229 5.1.1 Absolute Maximum Ratings 229 5.1.2 Recommended Operating Condition 229 5.1.3 Leakage Current and Capacitance 230 5.1.4 DC Characteristics of 3.3V With 5V Tolerant I/O Pins 230 5.1.5 DC Characteristics of Voltage Regulator 231 5.2 POWER CONSUMPTION 232 5.3 POWER-UP SEQUENCE 233 5.4 AC TIMING CHARACTERISTICS 234 5.4.4 I.Wire Interface Timing 235 5.4.3 SPI Interface Ti	4.17.2	PCA Timer/Counter	
4.18.1I2C Controller SFR Register Map2034.18.2I2C Slave Mode Function Description2094.191-Wire ControlLER2114.19.1I-Wire Controller SFR Register Map2114.20SPI CONTROLLER2174.20.1SPI SFR Register Map2194.20.2SPI SI SIR Register Map2194.20.2SPI SI Sire Mode Function Description2255.0ELECTRICAL SPECIFICATIONS2295.1.1Absolute Maximum Ratings2295.1.2Recommended Operating Condition2295.1.3Leakage Current and Capacitance2305.1.4DC Characteristics of 3.3V With 5V Tolerant I/O Pins2305.1.5DC Characteristics of 3.3V with 5V Tolerant I/O Pins2305.1.6DC Characteristics of 3.3V with 5V Tolerant I/O Pins2305.1.4DC Characteristics of 3.3V with 5V Tolerant I/O Pins2305.1.5DC Characteristics of 3.3V with 5V Tolerant I/O Pins2305.1.4DC Characteristics of 3.3V with 5V Tolerant I/O Pins2305.1.5DC Characteristics of 3.3V with 5V Tolerant I/O Pins2305.4AC TIMING CHARACTERISTICS2345.4.1Clock Timing2355.4.3SPI Interface Timing2365.4.4I-Wire Interface Timing2365.4.5Programmable Counter Array Interface Timing2465.4.710/100M Ethernet PHY Interface Timing2425.4.710/100M Ethernet PHY Interface Timing2436.0	4.17.3	Compare/Capture Modules	
4.18.212C Slave Mode Function Description2094.191-Wire CONTROLLER2114.19.11-Wire Controller SFR Register Map2114.20SPI CONTROLLER2174.20.1SPI SFR Register Map2194.20.2SPI Slave Mode Function Description2255.0ELECTRICAL SPECIFICATIONS2295.1DC CHARACTERISTICS2295.1.1Absolute Maximum Ratings2295.1.2Recommended Operating Condition2305.1.3Leakage Current and Capacitance2305.1.4DC Characteristics of 3.3V I/O Pins2305.1.5DC Characteristics of Voltage Regulator2315.2POWER CONSUMPTION2325.3POWER CONSUMPTION2325.4AC TIMING CHARACTERISTICS2345.4.1Clock Timing2345.4.212C Interface Timing2365.4.3SPI Interface Timing2415.4.41-Wire Interface Timing2425.4.710/100M Ethernet PHY Interface Timing2425.4.710/100M Ethernet PHY Interface Timing2436.0PACKAGE INFORMATION245	4.18 I20	C CONTROLLER	
4.191-WIRE CONTROLLER.2114.19.11-Wire Controller SFR Register Map.2114.20. SPI CONTROLLER2174.20.1SPI SFR Register Map.2194.20.2SPI SIVE Mode Function Description.2255.0ELECTRICAL SPECIFICATIONS.2295.1DC CHARACTERISTICS2295.1.1Absolute Maximum Ratings2295.1.2Recommended Operating Condition.2295.1.3Leakage Current and Capacitance2305.1.4DC Characteristics of 3.3V I/O Pins.2305.1.5DC Characteristics of 3.3V Vith 5V Tolerant I/O Pins.2305.1.6DC Characteristics of 3.3V with 5V Tolerant I/O Pins.2305.1.7POWER-UP SEQUENCE2335.8POWER-UP SEQUENCE2345.4.1Clock Timing.2365.4.2I2C Interface Timing.2365.4.3SPI Interface Timing.2365.4.4I-Wire Interface Timing.2365.4.5Programmable Counter Array Interface Timing.2415.4.6Timer OI/2 Interface Timing.2425.4.7IO/100M Etherner PHY Interface Timing.	4.18.1	I2C Controller SFR Register Map	
4.19.11-Wire Controller SFR Register Map2114.20SPI CONTROLLER1174.20.1SPI SFR Register Map2194.20.2SPI Slave Mode Function Description2255.0ELECTRICAL SPECIFICATIONS2295.1DC CHARACTERISTICS2295.1.1Absolute Maximum Ratings2295.1.2Recommended Operating Condition2295.1.3Leakage Current and Capacitance2305.1.4DC Characteristics of 3.3V I/O Pins2305.1.5DC Characteristics of Voltage Regulator2315.2POWER CONSUMPTION2325.3POWER-UP SEQUENCE2335.4AC TIMING CHARACTERISTICS2345.4.1Clock Timing2365.4.3SPI Interface Timing2365.4.41-Wire Interface Timing2365.4.5Programmable Counter Array Interface Timing2415.4.710/100M Ethernet PHY Interface Timing2436.0PACKAGE INFORMATION245	4.18.2	I2C Slave Mode Function Description	
4.20SPI CONTROLLER2174.20.1SPI SFR Register Map2194.20.2SPI Slave Mode Function Description2255.0ELECTRICAL SPECIFICATIONS2295.1DC CHARACTERISTICS2295.1.1Absolute Maximum Ratings2295.1.2Recommended Operating Condition2295.1.3Leakage Current and Capacitance2305.1.4DC Characteristics of 3.3V I/O Pins2305.1.5DC Characteristics of 3.3V with 5V Tolerant I/O Pins2305.1.6DC Characteristics of Voltage Regulator2315.2POWER CONSUMPTION2325.3POWER CONSUMPTION2335.4AC TIMING CHARACTERISTICS2345.4.1Clock Timing2365.4.3SPI Interface Timing2365.4.4I-Wire Interface Timing2365.4.5Programmable Counter Array Interface Timing2415.4.7IO/100M Ethernet PHY Interface Timing2436.0PACKAGE INFORMATION245	4.19 1-	Wire Controller	
4.20.1SPI SFR Register Map2194.20.2SPI Slave Mode Function Description2255.0ELECTRICAL SPECIFICATIONS2295.1DC CHARACTERISTICS2295.1.1Absolute Maximum Ratings2295.1.2Recommended Operating Condition2295.1.3Leakage Current and Capacitance2305.1.4DC Characteristics of 3.3V ViD Pins2305.1.5DC Characteristics of 3.3V With 5V Tolerant I/O Pins2305.1.6DC Characteristics of Voltage Regulator2315.2POWER CONSUMPTION2325.3POWER-UP SEQUENCE2335.4AC TIMING CHARACTERISTICS2345.4.3SPI Interface Timing2365.4.4I-Wire Interface Timing2365.4.5Programmable Counter Array Interface Timing2415.4.7IO/100M Ethernet PHY Interface Timing2436.0PACKAGE INFORMATION245	4.19.1	1-Wire Controller SFR Register Map	
4.20.2SPI Slave Mode Function Description.2255.0ELECTRICAL SPECIFICATIONS2295.1DC CHARACTERISTICS2295.1.1Absolute Maximum Ratings2295.1.2Recommended Operating Condition.2295.1.3Leakage Current and Capacitance2305.1.4DC Characteristics of 3.3V I/O Pins2305.1.5DC Characteristics of 3.3V with 5V Tolerant I/O Pins2305.1.6DC Characteristics of Voltage Regulator.2315.2POWER CONSUMPTION2325.3POWER CONSUMPTION2335.4AC TIMING CHARACTERISTICS2345.4.1Clock Timing.2345.4.2I2C Interface Timing.2365.4.3SPI Interface Timing.2365.4.4I-Wire Interface Timing.2365.4.5Programmable Counter Array Interface Timing.2385.4.6Timer 0/1/2 Interface Timing.2436.0PACKAGE INFORMATION.245	4.20 SP	PI CONTROLLER	
4.20.2SPI Slave Mode Function Description.2255.0ELECTRICAL SPECIFICATIONS2295.1DC CHARACTERISTICS2295.1.1Absolute Maximum Ratings2295.1.2Recommended Operating Condition.2295.1.3Leakage Current and Capacitance2305.1.4DC Characteristics of 3.3V I/O Pins2305.1.5DC Characteristics of 3.3V with 5V Tolerant I/O Pins2305.1.6DC Characteristics of Voltage Regulator.2315.2POWER CONSUMPTION2325.3POWER CONSUMPTION2335.4AC TIMING CHARACTERISTICS2345.4.1Clock Timing.2345.4.2I2C Interface Timing.2365.4.3SPI Interface Timing.2365.4.4I-Wire Interface Timing.2365.4.5Programmable Counter Array Interface Timing.2385.4.6Timer 0/1/2 Interface Timing.2436.0PACKAGE INFORMATION.245	4.20.1	SPI SFR Register Map	
5.1 DC CHARACTERISTICS 229 5.1.1 Absolute Maximum Ratings 229 5.1.2 Recommended Operating Condition. 229 5.1.3 Leakage Current and Capacitance 230 5.1.4 DC Characteristics of 3.3V I/O Pins 230 5.1.5 DC Characteristics of 3.3V with 5V Tolerant I/O Pins 230 5.1.6 DC Characteristics of Voltage Regulator 231 5.2 POWER CONSUMPTION 232 5.3 POWER-UP SEQUENCE 233 5.4 AC TIMING CHARACTERISTICS 234 5.4.1 Clock Timing 235 5.4.3 SPI Interface Timing 236 5.4.4 I-Wire Interface Timing 236 5.4.5 Programmable Counter Array Interface Timing 234 5.4.6 Timer 0/1/2 Interface Timing 241 5.4.6 Timer 0/1/2 Interface Timing 242 5.4.7 10/100M Ethernet PHY Interface Timing 243 6.0 PACKAGE INFORMATION 244	4.20.2		
5.1.1Absolute Maximum Ratings2295.1.2Recommended Operating Condition2295.1.3Leakage Current and Capacitance2305.1.4DC Characteristics of 3.3V I/O Pins2305.1.5DC Characteristics of 3.3V with 5V Tolerant I/O Pins2305.1.6DC Characteristics of Voltage Regulator.2315.2POWER CONSUMPTION2325.3POWER-UP SEQUENCE2335.4AC TIMING CHARACTERISTICS2345.4.1Clock Timing.2365.4.3SPI Interface Timing.2365.4.41-Wire Interface Timing.2365.4.5Programmable Counter Array Interface Timing.2385.4.6Timer 0/1/2 Interface Timing.2445.4.710/100M Ethernet PHY Interface Timing.2447.0ORDERING INFORMATION.245	5.0 ELE	CTRICAL SPECIFICATIONS	
5.1.2Recommended Operating Condition2295.1.3Leakage Current and Capacitance2305.1.4DC Characteristics of 3.3V I/O Pins2305.1.5DC Characteristics of 3.3V with 5V Tolerant I/O Pins2305.1.6DC Characteristics of Voltage Regulator.2315.2POWER CONSUMPTION2325.3POWER-UP SEQUENCE2335.4AC TIMING CHARACTERISTICS2345.4.1Clock Timing2355.4.2I2C Interface Timing2365.4.3SPI Interface Timing2365.4.41-Wire Interface Timing2365.4.5Programmable Counter Array Interface Timing2415.4.6Timer 0/1/2 Interface Timing2425.4.710/100M Ethernet PHY Interface Timing2436.0PACKAGE INFORMATION245	5.1 DC	C CHARACTERISTICS	
5.1.2Recommended Operating Condition2295.1.3Leakage Current and Capacitance2305.1.4DC Characteristics of 3.3V I/O Pins2305.1.5DC Characteristics of 3.3V with 5V Tolerant I/O Pins2305.1.6DC Characteristics of Voltage Regulator.2315.2POWER CONSUMPTION2325.3POWER-UP SEQUENCE2335.4AC TIMING CHARACTERISTICS2345.4.1Clock Timing2355.4.2I2C Interface Timing2365.4.3SPI Interface Timing2365.4.41-Wire Interface Timing2365.4.5Programmable Counter Array Interface Timing2415.4.6Timer 0/1/2 Interface Timing2425.4.710/100M Ethernet PHY Interface Timing2436.0PACKAGE INFORMATION245	5.1.1	Absolute Maximum Ratings	
5.1.3Leakage Current and Capacitance2305.1.4DC Characteristics of 3.3V I/O Pins2305.1.5DC Characteristics of 3.3V with 5V Tolerant I/O Pins2305.1.6DC Characteristics of Voltage Regulator2315.2POWER CONSUMPTION2325.3POWER-UP SEQUENCE2335.4AC TIMING CHARACTERISTICS2345.4.1Clock Timing2345.4.2I2C Interface Timing2365.4.3SPI Interface Timing2365.4.41-Wire Interface Timing2365.4.5Programmable Counter Array Interface Timing2415.4.6Timer 0/1/2 Interface Timing2415.4.710/100M Ethernet PHY Interface Timing2436.0PACKAGE INFORMATION245	5.1.2	8	
5.1.4DC Characteristics of 3.3V I/O Pins2305.1.5DC Characteristics of 3.3V with 5V Tolerant I/O Pins2305.1.6DC Characteristics of Voltage Regulator2315.2POWER CONSUMPTION2325.3POWER-UP SEQUENCE2335.4AC TIMING CHARACTERISTICS2345.4.1Clock Timing2345.4.2I2C Interface Timing2365.4.3SPI Interface Timing2365.4.4I-Wire Interface Timing2385.4.5Programmable Counter Array Interface Timing2415.4.6Timer 0/1/2 Interface Timing2425.4.710/100M Ethernet PHY Interface Timing2436.0PACKAGE INFORMATION245	5.1.3		
5.1.6DC Characteristics of Voltage Regulator.2315.2POWER CONSUMPTION2325.3POWER-UP SEQUENCE2335.4AC TIMING CHARACTERISTICS2345.4.1Clock Timing2345.4.2I2C Interface Timing2355.4.3SPI Interface Timing2365.4.41-Wire Interface Timing2385.4.5Programmable Counter Array Interface Timing2415.4.6Timer 0/1/2 Interface Timing2425.4.710/100M Ethernet PHY Interface Timing2436.0PACKAGE INFORMATION2447.0ORDERING INFORMATION245	5.1.4		
5.1.6DC Characteristics of Voltage Regulator.2315.2POWER CONSUMPTION2325.3POWER-UP SEQUENCE2335.4AC TIMING CHARACTERISTICS2345.4.1Clock Timing2345.4.2I2C Interface Timing2355.4.3SPI Interface Timing2365.4.41-Wire Interface Timing2385.4.5Programmable Counter Array Interface Timing2415.4.6Timer 0/1/2 Interface Timing2425.4.710/100M Ethernet PHY Interface Timing2436.0PACKAGE INFORMATION2447.0ORDERING INFORMATION245	5.1.5	DC Characteristics of 3.3V with 5V Tolerant I/O Pins	
5.3 POWER-UP SEQUENCE 233 5.4 AC TIMING CHARACTERISTICS 234 5.4.1 Clock Timing 234 5.4.2 I2C Interface Timing 235 5.4.3 SPI Interface Timing 236 5.4.4 1-Wire Interface Timing 236 5.4.5 Programmable Counter Array Interface Timing 241 5.4.6 Timer 0/1/2 Interface Timing 242 5.4.7 10/100M Ethernet PHY Interface Timing 243 6.0 PACKAGE INFORMATION 244 7.0 ORDERING INFORMATION 245	5.1.6		
5.3 POWER-UP SEQUENCE 233 5.4 AC TIMING CHARACTERISTICS 234 5.4.1 Clock Timing 234 5.4.2 I2C Interface Timing 235 5.4.3 SPI Interface Timing 236 5.4.4 1-Wire Interface Timing 236 5.4.5 Programmable Counter Array Interface Timing 241 5.4.6 Timer 0/1/2 Interface Timing 242 5.4.7 10/100M Ethernet PHY Interface Timing 243 6.0 PACKAGE INFORMATION 244 7.0 ORDERING INFORMATION 245	5.2 Po	OWER CONSUMPTION	
5.4.1Clock Timing.2345.4.2I2C Interface Timing.2355.4.3SPI Interface Timing.2365.4.41-Wire Interface Timing.2385.4.5Programmable Counter Array Interface Timing.2415.4.6Timer 0/1/2 Interface Timing.2425.4.710/100M Ethernet PHY Interface Timing.2436.0PACKAGE INFORMATION.2447.0ORDERING INFORMATION.245			
5.4.2I2C Interface Timing.2355.4.3SPI Interface Timing.2365.4.41-Wire Interface Timing.2385.4.5Programmable Counter Array Interface Timing.2415.4.6Timer 0/1/2 Interface Timing.2425.4.710/100M Ethernet PHY Interface Timing.2436.0PACKAGE INFORMATION.2447.0ORDERING INFORMATION.245	5.4 AC	C TIMING CHARACTERISTICS	
5.4.3SPI Interface Timing.2365.4.41-Wire Interface Timing.2385.4.5Programmable Counter Array Interface Timing.2415.4.6Timer 0/1/2 Interface Timing.2425.4.710/100M Ethernet PHY Interface Timing.2436.0PACKAGE INFORMATION.2447.0ORDERING INFORMATION.245	5.4.1	Clock Timing	
5.4.3SPI Interface Timing.2365.4.41-Wire Interface Timing.2385.4.5Programmable Counter Array Interface Timing.2415.4.6Timer 0/1/2 Interface Timing.2425.4.710/100M Ethernet PHY Interface Timing.2436.0PACKAGE INFORMATION.2447.0ORDERING INFORMATION.245	5.4.2	I2C Interface Timing	
5.4.5Programmable Counter Array Interface Timing2415.4.6Timer 0/1/2 Interface Timing2425.4.710/100M Ethernet PHY Interface Timing2436.0PACKAGE INFORMATION2447.0ORDERING INFORMATION245	5.4.3	SPI Interface Timing	
5.4.6Timer 0/1/2 Interface Timing2425.4.710/100M Ethernet PHY Interface Timing2436.0PACKAGE INFORMATION2447.0ORDERING INFORMATION245	5.4.4	1-Wire Interface Timing	
5.4.7 10/100M Ethernet PHY Interface Timing 243 6.0 PACKAGE INFORMATION 244 7.0 ORDERING INFORMATION 245	5.4.5	Programmable Counter Array Interface Timing	
5.4.7 10/100M Ethernet PHY Interface Timing 243 6.0 PACKAGE INFORMATION 244 7.0 ORDERING INFORMATION 245	5.4.6	Timer 0/1/2 Interface Timing	
7.0 ORDERING INFORMATION	5.4.7		
	6.0 PAC	KAGE INFORMATION	
8.0 REVISION HISTORY	7.0 ORD	DERING INFORMATION	
	80 RFV	VISION HISTORY	245

List of Figures

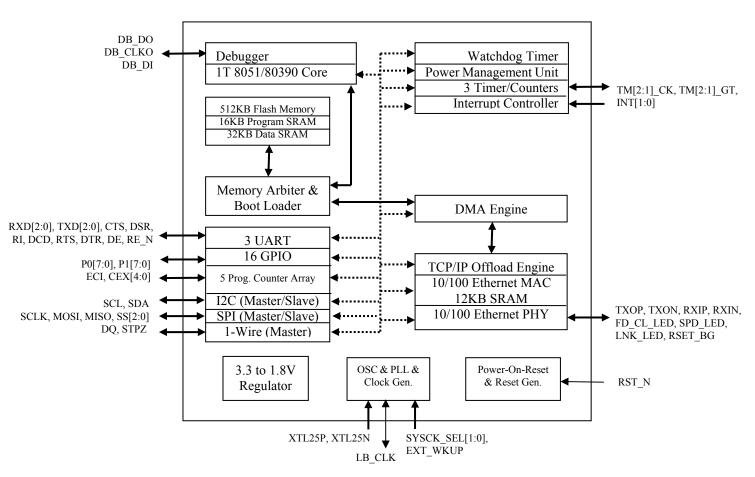
FIGURE 1: TARGET APPLICATION DIAGRAM	2
FIGURE 2: ENVIRONMENT MONITORING OR NETWORK SENSOR AND REMOTE CONTROL	2
FIGURE 3: SERIAL TO ETHERNET CONVERTER	3
FIGURE 4: ZIGBEE TO ETHERNET CONVERTER	3
FIGURE 5: BLUETOOTH TO ETHERNET CONVERTER	3
FIGURE 6: NETWORK CO-PROCESSOR FOR EMBEDDED CPU	3
FIGURE 7: LOW SPEED PLC (POWER LINE COMMUNICATION) TO ETHERNET CONVERTER	4
FIGURE 8: AX11005 BLOCK DIAGRAM (AX11001 IS THE SAME BUT WITH EMBEDDED 128KB FLASH MEMORY)	12
FIGURE 9: AX11001/AX11005 PINOUT DIAGRAM IN 80-PIN LQFP PACKAGE	13
FIGURE 11: TYPICAL DEBUGGER AND HARDWARE ASSISTED DEBUGGER (HAD2) SYSTEM DIAGRAM	
FIGURE 12: FLASH MEMORY PROGRAMMING SYSTEM CONFIGURATION	

FIGURE 13: WATCHDOG TIMER BLOCK DIAGRAM	
FIGURE 14: TIMERS 0, 1, AND 2 BLOCK DIAGRAM	
FIGURE 15: I/O BUFFER OF RXD0 PIN OF UART 0 AND RXD1 PIN OF RXD1	
FIGURE 16: THE I/O BUFFER OF GPIO PINS	
FIGURE 17: PROGRAMMABLE COUNTER ARRAY BLOCK DIAGRAM	
FIGURE 18: I2C CONTROLLER BLOCK DIAGRAM	
FIGURE 19: 1-WIRE CONTROLLER BLOCK DIAGRAM	
FIGURE 20: SPI CONTROLLER BLOCK DIAGRAM	
FIGURE 21: THE PROGRAM MEMORY MAP OF 1T 80390 CPU CORE	
FIGURE 22: THE EXTERNAL DATA MEMORY MAP OF 1T 80390 CPU CORE	
FIGURE 23: THE INTERNAL MEMORY MAP OF 1T 80390 CPU CORE	
FIGURE 24: AX11001/AX11005 CLOCK GENERATION BLOCK DIAGRAM	
FIGURE 25: AX11001/AX11005 RESET GENERATION BLOCK DIAGRAM	47
FIGURE 26: AX11001/AX11005 RESET TIMING DIAGRAM	
FIGURE 27: CPU CORE BLOCK DIAGRAM	49
FIGURE 28: STACK BYTES ORDER	
FIGURE 29: ON-CHIP FLASH MEMORY BLOCK DIAGRAM	66
FIGURE 30: AUTOMATIC CHIP ERASE ALGORITHM FLOWCHART	69
FIGURE 31: AUTOMATIC SECTOR ERASE ALGORITHM FLOWCHART	
FIGURE 32: ERASE SUSPEND/ERASE RESUME FLOWCHART	71
FIGURE 33: AUTOMATIC PROGRAMMING ALGORITHM FLOWCHART	72
FIGURE 34: DATA# POLLING ALGORITHM	74
FIGURE 35: TOGGLE BIT ALGORITHM	
FIGURE 36: BOOT LOADER, MEMORY ARBITER & FLASH PROGRAMMING CONTROLLER BLOCK DIAGRAM	
FIGURE 37: FLASH MEMORY ADDRESS WITHOUT RE-MAPPING, FARM BIT = 0 (IN SFR REGISTER CSREPR.2) (DEF	AULT)
	81
FIGURE 38: FLASH MEMORY ADDRESS RE-MAPPING ENABLED, FARM BIT = 1 (IN SFR REGISTER CSREPR.2)	81
FIGURE 39: DMA ENGINE BLOCK DIAGRAM	
FIGURE 40: RING-AWARE SOFTWARE DMA EXAMPLE	
FIGURE 41: EXAMPLE: ETHERNET PACKET RECEIVE DMA TRANSFER ONLY (RECEIVING A 1500-BYTE PACKET)	
FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVE	NG AND
FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVING TRANSMITTING A 1500-BYTE PACKET)	NG AND
FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVE	NG AND
FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVIN TRANSMITTING A 1500-BYTE PACKET) FIGURE 43: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT AND SOFTWARE DMA TRANSFERS SIMULTANE (RECEIVING AND TRANSMITTING A 1500-BYTE PACKET, AND SOFTWARE COPYING A 200-BYTES DATA BLOCK)	NG AND 91 COUSLY 91
 FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVING TRANSMITTING A 1500-BYTE PACKET) FIGURE 43: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT AND SOFTWARE DMA TRANSFERS SIMULTANE (RECEIVING AND TRANSMITTING A 1500-BYTE PACKET, AND SOFTWARE COPYING A 200-BYTES DATA BLOCK). FIGURE 44: WATCHDOG TIMER BLOCK DIAGRAM. 	NG AND 91 OUSLY 91 91
 FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVING TRANSMITTING A 1500-BYTE PACKET) FIGURE 43: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT AND SOFTWARE DMA TRANSFERS SIMULTANE (RECEIVING AND TRANSMITTING A 1500-BYTE PACKET, AND SOFTWARE COPYING A 200-BYTES DATA BLOCK). FIGURE 44: WATCHDOG TIMER BLOCK DIAGRAM. FIGURE 45: AX11001/AX11005 OPERATING MODE TRANSITION DIAGRAM. 	NG AND 91 OUSLY 91 98 103
 FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVE TRANSMITTING A 1500-BYTE PACKET) FIGURE 43: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT AND SOFTWARE DMA TRANSFERS SIMULTANE (RECEIVING AND TRANSMITTING A 1500-BYTE PACKET, AND SOFTWARE COPYING A 200-BYTES DATA BLOCK). FIGURE 44: WATCHDOG TIMER BLOCK DIAGRAM. FIGURE 45: AX11001/AX11005 OPERATING MODE TRANSITION DIAGRAM. FIGURE 46: TIMER/COUNTER 0, MODE 0: 13-BIT TIMER/COUNTER. 	NG AND 91 XOUSLY 91 98 103 111
 FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVING TRANSMITTING A 1500-BYTE PACKET) FIGURE 43: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT AND SOFTWARE DMA TRANSFERS SIMULTANE (RECEIVING AND TRANSMITTING A 1500-BYTE PACKET, AND SOFTWARE COPYING A 200-BYTES DATA BLOCK). FIGURE 44: WATCHDOG TIMER BLOCK DIAGRAM. FIGURE 45: AX11001/AX11005 OPERATING MODE TRANSITION DIAGRAM. 	NG AND 91 XOUSLY 91 98 103 111
 FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVE TRANSMITTING A 1500-BYTE PACKET) FIGURE 43: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT AND SOFTWARE DMA TRANSFERS SIMULTANE (RECEIVING AND TRANSMITTING A 1500-BYTE PACKET, AND SOFTWARE COPYING A 200-BYTES DATA BLOCK). FIGURE 44: WATCHDOG TIMER BLOCK DIAGRAM. FIGURE 45: AX11001/AX11005 OPERATING MODE TRANSITION DIAGRAM. FIGURE 46: TIMER/COUNTER 0, MODE 0: 13-BIT TIMER/COUNTER. 	NG AND 91 COUSLY 91 98 103 111 111
 FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVIN TRANSMITTING A 1500-BYTE PACKET) FIGURE 43: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT AND SOFTWARE DMA TRANSFERS SIMULTANE (RECEIVING AND TRANSMITTING A 1500-BYTE PACKET, AND SOFTWARE COPYING A 200-BYTES DATA BLOCK) FIGURE 44: WATCHDOG TIMER BLOCK DIAGRAM	NG AND 91 OUSLY 91 98 103 111 111 112
 FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVING TRANSMITTING A 1500-BYTE PACKET) FIGURE 43: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT AND SOFTWARE DMA TRANSFERS SIMULTANE (RECEIVING AND TRANSMITTING A 1500-BYTE PACKET, AND SOFTWARE COPYING A 200-BYTES DATA BLOCK). FIGURE 44: WATCHDOG TIMER BLOCK DIAGRAM. FIGURE 45: AX11001/AX11005 OPERATING MODE TRANSITION DIAGRAM. FIGURE 46: TIMER/COUNTER 0, MODE 0: 13-BIT TIMER/COUNTER. FIGURE 47: TIMER/COUNTER 0, MODE 1: 16-BIT TIMER/COUNTER. FIGURE 48: TIMER/COUNTER 0, MODE 2: 8-BIT TIMER/COUNTER WITH AUTO-RELOAD. 	NG AND 91 OUSLY 91 98 103 111 111 112 112
 FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVING TRANSMITTING A 1500-BYTE PACKET). FIGURE 43: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT AND SOFTWARE DMA TRANSFERS SIMULTANE (RECEIVING AND TRANSMITTING A 1500-BYTE PACKET, AND SOFTWARE COPYING A 200-BYTES DATA BLOCK). FIGURE 44: WATCHDOG TIMER BLOCK DIAGRAM. FIGURE 45: AX11001/AX11005 OPERATING MODE TRANSITION DIAGRAM. FIGURE 46: TIMER/COUNTER 0, MODE 0: 13-BIT TIMER/COUNTER. FIGURE 47: TIMER/COUNTER 0, MODE 1: 16-BIT TIMER/COUNTER. FIGURE 48: TIMER/COUNTER 0, MODE 2: 8-BIT TIMER/COUNTER WITH AUTO-RELOAD. FIGURE 49: TIMER/COUNTER 0, MODE 3: TWO 8-BIT TIMERS/COUNTERS. FIGURE 50: TIMER/COUNTER 1, MODE 0: 13-BIT TIMERS/COUNTERS. FIGURE 51: TIMER/COUNTER 1, MODE 1: 16-BIT TIMERS/COUNTERS. 	NG AND 91 OUSLY 91 98 103 111 112 112 113 113
 FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVING TRANSMITTING A 1500-BYTE PACKET) FIGURE 43: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT AND SOFTWARE DMA TRANSFERS SIMULTANE (RECEIVING AND TRANSMITTING A 1500-BYTE PACKET, AND SOFTWARE COPYING A 200-BYTES DATA BLOCK). FIGURE 44: WATCHDOG TIMER BLOCK DIAGRAM. FIGURE 45: AX11001/AX11005 OPERATING MODE TRANSITION DIAGRAM. FIGURE 46: TIMER/COUNTER 0, MODE 0: 13-BIT TIMER/COUNTER. FIGURE 47: TIMER/COUNTER 0, MODE 1: 16-BIT TIMER/COUNTER. FIGURE 48: TIMER/COUNTER 0, MODE 2: 8-BIT TIMER/COUNTER WITH AUTO-RELOAD. FIGURE 49: TIMER/COUNTER 0, MODE 3: TWO 8-BIT TIMERS/COUNTERS. FIGURE 50: TIMER/COUNTER 1, MODE 0: 13-BIT TIMERS/COUNTERS 	NG AND 91 OUSLY 91 98 103 111 112 112 113 113
 FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVING TRANSMITTING A 1500-BYTE PACKET) FIGURE 43: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT AND SOFTWARE DMA TRANSFERS SIMULTANE (RECEIVING AND TRANSMITTING A 1500-BYTE PACKET, AND SOFTWARE COPYING A 200-BYTES DATA BLOCK). FIGURE 44: WATCHDOG TIMER BLOCK DIAGRAM. FIGURE 45: AX11001/AX11005 OPERATING MODE TRANSITION DIAGRAM. FIGURE 46: TIMER/COUNTER 0, MODE 0: 13-BIT TIMER/COUNTER. FIGURE 47: TIMER/COUNTER 0, MODE 1: 16-BIT TIMER/COUNTER WITH AUTO-RELOAD. FIGURE 49: TIMER/COUNTER 0, MODE 2: 8-BIT TIMER/COUNTERS. FIGURE 49: TIMER/COUNTER 1, MODE 0: 13-BIT TIMERS/COUNTERS. FIGURE 51: TIMER/COUNTER 1, MODE 1: 16-BIT TIMERS/COUNTERS. FIGURE 52: TIMER/COUNTER 1, MODE 2: 8-BIT TIMER/COUNTER WITH AUTO-RELOAD. FIGURE 53: TIMER/COUNTER 1, MODE 2: 8-BIT TIMER/COUNTERS. 	NG AND 91 OUSLY 91 98 103 111 112 112 113 113 114 116
 FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVING TRANSMITTING A 1500-BYTE PACKET) FIGURE 43: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT AND SOFTWARE DMA TRANSFERS SIMULTANE (RECEIVING AND TRANSMITTING A 1500-BYTE PACKET, AND SOFTWARE COPYING A 200-BYTES DATA BLOCK). FIGURE 44: WATCHDOG TIMER BLOCK DIAGRAM. FIGURE 45: AX11001/AX11005 OPERATING MODE TRANSITION DIAGRAM. FIGURE 46: TIMER/COUNTER 0, MODE 0: 13-BIT TIMER/COUNTER. FIGURE 47: TIMER/COUNTER 0, MODE 1: 16-BIT TIMER/COUNTER WITH AUTO-RELOAD. FIGURE 49: TIMER/COUNTER 0, MODE 3: TWO 8-BIT TIMERS/COUNTERS. FIGURE 50: TIMER/COUNTER 1, MODE 0: 13-BIT TIMERS/COUNTERS. FIGURE 51: TIMER/COUNTER 1, MODE 1: 16-BIT TIMERS/COUNTERS. FIGURE 52: TIMER/COUNTER 1, MODE 2: 8-BIT TIMER/COUNTER WITH AUTO-RELOAD. 	NG AND 91 OUSLY 91 98 103 111 112 112 113 113 114 116
 FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVING TRANSMITTING A 1500-BYTE PACKET) FIGURE 43: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT AND SOFTWARE DMA TRANSFERS SIMULTANE (RECEIVING AND TRANSMITTING A 1500-BYTE PACKET, AND SOFTWARE COPYING A 200-BYTES DATA BLOCK). FIGURE 44: WATCHDOG TIMER BLOCK DIAGRAM. FIGURE 45: AX11001/AX11005 OPERATING MODE TRANSITION DIAGRAM. FIGURE 46: TIMER/COUNTER 0, MODE 0: 13-BIT TIMER/COUNTER. FIGURE 47: TIMER/COUNTER 0, MODE 1: 16-BIT TIMER/COUNTER WITH AUTO-RELOAD. FIGURE 49: TIMER/COUNTER 0, MODE 2: 8-BIT TIMER/COUNTERS. FIGURE 49: TIMER/COUNTER 1, MODE 0: 13-BIT TIMERS/COUNTERS. FIGURE 51: TIMER/COUNTER 1, MODE 1: 16-BIT TIMERS/COUNTERS. FIGURE 52: TIMER/COUNTER 1, MODE 2: 8-BIT TIMER/COUNTER WITH AUTO-RELOAD. FIGURE 53: TIMER/COUNTER 1, MODE 2: 8-BIT TIMER/COUNTERS. 	NG AND 91 OUSLY 91 98 103 111 112 112 112 113 113 114 116
 FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVIN TRANSMITTING A 1500-BYTE PACKET) FIGURE 43: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT AND SOFTWARE DMA TRANSFERS SIMULTANE (RECEIVING AND TRANSMITTING A 1500-BYTE PACKET, AND SOFTWARE COPYING A 200-BYTES DATA BLOCK). FIGURE 44: WATCHDOG TIMER BLOCK DIAGRAM. FIGURE 45: AX11001/AX11005 OPERATING MODE TRANSITION DIAGRAM. FIGURE 46: TIMER/COUNTER 0, MODE 0: 13-BIT TIMER/COUNTER. FIGURE 47: TIMER/COUNTER 0, MODE 1: 16-BIT TIMER/COUNTER WITH AUTO-RELOAD. FIGURE 49: TIMER/COUNTER 0, MODE 3: TWO 8-BIT TIMERS/COUNTERS. FIGURE 50: TIMER/COUNTER 1, MODE 0: 13-BIT TIMERS/COUNTERS FIGURE 51: TIMER/COUNTER 1, MODE 1: 16-BIT TIMERS/COUNTERS FIGURE 52: TIMER/COUNTER 1, MODE 2: 8-BIT TIMER/COUNTER WITH AUTO-RELOAD. FIGURE 52: TIMER/COUNTER 1, MODE 2: 8-BIT TIMERS/COUNTERS FIGURE 53: TIMER 2 BLOCK DIAGRAM IN TIMER MODE FIGURE 54: TIMER 2 BLOCK DIAGRAM AS UARTO BAUD RATE GENERATOR 	NG AND 91 OUSLY 91 98 103 111 112 112 113 113 114 116 116 119
 FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVINT TRANSMITTING A 1500-BYTE PACKET). FIGURE 43: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT AND SOFTWARE DMA TRANSFERS SIMULTANE (RECEIVING AND TRANSMITTING A 1500-BYTE PACKET, AND SOFTWARE COPYING A 200-BYTES DATA BLOCK). FIGURE 44: WATCHDOG TIMER BLOCK DIAGRAM. FIGURE 45: AX11001/AX11005 OPERATING MODE TRANSITION DIAGRAM. FIGURE 46: TIMER/COUNTER 0, MODE 0: 13-BIT TIMER/COUNTER. FIGURE 47: TIMER/COUNTER 0, MODE 1: 16-BIT TIMER/COUNTER WITH AUTO-RELOAD. FIGURE 49: TIMER/COUNTER 0, MODE 3: TWO 8-BIT TIMERS/COUNTERS. FIGURE 50: TIMER/COUNTER 1, MODE 0: 13-BIT TIMERS/COUNTERS FIGURE 51: TIMER/COUNTER 1, MODE 2: 8-BIT TIMER/COUNTER WITH AUTO-RELOAD. FIGURE 52: TIMER/COUNTER 1, MODE 2: 8-BIT TIMERS/COUNTERS FIGURE 53: TIMER 2 BLOCK DIAGRAM IN TIMER MODE FIGURE 55: UART 0 BLOCK DIAGRAM 	NG AND 91 OUSLY 91 98 103 111 112 112 112 113 113 114 116 116 119 120
 FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVINT TRANSMITTING A 1500-BYTE PACKET) FIGURE 43: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT AND SOFTWARE DMA TRANSFERS SIMULTANE (RECEIVING AND TRANSMITTING A 1500-BYTE PACKET, AND SOFTWARE COPYING A 200-BYTES DATA BLOCK). FIGURE 44: WATCHDOG TIMER BLOCK DIAGRAM. FIGURE 45: AX11001/AX11005 OPERATING MODE TRANSITION DIAGRAM. FIGURE 46: TIMER/COUNTER 0, MODE 0: 13-BIT TIMER/COUNTER. FIGURE 47: TIMER/COUNTER 0, MODE 1: 16-BIT TIMER/COUNTER. FIGURE 48: TIMER/COUNTER 0, MODE 2: 8-BIT TIMER/COUNTER WITH AUTO-RELOAD. FIGURE 49: TIMER/COUNTER 1, MODE 0: 13-BIT TIMERS/COUNTERS. FIGURE 50: TIMER/COUNTER 1, MODE 0: 13-BIT TIMERS/COUNTERS. FIGURE 51: TIMER/COUNTER 1, MODE 1: 16-BIT TIMERS/COUNTERS. FIGURE 52: TIMER/COUNTER 1, MODE 2: 8-BIT TIMERS/COUNTERS. FIGURE 51: TIMER/COUNTER 1, MODE 2: 8-BIT TIMERS/COUNTERS. FIGURE 52: TIMER/COUNTER 1, MODE 2: 8-BIT TIMERS/COUNTERS. FIGURE 53: TIMER 2 BLOCK DIAGRAM IN TIMER MODE. FIGURE 54: TIMER 2 BLOCK DIAGRAM AS UARTO BAUD RATE GENERATOR. FIGURE 55: UART 0 BLOCK DIAGRAM. FIGURE 56: UART 0, MODE 0 TRANSMIT TIMING DIAGRAM. 	NG AND 91 OUSLY 91 98 103 111 112 112 113 113 114 116 116 119 120
 FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVINT TRANSMITTING A 1500-BYTE PACKET) FIGURE 43: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT AND SOFTWARE DMA TRANSFERS SIMULTANE (RECEIVING AND TRANSMITTING A 1500-BYTE PACKET, AND SOFTWARE COPYING A 200-BYTES DATA BLOCK). FIGURE 44: WATCHDOG TIMER BLOCK DIAGRAM. FIGURE 45: AX11001/AX11005 OPERATING MODE TRANSITION DIAGRAM. FIGURE 46: TIMER/COUNTER 0, MODE 0: 13-BIT TIMER/COUNTER. FIGURE 47: TIMER/COUNTER 0, MODE 1: 16-BIT TIMER/COUNTER. FIGURE 48: TIMER/COUNTER 0, MODE 2: 8-BIT TIMER/COUNTER WITH AUTO-RELOAD. FIGURE 49: TIMER/COUNTER 1, MODE 0: 13-BIT TIMERS/COUNTERS. FIGURE 51: TIMER/COUNTER 1, MODE 0: 13-BIT TIMERS/COUNTERS. FIGURE 52: TIMER/COUNTER 1, MODE 0: 13-BIT TIMERS/COUNTERS. FIGURE 51: TIMER/COUNTER 1, MODE 0: 13-BIT TIMERS/COUNTERS FIGURE 51: TIMER/COUNTER 1, MODE 0: 13-BIT TIMERS/COUNTERS FIGURE 51: TIMER/COUNTER 1, MODE 2: 8-BIT TIMER/COUNTERS FIGURE 52: TIMER/COUNTER 1, MODE 2: 8-BIT TIMER/COUNTER WITH AUTO-RELOAD. FIGURE 53: TIMER 2 BLOCK DIAGRAM AS UARTO BAUD RATE GENERATOR FIGURE 54: TIMER 2 BLOCK DIAGRAM AS UARTO BAUD RATE GENERATOR FIGURE 55: UART 0, MODE 0 TRANSMIT TIMING DIAGRAM. FIGURE 57: UART 0, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 58: UART 0, MODE 2 TRANSMIT TIMING DIAGRAM. FIGURE 59: UART 0, MODE 3 TRANSMIT TIMING DIAGRAM. 	NG AND 91 OUSLY 91 98 103 111 112 112 113 113 114 116 116 116 120 120 121
 FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVIN TRANSMITTING A 1500-BYTE PACKET) FIGURE 43: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT AND SOFTWARE DMA TRANSFERS SIMULTANE (RECEIVING AND TRANSMITTING A 1500-BYTE PACKET, AND SOFTWARE COPYING A 200-BYTES DATA BLOCK). FIGURE 44: WATCHDOG TIMER BLOCK DIAGRAM. FIGURE 45: AX11001/AX11005 OPERATING MODE TRANSITION DIAGRAM. FIGURE 46: TIMER/COUNTER 0, MODE 0: 13-BIT TIMER/COUNTER. FIGURE 47: TIMER/COUNTER 0, MODE 1: 16-BIT TIMER/COUNTER FIGURE 48: TIMER/COUNTER 0, MODE 2: 8-BIT TIMER/COUNTER WITH AUTO-RELOAD. FIGURE 49: TIMER/COUNTER 0, MODE 3: TWO 8-BIT TIMERS/COUNTERS. FIGURE 50: TIMER/COUNTER 1, MODE 0: 13-BIT TIMERS/COUNTERS FIGURE 51: TIMER/COUNTER 1, MODE 1: 16-BIT TIMER/COUNTER WITH AUTO-RELOAD. FIGURE 52: TIMER/COUNTER 1, MODE 2: 8-BIT TIMERS/COUNTERS. FIGURE 51: TIMER/COUNTER 1, MODE 2: 8-BIT TIMERS/COUNTERS FIGURE 52: TIMER/COUNTER 1, MODE 2: 8-BIT TIMER/COUNTER WITH AUTO-RELOAD. FIGURE 52: TIMER/COUNTER 1, MODE 2: 8-BIT TIMERS/COUNTERS FIGURE 53: TIMER 2 BLOCK DIAGRAM IN TIMER MODE FIGURE 54: TIMER 2 BLOCK DIAGRAM AS UARTO BAUD RATE GENERATOR FIGURE 55: UART 0 BLOCK DIAGRAM. FIGURE 55: UART 0, MODE 0 TRANSMIT TIMING DIAGRAM. FIGURE 57: UART 0, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 58: UART 0, MODE 2 TRANSMIT TIMING DIAGRAM. 	NG AND 91 OUSLY 91 98 103 111 112 112 113 113 114 116 116 116 120 120 121
 FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVINT TRANSMITTING A 1500-BYTE PACKET) FIGURE 43: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT AND SOFTWARE DMA TRANSFERS SIMULTANE (RECEIVING AND TRANSMITTING A 1500-BYTE PACKET, AND SOFTWARE COPYING A 200-BYTES DATA BLOCK). FIGURE 44: WATCHDOG TIMER BLOCK DIAGRAM. FIGURE 45: AX11001/AX11005 OPERATING MODE TRANSITION DIAGRAM. FIGURE 46: TIMER/COUNTER 0, MODE 0: 13-BIT TIMER/COUNTER. FIGURE 47: TIMER/COUNTER 0, MODE 1: 16-BIT TIMER/COUNTER. FIGURE 48: TIMER/COUNTER 0, MODE 2: 8-BIT TIMER/COUNTER WITH AUTO-RELOAD. FIGURE 49: TIMER/COUNTER 1, MODE 0: 13-BIT TIMERS/COUNTERS. FIGURE 51: TIMER/COUNTER 1, MODE 0: 13-BIT TIMERS/COUNTERS. FIGURE 52: TIMER/COUNTER 1, MODE 0: 13-BIT TIMERS/COUNTERS. FIGURE 51: TIMER/COUNTER 1, MODE 0: 13-BIT TIMERS/COUNTERS FIGURE 51: TIMER/COUNTER 1, MODE 0: 13-BIT TIMERS/COUNTERS FIGURE 51: TIMER/COUNTER 1, MODE 2: 8-BIT TIMER/COUNTERS FIGURE 52: TIMER/COUNTER 1, MODE 2: 8-BIT TIMER/COUNTER WITH AUTO-RELOAD. FIGURE 53: TIMER 2 BLOCK DIAGRAM AS UARTO BAUD RATE GENERATOR FIGURE 54: TIMER 2 BLOCK DIAGRAM AS UARTO BAUD RATE GENERATOR FIGURE 55: UART 0, MODE 0 TRANSMIT TIMING DIAGRAM. FIGURE 57: UART 0, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 58: UART 0, MODE 2 TRANSMIT TIMING DIAGRAM. FIGURE 59: UART 0, MODE 3 TRANSMIT TIMING DIAGRAM. 	NG AND 91 OUSLY 91 98 103 111 112 112 113 113 114 116 116 116 119 120 121 121 122
 FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVINT TRANSMITTING A 1500-BYTE PACKET). FIGURE 43: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT AND SOFTWARE DMA TRANSFERS SIMULTANE (RECEIVING AND TRANSMITTING A 1500-BYTE PACKET, AND SOFTWARE COPYING A 200-BYTES DATA BLOCK). FIGURE 44: WATCHDOG TIMER BLOCK DIAGRAM. FIGURE 45: AX11001/AX11005 OPERATING MODE TRANSITION DIAGRAM. FIGURE 45: AX11001/AX11005 OPERATING MODE TRANSITION DIAGRAM. FIGURE 46: TIMER/COUNTER 0, MODE 0: 13-BIT TIMER/COUNTER. FIGURE 47: TIMER/COUNTER 0, MODE 1: 16-BIT TIMER/COUNTER. FIGURE 48: TIMER/COUNTER 0, MODE 2: 8-BIT TIMER/COUNTER WITH AUTO-RELOAD. FIGURE 49: TIMER/COUNTER 1, MODE 0: 13-BIT TIMERS/COUNTERS. FIGURE 50: TIMER/COUNTER 1, MODE 0: 13-BIT TIMER/COUNTERS. FIGURE 51: TIMER/COUNTER 1, MODE 1: 16-BIT TIMER/COUNTERS. FIGURE 52: TIMER/COUNTER 1, MODE 2: 8-BIT TIMER/COUNTERS. FIGURE 53: TIMER 2 BLOCK DIAGRAM AS UARTO BAUD RATE GENERATOR. FIGURE 54: TIMER 2 BLOCK DIAGRAM AS UARTO BAUD RATE GENERATOR. FIGURE 55: UART 0, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 56: UART 0, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 58: UART 0, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 59: UART 0, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 59: UART 0, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 59: UART 0, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 59: UART 0, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 59: UART 0, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 59: UART 0, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 59: UART 0, MODE 3 TRANSMIT TIMING DIAGRAM. FIGURE 59: UART 1 BLOCK DIAGRAM. 	NG AND 91 20USLY 91 98 103 111 112 112 112 113 113 114 116 119 120 121 121 121 122 124
 FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVIN TRANSMITTING A 1500-BYTE PACKET) FIGURE 43: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT AND SOFTWARE DMA TRANSFERS SIMULTANE (RECEIVING AND TRANSMITTING A 1500-BYTE PACKET, AND SOFTWARE COPYING A 200-BYTES DATA BLOCK). FIGURE 44: WATCHDOG TIMER BLOCK DIAGRAM. FIGURE 45: AX11001/AX11005 OPERATING MODE TRANSITION DIAGRAM. FIGURE 45: AX11001/AX11005 OPERATING MODE TRANSITION DIAGRAM. FIGURE 46: TIMER/COUNTER 0, MODE 0: 13-BIT TIMER/COUNTER. FIGURE 47: TIMER/COUNTER 0, MODE 1: 16-BIT TIMER/COUNTER. FIGURE 48: TIMER/COUNTER 0, MODE 2: 8-BIT TIMER/COUNTERS. FIGURE 49: TIMER/COUNTER 1, MODE 3: TWO 8-BIT TIMERS/COUNTERS. FIGURE 51: TIMER/COUNTER 1, MODE 1: 16-BIT TIMERS/COUNTERS. FIGURE 52: TIMER/COUNTER 1, MODE 2: 8-BIT TIMER/COUNTER WITH AUTO-RELOAD. FIGURE 52: TIMER/COUNTER 1, MODE 2: 8-BIT TIMER/COUNTERS. FIGURE 53: TIMER 2 BLOCK DIAGRAM AS UARTO BAUD RATE GENERATOR. FIGURE 54: TIMER 2 BLOCK DIAGRAM AS UARTO BAUD RATE GENERATOR. FIGURE 55: UART 0 BLOCK DIAGRAM. FIGURE 56: UART 0, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 58: UART 0, MODE 2 TRANSMIT TIMING DIAGRAM. FIGURE 59: UART 0, MODE 3 TRANSMIT TIMING DIAGRAM. FIGURE 59: UART 0, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 59: UART 0, MODE 2 TRANSMIT TIMING DIAGRAM. FIGURE 59: UART 1, MODE 2 TRANSMIT TIMING DIAGRAM. FIGURE 59: UART 1, MODE 2 TRANSMIT TIMING DIAGRAM. FIGURE 59: UART 1, MODE 4 TRANSMIT TIMING DIAGRAM. FIGURE 59: UART 1, MODE 6 TRANSMIT TIMING DIAGRAM. FIGURE 61: UART 1, MODE 0 TRANSMIT TIMING DIAGRAM. FIGURE 61: UART 1, MODE 0 TRANSMIT TIMING DIAGRAM. 	NG AND 91 YOUSLY 91 98 103 111 112 112 112 113 114 116 116 116 119 120 121 121 121 124
 FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVIT TRANSMITTING A 1500-BYTE PACKET) FIGURE 43: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT AND SOFTWARE DMA TRANSFERS SIMULTANE (RECEIVIG AND TRANSMITTING A 1500-BYTE PACKET, AND SOFTWARE COPYING A 200-BYTES DATA BLOCK). FIGURE 44: WATCHDOG TIMER BLOCK DIAGRAM. FIGURE 45: AX11001/AX11005 OPERATING MODE TRANSITION DIAGRAM. FIGURE 46: TIMER/COUNTER 0, MODE 0: 13-BIT TIMER/COUNTER. FIGURE 47: TIMER/COUNTER 0, MODE 2: 8-BIT TIMER/COUNTER. FIGURE 48: TIMER/COUNTER 0, MODE 2: 8-BIT TIMER/COUNTER. FIGURE 49: TIMER/COUNTER 0, MODE 3: TWO 8-BIT TIMER/COUNTERS. FIGURE 50: TIMER/COUNTER 1, MODE 1: 16-BIT TIMERS/COUNTERS. FIGURE 51: TIMER/COUNTER 1, MODE 2: 8-BIT TIMER/COUNTERS. FIGURE 52: TIMER/COUNTER 1, MODE 2: 8-BIT TIMER/COUNTERS. FIGURE 53: TIMER 2 BLOCK DIAGRAM IN TIMER MODE FIGURE 54: TIMER 2 BLOCK DIAGRAM AS UARTO BAUD RATE GENERATOR. FIGURE 55: UART 0 BLOCK DIAGRAM AS UARTO BAUD RATE GENERATOR. FIGURE 57: UART 0, MODE 0 TRANSMIT TIMING DIAGRAM. FIGURE 58: UART 0, MODE 2 TRANSMIT TIMING DIAGRAM. FIGURE 59: UART 0, MODE 2 TRANSMIT TIMING DIAGRAM. FIGURE 50: UART 1, MODE 0 TRANSMIT TIMING DIAGRAM. FIGURE 50: UART 1, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 50: UART 1, MODE 2 TRANSMIT TIMING DIAGRAM. FIGURE 50: UART 1, MODE 2 TRANSMIT TIMING DIAGRAM. FIGURE 60: UART 1, MODE 0 TRANSMIT TIMING DIAGRAM. FIGURE 61: UART 1, MODE 2 TRANSMIT TIMING DIAGRAM. FIGURE 61: UART 1, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 61: UART 1, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 61: UART 1, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 61: UART 1, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 61: UART 1, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 61: UART 1, MODE 1 TRANSMIT TIMING DIAGRAM. 	NG AND 91 OUSLY 91 98 103 111 112 112 112 112 113 114 116 116 116 120 120 121 121 121 124 125 125
 FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVIN TRANSMITTING A 1500-BYTE PACKET)	NG AND 91 OUSLY 91 98 103 111 112 112 112 112 113 114 116 116 116 120 120 121 121 121 124 125 125
 FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVE TRANSMITTING A 1500-BYTE PACKET) FIGURE 43: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT AND SOFTWARE DMA TRANSFERS SIMULTANE (RECEIVING AND TRANSMITTING A 1500-BYTE PACKET, AND SOFTWARE COPYING A 200-BYTES DATA BLOCK). FIGURE 44: WATCHDOG TIMER BLOCK DIAGRAM. FIGURE 45: AX11001/AX11005 OPERATING MODE TRANSITION DIAGRAM. FIGURE 46: TIMER/COUNTER 0, MODE 0: 13-BIT TIMER/COUNTER. FIGURE 47: TIMER/COUNTER 0, MODE 1: 16-BIT TIMER/COUNTER. FIGURE 47: TIMER/COUNTER 0, MODE 1: 13-BIT TIMER/COUNTER. FIGURE 48: TIMER/COUNTER 0, MODE 1: 13-BIT TIMER/COUNTER. FIGURE 49: TIMER/COUNTER 0, MODE 2: 8-BIT TIMER/COUNTERS. FIGURE 50: TIMER/COUNTER 1, MODE 0: 13-BIT TIMER/COUNTERS. FIGURE 51: TIMER/COUNTER 1, MODE 1: 16-BIT TIMER/COUNTERS. FIGURE 52: TIMER/COUNTER 1, MODE 2: 8-BIT TIMER/COUNTERS. FIGURE 52: TIMER/COUNTER 1, MODE 2: 8-BIT TIMER/COUNTERS. FIGURE 52: TIMER/COUNTER 1, MODE 2: 8-BIT TIMER/COUNTERS. FIGURE 54: TIMER 2 BLOCK DIAGRAM IN TIMER MODE. FIGURE 55: UART 0 BLOCK DIAGRAM AS UART0 BAUD RATE GENERATOR. FIGURE 55: UART 0, MODE 0 TRANSMIT TIMING DIAGRAM. FIGURE 55: UART 0, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 56: UART 0, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 57: UART 0, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 61: UART 1, MODE 0 TRANSMIT TIMING DIAGRAM. FIGURE 61: UART 1, MODE 0 TRANSMIT TIMING DIAGRAM. FIGURE 61: UART 1, MODE 0 TRANSMIT TIMING DIAGRAM. FIGURE 61: UART 1, MODE 0 TRANSMIT TIMING DIAGRAM. FIGURE 61: UART 1, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 62: UART 1, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 64: UART 1, MODE 2 TRANSMIT TIMING DIAGRAM. FIGURE 65: UART 1, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 65: UART 1 2 BLOCK DIAGRAM . FIGURE 65: UART 1	NG AND 91 OUSLY 91 91 98 103 111 112 112 112 113 113 114 116 116 116 120 120 121 121 122 124 125 126 137
 FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVIE TRANSMITTING A 1500-BYTE PACKET). FIGURE 43: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT AND SOFTWARE DMA TRANSFERS SIMULTANE (RECEIVING AND TRANSMITTING A 1500-BYTE PACKET, AND SOFTWARE COPYING A 200-BYTES DATA BLOCK). FIGURE 44: WATCHDOG TIMER BLOCK DIAGRAM	NG AND 91 OUSLY 91 91 98 103 111 112 112 112 113 113 114 116 116 116 120 120 121 121 122 124 125 126 137
 FIGURE 42: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT DMA TRANSFERS SIMULTANEOUSLY (RECEIVE TRANSMITTING A 1500-BYTE PACKET). FIGURE 43: EXAMPLE: ETHERNET PACKET RECEIVE AND TRANSMIT AND SOFTWARE DMA TRANSFERS SIMULTANE (RECEIVING AND TRANSMITTING A 1500-BYTE PACKET, AND SOFTWARE COPYING A 200-BYTES DATA BLOCK). FIGURE 44: WATCHDOG TIMER BLOCK DIAGRAM. FIGURE 45: AX11001/AX11005 OPERATING MODE TRANSITION DIAGRAM. FIGURE 46: TIMER/COUNTER 0, MODE 0: 13-BIT TIMER/COUNTER. FIGURE 47: TIMER/COUNTER 0, MODE 1: 16-BIT TIMER/COUNTER WITH AUTO-RELOAD. FIGURE 49: TIMER/COUNTER 1, MODE 2: 8-BIT TIMER/COUNTERS. FIGURE 50: TIMER/COUNTER 1, MODE 2: 13-BIT TIMER/COUNTERS. FIGURE 51: TIMER/COUNTER 1, MODE 2: 13-BIT TIMER/COUNTERS. FIGURE 52: TIMER/COUNTER 1, MODE 2: 8-BIT TIMER/COUNTERS. FIGURE 55: UART 0 BLOCK DIAGRAM IN TIMER MODE. FIGURE 55: UART 0 BLOCK DIAGRAM AS UART0 BAUD RATE GENERATOR FIGURE 55: UART 0, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 56: UART 0, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 57: UART 0, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 50: UART 1, MODE 2 TRANSMIT TIMING DIAGRAM. FIGURE 60: UART 1, MODE 0 TRANSMIT TIMING DIAGRAM. FIGURE 61: UART 1, MODE 0 TRANSMIT TIMING DIAGRAM. FIGURE 61: UART 1, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 61: UART 1, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 64: UART 1, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 65: UART 1 BLOCK DIAGRAM FIGURE 64: UART 1, MODE 1 TRANSMIT TIMING DIAGRAM. FIGURE 65: UART 2 BLOCK DIAGRAM 	NG AND 91 OUSLY 91 91 91 91 91 91 91 91 91 91 91 91 91 103 111 112 112 112 113 113 114 116 116 116 120 121 121 121 121 125 125 125 137 137

FIGURE 69: PORTS READ TIMING DIAGRAM	
FIGURE 70: TOE BLOCK DIAGRAM	
FIGURE 71: ARP CACHE SRAM MEMORY MAP	
FIGURE 72: THE EXTERNAL DATA (XDATA) MEMORY OF CPU	
FIGURE 73: THE CONTENT OF BUFFER DESCRIPTOR PAGE (BDP)	
FIGURE 74: EXAMPLE RING STRUCTURE OF RECEIVE PACKET BUFFER RING	
FIGURE 75: EXAMPLE RING STRUCTURE OF TRANSMIT PACKET BUFFER RING	
FIGURE 76: ICMP PACKET FORMAT IN RPBR	
FIGURE 77: IGMP PACKET FORMAT IN RPBR	
FIGURE 78: UDP PACKET FORMAT IN RPBR	
FIGURE 79: TCP PACKET FORMAT IN RPBR	
FIGURE 80: NON-IP-TYPE PACKET FORMAT IN RPBR	
FIGURE 81: ICMP PACKET FORMAT IN TPBR	
FIGURE 82: IGMP PACKET FORMAT IN TPBR	
FIGURE 83: UDP PACKET FORMAT IN TPBR	
FIGURE 84: TCP PACKET FORMAT IN TPBR	
FIGURE 85: NON-IP-TYPE PACKET FORMAT IN TPBR	
FIGURE 86: 10/100M ETHERNET MAC BLOCK DIAGRAM	
FIGURE 87: MULTICAST FILTER ARRAY HASHING ALGORITHM	
FIGURE 88: MULTICAST FILTER ARRAY BIT MAPPING	
FIGURE 89: ETHERNET PACKET FORMAT	
FIGURE 90: ETHERNET PACKET BUFFER DATA STRUCTURE IN ETHERNET MAC	
FIGURE 91: TRANSMIT/RECEIVE BUFFER RING STRUCTURE	
FIGURE 92: PAUSE FRAME	
FIGURE 93: EXAMPLE MAGIC PACKET FORMAT	
FIGURE 94: 10/100M ETHERNET PHY BLOCK DIAGRAM	
FIGURE 95: MII STATION MANAGEMENT FRAME FORMAT.	
FIGURE 96: PROGRAMMABLE COUNTER ARRAY BLOCK DIAGRAM	
FIGURE 97: PCA TIMER/COUNTER	
FIGURE 98: PCA CAPTURE MODE	
FIGURE 99: PCA SOFTWARE TIMER MODE (COMPARE MODE)	
FIGURE 100: PCA HIGH-SPEED OUTPUT MODE	
FIGURE 101: PCA PULSE WIDTH MODULATOR MODE	
FIGURE 102: I2C CONTROLLER BLOCK DIAGRAM	
FIGURE 103: TRANSMITTING DATA TO AN I2C SLAVE DEVICE.	
FIGURE 104: I2C READ DATA	
FIGURE 105: 1-WIRE CONTROLLER BLOCK DIAGRAM	
FIGURE 106: SPI CONTROLLER BLOCK DIAGRAM	
FIGURE 107: SPI TIMING DIAGRAM	
FIGURE 108: COMMAND FRAME FORMAT IN SPI SLAVE MODE	
FIGURE 109: POWER-UP SEQUENCE TIMING DIAGRAM AND TABLE	
FIGURE 110: XTL25P CLOCK TIMING DIAGRAM AND TABLE	
FIGURE 111: LB_CLK CLOCK TIMING DIAGRAM AND TABLE	
FIGURE 112: SPI MASTER CONTROLLER TIMING DIAGRAM AND TABLE FIGURE 113: SPI SLAVE CONTROLLER TIMING DIAGRAM AND TABLE	
FIGURE 114: 1-WIRE RESET PULSE AND PRESENCE PULSE TIMING DIAGRAM AND TABLE	
FIGURE 115: 1-WIRE WRITE AND READ TIME SLOT TIMING DIAGRAM AND TABLE	
FIGURE 116: 1-WIRE STPZ RESET AND READ WRITE TIMING DIAGRAM AND TABLE	
FIGURE 117: ECI TIMING DIAGRAM AND TABLE.	
FIGURE 118: CEX[4:0] TIMING DIAGRAM AND TABLE	
FIGURE 119: TM_CK[2:1] TIMING DIAGRAM AND TABLE	
FIGURE 120: TM_GT[2:1] TIMING DIAGRAM AND TABLE	
FIGURE 121: 10/100M ETHERNET PHY TRANSMITTER WAVEFORM AND SPEC	

List of Tables

TABLE 1: PINOUT DESCRIPTION	
TABLE 2: INTERRUPT CONTROLLER SUMMARY	
TABLE 3: I2C CONFIGURATION EEPROM MEMORY MAP	
TABLE 4: SFR REGISTER MAP	45
TABLE 5: CPU CORE SFR REGISTER MAP	
TABLE 6: ON-CHIP FLASH MEMORY SECTOR STRUCTURE	66
TABLE 7: ON-CHIP FLASH MEMORY COMMAND DEFINITIONS	
TABLE 8: WRITE OPERATION STATUS	
TABLE 9: ON-CHIP FLASH MEMORY READ PROTECTION	
TABLE 10: BOOT LOADER LOADING TIME TABLE	
TABLE 11: SOFTWARE DMA AND MILLISECOND TIMER RELATED SFR REGISTER MAP	
TABLE 12: SOFTWARE DMA AND MILLISECOND TIMER REGISTER MAP	
TABLE 13: INTERRUPTS FLAG SUMMARY	92
TABLE 14: INTERRUPT CONTROLLER SFR REGISTER MAP	92
TABLE 15: WATCHDOG TIMER SFR REGISTER MAP	
TABLE 16: WATCHDOG BITS AND ACTIONS	100
TABLE 17: TIMED ACCESS REGISTERS	
TABLE 18: POWER MANAGEMENT UNIT SFR REGISTER MAP	103
TABLE 19: TIMER 1, 2 PIN DESCRIPTION	
TABLE 20: TIMERS 0, 1, 2 RELATED SFR REGISTER MAP	108
TABLE 21: TIMER 2 MODE OF OPERATION	115
TABLE 22: MILLISECOND TIMER DIVIDER RATIO	117
TABLE 23: UART 0, 1 SFR REGISTER MAP	118
TABLE 24: UART 2 SFR REGISTER MAP	129
TABLE 25: UART2 INTERRUPT IDENTIFICATION REGISTER	132
TABLE 26: GENERAL PURPOSE I/O PORTS PINS DESCRIPTION	136
TABLE 27: GPIO SFR REGISTER MAP	136
TABLE 28: READ-MODIFY-WRITE INSTRUCTIONS	136
TABLE 29: TOE OPERATION MODES	141
TABLE 30: TOE SFR REGISTER MAP	142
TABLE 31: TOE REGISTER MAP	143
TABLE 32: DA FIELD GENERATION RULE IN TRANSMIT DIRECTION	
TABLE 33: L2_ENGINE RX TRUTH TABLE	146
TABLE 34: L2_ENGINE TX TRUTH TABLE	147
TABLE 35: 10/100M ETHERNET MAC SFR REGISTER MAP	168
TABLE 36: 10/100M ETHERNET MAC REGISTER MAP	169
TABLE 37: PACKET FILTERING DURING REMOTE-WAKEUP ENABLE MODE	173
TABLE 38: 10/100 ETHERNET PHY SFR REGISTER MAP	185
TABLE 39: EMBEDDED 10/100M ETHERNET PHY REGISTER MAP	187
TABLE 40: PROGRAMMABLE COUNTER ARRAY SFR REGISTER MAP	191
TABLE 41:PCA TIMER/COUNTER INPUT SOURCES AND REFERENCE TIMING TICK	192
TABLE 42: PULSE WIDTH MODULATOR FREQUENCY	196
TABLE 43: PCA MODULE MODES WITHOUT INTERRUPT ENABLED	199
TABLE 44: PCA MODULE MODES WITH INTERRUPT ENABLED	200
TABLE 45: I2C CONTROLLER SFR REGISTER MAP	203
TABLE 46: I2C CONTROLLER REGISTER MAP.	
TABLE 47: REFERENCE COMMAND INSTRUCTIONS IN I2C SLAVE MODE	209
TABLE 48: 1-WIRE CONTROLLER SFR REGISTER MAP	
TABLE 49: 1-WIRE CONTROLLER REGISTER MAP	
TABLE 50: SPI CONTROLLER SFR REGISTER MAP	
TABLE 51: SPI CONTROLLER REGISTER MAP	
TABLE 52: COMMAND INSTRUCTION IN SPI SLAVE MODE	226
TABLE 53: I2C MASTER CONTROLLER TIMING TABLE	
TABLE 54: I2C SLAVE CONTROLLER TIMING TABLE	
TABLE 55: 10/100M ETHERNET PHY RECEIVER SPEC	243



1.0 Introduction

1.1 General Description

The AX11001/AX11005, Single Chip Micro-controller with TCP/IP and 10/100M Fast Ethernet MAC/PHY, is a System-on-Chip (SoC) solution which offers a high performance embedded micro-controller and rich communication peripherals for wide varieties of application which need access to the LAN or Internet. With built-in network protocol stack, the AX11001/AX11005 provides very cost effective networking solution to enable simple, easy, and low cost Internet connection capability for many applications such as consumer electronics, networked home appliances, industrial equipments, security systems, remote data collection equipments, remote control, remote monitoring, and remote management. In addition to stand-alone application, the AX11001/AX11005 with popular TCP/IP protocol suite on-chip and built-in I2C bus or SPI bus, can be used as network co-processor to offload TCP/IP protocol processing loading from system CPU in an embedded system.

The AX11001/AX11005 needs only a 25Mhz crystal to operate and its internal operating frequency is programmable from 25Mhz, 50Mhz, and 100Mhz, depending on system performance and power consumption trade-off. AX11001/AX11005 integrate an internal voltage regulator that requires only single power supply of 3.3V to operate, and an internal power-on-reset circuitry that simplifies the external reset circuitry on PCB. The package is 80-pin low-profile LQFP RoHS package and the operating temperature range are 0 to 70 °C or -40 to 85 °C. Please refer to ordering information for part number details.

1.2 AX11001/AX11005 Block Diagram

Figure 8: AX11005 Block Diagram (AX11001 is the same but with embedded 128KB Flash Memory)

1.3 AX11001/AX11005 Pinout Diagram

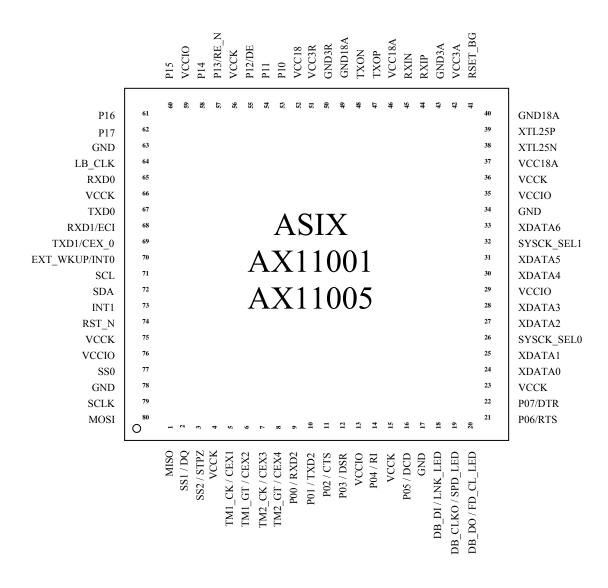


Figure 9: AX11001/AX11005 Pinout Diagram in 80-pin LQFP Package

1.4 Signal Description

The following abbreviations apply to the following pin description table. Please note some I/O pins with multiple signal definitions on the same pin may have different pin attribute in the "Type" column for different signal definition. For example, pin 9 can be defined as P00 or RXD2. In the case of P00 the Type = B5/T/4m/8m/PU, while in the case of RXD2 the Type = I5. In other words, the PU (internal pull-up) only takes effective during P00 signal mode, and RXD2 signal mode will not have the PU.

I18	Input, 1.8V	4 m	4mA driving strength
I3	Input, 3.3V	8m	8mA driving strength
15	Input, 3.3V with 5V tolerant	PU	Internal Pull-Up (75K)
O18	Output, 1.8V	PD	Internal Pull-Down (75K)
03	Output, 3.3V	Р	Power and ground pin
05	Output, 3.3V with 5V tolerant	S	Schmitt Trigger
B3	Bi-directional I/O, 3.3V	Т	Tri-state
B5	Bi-directional I/O, 3.3V with 5V	AB	Analog Bi-directional I/O
	tolerant		-

AO Analog Output

Pin Name	Туре	Pin No	Pin Description	
CPU Debugger/Interrupt/Timers/GPIO Interface				
DB_DI	I5/PU	18	CPU debugger data input. Note that this is a multi-function pin (DB_DI/LNK_LED), depending on the setting of DBG_PSEL bit in I2C EEPROM offset 0x01, see section 3.1.2 for details.	
DB_CKO	O5/8m	19	CPU debugger clock output. Note that this is a multi-function pin (DB_CKO/SPD_LED), depending on the setting of DBG_PSEL bit in I2C EEPROM offset 0x01, see section 3.1.2 for details.	
DB_DO	O5/8m	20	CPU debugger data output. Note that this is a multi-function pin (DB_DO/FD_CL_LED), depending on the setting of DBG_PSEL bit in I2C EEPROM offset 0x01, see section 3.1.2 for details.	
INT [1:0]	I5/PU	73, 70	Interrupt inputs, active low or falling edge trigger. Note that the INTO is a dual-function input pin sharing with EXT WKUP pin.	
TM[2:1]_CK	15	7, 5	Timer 2, 1 external clock input. Note that these are multi-function pins (TM2_CK/CEX3, TM1_CK/CEX1), depending on the setting of TM_PSEL bits in I2C EEPROM offset 0x03, see section 3.1.3 for details.	
TM[2:1]_GT	15	8, 6	Timer 2, 1 external gate control input. Note that these are multi-function pins (TM2_GT/CEX4, TM1_GT/CEX2), depending on the setting of TM_PSEL bits in I2C EEPROM offset 0x03, see section 3.1.3 for details.	
P0 [7:0]	B5/T/4m/8 m/PU	22, 21, 16, 14, 12, 11, 10, 9	Port 0 general purpose input and output pins. Note that these are multi-function pins (P07/DTR, P06/RTS, P05/DCD, P04/RI, P03/DSR, P02/CTS, P01/TXD2, P00/RXD2), depending on the setting of P0_PSEL bits in I2C EEPROM offset 0x02, see section 3.1.3 for details. The output driving strength is programmable, by P0_ODS bit in I2C Configuration EEPROM offset 0x04. See section 3.1.4 for details.	
P1 [7:0]	B5/T/4m/8 m/PU	62, 61, 60, 58, 57, 55, 54, 53	Port 1 general-purpose input and output pins. Note that these are multi-function pins (P17, P16, P15, P14, P13/RE_N, P12/DE, P11, P10), depending on the setting of P1_PSEL bits in I2C EEPROM offset 0x02, see section 3.1.3 for details. The output driving strength is programmable, by P1_ODS bit in I2C Configuration EEPROM offset 0x04. See section 3.1.4 for details.	
			UART Interface	
RXD0	B5/4m/PU	65	UART 0 serial receive data.	

TXD0	O5/4m	67	UART 0 serial transmit data.
RXD1	B5/4m/PU	68	UART 1 serial receive data.
			Note that this is a multi-function pin (RXD1/ECI), depending on the setting of
			U1 PSEL bits in I2C EEPROM offset 0x03, see section 3.1.3 for details.
TXD1	O5/4m/8m	69	UART 1 serial transmit data.
			Note that this is a multi-function pin (TXD1/CEX0), depending on the setting of
			U1_PSEL bits in I2C EEPROM offset 0x03, see section 3.1.3 for details. The
			output driving strength is programmable, by PCA_ODS bit in I2C Configuration
			EEPROM offset 0x04. See section 3.1.4 for details.
RXD2	15	9	UART 2 serial receive data.
			Note that this is a multi-function pin (P00/RXD2), depending on the setting of
			P0_PSEL bits in I2C EEPROM offset 0x02, see section 3.1.3 for details.
TXD2	O5/4m/8m	10	UART 2 serial transmit data.
			Note that this is a multi-function pin (P01/TXD2), depending on the setting of
			P0_PSEL bits in I2C EEPROM offset 0x02, see section 3.1.3 for details. The
			output driving strength is programmable, by P0_ODS bit in I2C Configuration
OTTO			EEPROM offset 0x04. See section 3.1.4 for details.
CTS	15	11	UART 2 clear to send.
			Note that this is a multi-function pin (P02/CTS), depending on the setting of
DCD	15	10	P0_PSEL bits in I2C EEPROM offset 0x02, see section 3.1.3 for details.
DSR	15	12	UART 2 data set ready.
			Note that this is a multi-function pin (P03/DSR), depending on the setting of P0_PSEL bits in I2C EEPROM offset 0x02, see section 3.1.3 for details.
RI	15	14	UART 2 ring indicator.
KI	15	14	Note that this is a multi-function pin (P04/RI), depending on the setting of
			P0 PSEL bits in I2C EEPROM offset 0x02, see section 3.1.3 for details.
DCD	15	16	UART 2 data carriers detect.
DCD	15	10	Note that this is a multi-function pin (P05/DCD), depending on the setting of
			P0 PSEL bits in I2C EEPROM offset 0x02, see section 3.1.3 for details.
RTS	O5/4m/8m	21	UART 2 request to send.
			Note that this is a multi-function pin (P06/RTS), depending on the setting of
			P0_PSEL bits in I2C EEPROM offset 0x02, see section 3.1.3 for details. The
			output driving strength is programmable, by P0_ODS bit in I2C Configuration
			EEPROM offset 0x04. See section 3.1.4 for details.
DTR	O5/4m/8m	22	UART 2 data terminal ready.
			Note that this is a multi-function pin (P07/DTR), depending on the setting of
			P0_PSEL bits in I2C EEPROM offset 0x02, see section 3.1.3 for details. The
			output driving strength is programmable, by P0_ODS bit in I2C Configuration
			EEPROM offset 0x04. See section 3.1.4 for details.
DE	O5/4m/8m	55	UART 2 transceiver driver output enable.
			Note that this is a multi-function pin (P12/DE), depending on the setting of
			P1_PSEL bits in I2C EEPROM offset 0x02, see section 3.1.3 for details. The
			output driving strength is programmable, by P1_ODS bit in I2C Configuration EEPROM offset 0x04. See section 3.1.4 for details.
RE N	O5/4m/8m	57	UART 2 transceiver receiver output enable, active low.
IVE_IN	03/4111/8111	51	Note that this is a multi-function pin (P13/RE_N), depending on the setting of
			P1 PSEL bits in I2C EEPROM offset 0x02, see section 3.1.3 for details. The
			output driving strength is programmable, by P1_ODS bit in I2C Configuration
			EEPROM offset 0x04. See section 3.1.4 for details.
			Serial Interface
SCL	B5/4m/8m/	71	I2C serial clock line for operating in either master or slave mode.
	PU		Note that the output driving strength is programmable, by I2C_ODS bit in I2C
			Configuration EEPROM offset 0x04. See section 3.1.4 for details.
SDA	B5/4m/8m/	72	I2C serial data line for operating in either master or slave mode.
	PU		Note that the output driving strength is programmable, by I2C_ODS bit in I2C
			Configuration EEPROM offset 0x04. See section 3.1.4 for details.
	· ·		

SS0	B5/T/4m	77	SPI slave select 0. This is a tri-stateable output when operating in SPI master mode or an input when operating in SPI slave mode. When operating in SPI master mode, it needs an external pulled-up resistor.
SS[2:1]	O5/T/4m/8	3, 2	SPI slave select 2, 1. These are tri-stateable outputs (an external pulled-up resistor)
55[2.1]	m	$_{J, 2}$	needed) and used in SPI master mode only.
			Note that these are multi-function pins (SS2/STPZ, SS1/DQ), depending on the
			setting of SPI PSEL bits in I2C EEPROM offset 0x03, see section 3.1.3 for
			details. The output driving strength is programmable, by SPI_ODS bit in I2C
			Configuration EEPROM offset 0x04. See section 3.1.4 for details.
SCLK	B5/T/4m/8	79	SPI clock. This is a tri-stateable output when operating in SPI master mode or an
Selle	m	15	input when operating in SPI slave mode. In SPI master mode operating at mode 0
			or 2, user should pull low this pin with external resistor, while operating at mode
			1 or 3, user should pull up this pin with external resistor.
			Note that the output driving strength is programmable, by SPI ODS bit in I2C
			Configuration EEPROM offset 0x04. See section 3.1.4 for details.
MISO	B5/T/4m/8	1	SPI master input slave output line. This is used to receive serial data when the SPI
	m	_	controller is configured as SPI master or to transmit serial data when it is
			configured as SPI slave. When operating in SPI slave mode, this is a tri-stateable
			output, which needs an external pulled-up resistor.
			Note that the output driving strength is programmable, by SPI ODS bit in I2C
			Configuration EEPROM offset 0x04. See section 3.1.4 for details.
MOSI	B5/T/4m/8	80	SPI master output slave input line. This is used to transmit serial data when the
	m		SPI controller is configured as SPI master or to receive serial data when it is
			configured as SPI slave. When operating in SPI master mode, this is a
			tri-stateable output, which needs an external pulled-up resistor.
			Note that the output driving strength is programmable, by the SPI_ODS bit in I2C
			Configuration EEPROM offset 0x04. See section 3.1.4 for details.
DQ	B5/4m/8m	2	1-Wire serial data input and output. This is an open-drain pin, which needs an
			external pulled-up resistor or a strong pull-up through a PMOS transistor.
			Note that this is a multi-function pin (SS1/DQ), depending on the setting of
			SPI_PSEL bits in I2C EEPROM offset 0x03, see section 3.1.3 for details. The
			output driving strength is programmable, by the SPI_ODS bit in I2C
			Configuration EEPROM offset 0x04. See section 3.1.4 for details.
STPZ	O5/4m/8m	3	1-Wire strong pull-up is used for device with a stiff power supply for high current
			application. This is active low.
			Note that this is a multi-function pin (SS2/STPZ), depending on the setting of
			SPI_PSEL bits in I2C EEPROM offset 0x03, see section 3.1.3 for details. The
			output driving strength is programmable, by the SPI_ODS bit in I2C
			Configuration EEPROM offset 0x04. See section 3.1.4 for details.
EGI	1.5		Programmable Counter Array Interface
ECI	15	68	Programmable counter array external clock input.
			Note that this is a multi-function pin (RXD1/ECI), depending on the setting of
CEX [4:0]	B5/4m/8m	0765	U1_PSEL bits in I2C EEPROM offset 0x03, see section 3.1.3 for details. Programmable counter array module 4~0 input and output.
CEX [4:0]	B3/4m/8m	8, 7, 0, 3, 69	Note that these are multi-function pins (TM2 GT/CEX4, TM2 CK/CEX3,
		09	TM1 GT/CEX2, TM1 CK/CEX1, TXD1/CEX0), depending on the setting of
			U1 PSEL and TM PSEL bits in I2C EEPROM offset 0x03, see section 3.1.3 for
			details. The output driving strength is programmable, by the PCA_ODS bit in I2C
			Configuration EEPROM offset 0x04. See section 3.1.4 for details.
			Ethernet PHY Interface
RXIP	AB	44	Receive differential data input positive pin for 10BASE-T/100BASE-TX in MDI
1.2.2.11		77	mode or transmit differential data output positive pin for TOBASE-17 100BASE-17 III NDT
RXIN	AB	45	Receive differential data input negative pin for 10BASE-T/100BASE-TX in MDI
		<i>-</i> Т <i>-</i> Ј	mode or transmit differential data output negative pin for TOBASE-17 100BASE-17 in MDT
ТХОР	AB	47	Transmit differential data output negative pin in WDTX mode.
1701	AD	·•• /	MDI mode or receive differential data input positive pin in MDIX mode.
TXON	AB	48	Transmit differential data output negative pin for 10BASE-T/100 BASE-TX in
121011		01	MDI mode or receive differential data input negative pin for TOBASE-17100 BASE-17 III
		I	prior mode of receive unrerential data input negative pill in wiDIA mode.

RSET_BG	AO	41	For Ethernet PHY's internal biasing. Please connect to GND3A through a 12.1Kohm +/-1% resistor.					
LNK_LED	O5/8m	18	Link status LED indicator. This pin drives low continuously when the Ethernet link is up and drives low and high in turn (blinking) when Ethernet PHY is in receiving or transmitting state. Note that this is a multi-function pin (DB DI/LNK LED), depending on the					
			setting of DBG_PSEL bit in I2C EEPROM offset 0x01, see section 3.1.2 for details.					
SPD_LED	O5/8m	19	Ethernet speed LED indicator. This pin drives low when the Ethernet PHY is in 100BASE-TX mode and drives high when in 10BASE-T mode. Note that this is a multi-function pin (DB_CKO/SPD_LED), depending on the setting of DBG_PSEL bit in I2C EEPROM offset 0x01, see section 3.1.2 for details.					
FD_CL_LED	O5/8m	20	Full duplex and collision detected LED indicator. This pin drives low when the Ethernet PHY is in full-duplex mode and drives high when in half duplex mode. When in half duplex mode and the Ethernet PHY detects collision, it will be driven low. Note that this is a multi-function pin (DB DO/FD CL LED), depending on the					
			setting of DBG_PSEL bit in I2C EEPROM offset 0x01, see section 3.1.2 details.					
				Misc. Pins				
RST_N	I5/PU/S	74	Chip reset input, active low. This is the external reset source used to reset this chip. This input feeds to the internal power-on reset circuitry, which then provides the main reset source of this chip.					
XTL25P	018	39	25Mhz crystal or oscillator clock output. The recommended reference frequency is 25Mhz +/- 0.005% (i.e. 25Mhz +/- 1250hz).					
XTL25N	I18	38	25Mhz crystal or oscillator clock input. The recommended reference frequency is 25 Mhz +/- $0.005%$ (i.e. 25 Mhz +/- 1250 hz).					
LB_CLK	B5/8m	64	The LB_CLK can be used to provide alternative clock source for the system logic or to provide operating system clock output to peripheral devices. When used as clock source, the input frequency should be as close to 25/50/100 Mhz as possible such as 24/48/96Mhz so that the internal timer/counter can work properly. The mode of operation is determined by XDATA1 and XDATA2 state during chip hardware reset.					
			XDATA1	XDATA2	LB_CLK			
			Pulled-up	Pulled-up	The LB_CLK instead of internal 100Mhz PLL is the clock source for operating system clock. In this case, user can provide 24/48/96Mhz clock input to this pin. Also, the SYSCK_SEL should be set to 00/01/11 accordingly so that the internal timer/counter can work properly.			
			Pulled-down	Pulled-up	The LB_CLK is a clock output, which provides the operating system clock of the chip to the external peripheral device.			
			Pulled-up	Pulled-down	The LB_CLK is not used. In this case, please add a pulled-up resistor to this pin such that it draws minimum current.			
SYSCK_SEL[1:0]	13	32, 26	Operating system clock frequency selection: 00: Set the operating CPU clock to 25Mhz. 01: Set the operating CPU clock to 50Mhz. 10: Reserved. 11: Set the operating CPU clock to 100Mhz.					
EXT_WKUP	I5/PU	70	External remote-wakeup trigger input pin, rising edge. Note that the EXT WKUP is a dual-function input pin sharing with INT0 pin.					

XDATA0	B3/8m	24	For normal operation, please pull down with 10Kohm during chip hardware reset. Note that after removal of chip hardware reset, this pin shall toggle during normal operation. Therefore, user should not tie it directly to GND for configuration purpose.	
XDATA1	B3/8m	25	For normal operation, please pull up with 10Kohm during chip hardware reset Note that after removal of chip hardware reset, this pin shall toggle during norm operation. Therefore, user should not tie it directly to VCC for configuration purpose.	
XDATA2	B3/8m	27	For normal operation, please pull down with 10Kohm during chip hardware reset. Note that after removal of chip hardware reset, this pin shall toggle during normal operation. Therefore, user should not tie it directly to GND for configuration purpose.	
XDATA3	B3/8m	28	For normal operation, please pull down with 10Kohm during chip hardware reset. Note that after removal of chip hardware reset, this pin shall toggle during normal operation. Therefore, user should not tie it directly to GND for configuration purpose.	
XDATA4	B3/8m	30	This is used as BURN_FLASH_EN. Pull up with 1Kohm during chip hardware reset to temporarily enable Flash programming via UART0. This will put the CPU in reset state during Flash programming. Pull down with 10Kohm during chip hardware reset to allow the CPU to run normally after reset and disable Flash programming via UART0. Note that after removal of chip hardware reset, this pin shall toggle during Flash programming or normal operation. Therefore, user should not tie it directly to VCC or GND for configuration purpose.	
XDATA5	B3/8m	31	This is used as BURN_FLASH_921K. Pull up with 10Kohm during chip hardware reset when the BURN_FLASH_EN is also pulled up to enable Flash memory programming at higher speed as 921.6Kbps baud rate. When the BURN_FLASH_EN is pulled down, this has no effect. Pull down with 10Kohm during chip hardware reset when the BURN_FLASH_EN is also pulled up to enable Flash memory programming at normal speed as 115.2Kbps baud rate. When the BURN_FLASH_EN is pulled down, this has no effect. Note that after removal of chip hardware reset, this pin shall toggle during Flash programming or normal operation. Therefore, user should not tie it directly to VCC or GND for configuration purpose.	
XDATA6	B3/8m	33	This is used as I2C_BOOT_DIS. Pull up with 10Kohm during chip hardware reset if the optional I2C EEPROM is not used for storing configuration data. Pull down with 10Kohm during chip hardware reset if the I2C EEPROM is used for storing configuration data. Note that after removal of chip hardware reset, this pin shall toggle during normal operation. Therefore, user should not tie it directly to VCC or GND for configuration purpose.	
			On-chip Regulator Pins	
VCC3R	Р	51	3.3V power supply to on-chip 3.3V to 1.8V voltage regulator.	
GND3R	Р	50	Ground pin of on-chip 3.3V to 1.8V voltage regulator.	
VCC18	Р	52	1.8V voltage output of on-chip 3.3V to 1.8V voltage regulator. Please add 1uF capacitor between VCC18 and GND3R.	
MOOR	n	4 17	Power and Ground Pins	
VCCK	Р	4, 15, 23, 36, 56, 66, 75	Digital core power, 1.8V.	
VCCIO	Р	13, 29, 35, 59, 76	Digital I/O power, 3.3V.	
GND	Р	17, 34, 63, 78	Digital ground for core and I/O.	
VCC18A	Р	37, 46	Analog power for oscillator, PLL, and Ethernet PHY differential I/O pins, 1.8V	

18

GND18A	Р	40, 49	Analog ground for oscillator, PLL, and Ethernet PHY differential I/O pins.
VCC3A	Р	42	Analog power for bandgap, 3.3V.
GND3A	Р	43	Analog ground for bandgap.

2.0 Function Description

2.1 Clock Generation

The AX11001/AX11005 integrates an internal 25Mhz oscillator, which allows the chip to operate cost effectively with just an external 25Mhz crystal. The 25Mhz oscillator provides reference clock to the internal PLL circuit, which generate a free-run 100Mhz clock source for system logic and a 125Mhz clock source for the internal Ethernet PHY use. The operating system clock is derived from the 100Mhz clock source from PLL and is programmable between 25Mhz, 50Mhz, and 100Mhz, based on the setting of SYSCK_SEL [1:0] input pins. The users can trade off between system performance and power consumption to decide the best operating system clock frequency.

The AX11001/AX11005 supports a deep power-down mode (CPU STOP mode) where the internal 25Mhz crystal oscillator and PLL circuit can be completely disabled to consume minimum power. The AX11001/AX11005 also supports the Power Management Mode (PMM) where the operating system clock frequency is reduced to 1/100 of the original frequency (i.e., 0.25Mhz, 0.5Mhz, and 1Mhz) to reduce power consumption during PMM mode.

The AX11001/AX11005 also has an external clock source input pin called LB_CLK, which can be used as alternative clock source for system logic. This is typically used when more accurate baud rate generation for UART0/1/2 is needed. For more details on chip clock configuration and distribution, please refer to section 4.1.

2.2 Reset Generation

The AX11001/AX11005 integrates an internal power-on-reset circuit, which can simplify the external reset circuitry on PCB design. The power-on-reset circuit shall generate a reset pulse to reset system logic after 1.8V core power ramping up to 1.2V (typical threshold). The external hardware reset input pin, RST_N, is fed directly to the input of power-on-reset circuit and can also be used as additional hardware reset source to reset the system logic.

If the internal power-on-reset circuit is used as main reset source, user shall connect RST_N pin to a simple RC reset, which shall generate a low level of at least 4 msec intervals after 1.8V core power ramping up to 1.8V to correctly reset the system logic. If the system has a dedicated reset source connecting to RST_N, this reset source shall also generate a low level of at least 4 msec intervals after 1.8V core power ramping up to 1.8V to correctly reset a low level of at least 4 msec intervals after 1.8V core power ramping up to 1.8V to correctly reset the system logic. For more details on chip reset distribution, please refer to section 4.2 and section 5.3.

2.3 Voltage Regulator

The AX11001/AX11005 contains an internal 3.3V to 1.8V low-dropout-voltage and low-standby-current voltage regulator. The internal regulator provides up to 240mA of driving current for the 1.8V core/analog power of the chip to satisfy the worst-case power consumption scenario. Also for the purpose of lowering power consumption in deep power-down mode or PMM mode, the internal regulator can operate in standby mode to consume less current when the required driving current is less than 30mA. For more details on voltage regulator DC characteristic, please refer to section 5.1.6.

2.4 CPU Core and Debugger

2.4.1 CPU Core

The 1T 8051/80390 CPU core of AX11001/AX11005 is an ultra high performance, speed optimized, 8-bit embedded controller dedicated for operation with fast (on-chip) memories. The CPU core has been designed with a special concern about performance to power consumption ratio. The CPU core is 100% binary-compatible with the industry standard 8051 8-bit micro-controller. The CPU core can address up to 128K/512K bytes of linear program space. The CPU core has Pipelined RISC architecture, which can be 10 times faster compared to standard architecture and executes 100 million instructions per second when operating in 100Mhz. The main features of 1T 8051/80390 CPU core are listed below, for more details, please refer to section 4.4.

- 100% software compatible with industry standard 8051
- Maximum operating clock frequency of 100M Hz
- Pipelined RISC architecture enables to execute instructions 10 times faster compared to standard 8051
 - $\,\circ\,$ 19-bit FLAT program addressing mode 80C390 instructions set
 - \circ 16-bit LARGE program addressing mode 80C51 instructions set
- 24 times faster multiplication
- 12 times faster addition
- 256 bytes of internal (on-chip) Data Memory
- Up to 128K/512K bytes of Program Memory
 - On-chip SRAM used for mirrored program: 0 to 16K bytes
 - \circ On-chip Flash memory used for program: 0 to 128K/512K bytes in FLAT mode
- Up to 32K bytes of External Data Memory
 On-chip SRAM used for External Data Memory: 0 to 32K bytes
- User programmable Program Memory wait states for wide range of memory speed
- User programmable External Data Memory wait states for wide range of memory speed

2.4.2 Debugger

The Debugger inside AX11001/AX11005 provides an in-circuit emulator feature and it is used to connect to an external In-Circuit-Emulation (ICE) adaptor board, which manages communication between the Debugger inside AX11001/AX11005 and the Debug Software on a PC. As shown in Figure 10, the Hardware Assisted Debugger (HAD2) is the ICE adaptor board.

The HAD2 is a small hardware adapter that manages communication between the Debugger inside AX11001/AX11005 and an USB port of the host PC running Debug Software. The USB communication interface to target host PC is at USB Full speed and its power supply comes directly from the USB port.

The Debug Software is a Windows based application. It is fully compatible with all existing 8051/80390 C compilers and Assemblers. The Debug Software allows user to work in two major modes: software simulator mode and hardware debugger mode. Those two modes assure software validation in simulation mode and then real-time debugging of developed software inside AX11001/AX11005 using debugger mode. Once loaded, the program may be observed in Source Window, run at full-speed, single stepped by machine or C level instructions, or stopped at any of the breakpoints. For more detailed description about the Debug Software, please refer to "AX110x Software User Guide".

Figure 10: Typical Debugger and Hardware Assisted Debugger (HAD2) System Diagram

The main features of Debugger inside AX11001/AX11005 are listed below,

- Processor execution control
 - o Run, Halt
 - Reset
 - \circ Step into instruction
 - \circ Skip Instruction
- Read-write all processor contents
 - Program Counter (PC)
 - Program Memory
 - Internal (direct) Data Memory
 - Special Function Registers (SFRs)
 - \circ External Data Memory
- Code execution breakpoints one real-time PC breakpoint
- Hardware execution watch-points
 - \circ Two at Internal (direct) Data Memory
 - \circ Two at Special Function Registers (SFRs)
 - Two at External Data Memory
- Hardware watch-points activated at a
 - $\circ\,$ certain address by any write into memory
 - $\circ\,$ certain address by any read from memory

- $\circ\,$ certain address by write into memory a required data
- o certain address by read from memory a required data
- Unlimited number of software watch-points
 - Internal (direct) Data Memory
 - Special Function Registers (SFRs)
 - External Data Memory
- Unlimited number of software breakpoints Program Memory (PC)
- Automatic adjustment of debug data transfer speed rate between HAD and CPU core
- Communication interface DTAG three wire communication

2.5 On-Chip Flash Memory

The AX11001/AX11005 embeds an on-chip Flash memory of 128/512K bytes. The main features of the Flash memory are listed below,

- Requires only 3.3V power for read, erase and program operations
- Fast read access time: 55ns
- Command register architecture
 - Byte programming time: 9us (typical)
 - Sector Erase (Sector structure of AX11001: 16K Byte x 1, 8K Byte x 2, 32K Byte x1, and 64K Byte x1)
 - Sector Erase (Sector structure of AX11005: 16K Byte x 1, 8K Byte x 2, 32K Byte x1, and 64K Byte x7)
- Auto Erase (chip & sector) and Auto Program
 - Automatically erase any combination of sectors with Erase Suspend capability
 - Automatically program and verify data at specified address
- Erase Suspend/Erase Resume
 - Suspends sector erase operation to read data from, or program data to, any sector that is not being erased, then resumes the erase operation.
- Status Reply
 - Data# Polling & Toggle bit for detection of program and erase operation completion.
- Sector protection
 - Hardware method to disable any combination of sectors from program or erase operations
 - Temporary sector unprotect allows code changes in previously locked sectors.
- 100,000 minimum erase/program cycles
- 20 years data retention
- Program code download protection in hardware to disable Debugger access for preventing unauthorized program code downloading.

For more detailed description, please refer to section 4.5.

2.6 Memory Arbiter and Boot Loader

The memory arbiter and boot loader of AX11001/AX11005 support three major functions - Boot loader, Memory arbiter, and Flash programming controller, as described in following sections.

2.6.1 Boot Loader

The boot loader shall activate right after hardware reset (either power-on-reset or RST_N input) or software reboot command (via SFR register CSREPR). It shall automatically perform copying the program code from Flash memory to on-chip 16KB SRAM for "program code mirroring".

The "program code mirroring" allows the program code residing on on-chip Flash memory space 0~16K bytes to be mirrored to on-chip 16Kbytes SRAM before the 1T 80390 CPU starts running. This on-chip 16Kbytes SRAM located at program memory space 0~16K bytes of the 1T 80390 CPU will be used to execute program code with 0 wait state to achieve top performance of 100 MIPS. During time of firmware update via Ethernet or UART, the 16K bytes of mirrored program code on SRAM shall perform Flash write commands to write new firmware into the Flash memory. This allows the program code being executed continuously while the Flash memory is being updated. For more details, please refer to section 4.6.

2.6.2 Memory Arbiter

The memory arbiter manages Program memory and External Data (xDATA) memory bus access. It arbitrates the access of xDATA memory between 1T 80390 CPU and the Direct Memory Access (DMA) engine.

The xDATA memory access could come from 1T 80390 CPU and the DMA from TCP/IP Offload Engine (TOE). The arbitration priority is that, the 1T 80390 CPU's access to Program memory and xDATA memory has higher priority and the DMA for TOE is lower. For more details, please refer to section 4.6.

2.6.3 Flash Programming Controller

The Flash programming controller supports In-System-Programming (ISP) for on-chip Flash memory of AX11001/AX11005 on PCB via UART 0 interface of AX11001/AX11005. When enabled (via BURN_FLASH_EN pin), it allows on-chip Flash memory to be programmed by ASIX's Flash Programming utilities software on a PC with a standard RS-232 port, as shown in Figure 11. The link speed of AX11001/AX11005's UART 0 used for communicating to the PC's RS-232 port can be chosen to be either 921.6K or 115.2K bps (via BURN_FLASH_921K pin). When developing software for AX11001/AX11005 or manufacturing the system with AX11001/AX11005 on it, the ASIX's Flash Programming utilities software can provide easy and fast Flash memory update capability.

During Flash programming process, the Flash Programming Controller (FPC) in AX11001/AX11005 shall receive commands from Flash Programming utilities software through the UART 0 interface. The commands received are in form of packets from which FPC will decode, execute, and then acknowledge the result back to the software utilities. The command handshaking structure is simple and flexible to simplify the FPC design while at the same time addressing the long programming time, complex programming procedures, command compatibility issues of Flash memory. For more details, please refer to section 4.6.

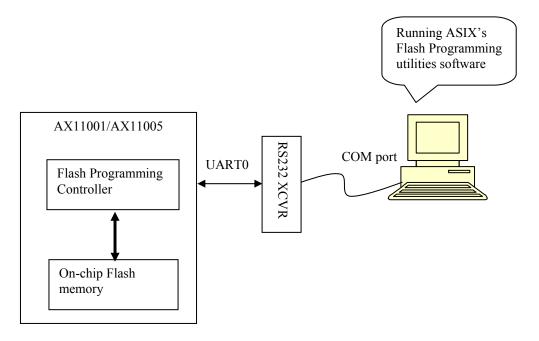


Figure 11: Flash Memory Programming System Configuration

2.7 DMA Engine

The direct memory access (DMA) engine of AX11001/AX11005 handles External Data (xDATA) memory read and write access for TCP/IP Offload Engine (TOE) as well as bulk data copy for software DMA.

The TOE can receive packets from Ethernet MAC and store them in xDATA memory via DMA write access, or it can transmit packets to Ethernet MAC from xDATA memory via DMA read access.

The DMA engine also can support software DMA, which performs bulk data copy from one region of xDATA memory to another region in a timely manner, based on software configuration. The hardware based DMA engine can greatly reduce the time spending in bulk data movement very often needed in network protocol stack processing, and, hence, help achieve better performance on micro-controller computing power. For more details, please refer to section 4.7.

2.8 Interrupt Controller

The interrupt controller of AX11001/AX11005 supports 2 external interrupt pins, INT0 and INT1, with each having two levels of interrupt priority control. They can be in high or low-level priority group (setting via SFR register IP, EIP). The 2 external interrupt pins can be activated at low level or by a falling edge.

As shown in Table 2 below, the interrupt controller also supports various interrupt requests internal to the AX11001/AX11005, again each having two levels of interrupt priority control. For more details, prefer to section 4.8.

Interrupt Sources	Function Description	Active level		Natural Priority
INT 0	The external interrupt input pin, INT0	Active low or falling edge	0x03	1
Timer 0	The internal Timer 0 interrupt request		0x0B	2
INT 1	The external interrupt input pin, INT1	Active low or falling edge	0x13	3
Timer 1	The internal Timer 1 interrupt request		0x1B	4
UART 0	The internal UART 0 interrupt request		0x23	5
Timer 2	The internal Timer 2 interrupt request		0x2B	6
UART 1	The internal UART 1 interrupt request		0x33	7
INT 2	The internal DMA transfer interrupt request for TOE and software DMA mode. Please set to high priority		0x3B	8
INT 3	The internal programmable counter array interrupt request		0x43	9
INT 4	The internal peripheral interrupt request for TOE, MAC/PHY, I2C, SPI, 1-Wire, UART2, etc.		0x4B	10
INT 5	The internal software DMA complete and millisecond timer timeout interrupt		0x53	11
INT 6	The wake-up interrupt request (to resume from CPU STOP mode)		0x5B	12
Watchdog	Internal watchdog interrupt		0x63	13

Table 2: Interrupt Controller Summary

2.9 Watchdog Timer

The watchdog timer of AX11001/AX11005 is a user programmable clock counter that can serve as:

- A time-base generator
- An event timer
- System supervisor

As shown in Figure 12, the watchdog timer is driven by the main system clock, which is supplied to a series of dividers. The divider output is selectable, and determines interval between timeouts. When the timeout is reached, an interrupt flag will be set, and if enabled, a reset will occur (to reset CPU core). The interrupt flag will cause an interrupt to occur if its individual enable bit is set and the global interrupt enable is set. The reset and interrupt are discrete functions that may be acknowledged or ignored, together or separately for various applications. For more details, please refer to section 4.9.

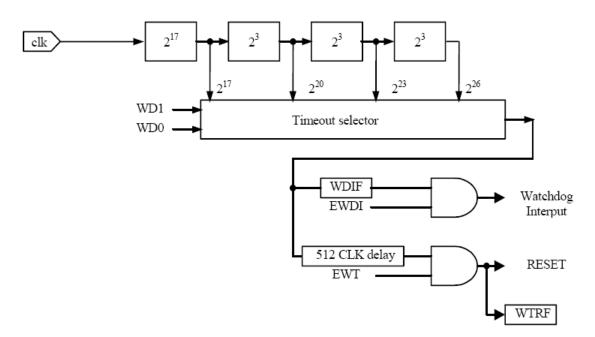


Figure 12: Watchdog Timer Block Diagram

2.10 Power Management Unit

The power management unit of AX11001/AX11005 supports two power conservation modes - Power Management Mode (PMM) and STOP mode.

2.10.1 PMM

When entering the PMM (via SFR register PCON) from full speed mode, most system logic of AX11001/AX11005 shall run at slower clock frequency (1/100 of original clock frequency) to reduce power consumption. The PMM is entered and exited by setting the PMM bit (PCON.0) by software. The PMM mode also supports the "switchback" feature using SWB bit (PCON.2). The "switchback" feature of PMM allows the AX11001/AX11005 to almost immediately return to the full speed mode from PMM, upon acknowledgement of an interrupt or a falling edge on a serial port receiver pin. The following events can trigger AX11001/AX11005 switchback to full speed mode from PMM:

- Receive interrupt on external interrupt pin, INT0 or INT1
- Detect falling-edge transition (start bit) on RXD0 pin of UART 0 or RXD1 pin of UART 1
- Transmit buffer loaded on UART0 or UART1
- Watchdog timer reset

In addition, the following events can also trigger AX11001/AX11005 switchback to full speed mode from PMM, via INT 6:

- Receive rising-edge signal on external remote-wakeup trigger input pin, EXT_WKUP, if enabled
- Receive Magic packet from Ethernet, if enabled
- Receive pre-defined Wakeup frame from Ethernet, if enabled
- Detect link-up signal from the embedded Ethernet PHY, if enabled
- Detect falling-edge transition (start bit) on RXD2 pin or falling-edge transition on RI pin of UART 2, if enabled

2.10.2 STOP Mode

When entering the STOP mode (via SFR register PCON), the main system clock for most system logic of AX11001/AX11005 shall be completely disabled to further reduce power consumption. The AX11001/AX11005 supports entering the STOP mode with options of internal 25Mhz crystal oscillator and PLL circuit either still running or completely disabled via TOFFOP bit (Flag.1) in I2C Configuration EEPROM offset 0x01. The lowest power consumption that AX11001/AX11005 can enter is the STOP mode with 25Mhz crystal oscillator and PLL circuit completely disabled.

The software can enter the STOP mode from full speed mode or PMM by setting the STOP bit (PCON.1). After entering the STOP mode, no processing is possible, timers are stopped, and no serial communication is possible. A NOP instruction has to be added after an instruction that sets STOP bit. The NOP is added because of pipelining architecture of 1T 80390 CPU. The CPU operation will be postponed on the instruction that sets the STOP bit.

If the STOP mode is entered with 25Mhz oscillator and PLL completely disabled, the STOP mode can be exited in following ways:

- Receive rising-edge signal on external remote-wakeup trigger pin, EXT_WKUP, if enabled
- Detect falling-edge transition (start bit) on RXD2 pin or falling-edge transition on RI pin of UART 2, if enabled
- Receive hardware reset on RST_N pin (CPU operation will resume execution at address 0x00_0000)

If the STOP mode is entered with 25Mhz oscillator and PLL still running, the STOP mode can be exited in following ways, depending on software configuration before entering the STOP mode:

• Receive rising-edge signal on external remote-wakeup trigger pin, EXT_WKUP, if enabled

- Receive Magic packet from Ethernet, if enabled
- Receive pre-defined Wakeup frame from Ethernet, if enabled
- Detect link-up signal from the embedded Ethernet PHY, if enabled
- Detect falling-edge transition (start bit) on RXD2 pin or falling-edge transition on RI pin of UART 2, if enabled
- Receive hardware reset on RST_N pin (CPU operation will resume execution at address 0x00_0000)

Note that above trigger events use the non-clocked interrupt, INT6, to wake up 1T 80390 CPU and to re-enable the main system clock. The clocked interrupts such as the watchdog timer, internal timers, and serial ports (UART0/1) do not operate in STOP mode, therefore, can't be used as a trigger event to wake up from STOP mode. The 1T 80390 CPU operations will resume with the fetching of the interrupt vector associated with the interrupt that caused the exit from STOP mode. When the interrupt service routine will complete, RETI returns the program to the instruction immediately following the one that invoked the STOP mode. For more detailed description, please refer to section 4.10.

2.11 Timers and Counters

The AX11001/AX11005 contains three 16-bit timer/counters, namely, Timer 0, Timer 1, and a fully compatible with the standard 8052 Timer 2, and one dedicated Millisecond Timer which is programmable with 1ms resolution for software use.

In the "timer mode", timer registers are incremented every 12 or 4 operating system clock periods when appropriate timer is enabled. In the "counter mode" the timer registers are incremented every falling transition on their corresponding input pins: TM1_CK, or TM2_CK (Timer 0 clock input is not available). The input pins are sampled every operating system clock period. The Timers 0, 1, 2 block diagram is shown in figure below. For more details, please refer to section 4.11.

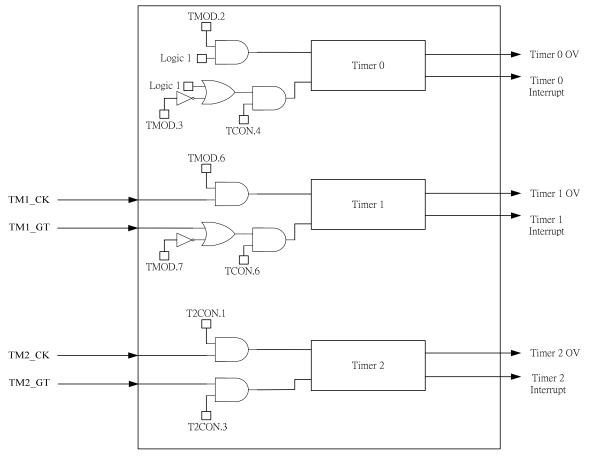


Figure 13: Timers 0, 1, and 2 Block Diagram

2.12 UARTs

The AX11001/AX11005 contains 3 UART interfaces, namely, UART 0, UART 1, and UART 2.

2.12.1 UART 0 and UART 1

The UART 0 and UART 1 of AX11001/AX11005 have the same functionality as standard 8051 UARTs. It is full duplex, meaning it can transmit and receive concurrently. It is receive double-buffered, meaning it can commence reception of a second byte before a previously received byte has been read from the receive register.

UART 0 can operate in following 4 modes:

- Mode 0, synchronous mode
- Mode 1, 8-bit UART, variable baud rate, Timer 1 or Timer 2 clock source
- Mode 2, 9-bit UART, fixed baud rate
- Mode 3, 9-bit UART, variable baud rate, Timer 1 or Timer 2 clock source

UART 1 can operate in following 4 modes:

- Mode 0, synchronous mode
- Mode 1, 8-bit UART, variable baud rate, Timer 1 clock source
- Mode 2, 9-bit UART, fixed baud rate
- Mode 3, 9-bit UART, variable baud rate, Timer 1 clock source

The Figure 14 below shows the I/O buffer of RXD0/1 pin of UART 0/1, the RXD0/1 pin is tri-stated when RXD0/1_out is high. For more details, please refer to section 4.12.

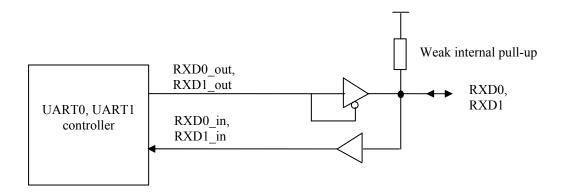


Figure 14: I/O Buffer of RXD0 pin of UART 0 and RXD1 pin of RXD1

2.12.2 UART 2

The UART 2 of AX11001/AX11005 is designed to be maximally compatible with standard 16550. It can communicate with MODEM or other external device (e.g. computer) by using RS-232 protocol. The UART 2 has 16-bytes deep transmit/receive FIFO and its transfer rate can be up to 921600 bps. The UART 2 includes a programmable baud rate generator capable of dividing the operating system clock by (27*N), where $N = 1\sim65535$, for generating wide range of baud rate for the internal transmitter/receiver logic. The main features of UART 2 are listed below,

- 16 bytes deep receive and transfer FIFO
- Support up to 921600 bps baud

- Detection of bad data in the receiver FIFO
- Full-duplex asynchronous channel
- Automatic send data control (ASDC) for automatically transmitter/receiver enable control for RS-485
- Modem control functions (CTS, RTS, DSR, DTR, RI and DCD)
- Fully programmable serial interface
 - Even, odd, no parity bit generation and detection
 - 5, 6, 7, 8 data bit
 - 1, 1.5, 2 stop bit generation
- Line break generation and detection
- Internal diagnostic capabilities (loopback controls, break, parity, overrun and framing error)
- Transmit, receive, line status, and data set interrupts independently controlled
- Complete status reporting capabilities
- Remote wakeup by detecting falling-edge transition (start bit) on RXD2 pin or falling-edge transition on RI pin

For more details, please refer to section 4.12.

2.13 GPIOs

The AX11001/AX11005 supports two 8-bit bi-directional general purpose input and output ports, namely, P0 [7:0] and P1 [7:0]. Each port bit can be individually accessed by bit addressable instructions. The driving strength of the GPIO ports is programmable (4mA or 8mA, via I2C Configuration EEPROM offset 0x04, see section 3.1.4 for details). The Figure 15 below shows the I/O buffer of GPIO pins. For example, the P00 pin is tri-stated when P00_out is high. For more details, please refer to section 4.13.

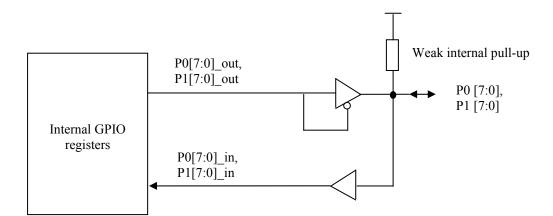


Figure 15: The I/O Buffer of GPIO Pins

2.14 TCP/IP Offload Engine

The TCP/IP Offload Engine (TOE) of AX11001/AX11005 supports some network layer 2 to 4 header processing functions in hardware. The layer-2 function of TOE interfaces to Ethernet MAC, while its layer-4 function interfaces to DMA engine for receiving/transmitting network packets to/from xDATA memory of AX11001/AX11005. The TOE can operate in two different modes - "Non-Transparent" mode and "Transparent" mode.

When TOE operating in "Transparent" mode, it supports following features,

- VLAN ID filtering for received packets, if enabled
- On-the-fly IPv4 packet header checksum check and generation (with or without PPPoE header, RFC2516)
- Received packet filtering for IPv4 packets with error header checksum
- On-the-fly TCP and UDP segment checksum check and generation
- On-the-fly ICMP and IGMP message checksum check and generation
- Received packet filtering for TCP/UDP/ICMP/IGMP packets with error checksum

When TOE operating in "Non-Transparent" mode, it supports following features,

- Layer-2 functions (the recognizable packet types are Ethernet II encapsulation (RFC894), IEEE 802.2/802.3 SNAP encapsulation (RFC1042), IEEE 802.2/802.3 encapsulation, and NetWare 802.3 RAW encapsulation)
 - Ethernet MAC frame header parsing and encapsulation, including DA, SA, Length/Type, VLAN Tag fields.
 - ARP Cache:
 - When receiving, automatically learns the source IP address and SA of the received Ethernet MAC frames into ARP Cache SRAM
 - When transmitting, automatically sends out ARP-Request packet when the ARP Cache is not found
 - Upon receiving ARP-Request packet, automatically responds with ARP-Reply packet and updates ARP Cache
 - Upon receiving ARP-Reply packet, automatically updates ARP Cache
 - Software programmable timeout value for ARP Cache Timeout
 - ARP Cache SRAM is software accessible
 - VLAN ID filtering for received packets and VLAN Tag insertion for transmit packets, if enabled
 - Received packet filtering for ARP-Request packet
 - Remove layer 2 header of receive IPv4-type packets before forwarding up to Layer-3 function
 - Append layer 2 header of transmit IPv4-type packets from Layer-3 function before passing down to Ethernet MAC
- Layer-3 functions:
 - IPv4 header parsing, including version, header length, total length, protocol, header checksum, source IP address, destination IP address fields
 - On-the-fly IPv4 header checksum check and generation (only when without PPPoE header bytes)
 - Received packet filtering for IPv4 packets with version not equal to 4 or error header checksum
 - Received packet filtering for IPv4 packets with wrong destination IP address (not equal to owned IP address, and not equal to broadcast IP address, and not equal to multicast IP address) and wrong source IP address (equal to broadcast IP address, or equal to multicast IP address)
- Layer 4 functions:
 - On-the-fly TCP and UDP segment checksum check and generation
 - On-the-fly ICMP and IGMP message checksum check and generation

Received packet filtering for TCP/UDP/ICMP/IGMP packets with error checksum

For more detailed description on TOE, please refer to section 4.14.

2.15 10/100M Ethernet MAC

The 10/100M Ethernet MAC of AX11001/AX11005 supports 802.3 and 802.3u MAC sub-layer functions as listed below,

- Ethernet MAC frame receive from and transmit to embedded 10/100 Ethernet PHY
- With dedicated receive buffer of 8K bytes SRAM and transmit buffer of 4K bytes SRAM
- Flow-control support in full-duplex mode by monitoring receive buffer usage to compare with high water mark and low water mark for triggering flow control
- Received MAC frame CRC check and transmit MAC frame CRC generation
- Received packet filtering for broadcast, multicast, unicast, or CRC error MAC frames, etc. if enabled
- Collision-detection, exponential backoff, packet retransmission, and backpressure in half-duplex mode
- Support Magic packet, predefined Wakeup frame, and Ethernet PHY linkup remote-wakeup mode. Upon detecting wakeup event, it can awake the AX11001/AX11005 up from PMM or STOP mode

For more detailed description, please refer to section 4.15.

2.16 10/100M Ethernet PHY

The 10/100 Ethernet PHY of AX11001/AX11005 is compliant with IEEE 802.3 and IEEE 802.3u standards. It contains an on-chip crystal oscillator, PLL-based clock multiplier, and digital phase-locked loop for data/timing recovery. It provides over-sampling mixed-signal transmit drivers complying with 10/100BASE-TX transmit wave-shaping / slew rate control requirements. It has robust mixed-signal loop adaptive equalizer for receiving signal recovery.

- Support full-duplex mode, half-duplex mode, and auto-negotiation
- Support twisted pair crossover detection and auto-correction (Auto-MDIX)
- DSP-based adaptive line equalizer, providing superior immunity to near end crosstalk and inter-symbol interference
- Fully compliant with 100BASE-TX, and 10BASE-T PMD level standards (IEEE 802.3u and IEEE 802.3)
- DSP-controlled symbol timing recovery circuit
- Baseline wander corrective circuits to compensate data dependent offset due to AC coupling transformers
- Over-sampling mixed-signal transmit driver complies with 10/100BASE-TX transmit wave-shaping/slew-control requirements

The PHY ID of the embedded 10/100 Ethernet PHY is being pre-assigned to "1_0000". For more detailed description, please refer to section 4.16.

2.17 Programmable Counter Array

The programmable counter array (PCA) present on the AX11001/AX11005 is a special 16-bit timer that has five 16-bit capture/compare modules. It provides more timing capabilities with less CPU intervention than the standard timer/counter. Its advantages include reduced software overhead and improved accuracy.

As shown Figure 16 below, the PCA have 6 I/O pins, one external clock input pin, ECI, and five capture/compare signal pins, CEX [4:0]. The PCA consists of a dedicated timer/counter, which serves as the time base for an array of five compare/capture modules. Each of the five modules can be programmed in any of the following modes: rising and/or falling edge capture, software timer, high speed output, and pulse width modulator (PWM). For more details, please refer to section 4.17.

The PCA timer/counter uses operating system clock, Timer 0 overflow, and ECI, to generate reference clock for capture/compare modules. The 5 capture/compare modules use CEX [4:0] pins to communicate to external resource. The output driving strength of CEX [4:0] is programmable (4mA or 8mA, by PCA_ODS bit in I2C Configuration EEPROM offset 0x04, see section 3.1.4 for details).

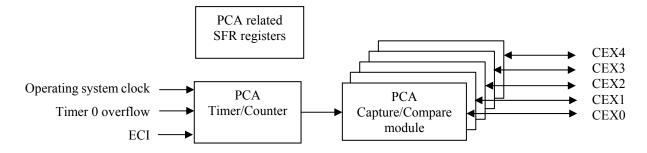


Figure 16: Programmable Counter Array Block Diagram

2.18 I2C Controller

The I2C controller of AX11001/AX11005 supports Standard-mode (100K bps) and Fast-mode (400K bps), but not High-speed mode (3.4M bps) of the standard I2C bus spec. As shown in Figure 17, the I2C controller consists of an I2C master controller to support communication to external I2C devices, an I2C slave controller to support communication to external micro-controller with I2C master, and an I2C boot loader to support communication to external I2C EEPROM being used for storing chip configuration data. The output driving strength of I2C pins, SCL and SDA, is programmable (4mA or 8mA, by I2C_ODS bit in I2C Configuration EEPROM offset 0x04, see section 3.1.4 for details).

The I2C master controller is compatible with I2C bus protocol. It provides eight registers to fully control and monitor I2C bus transaction, and it has separate receive and transmit registers to hold data for transactions between AX11001/AX11005 and the external I2C devices. The I2C master controller also provides arbitration for multi-master operation scenario and reports the arbitration status. Also, the I2C master controller accepts the SCL being extended low by the slow I2C slave devices as additional wait state indication during data transaction or acknowledge cycles.

The I2C slave controller allows an external micro-controller with I2C master to communicate with AX11001/AX11005. It provides an I2C device ID register to allow flexible assignment of AX11001/AX11005 with any I2C device address for either 7-bit or 10-bit address mode, and can automatically filter I2C bus transactions not belonging to AX11001/AX11005 in hardware. The I2C slave controller can extend the SCL line low when it needs additional wait state to respond to the external I2C master's bus transaction. The I2C slave controller supports 6 flexible command instructions for the external micro-controller to access the internal registers and memory resources of AX11001/AX11005. For more details, please refer to section 4.18.

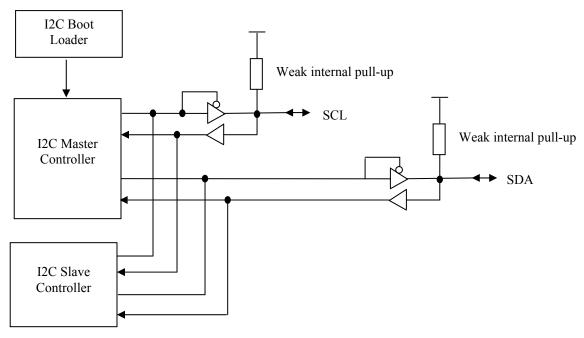


Figure 17: I2C Controller Block Diagram

The I2C boot loader is used to load chip configuration data from external I2C EEPROM. It is activated after hardware reset (either power-on-reset or RST_N input) or via the software reload command (via I2CCTR register). The detailed memory map of I2C EEPROM is described in section 3.1. The use of external I2C EEPROM is optional, when not used, the I2C_BOOT_DIS pin should be pulled up during chip hardware reset, in that case, the reset value listed in I2C EEPROM memory map shall be used by this chip by default.

2.19 1-Wire Controller

The 1-Wire controller of AX11001/AX11005 is a master-mode controller that controls the communication with multiple external 1-Wire devices. The data transmissions on 1-Wire bus are bit-asynchronous and half-duplex mode only. The 1-Wire controller provides some registers for software to easily perform reading/writing data from/to the 1-Wire devices without having to deal with time-consuming bus timing and control sequences on 1-Wire bus. It supports Standard mode, Standard – Long line mode, and Overdrive mode to work with various 1-Wire devices.

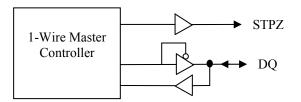


Figure 18: 1-Wire Controller Block Diagram

The 1-Wire controller also supports Search ROM Accelerator, which relieves CPU from any single bit operations on the 1-Wire Bus. As shown in Figure 18 above, it also provides a strong pull-up control pin, STPZ, for the case of large loading or long line conditions. The DQ is an open-drain pin, which needs an external pulled-up resistor or a strong pull-up through a PMOS transistor. The driving strength of DQ and STPZ is programmable (4mA or 8mA, by SPI_ODS bit in I2C Configuration EEPROM offset 0x04, see section 3.1.4 for details).

2.20 SPI Controller

The serial peripheral interface (SPI) controller of AX11001/AX11005 provides a full-duplex, synchronous serial communication interface (4 wires) to flexibly work with numerous peripheral devices or micro-controller with SPI. As shown in Figure 19, the SPI controller consists of a SPI master controller with 3 slave select pins, SS0, SS1, SS2, to connect up to 3 SPI devices, and a SPI slave controller to support communication with external micro-controller with SPI master. The driving strength of SCLK, MISO, MOSI, SS1, and SS2 is programmable (4mA or 8mA, by SPI_ODS bit in I2C Configuration EEPROM offset 0x04, see section 3.1.4 for details).

The SPI master controller supports 4 types of interface timing mode, namely, Mode 0, Mode 1, Mode 2, and Mode 3 to allow working with most SPI devices available. Please refer to section 4.20 for detailed description of the 4 timing modes. It supports variable length of transfer word up to 32 bits per software command or even extended length of transfer word for a long burst transfer by keeping slave select pins active. It supports either MSB or LSB first data transfer, and the operating SPI clock, SCLK, is programmable by software and can be run up to 14 Mhz when operating system clock is at 100MHz.

The SPI slave controller allows an external micro-controller with SPI master to communicate with AX11001/AX11005. It supports 2 types of interface timing mode, namely, Mode 0 and Mode 3. In slave mode, only MSB first data transfer is supported and only the slave select pin, SS0, is used. The SPI slave controller supports 8 flexible command instructions for the external micro-controller to access the internal registers and memory resources of AX11001/AX11005. It contains a 16-bytes FIFO to hold receive/transmit data on SPI interface and the SPI clock can be run up to 6 Mhz when operating system clock is at 100MHz. For more details, please refer to section 4.20.

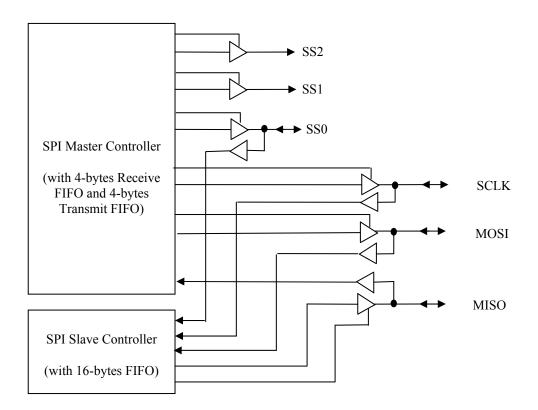


Figure 19: SPI Controller Block Diagram

3.0 Memory Map Description

3.1 I2C Configuration EEPROM Memory Map

The I2C Configuration EEPROM uses a serial EEPROM with I2C interface with at least 128x8 (1K bits), for example, Atmel AT24C01. The 7-bit device address of the I2C Configuration EEPROM should be 1010000b for AX11001/AX11005. The I2C Configuration EEPROM is used to store some hardware and software default setting for the chip. These setting will be loaded into the chip by the I2C master controller right after the deactivation of chip reset or through software issuing reload command in I2C controller. Table 3 below shows the memory map of I2C Configuration EEPROM. Note that if I2C EEPROM is not used, then I2C_BOOT_DIS pin should be pulled up during chip reset, and the reset value of each offset address listed in this section shall be used by the AX11001/AX11005 by default.

EEPROM Offset			Desc	criptor					
0x00		Length							
0x01			F	lag					
0x03~0x02	Multi-functi	on Pin Setti	ng 1	Multi	-function	Pin Setting 0			
0x04		Prog	grammable Out	tput Driving Stren	gth				
0x05			Reserve	ed = 0x00					
0x0B~0x06	Node ID 5	Node ID 4	Node ID 3	Node ID 2	Node II	D 1 Node ID 0 (0x06)			
0x0D~0x0C	Maximum	Packet Size	: 1	Maximum Packet Size 0 (0x0C)					
0x0F~0x0E	Reserv		Primary PHY Type and PHY ID (0x0E)						
0x11~0x10	Pause Frame	Pause Frame Low Water Mark				Vater Mark (0x10)			
0x13~0x12	Reserv	ed = 0x00		Reserved = $0x87$					
0x15~0x14	TOE TX	VLAN Tag	1	TOE TX VLAN Tag 0 (0x14)					
0x17~0x16	TOE RX	VLAN Tag	1	TOE RX VLAN Tag 0 (0x16)					
0x18			TOE ARP C	Cache Timeout					
0x1C~0x19	TOE Source IP Addres	s TOE Sou	cce IP Address	TOE Source IP A	ddress 1	TOE Source IP Address 0 (0x19)			
0x20~0x1D	TOE Subnet Mask 3	TOE Su	bnet Mask 2	TOE Subnet N	Iask 1	TOE Subnet Mask 0 (0x1D)			
0x21			TOE L4 DM	A Transfer Gap					
0x2F~0x22			Reserved for	HW future use					
0x7F~0x30		Reser	ved for Softwa	are and Driver Set	tings				

Table 3: I2C Configuration EEPROM Memory Map

3.1.1 Length (0x00)

This field determines the number of bytes (not including the length byte itself) to be loaded by the I2C master controller from I2C Configuration EEPROM after chip reset. Please set to 0x21. Note that setting any value larger than 0x2F will be changed to 0x2F by I2C master controller, i.e., it will only load the content between 0x00~0x2F for the HW use in that case.

3.1.2 Flag (0x01)

Bit	7	6	5	4	3	2	1	0
Name	DBG_PSEL	Reserved		ACB	RCB	TOFFOP	F10HD	
Reset Value	1		111		1	1	0	0

Bit	Name			Description						
0	F10HD	Force embed	dded Ethernet PHY to 1	10M Half-Duplex mod	e.					
		1: Force t	: Force the embedded Ethernet PHY to operate in 10Mbps half-duplex mode.							
		0: The en	bedded Ethernet PHY	will base on auto nego	tiation to determine mode of operation.					
1	TOFFOP	Turn OFF 2	5Mhz Oscillator and PI	LL circuit during STO	P mode					
		1: To turn	off the 25Mhz oscillat	tor and PLL circuit to r	reduce power consumption during Stop					
		mode.								
		0: To kee	p 25Mhz Oscillator and	PLL circuit free run c	luring Stop mode.					
2	RCB		C Bytes of RX Etherne							
					Ethernet packet before forwarding to CPU.					
		0: The CF	0: The CRC bytes are not removed.							
3	ACB	Append CRC Bytes of TX Ethernet packet.								
					erated and appended by the Ethernet MAC.					
			RC bytes are not append							
6:4			"111" for normal oper							
7	DBG_PS				on (CPU debugger pins or Ethernet LED					
	EL	pins) of belo	bins) of below multi-function pins, which users want to enable.							
					,					
		Pin #	$DBG_PSEL = 0$	$DBG_PSEL = 1$						
		18	DB_DI	LNK_LED						
		19	DB_CKO	SPD_LED						
		20	DB_DO	FD_CL_LED						

3.1.3 Multi-function Pin Setting (0x02~0x03)

Multi-function Pin Setting 0 (0x02)

Bit	7	6	5	4	3	2	1	0
Name		Reserved				P1_PSEL		PSEL
Reset Value		0000				00		00

Bit	Name			Descripti	on
1:0	P0_PSEL		D Pin Select. This sele ion pins, which users		tion (port 0 or UAR
		Pin #	P0_PSEL = 00/01	$P0_PSEL = 10$	P0_PSEL = 11
		9	P00	Reserved	RXD2
		10	P01	Reserved	TXD2
		11	P02	Reserved	CTS
		12	P03	Reserved	DSR
		14	P04	Reserved	RI
		16	P05	Reserved	DCD
		21	P06	Reserved	RTS
		22	P07	Reserved	DTR
	P1_PSEL		Pin Select. This sele on pins, which users P1_PSEL = 00/01		P1_PSEL = 11
		53	P10	Reserved	Reserved
		54	P11	Reserved	Reserved
		55	P12	Reserved	DE
		57	P13	Reserved	RE_N
		58	P14	Reserved	P14
		60	P15	Reserved	P15
		61	P16	Reserved	P16
		62	P17	Reserved	P17
/:4	Reserved	Please set to	o "0000" for normal o	peration.	

Multi-function Pin Setting 1 (0x03)

Bit	7	6	5	4	3	2	1	0	
Name	SPI_PS	SEL	TM_PSEL		U1_PSEL		Reserved		
Reset Value	00	00		00		00		00	

Bit	Name			Descripti	on				
1:0	Reserved	Please set to	o "00" for normal ope	ration.					
3:2	U1_PSEL		ART1 Pin Select. This selects the desired function (UART1 or PCA signals) of below ilti-function pins, which users want to enable.						
		Pin #	Pin # U1_PSEL = 00/01 U1_PSEL = 10 U1_PSEL = 11						
		68	RXD1	Reserved	ECI				
		69	TXD1	TXD1 Reserved CEX0					
5:4	TM_PSEL	· · · ·	mer1, Timer2 Pin Select. This selects the desired function (Timer1/2 or PCA signals) of below alti-function pins, which users want to enable.						
		Pin #	$TM_PSEL = 00/01$	$TM_PSEL = 10$	$TM_PSEL = 11$				
		5	TM1_CK	Reserved	CEX1				
		6	TM1_GT	Reserved	CEX2				

		7	TM2_CK	Reserved	CEX3	
		8	TM2_GT	Reserved	CEX4	
7:6	SPI_PSEL	SPI Pin Sel	ect. This selects the de	esired function (SPI	or 1-Wire) of below	multi-function pins,
		which users	want to enable.			
						1
		Pin #	$SPI_PSEL = 00/01$	$SPI_PSEL = 10$	$SPI_PSEL = 11$	
		2	SS1	DQ	Reserved	
		3	SS2	STPZ	Reserved	

3.1.4 Programmable Output Driving Strength (0x04)

Bit	7	6	5	4	3	2	1	0
Name	PCA_ODS	SPI_ODS	I2C_ODS		Reserved		P1_ODS	P0_ODS
Reset Value	0	0	1		100		0	0

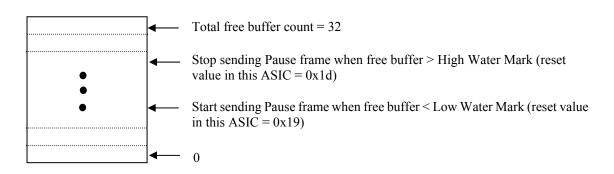
Bit	Name	Description
0	P0_ODS	GPIO Port 0 Output Driving Strength setting. Note that this setting is independent of P0_PSEL in
		offset 0x02.
		1: Set driving strength to 8mA on P0 [7:0] pins (pin # 9, 10, 11, 12, 14, 16, 21, 22).
		0: Set driving strength to 4mA on P0 [7:0] pins.
1	P1_ODS	GPIO Port 1 Output Driving Strength setting. Note that this setting is independent of P1_PSEL in
		offset 0x02.
		1: Set driving strength to 8mA on P1 [7:0] pins (pin # 53, 54, 55, 57, 58, 60, 61, 62).
		0: Set driving strength to 4mA on P1 [7:0] pins.
-	Reserved	Please set to "100" for normal operation.
5	I2C_ODS	I2C Output Driving Strength setting.
		1: Set driving strength to 8mA on SCL, SDA pins (pin # 71, 72).
		0: Set driving strength to 4mA on SCL, SDA pins.
6	SPI_ODS	SPI Output Driving Strength setting. Note that this setting is independent of SPI_PSEL in offset
		0x03.
		1: Set driving strength to 8mA on SCLK, MISO, MOSI, SS1, and SS2 pins (pin # 79, 1, 80, 2, 3).
		0: Set driving strength to 4mA on SCLK, MISO, MOSI, SS1, and SS2 pins.
7	PCA_ODS	PCA Output Driving Strength setting. Note that this setting is independent of U1_PSEL and
		TM_PSEL in offset 0x03.
		1: Set driving strength to 8mA on CEX [4:0] pins (pin # 8, 7, 6, 5, 69).
		0: Set driving strength to 4mA on CEX [4:0] pins.

3.1.5 Node ID (0x06~0x0B)

The Node ID 5 to Node ID 0 set the default MAC address of the chip. For example, if the MAC address is 01-23-45-67-89-AB, then put Node ID $\{5, 4, 3, 2, 1, 0\} = \{0x01, 0x23, 0x45, 0x67, 0x89, 0xAB\}$. The reset value of Node ID in this ASIC = $0x0000_0000_0000$.

3.1.6 Maximum Packet Size (0x0C~0x0D)

The Maximum Packet Size 1 and Maximum Packet Size 0 set the maximum Ethernet packet size that can be received from network. If the received Ethernet packet exceeds this number, Ethernet MAC shall truncate it. Note that the Maximum Packet Size field must be even number in bytes and less than or equal to 2500 bytes. For example, if maximum packet size is 1522 bytes, then put Maximum Packet Size $\{1,0\} = \{0x05, 0xF2\}$. The reset value of Maximum Packet Size 1 and 0 in this ASIC = 0x05F2.


3.1.7 Primary PHY Type and PHY ID (0x0E)

Bit	7	6	5	4 3 2 1 0					
Name		РНҮ Туре		PHY ID					
Reset Value	000			1_0000					

Bit	Name	Description
4:0	PHY ID	The PHY ID of PHY. Primary PHY ID: Set to 1_0000 for the embedded Ethernet PHY.
7:5	РНҮ Туре	PHY Type is defined as follows,
		000: IEEE 802.3 10BASE-T/100BAS-TX Ethernet PHY.

3.1.8 Pause Frame Low Water and High Water Mark (0x10~0x11)

When operating in full-duplex mode, correct setting of this field is very important and can affect the overall packet receive throughput performance in a great deal. The Low Water Mark is the threshold to trigger sending of Pause frame and the High Water Mark is threshold to stop sending of Pause frame. Note that each free buffer count here represents 256 bytes of packet storage space in RX packet buffer SRAM in Ethernet MAC. For now, set Pause Frame Low Water to 0x19 and Pause Frame High Water Mark to 0x1d.

3.1.9 TOE TX VLAN Tag (0x14~0x15)

This field sets the default value of TOE TX VLAN Tag Register. The reset value in this ASIC = 0x0000.

3.1.10 TOE RX VLAN Tag (0x16~0x17)

This field sets the default value of TOE RX VLAN Tag Register. The reset value in this ASIC = 0x0000.

3.1.11 TOE ARP Cache Timeout (0x18)

This field sets the default value of TOE ARP Cache Timeout Register. The reset value in this ASIC = 0x00.

3.1.12 TOE Source IP Address (0x19~0x1C)

This field sets the default value of TOE Source IP Address Register. The reset value in this $ASIC = 0x0000_0000$.

3.1.13 TOE Subnet Mask (0x1D~0x20)

This field sets the default value of TOE Subnet Mask Register. The reset value in this $ASIC = 0x0000_0000$.

3.1.14 TOE L4 DMA Transfer Gap (0x21)

This field sets the default value of TOE L4 DMA Transfer Gap Register. The reset value in this ASIC = 0x00.

3.2 Program Memory Map

The 1T 80390 CPU core has separated address spaces for program and data memory. The Program Memory, Internal Data Memory, External Data Memory, SFRs areas each has its own address spaces. As shown in below Figure 20, the CPU core can address up to 128/512 K bytes of linear program space without bank select. The CPU core starts execution of program code at location 0x00000 in LARGE mode, after each reset. The CPU core can be then switched to FLAT mode to support 128/512 K bytes of linear program code space.

CPU Program Memory Address

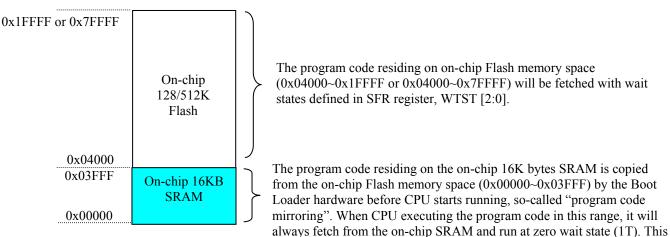
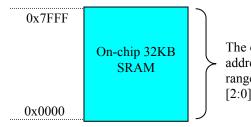
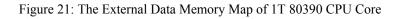



Figure 20: The Program Memory Map of 1T 80390 CPU Core

3.3 External Data (xDATA) Memory Map


The data memory of 1T 80390 CPU core is divided onto 32K bytes of External Data Memory and 256 bytes of Internal Data Memory, plus a 128-bytes of SFR memory area. As shown in below Figure 21, the CPU core can address up to 32 K bytes of External Data (xDATA) memory space. The xDATA memory is accessed by MOVX instructions only.

CPU External Data Memory Address

The on-chip 32K bytes SRAM occupies the External Data Memory address space (0x000000~0x007FFF). When CPU accessing this range, it will access with wait states defined in SFR register, CKCON [2:0].

part of the code is used for BOOT code with system initialization

3.4 Internal Data Memory and SFR Register Map

The Figure 22 shows the Internal Data Memory (256 bytes) and Special Function Register (SFR) map of 1T 80390 CPU core. The lower internal memory consists of four register banks with eight registers each; a bit addressable segment with 128 bits (16 bytes) begins at 0x20, and a scratch pad area with 208 bytes.

With the indirect addressing mode, range 0x80 to 0xFF of the highest 128 bytes of the internal memory is addressed. With the direct addressing mode, range 0x80 to 0xFF, the SFR memory area is accessed.

0xFF 0x80	Upper Internal RAM shared with Stack space (indirect addressing)	SFR Special Function Registers (direct addressing)					
0x7F 0x30		Lower Internal RAM shared with Stack space (direct & indirect addressing)					
0x2F 0x20	bit addres	sable area					
0x1F 0x00	4 banks, F	R0-R7 each					

Figure 22: The Internal Memory Map of 1T 80390 CPU Core

The Table 4 below shows the SFR Register Map, note that all registers in the column with Offset+0 are bit addressable.

SFR Offset	Offset+0	Offset+1	Offset+2	Offset+3	Offset+4	Offset+5	Offset+6	Offset+7
0xF8	EIP							
0xF0	В							
0xE8	EIE	STATUS	MXAX	ТА				
0xE0	ACC	HS_RTD	HS_ID	HS_IF	HS_LCR	HS_MCR	HS_LSR	HS_MSR
0xD8	WDCON						Reserved	Reserved
0xD0	PSW	ССАРМО	CCAPM1	CCAPM2	ССАРМ3	CCAPM4	OWCIR	OWDR
0xC8	T2CON		RLDL	RLDH	TL2	TH2	SPICIR	SPIDR
0xC0	SCON1	SBUF1	CMOD	CCON	CL	СН		
0xB8	IP	CCAP0H	CCAP1H	CCAP2H	ССАРЗН	CCAP4H	EPCR	EPDR
0xB0	Reserved	CCAP0L	CCAP1L	CCAP2L	CCAP3L	CCAP4L	MCIR	MDR
0xA8	IE	Reserved	Reserved	Reserved	Reserved	Reserved	TCIR	TDR
0xA0	P2	Reserved						
0x98	SCON0	SBUF0	DBAR	DCIR	DDR	ACON	PISS1R	PISS2R
0x90	P1	EIF	WTST	DPX0	SDSTSR	DPX1	I2CCIR	I2CDR
0x88	TCON	TMOD	TL0	TL1	TH0	TH1	CKCON	CSREPR
0x80	P0	SP	DPL0	DPH0	DPL1	DPH1	DPS	PCON

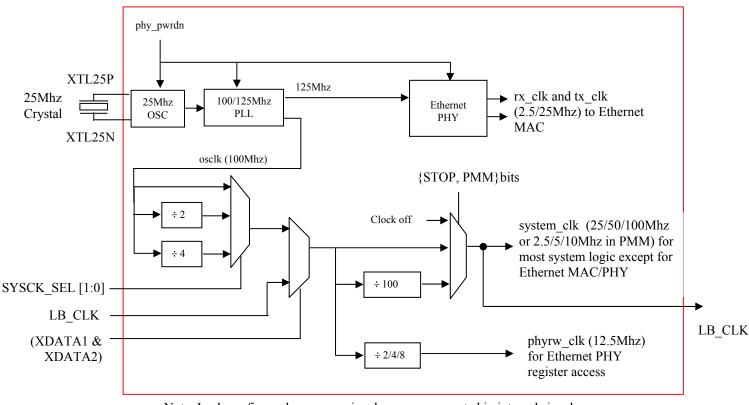
Bolded – are 1T-80390 CPU core related registers.

Italic – are peripheral functions, such as UART2, SPI, 1-Wire, PCA, Ethernet PHY, Ethernet MAC, TOE, I2C, and software DMA related.

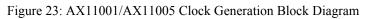
Empty – are read-only.

Table 4: SFR Register Map

4.0 Detailed Function Description


4.1 Clock Generation

The figure below shows the clock generation block of AX11001/AX11005. The embedded PLL block generates the "osclk" (100Mhz) as the main clock source for system logic and 125Mhz for Ethernet PHY use. The internal "phy_pwrdn" signal is used to disable the oscillator, PLL, and Ethernet PHY for maximum power saving. After power-on reset, the "phy_pwrdn" signal is default to '0' to allow clock to oscillate initially. When entering the STOP mode by setting STOP bit (PCON.1), while the TOFFOP bit (Flag.1) in I2C EEPROM is 1, the "phy_pwrdn" signal is asserted to '1' to completely turn off oscillator, PLL, and Ethernet PHY.


During this deep power-down mode, to re-enable the oscillator/PLL/system clock, detecting a rising edge on EXT_WKUP pin or detecting a falling-edge transition (start bit) on RXD2 pin or falling-edge transition on RI pin of UART 2 will trigger the "phy_pwrdn" signal to change to "0" and then re-enable the oscillator/PLL back to free run mode. During this process, the internal "system_clk" will be gated until oscillator/PLL clock are stabled enough before it is fed to the system logic.

When internal PLL's "osclk" is selected as clock source, the SYSCK_SEL[1:0] decides the operating system clock frequency, where "00" = 25Mhz, "01" = 50Mhz, "11" = 100Mhz.

The LB_CLK input pin can be another clock source for the purpose of more accurate baud rate generation for UART0/1/2. In that case, input clock frequency of LB_CLK should be as close to 25/50/100Mhz as possible so that the internal timing function such as PCA and the dedicated Millisecond Timer can still function closely. For example, the possible LB_CLK can be 48Mhz, in that case, the SYSCK_SEL[1:0] should be set to "01" too.

Note: In above figure, lower case signal names represent chip internal signals.

4.2 Reset Generation

The Figure 24 below shows the reset generation block of AX11001/AX11005. The output of power-on-reset generates a reset pulse to reset on-chip Flash memory during power-on. The internal "system_rst_n" signal is used to reset most system logic and its source can come from RST_N pin, power on reset condition, or software reset and reboot command via SFR register CSREPR. Note: in below figure, the lower case signal names represent chip internal signals.

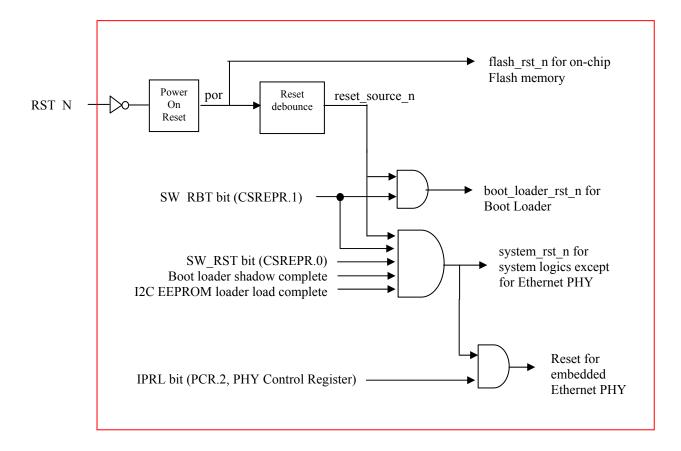


Figure 24: AX11001/AX11005 Reset Generation Block Diagram

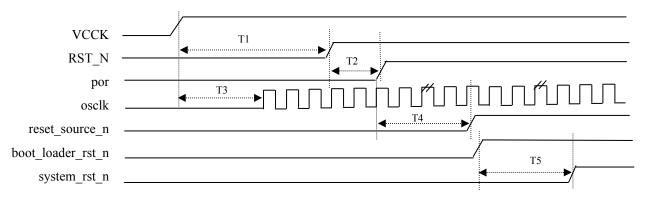
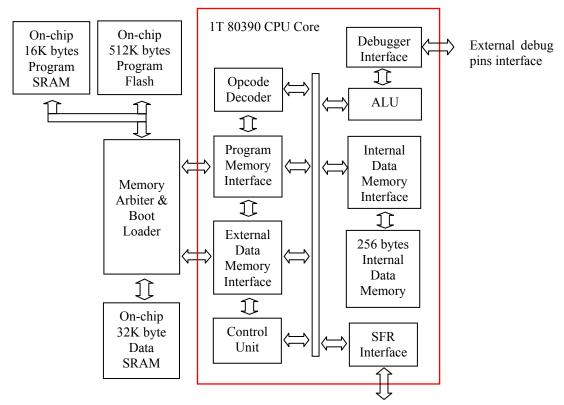


Figure 25: AX11001/AX11005 Reset Timing Diagram

Symbol	Description	Min	Тур	Max	Unit
T1	RST_N asserting low interval after VCCK ramping up to 1.8V	4			ms
T2	The internal "por" signal asserting low interval after RST_N de-assertion	2.2	3.0	4.2	us
Т3	From VCCK rise to 1.8V to first osclk transition		1.2		ms
T4	From internal "por" signal de-assertion to de-assertion of internal debounced "reset_source_n" signal.		100		clock s
	From internal "boot_loader_rst_n" signal de-assertion to internal "system_rst_n" signal de-assertion: Internally, this is the time the Boot Loader spend to copy boot code from on-chip Flash memory to on-chip 16KB SRAM.	4.1		4.9	ms


4.3 Voltage Regulator

Please refer to section 5.1.6.

4.4 CPU Core and Debugger

The 1T80390 CPU core block diagram is shown within the red line in Figure 26 below.

Note: On-chip Program Flash for AX11001 is 128K bytes.

SFR Bus for: Memory Arbiter, DMA Engine, Interrupt Controller, Watchdog Timer, Power Management, Timers/Counters, UARTs, GPIO, TOE, Ethernet MAC, Ethernet PHY, PCA, I2C Controller, 1-Wire Controller, SPI Controller

Figure 26: CPU Core Block Diagram

ALU - Arithmetic Logic Unit performs the arithmetic and logic operations during execution of an instruction. It contains accumulator (ACC), Program Status Word (PSW), (B) registers and related logic such as arithmetic unit, logic unit, multiplier and divider.

Opcode Decoder - performs an instruction opcode decoding and the control functions for all other blocks.

Control Unit - performs the core synchronization and data flow control. This module is directly connected to Opcode Decoder and manages execution of all micro-controller tasks.

Program Memory Interface - contains Program Counter (PC) and related logic. It performs the instructions code fetching from on-chip 128K/512K bytes Program Flash, on-chip 16K byte Program SRAM. The Program Memory can be also written.

External Data Memory Interface - contains memory access related registers such as Data Pointer High (DPH), Data Pointer Low (DPL) and Data Pointer eXtended (DPX) registers. It performs the external Program and Data Memory addressing and data transfers. The Program fetch cycle length is programmed by user.

Internal Data Memory Interface - Internal Data Memory interface controls access into the internal 256 bytes data memory. It contains 8-bit Stack Pointer (SP) register and related logic.

SFRs Interface - Special Function Registers interface controls access to the special registers. It contains standard 8051/80390 SFR registers and some additional SFR registers specific to this chip. SFR register access (read, written, modified) can use all direct addressing mode instructions.

Debugger Interface – provides an in-circuit emulator feature with 3 wires (clock out, data in, data out) interface and is used to connect to an external Hardware Assisted Debugger (HAD2) to communicate with the Debug Software running on PC.

4.4.1 CPU Core SFR Register Map

Address	Name	Description
0x81	SP	Stack Pointer register
0x82	DPL0	Data Pointer 0 register (DPTR0) low byte
0x83	DPH0	Data Pointer 0 register (DPTR0) high byte
0x84	DPL1	Data Pointer 1register (DPTR1) low byte
0x85	DPH1	Data Pointer 1register (DPTR1) high byte
0x86	DPS	Data Pointers Select register
0x87	PCON	Power Configuration register
0x8E	CKCON	Clock Control register
0x92	WTST	Program Memory Wait States register
0x93	DPX0	Data Pointer eXtended 0 register
0x95	DPX1	Data Pointer eXtended 1 register
0x9D	ACON	Address Control register
0xD0	PSW	Program Status Word register
0xE0	ACC	Accumulator A register
0xEA	MXAX	MOVX @Ri eXtended register
0xF0	В	B register

Table 5: CPU Core SFR Register Map

The following abbreviations are used in the "Access" column in all SFR register detailed description.

Access	Description
R/W	Software can read or write to the register bit.
RO	The register bit is read-only.
W1	Software can only write "1" to the register bit. Writing "0" to the register bit has no effect.
CR	The register bit will be clear after software reads it.
R/W1	Software can read or write "1" to the register bit. Writing "0" to the register bit has no effect.
WO	The register bit is write-only.
SC	Self-clearing.
PS	Value is permanently set.
LL	Latch to Low.
LH	Latch to High.

4.4.2 CPU Core SFR Register Description

The 1T 80390 CPU core is fully compatible to the standard 8051 micro-controller, maintains all instruction mnemonics and binary compatibility. The CPU core incorporates some great architectural enhancements, which allow the CPU execution of instructions with high performance.

The arithmetic section of the processor performs extensive data manipulation and is comprised of the 8-bit arithmetic logic unit (ALU), an ACC register, B register and PSW register as described below. The ALU performs typical arithmetic operations as: addition, subtraction, multiplication, division and additional operations such as: increment, decrement, BCD-decimal-add-adjust and compare. Within logic unit are performed: AND, OR, Exclusive OR, complement and rotation. The Boolean processor performs the bit operations as: set, clear, complement, jump-if-not-set, jump-if-set-and-clear and move to/from carry. The PSW contains several bits that reflect the current state of the CPU.

Accumulator A register (ACC, 0xE0)

Bit	7	6	5	4	3	2	1	0			
Name		ACC									
Reset Value				0x	.00						

Bit	Name	Access	Description
7:0	ACC	R/W	The Accumulator A register.

B Register (B, 0xF0)

Bit	7	6	5	4	3	2	1	0			
Name		B									
Reset Value				0x	00						

Bit	Name	Access	Description								
7:0	В		The B register is used during multiply and divide operations. In other cases may be used as normal SFR.								

Program Status Word Register (PSW, 0xD0)

Bit	7	6	5	4	3	2	1	0
Name	CY	AC	F0	RS1	RS0	OV	F1	Р
Reset Value				0x	00			

Bit	Name	Access		Description							
0	Р	R/W	Parity flag	rity flag							
1	F1	R/W	General purpo	eneral purpose flag 1							
2	OV	R/W	Overflow flag								
			Register bank								
			RS [1:0]	Function description							
	D <i>G</i> (D <i>G</i>)	-	00	Bank 0, data address 0x00-0x07							
4:3	RS1, RS0	R/W	01	Bank 1, data address 0x08-0x0F							
			10	Bank 2, data address 0x10-0x17							
				11	Bank 3, data address 0x18-0x1F						
5	F0	R/W	General purpo	General purpose flag 0							
6	AC	R/W	Auxiliary carr								
7	CY	R/W	Carry flag								

4.4.3 Memory Allocation

The 1T 80390 CPU core has separated address spaces for program and data memory. The Internal Data Memory, External Data Memory, SFRs and Program Memory areas each has its own address spaces. The data memory is divided onto 32K bytes of External Data Memory and 256 bytes of Internal Data Memory, plus a 128-bytes of SFR memory area. Please refer to section 3.2, section 3.3, and section 3.4 for memory map description.

Program Memory Allocation

The Program Memory is typically used for main code and constants. The 1T 80390 CPU core can support program memory operation in LARGE and FLAT mode. In LARGE mode, the addressable program memory space is located in 0x0000~0xFFFF (64K bytes), while in FLAT mode, the addressable program memory space is located in 0x0000~0x1FFFF (128K bytes for AX11001) or 0x00000~0x7FFFF (512K bytes for AX11005). After each reset, the 1T 80390 CPU core starts execution of program code at location 0x000000 in LARGE mode. The CPU core then can be switched to FLAT mode to support 128K/512K bytes of linear program code space. The user is recommended to operate the 1T 80390 CPU core of AX11001/AX11005 in FLAT mode to save the troubles of handling code banking. For program memory map description, please refer to section 3.2.

The on-chip 16K bytes Program SRAM is located in program memory space 0x000000~0x003FFF. This part of the code is usually for BOOT code with system initialization functions, TFTP or UART, and Flash programming functions. After hardware reset or software reboot via setting SW_RBT bit (CSREPR.1), the Boot Loader will always copy this part of code from the lower 16K bytes space of on-chip 128K/512K bytes Program Flash, before CPU starts running. When the CPU core runs and accesses program memory space between 0x000000~0x003FFF, it will fetch from the on-chip 16K bytes Program SRAM. When accessing beyond 0x003FFF program memory space, it will fetch from the on-chip 128K/512K bytes Program Flash. Having a separate Program SRAM allows updating firmware on the on-chip Flash memory while the CPU core continues running, to support the so-called In Application Programming (IAP) function.

Program Memory Wait-state

The program code residing on the on-chip 16K bytes Program SRAM is always fetched and executed by the CPU core without wait state (i.e., 1T). So besides BOOT code, user can consider using program memory space 0x000000~0x003FFF for any timing-critical routines or firmware to yield better CPU performance.

The program code residing beyond 0x003FFF address space on on-chip Flash memory may require some wait-state cycles depending on operating system clock frequency. The Program Memory Wait States (WTST) register is used to set user programmable wait state during program memory read and write access cycles.

Program Memory Wait States Register (WTST, 0x92)

Bit	7	6	5	4	3	2	1	0
Name			Reserved				WTST	
Reset Value				0x	07			

Bit	Name	Access		Description						
			read cycle takes	Vait States register holds the information about Program Memory access time. The ad cycle takes 1 clock period (WTST = 000) and maximal 8 clock periods (WTS ased on operating system clock frequency, the recommended setting is as below						
2:0	WTST	R/W	System Clock	Program Memory Wait State Setting, WTST [2:0]						
			25Mhz	001						
			50Mhz	011						
			100Mhz	111						
7:3	Reserved									

FLAT/LARGE Mode Switching

Switching between LARGE and FLAT modes is performed by appropriate writes into ACON (0x9D) register. ACON is Timed Access protected register and has built in mechanism preventing its accidental writes. To switch between modes the following instructions should be performed:

MOVTA, #0xAA;MOVTA, #0x55;Enable write to ACON registerMOVACON, #0x02;Switch to FLAT mode

or

MOV	TA, #0xAA	
MOV	TA, #0x55;	Enable write to ACON register
MOV	ACON, #0x00;	Switch to LARGE mode

It can be done at any time while software is running. The time elapsed between first, second, and third operation does not matter (any number of Program Wait Sates is allowed). The only correct sequence is required. Any third instruction causes protection mechanism to be turned on. This means that time protected register is opened for write only for single instruction. Reading from such register is never protected.

Address Control Register (ACON, 0x9D)

Bit	7	6	5	4	3	2	1	0
Name			Reser	ved			AM	Reserved
Reset Value				0x	00			

Bit	Name	Access	Description
0	Reserved	R/W	
1	АМ	R/W	 Address Mode Control bit. This bit establishes the addressing mode for the 1T80390 CPU core. 0: 16-bit Addressing Mode – LARGE Mode. 1: 24-bit Contiguous Addressing Mode – FLAT Mode.
7: 2	Reserved		

Please note that some instructions are different for FLAT and LARGE mode. There are:

LCALL, ACALL, JMP, LJMP, AJMP, MOVC, MOVX - DPTR related only POP, PUSH, RET

Please refer to "AX110xx CPU Core Instruction Set User Guide" for more details.

Program Write Enable Bit

The Program Write Enable (PWE) bit (PCON.4) is used to enable/disable program memory write signal activity during MOVX instructions. When PWE bit is set to logic 1, the **MOVX** @**DPTR**, **A** instruction writes data located in accumulator register into program memory addressed by DPTR register (active DPX: DPH: DPL). The **MOVX** @**Rx**, **A** instruction writes data located in accumulator register into program memory addressed by MXAX (bits 23:16), P2 register (bits 15:8) and Rx register (bits 7:0). The bits 23:16 are always equal to 0x00 for LARGE mode (64 KB of CODE). For detailed description of program memory write access to Flash memory, please refer to section 4.6.3.

	-		<i> </i>					
Bit	7	6	5	4	3	2	1	0
Name	SMOD0	SMOD1	Reserved	PWE	RSM	SWB	STOP	PMM
Reset Value				0x	.00			

Power Configuration Register (PCON, 0x87)

Bit	Name	Access	Description
			Power Management Mode Enable bit.
0	PMM	R/W	1: PMM entered. 0: PMM disabled.
			STOP mode bit.
1	STOP	R/W	1: STOP mode entered. 0: Disabled.
			Switchback enable.
2	SWB	R/W	1: Enabled interrupts and serial ports cause switchback. PMM bit is cleared.
			0: Interrupts and serial ports don't affect PMM bit.
3	RSM	R/W	 Regulator Standby Mode. 1: Set the internal 3.3V to 1.8V regulator to operate at standby mode (when the 1.8V current drawn is less than 30mA) for better conversion efficiency. 0: Set the internal 3.3V to 1.8V regulator to full operating mode (when the 1.8V current drawn is more than 30mA) for better conversion efficiency.
			Program memory Write Enable bit.
4	PWE	R/W	1: Enable Program Memory write access signal activity during MOVX instructions.
-	D 1	D/W/	0: Disabled.
5	Reserved	R/W	
6	SMOD1	R/W	UART1 double baud rate bit.
7	SMOD0	R/W	UART0 double baud rate bit.

Data Memory Allocation

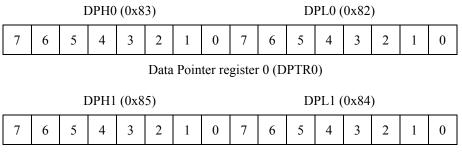
The 1T 80390 CPU core can address up to 32K bytes (address space 0x000000~0x007FFF) of External Data (xDATA) Memory space where the on-chip 32K bytes SRAM is located. The xDATA memory is accessed by MOVX instructions only.

Data Memory Wait-state

The External Data Memory of on-chip 32K bytes SRAM access cycles need at least one wait state to perform read/write access, The MD bits (CKCON.2~0) register is used to set user programmable wait state during data memory read and write access cycles.

Clock Control Register (CKCON, 0x8E)

Bit	7	6	5	4	3	2	1	0
Name	W	D	T2M	T1M	T0M		MD	
Reset Value				0x	07			


Rif	Name	Access			Description				
2:0	MD	R/W	MOVX read/wr = 111).	as adjusts the stretch cycles of on-chip 32K bytes SRAM read/write control signals during DVX instruction for External Data Memory write and read access cycles. The Minimal d/write pulse length is equal to 1 clock period (MD = 000) and maximal 8 clock periods (MD 11). The MD bits can be changed any time during program execution.					
				System Clock	Data Memory Wait State Setting, MD				
				25Mhz	001				
				50Mhz	001				
				100Mhz	001				
3	ТОМ	R/W	1: Ti	mer 0 uses a divid	sion of the system clock that drives T de-by-4 of the system clock frequenc de-by-12 of the system clock frequen	у.			
4	T1M	R/W	This bit 1: Ti	0: Timer 0 uses a divide-by-12 of the system clock frequency. his bit controls the division of the system clock that drives Timer 1. 1: Timer 1 uses a divide-by-4 of the system clock frequency. 0: Timer 1 uses a divide-by-12 of the system clock frequency.					
5	T2M	R/W	This bit the time 1: Ti	controls the divis er is in baud rate g mer 2 uses a divid	sion of the system clock that drives Ti	mer 2. This bit has no effect when y.			
7:6	WD	R/W			g timer timeout period.				

Memory Related SFR Registers

The following paragraph describes Program Memory, External Data Memory, and Internal Data Memory related SFRs of 1T 80390 CPU core and their functionality.

Data Pointer Registers

Dual data pointer registers are implemented to speed up data block copying. DPTR0 and DPTR1 are located at four SFR addresses. Active DPTR register is selected by SEL bit of Data Pointer Select (DPS) register. If SEL bit is equal to 0 then DPTR0 (0x83:0x82) is selected otherwise DPTR1 (0x85:0x84).

Data Pointer register 1 (DPTR1)

Selected data pointer register is used in the following instructions:

MOVX @DPTR, A MOVX A, @DPTR MOVC A, @A+DPTR JMP @A+DPTR INC DPTR MOV DPTR, #data16/#data24

Data Pointer 0 Register (DPTR0) High Byte (DPH0, 0x83)

Bit	7	6	5	4	3	2	1	0
Name		DPH0						
Reset Value		0x00						

Bit	Name	Access	Description
7:0	DPH0	R/W	The high byte of Data Pointer 0 register.

Data Pointer 0 Register (DPTR0) Low Byte (DPL0, 0x82)

Bit	7	6	5	4	3	2	1	0
Name				DP	PL0			
Reset Value				0x	00			

Bit	Name	Access	Description
7:0	DPL0	R/W	The low byte of Data Pointer 0 register.

Data Pointer 1 Register (DPTR1) High Byte (DPH1, 0x85)

Bit	7	6	5	4	3	2	1	0
Name	DPH1							
Reset Value	0x00							

Bit	Name	Access	Description
7:0	DPH1	R/W	The high byte of Data Pointer 1 register.

Data Pointer 1 Register (DPTR1) Low Byte (DPL1, 0x84)

Bit	7	7 6 5 4 3 2 1 0								
Name	DPL1									
Reset Value	0x00									

Bit	Name	Access	Description
7:0	DPL1	R/W	The low byte of Data Pointer 1 register.

Data Pointers Select Register (DPS, 0x86)

Bit	7	6	5	4 3 2 1 (
Name	ID1	ID0	TSL	Reserved SI						
Reset Value				0x00						

Bit	Name	Access			Descripti	on			
0	SEL	R/W		0	is selected by SEL bit., otherwise DPTR1 (0x8)	. If SEL bit is equal to 0 5:0x84).	then DPTR0		
4:1	Reserved	-							
5	TSL	R/W	Toggle select enable. When set, this bit allows the following DPTR related instructions to toggle the SEL bit following execution of the instruction: INC DPTR MOV DPTR, #data16/#data24 MOVC A, @A+DPTR MOVX @DPTR, A MOVX A, @DPTR When TSL=0, DPTR related instructions will not affect the state of the SEL bit.						
7:6	ID1, ID0	R/W	Increment/dec ID1 0 0 1 1	ID0 0 1 0 1 0 1	INC DPTR0 INC DPTR0 DEC DPTR0 INC DPTR0 DEC DPTR0 DEC DPTR0	SEL=1 INC DPTR1 INC DPTR1 DEC DPTR1 DEC DPTR1 DEC DPTR1			

Data Pointer Extended Registers

Data Pointer Extended registers DPX0, DPX1, MXAX hold the most significant part of memory address during access to data located above 64 K bytes. Note that DPX1 register is available only with DPTR1 register (DPH1, DPL1). During MOVX instruction using DPTR0/DPTR1 register, the most significant part of address bit [23:16] is always equal to DPX0 (0x93)/DPX1 (0x95) contents. During MOVX instruction using R0 or R1 register, the most significant part of address bit [23:16] is always equal to MXAX (0xEA) contents and address bit [15:8] is always equal to P2 (0xA0) contents.

Data Pointer EXtended 0 Register (DPX0, 0x93)

Bit	7	7 6 5 4 3 2 1 0								
Name	DPX0									
Reset Value		0x00								

Bit	Name	Access	Description						
7:0	DPX0	R/W	Data Pointer Extended register DPX0 holds the most significant part of memory address during access to data located above 64 K bytes. During MOVX instruction using DPTR0 register, the most significant part of address bit [23:16] is always equal to DPX0 contents.						

Data Pointer EXtended 1 Register (DPX1, 0x95)

Bit	7	7 6 5 4 3 2 1 0								
Name		DPX1								
Reset Value		0x00								

Bit	Name	Access	Description
7:0	DPX1	R/W	Data Pointer Extended register DPX1 holds the most significant part of memory address during access to data located above 64 K bytes. During MOVX instruction using DPTR1 register, the most significant part of address bit [23:16] is always equal to DPX1 contents.

MOVX @Ri EXtended Register (MXAX, 0xEA)

Bit			7	6	5	4	3	2	1	0	
Nai	ne					МХ	AX	•	•		
Res	et Value					0x	00				
Bit	Name	Access		Description							
		Name Access Description MXAX R/W Data Pointer Extended register MXAX holds the most significant part of memory address during access to data located above 64 K bytes. During MOVX instruction using R0 or R1 register, the most significant part of address bit [23:16] is always equal to MXAX contents and address bit [15:8] is always equal to P2 (0xA0) contents.									

Stack Pointer

The 1T 80390 CPU core in both modes LARGE & FLAT has 8-bit stack pointer called SP (0x81) located in the internal RAM space. It is incremented before data is stored during PUSH and CALL execution and decremented after data is popped during POP, RET and RETI execution. In other words it always points to the last valid stack byte. The SP is accessed as any other SFRs. An example stack bytes order after some CALL instruction is shown in figure below.

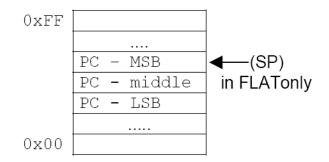


Figure 27: Stack Bytes Order

Stack Pointer Register (SP, 0x81)

Bit	7	6	5	4	7 6 5 4 3 2 1 0							
Name		SP										
Reset Value		0x07										

_				
	Bit	Name	Access	Description
ſ	7:0	SP	R/W	The Stack Pointer register.

Internal Data Memory & SFRs Allocation

Please refer to section 3.4 Internal Data Memory and SFR Register Map for details.

4.4.4 Performance Improvement

This section presents performance benefits from using 1T 80390 CPU core over standard 8051 families.

8-Bit Arithmetic Functions

Addition

(a) Immediate data: The following code performs immediate data (constant) addition to an 8-bit register.

Mn	emonic	Opcode	Bytes	80C51 cycles	1T 80390 cycles
MOV	A, Rx	E8h - EFh	1	12	1
ADD	A, #n	24h	2	12	2
MOV	Rx, A	F8h - FFh	1	12	1
Sum:				36	4
80390 Per	formance Improv	vement:		9.0	

Rx = Rx + #n

80390 Performance Improvement:

(b) Direct addressing: The following code performs direct addressing addition to an 8-bit register.

		I	Rx = Rx + (dir)		
Mn	emonic	Opcode	Bytes	80C51 cycles	1T 80390 cycles
MOV	A, Rx	E8h - EFh	1	12	1
ADD	A, dir	25h	2	12	2
MOV	Rx, A	F8h - FFh	1	12	1
Sum:				36	4
80390 Per	formance Improv	vement:			9.0

80390 Performance Improvement:

(c) Indirect addressing: The following code performs indirect addressing addition to an 8-bit register.

Mnemonic		Opcode	Bytes	80C51 cycles	1T 80390 cycles
MOV	A, Rx	E8h - EFh	1	12	1
ADD	A, @Rx	26h - 27h	1	12	2
MOV	Rx, Ā	F8h - FFh	1	12	1
Sum:				36	4
80390 Per	80390 Performance Improvement:				9.0

Rx = Rx + (@Rx)

(d) Register addressing: The following code performs an 8-bit register-to-register addition.

Mnemonic		Opcode	Bytes	80C51 cycles	1T 80390 cycles
MOV	A, Rx	E8h - EFh	1	12	1
ADD	A, @Ry	28h - 2Fh	1	12	1
MOV	Rx, A	F8h - FFh	1	12	1
Sum:	,			36	3
80390 Per	80390 Performance Improvement:				12.0

Subtraction

(a) Immediate data: The following code performs immediate data (constant) subtraction from an 8-bit register.

			Rx = Rx - #n		
Mne	monic	Opcode	Bytes	80C51 cycles	1T 80390 cycles
MOV	A, Rx	E8h - EFh	1	12	1
SUBB	A, #n	24h	2	12	2
MOV	Rx, A	F8h - FFh	1	12	1
Sum:				36	4
80390 Perfe	ormance Impro	vement:			9.0

(b) Direct addressing: The following code performs direct addressing subtraction from an 8-bit register.

ъ

		R	dx = Rx - (dir)		
Mne	emonic	Opcode	Bytes	80C51 cycles	1T 80390 cycles
MOV	A, Rx	E8h - EFh	1	12	1
SUBB	A, dir	25h	2	12	2
MOV	Rx, A	F8h - FFh	1	12	1
Sum:	,			36	4
80390 Perf	ormance Improv	vement:		9.0	

(c) Indirect addressing subtraction: The following code performs indirect addressing subtraction from an 8-bit register.

$\mathbf{R}\mathbf{x} = \mathbf{R}\mathbf{x} - ((\mathbf{a})\mathbf{R}\mathbf{y})$						
Mne	emonic	Opcode	Bytes	80C51 cycles	1T 80390 cycles	
MOV	A, Rx	E8h - EFh	1	12	1	
SUBB	A, @Ry	26h - 27h	1	12	2	
MOV	Rx, A	F8h - FFh	1	12	1	
Sum:				36	4	
80390 Perf	80390 Performance Improvement:				9.0	

(d) Register addressing subtraction: The following code performs an 8-bit register from register subtraction.

$\mathbf{R}\mathbf{x} = \mathbf{R}\mathbf{x} - \mathbf{R}\mathbf{y}$						
Mne	emonic	Opcode	Bytes	80C51 cycles	80390 cycles	
MOV	A, Rx	E8h - EFh	1	12	1	
SUBB	A, Ry	28h - 2Fh	1	12	1	
MOV	Rx, A	F8h - FFh	1	12	1	
Sum:				36	3	
80390 Performance Improvement:				1	2.0	

Multiplication

The following code performs the 8-bit registers multiplication.

Rx = Rx * Ry						
Mne	emonic	Opcode	Bytes	80C51 cycles	80390 cycles	
MOV	A, Rx	E8h - EFh	1	12	1	
MOV	B, Ry	88h - 8Fh	2	24	2	
MUL	AB	A4h	1	48	2	
MOV	Rx, A	F8h - FFh	1	12	1	
Sum:				96	6	
80390 Perf	ormance Improv	vement:]	16.0	

Division

The following code performs the 8-bit registers division.

Mne	emonic	Opcode	Bytes	80C51 cycles	80390 cycles
MOV	A, Rx	E8h - EFh	1	12	1
MOV	B, Ry	88h - 8Fh	2	24	2
DIV	AB	84h	1	48	6
MOV	Rx, A	F8h - FFh	1	12	1
Sum:				96	10
80390 Performance Improvement:				(9.6

16-Bit Arithmetic Functions

Addition

The following code performs 16-bit addition. The first operand and result are located in registers pair RaRb. Second operand is located in registers pair RxRy.

RaRb = RaRb + RxRv

			, ituite itility		
Mne	monic	Opcode	Bytes	80C51 cycles	80390 cycles
MOV	A, Rb	E8h - EFh	1	12	1
ADD	A, Ry	28h - 2Fh	1	12	1
MOV	Rb, A	F8h - FFh	1	12	1
MOV	A, Ra	E8h - EFh	1	12	1
ADDC	A, Rx	38h - 3Fh	1	12	1
MOV	Ra, A	F8h - FFh	1	12	1
Sum:				72	6
80390 Perfe	80390 Performance Improvement:			1	2.0

Subtraction

The following code performs 16-bit subtraction. The first operand and result are located in registers pair RaRb. Second operand is located in registers pair RxRy.

RaRb = RaRb - RxRy						
Mne	emonic	Opcode	Bytes	80C51 cycles	80390 cycles	
CLR	С	C3h	1	12	1	
MOV	A, Rb	E8h - EFh	1	12	1	
SUBB	A, Ry	28h - 2Fh	1	12	1	
MOV	Rb, A	F8h - FFh	1	12	1	
MOV	A, RA	E8h - EFh	1	12	1	
SUBB	A, Rx	98h - 9Fh	1	12	1	

RaRb =	= RaRb	- RxRy
--------	--------	--------

61

Copyright © 2006-2011 ASIX Electronics Corporation. All rights

12

84

1

7

12.0

MOV
Sum:

80390 Performance Improvement:

Ra, A

F8h - FFh

Multiplication

The following code performs 16-bit multiplication. The first operand and result are located in registers pair RaRb. Second operand is located in registers pair RxRy.

1

RaRb = RaRb * RxRy						
Mn	emonic	Opcode	Bytes	80C51 cycles	80390 cycles	
MOV	A, Rb	E8h - EFh	1	12	1	
MOV	B, Ry	88h - 8Fh	2	24	2	
MUL	AB	A4 h	1	48	2	
MOV	Rz, B	A8h - AFh	2	24	3	
XCH	A, Rb	C8h - CFh	1	12	2	
MOV	B, Rx	88h - 8Fh	2	24	2	
MUL	AB	A4h	1	48	2	
ADD	A, Rz	28h - 2Fh	1	12	1	
XCH	A, Ra	C8h - CFh	1	12	2	
MOV	B, Ry	88h - 8Fh	2	24	2	
MUL	AB	A4h	1	48	2	
ADD	A, Ra	28h - 2Fh	1	12	1	
MOV	Ra, A	F8h - FFh	1	12	1	
Sum:				312	23	
80390 Pert	formance Improv	vement:	1	3.6		

32-Bit Arithmetic Function

Addition

The following code performs 32-bit addition. The first operand and result are located in four registers RaRbRcRd. Second operand is located in four registers RvRxRyRz.

Mne	emonic	Opcode	Bytes	80C51 cycles	80390 cycles
MOV	A,Rd	E8h - EFh	1	12	1
ADD	A, Rz	28h - 2Fh	1	12	1
MOV	Rd, A	F8h - FFh	1	12	1
MOV	A, Rc	E8h - EFh	1	12	1
ADDC	A, Ry	38h - 3Fh	1	12	1
MOV	Rc, A	F8h - FFh	1	12	1
MOV	A, Rb	E8h - EFh	1	12	1
ADDC	A, Rx	38h - 3Fh	1	12	1
MOV	Rb, A	F8h - FFh	1	12	1
MOV	A, Ra	E8h - EFh	1	12	1
ADDC	A, Rv	38h - 3Fh	1	12	1
MOV	Ra, A	F8h - FFh	1	12	1
Sum:				144	12
80390 Perf	80390 Performance Improvement:			1	2.0

RaRbRcRd = RaRbRcRd + RvRxRyRz

80390 Performance Improvement:

Subtraction

The following code performs 32-bit subtraction. The first operand and result are located in four registers RaRbRcRd. Second operand is located in four registers RvRxRyRz.

Mne	emonic	Opcode	Bytes	80C51 cycles	80390 cycles
CLR	С	C3h	1	12	1
MOV	A, Rd	E8h - EFh	1	12	1
SUBB	A, Rz	98h - 9Fh	1	12	1
MOV	Rd, A	F8h - FFh	1	12	1
MOV	A, Rc	E8h - EFh	1	12	1
SUBB	A, Ry	98h - 9Fh	1	12	1
MOV	Rc, A	F8h - FFh	1	12	1
MOV	A, Rb	E8h - EFh	1	12	1
SUBB	A, Rx	98h - 9Fh	1	12	1
MOV	Rb, A	F8h - FFh	1	12	1
MOV	A, Ra	E8h - EFh	1	12	1
SUBB	A, Rv	98h - 9Fh	1	12	1
MOV	Ra, A	F8h - FFh	1	12	1
Sum:				156	13
80390 Perf	80390 Performance Improvement:			12	2.0

RaRbRcRd =	DoDhDoDd	DyDyDyDy
Kakukuku –	Kakukuku -	

Multiplication

The following code performs 32-bit multiplication. The first operand and result are located in four registers RaRbRcRd. Second operand is located in four registers RvRxRyRz.

				-	
Mne	emonic	Opcode	Bytes	80C51 cycles	80390 cycles
MOV	A, R0	E8h - EFh	1	12	1
MOV	B, R7	88h - 8Fh	2	24	2
MUL	AB	A4 h	1	48	2
XCH	A, R4	C8h - CFh	1	12	2
MOV	B, R3	88h - 8Fh	2	24	2 2 2 2
MUL	AB	A4h	1	48	2
ADD	A, R4	28h - 2Fh	1	12	1
MOV	R4, A	F8h - FFh	1	12	1
MOV	A, R1	E8h - EFh	1	12	1
MOV	B, R6	88h - 8Fh	2	24	2
MUL	AB	A4h	1	48	2
ADD	A, R4	28h - 2Fh	1	12	1
MOV	R4, A	F8h - FFh	1	12	1
MOV	B, R2	88h - 8Fh	2	24	2
MOV	A, R5	E8h - EFh	1	12	2 2 2
MUL	AB	A4h	1	48	2
ADD	A, R4	28h - 2Fh	1	12	1
MOV	R4, A	F8h - FFh	1	12	1
MOV	A, R2	E8h - EFh	1	12	1
MOV	B, R6	88h - 8Fh	2	24	2
MUL	AB	A4h	1	48	2 2 2 3
XCH	A, R5	C8h - CFh	1	12	2
MOV	R0, B	A8h - AFh	2	24	3
MOV	B, R3	88h - 8Fh	2	24	2
MUL	AB	A4h	1	48	2
ADD	A, R5	28h - 2Fh	1	12	1
ХСН	A, R4	C8h - CFh	1	12	2
ADDC	A, R0	38h - 3Fh	1	12	1

ADD	A, B	25h	2	12	2
MOV	R5, A	F8h - FFh	1	12	1
MOV	A, R1	E8h - EFh	1	12	1
MOV	B, R7	88h - 8Fh	2	24	2
MUL	AB	A4h	1	48	2
ADD	A, R4	28h - 2Fh	1	12	1
XCH	A, R5	C8h - CFh	1	12	2
ADDC	A, B	35h	2	12	2
MOV	R4, A	F8h - FFh	1	12	1
MOV	A, R3	E8h - EFh	1	12	1
MOV	B, R6	88h - 8Fh	2	24	2
MUL	AB	A4h	1	48	2
MOV	R6, A	F8h - FFh	1	12	1
MOV	R1, B	A8h - AFh	2	24	3
MOV	A, R3	E8h - EFh	1	12	1
MOV	B, R7	88h - 8Fh	2	24	2
MUL	AB	A4h	1	48	2
XCH	A, R7	C8h - CFh	1	12	2
XCH	A, B	C5h	2	12	3
ADD	A, R6	28h - 2Fh	1	12	1
XCH	A, R5	C8h - CFh	1	12	2
ADDC	A, R1	38h - 3Fh	1	12	1
MOV	R6, A	F8h - FFh	1	12	1
CLR	А	E4h	1	12	1
ADDC	A, R4	38h - 3Fh	1	12	1
MOV	R4, A	F8h - FFh	1	12	1
MOV	A, R2	E8h - EFh	1	12	1
MUL	AB	A4h	1	48	2
ADD	A, R5	28h - 2Fh	1	12	1
XCH	A, R6	C8h - CFh	1	12	2
ADDC	A, B	38h – 3Fh	2	12	2
MOV	R5, A	F8h - FFh	1	12	1
CLR	А	E4h	1	12	1
ADDC	A, R4	38h - 3Fh	1	12	1
MOV	R4, A	F8h - FFh	1	12	1
Sum:				1248	99
80390 Perf	ormance Improv	vement:		12	.6

Performance Improvement Summary

Total performance improvement has been summarized in the table below. It shows the most common used multi-precision arithmetic operation.

Function	80C51 cycle	80390 cycle	Improvement
8-bit addition (immediate data)	36	4	9.0
8-bit addition (direct addressing)	36	4	9.0
8-bit addition (indirect addressing)	36	4	9.0
8-bit addition (register addressing)	36	3	12.0
8-bit subtraction (immediate data)	36	4	9.0
8-bit subtraction (direct addressing)	36	4	9.0
8-bit subtraction (indirect addressing)	36	4	9.0
8-bit subtraction (register addressing)	36	3	12.0
8-bit multiplication	96	6	16.0
8-bit division	96	10	9.6
16-bit addition	72	6	12.0
16-bit subtraction	84	7	12.0
16-bit multiplication	312	23	13.6
32-bit addition	144	12	12.0

64

Copyright © 2006-2011 ASIX Electronics Corporation. All rights

32-bit subtraction	156	13	12.0
32-bit multiplication	1248	99	12.6
Average speed improvement:			11.12

4.4.5 Debugger

Flash Programming

The debugger fully supports programming of on-chip Flash memory. The debugger allows user to simply perform in-system programming of on-chip Flash memory without using any external equipment. Flash programming task is performed directly within Debug software, and after uploading of code, it is ready for debugging. Programming time is very short, because of HAD2 support. This feature saves time, and makes usage of debugger very comfortable and flexible.

Non-Intrusive System

In typical intrusive systems a debugging tool consumes for its own needs some system resources e.g.: part of program space, several cells of RAM memory, ports' pins sometimes system is loosing interrupts or the program code is manipulated to support software breakpoints, and so on. Even simple debugging system consumes the UART and timer resources to support own tasks. These simple 'emulators' cannot provide trace and other advanced debugging functions, while also being very intrusive in the debugging cycle. Imagine trying to debug an interrupt problem while the 'emulator' is manipulating interrupts itself!

Developing firmware is all about producing code that is 100% reliable in operation and fully understood in how it will perform in adverse conditions. A real non-intrusive on-chip debugger that assists user in this task is the most important tool user can have. That is the reason why using of non-intrusive systems is so important. The debugger and debug software tools has been designed as a non-intrusive system.

Real-time Hardware Debugger

Real-time hardware debugger we call for a tool that is able to detect processor internal properties that are not visible outside the processor without any violation of real-time operations. The debugger gives you the chance to track down hidden bugs within the application running with micro-controller. Internal events such as the reading of the SBUF-control register are not mirrored on the external address-data bus. However, by using special logic to detect operations that affect internal resources, debugger gives user ability to track such internal events without any violation of real-time operation. There is no need to use a special external logic for the emulation.

4.5 On-Chip Flash Memory

Block Diagram

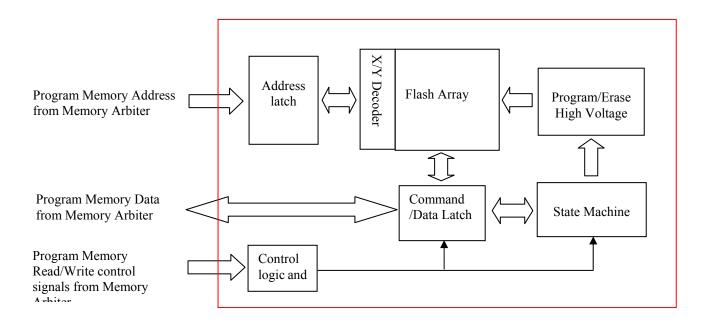


Figure 28: On-Chip Flash Memory Block Diagram

Sector Structure

AX11001	X11001 AX11005 Sector Size	Sector Size	Address Dongo	Sector Address						
Sector	Sector	Sector Size	Address Range	A18	A17	A16	A15	A14	A13	
SA0	SA0	16K bytes	00000-03FFF	0	0	0	0	0	Х	
SA1	SA1	8K bytes	04000-05FFF	0	0	0	0	1	0	
SA2	SA2	8K bytes	06000-07FFF	0	0	0	0	1	1	
SA3	SA3	32K bytes	08000-0FFFF	0	0	0	1	Х	Х	
SA4	SA4	64K bytes	10000-1FFFF	0	0	1	Х	Х	Х	
N/A	SA5	64K bytes	20000-2FFFF	0	1	0	Х	Х	Х	
N/A	SA6	64K bytes	30000-3FFFF	0	1	1	Х	Х	Х	
N/A	SA7	64K bytes	40000-4FFFF	1	0	0	Х	Х	Х	
N/A	SA8	64K bytes	50000-5FFFF	1	0	1	Х	Х	Х	
N/A	SA9	64K bytes	60000-6FFFF	1	1	0	Х	Х	Х	
N/A	SA10	64K bytes	70000-7FFFF	1	1	1	Х	Х	Х	

Table 6: On-Chip Flash Memory Sector Structure

Automatic Programming

The on-chip Flash memory is byte programmable using the Automatic Programming algorithm. The Automatic Programming algorithm makes system do not need to have time-out sequence nor to verify the data programmed.

Automatic Chip Erase

The entire on-chip Flash memory is bulk erased using 10ms erase pulses according to Automatic Chip Erase algorithm. Typical erasure at room temperature is accomplished in less than 4 second. The Automatic Erase algorithm automatically programs the entire array prior to electrical erase. The timing and verification of electrical erase are controlled internally within the Flash memory.

Automatic Sector Erase

The on-chip Flash memory is sector(s) erasable using Automatic Sector Erase algorithm. The Automatic Sector Erase algorithm automatically programs the specified sector(s) prior to electrical erase. The timing and verification of electrical erase are controlled internally within the Flash memory. An erase operation can erase one sector, multiple sectors, or the entire Flash memory.

Automatic Programming Algorithm

The Automatic Programming algorithm requires the user to only write program set-up commands (including 2 unlock write cycle and A0H) and a program command (program data and address). The Flash memory automatically times the programming pulse width, provides the program verification, and counts the number of sequences. During a program cycle, the state-machine will control the program sequences and command register will not respond to any command set. A status bit similar to Data# Polling and a status bit toggling between consecutive read cycles, provide feedback to the user as to the status of the programming operation. Refer to write operation status, Table 8, for more information on these status bits.

Automatic Erase Algorithm

The Automatic Erase algorithm requires the user to write commands to the command register. The Flash memory will automatically pre-program and verify the entire array. Then the Flash memory automatically times the erase pulse width, provides the erase verification, and counts the number of sequences. A status bit toggling between consecutive read cycles provides feedback to the user as to the status of the erasing operation.

Register contents serve as inputs to an internal state-machine, which controls the erase and programming circuitry. During write cycles, the command register internally latches address and data needed for the programming and erase operations.

During a Sector Erase cycle, the command register will only respond to Erase Suspend command. After Erase Suspend is completed, the Flash memory stays in read mode. After the state machine has completed its task, it will allow the command register to respond to its full command set.

Command Definitions

Flash memory operations are selected by writing specific address and data sequences into the command register. Writing incorrect address and data values or writing them in the improper sequence will reset the Flash memory to the Read mode. Table 7 defines the valid register command sequences. Note that the Erase Suspend (B0H) and Erase Resume (30H) commands are valid only while the Sector Erase operation is in progress.

An erase operation can erase one sector, multiple sectors, or the entire Flash memory. Table 6 indicates the address space that each sector occupies. A "sector address" consists of the address bits required to uniquely select a sector. The writing specific address and data commands or sequences into the command register initiates the Flash memory operations.

Command	Bus Cycle Required	1st Bus Cycle		2nd Bus Cycle		3rd Bus Cycle		4th Bus Cycle		5th Bus Cycle		6th Bus Cycle	
		Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data
Reset	1	XXXH	F0H										
Read	1	RA	RD										
Program	4	555H	AAH	2AA H	55H	555H	A0H	PA	PD				
Chip Erase	6	555H	AAH	2AA H	55H	555H	80H	555H	AAH	2AA H	55H	555H	10H
Sector Erase	6	555H	AAH	2AA H	55H	555H	80H	555H	AAH	2AA H	55H	SA	30H
Sector Erase Suspend	1	XXXH	B0H										
Sector Erase Resume	1	XXXH	30H										

Note:

- 1. RA=Address of memory location to be read. RD=Data to be read at location RA.
- 2. PA = Address of memory location to be programmed.
- PD = Data to be programmed at location PA. SA = Address of the sector to be erased.

Table 7: On-Chip Flash Memory Command Definitions

Read Flash Array Data

The internal state machine is set for reading array data upon Flash memory power-up, or after a hardware reset. This ensures that no spurious alteration of the memory content occurs during the power transition. No command is necessary in this mode to obtain array data. The Flash memory remains enabled for read access until the command register contents are altered. The Flash memory is also ready to read array data after completing an Automatic Program or Automatic Erase algorithm.

After the Flash memory accepts an Erase Suspend command, the Flash memory enters the Erase Suspend mode. The CPU can read array data using the standard read timings, except that if it reads at an address within erase-suspended sectors, the Flash memory outputs status data. After completing a programming operation in the Erase Suspend mode, the CPU may once again read array data with the same exception. See "Erase Suspend/Erase Resume Commands" for more information on this mode. The system must issue the reset command to re-enable the device for reading array data if Q5 (data bit 5) goes high, or while in the auto-select mode. See the "Reset Command" section, next.

Reset Command

The reset operation is initiated by writing the reset command sequence into the command register. The Flash memory remains enabled for reads until the command register contents are altered. If program-fail or erase-fail happen, the write of F0H will reset the Flash memory to abort the operation. Address bits are don't-care for this command. A valid command must then be written to place the Flash memory in the desired state. Writing the reset command to the Flash memory resets the device to reading array data.

The reset command may be written between the sequence cycles in an erase command sequence before erasing begins. This resets the device to reading array data. Once erasure begins, however, the Flash memory ignores reset commands until the operation is complete.

^{3.} The software should generate the following address patterns: 555H or 2AAH to Address A11~A0. Address bit A12~A18 = X = Don't care for all address commands except for Program Address (PA) and Sector Address (SA). Write Sequence may be initiated with A12~A18 in either state.

The reset command may be written between the sequence cycles in a program command sequence before programming begins. This resets the Flash memory to reading array data (also applies to programming in Erase Suspend mode). Once programming begins, however, the Flash memory ignores reset commands until the operation is complete.

If Q5 (data bit 5) goes high during a program or erase operation, writing the reset command returns the Flash memory to reading array data (also applies during Erase Suspend).

Automatic Chip Erase Commands

Chip Erase is a six-bus cycle operation. There are two "unlock" write cycles. These followed by writing the set-up command 80H. The second "unlock" write cycles are then followed by the chip erase command 10H.

The Automatic Chip Erase does not require the Flash memory to be entirely pre-programmed prior to executing the Automatic Chip Erase. Upon executing the Automatic Chip Erase, the state machine in Flash memory will automatically program and verify the entire Flash memory for an all-zero data pattern. When the Flash memory is automatically verified to contain an all-zero pattern, a self-timed chip erase and verify begin. The erase and verify operations are completed when the data on Q7 (data bit 7) is "1" at which time the Flash memory returns to the Read mode. The software is not required to provide any control or timing during these operations.

When using the Automatic Chip Erase algorithm, note that the erase automatically terminates when adequate erase margin has been achieved for the memory array (no erase verification command is required).

If the Erase operation was unsuccessful, the data on Q5 (data bit 5) is "1"(see Table 8), indicating the erase operation exceed internal timing limit.

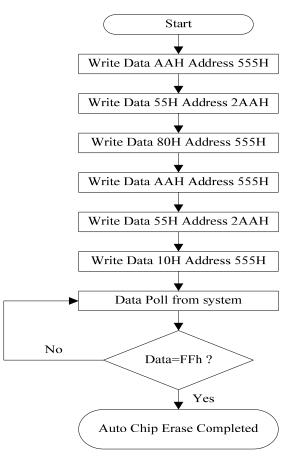


Figure 29: Automatic Chip Erase Algorithm Flowchart

Automatic Sector Erase Commands

Sector Erase is a six-bus cycle operations. There are two "unlock" write cycles. These followed by writing the set-up command 80H. Two more "unlock" write cycles are then followed by the sector erase command 30H. Sector addresses selected are loaded into internal register on the sixth command.

The Automatic Sector Erase does not require the Flash memory to be entirely pre-programmed prior to executing the Automatic Sector Erase Set-up commands and Automatic Sector Erase command. Upon executing the Automatic Sector Erase command, the Flash memory will automatically program and verify the sector(s) memory for an all-zero data pattern. The software is not required to provide any control or timing during these operations.

When the sector(s) is automatically verified to contain an all-zero pattern, a self-timed sector erase and verify begin. The erase and verify operations are completed when the data on Q7 (data bit 7) is "1" and the data on Q6 (data bit 6) stops toggling for two consecutive read cycles, at which time the Flash memory returns to the Read mode. The software is not required to provide any control or timing during these operations.

When using the Automatic Sector Erase algorithm, note that the erase automatically terminates when adequate erase margin has been achieved for the memory array (no erase verification command is required).

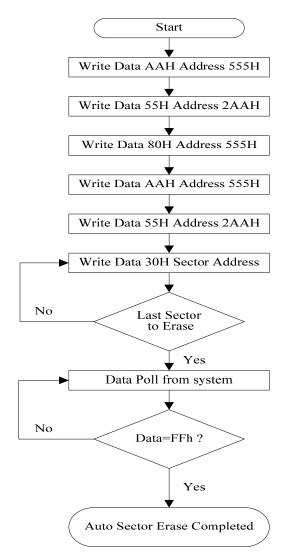
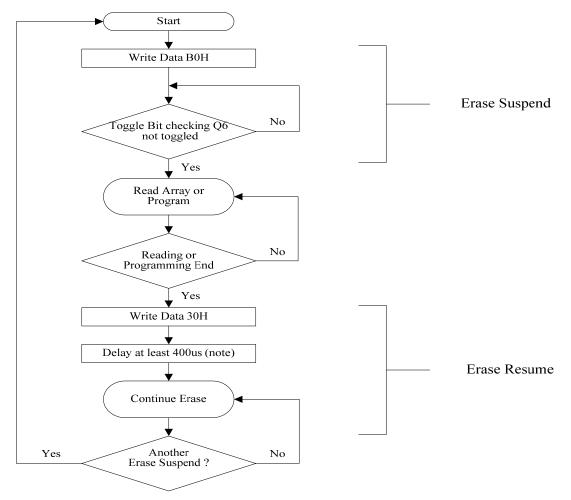


Figure 30: Automatic Sector Erase Algorithm Flowchart


Erase Suspend

This command only has meaning while the state machine is executing Automatic Sector Erase operation, and therefore will only be responded during Automatic Sector Erase operation. When the Erase Suspend command is written during a sector erase operation, the Flash memory requires a maximum of 20us to suspend the erase operations. However, When the Erase Suspend command is written during the sector erase time-out, the device immediately terminates the time-out period and suspends the erase operation. After this command has been executed, the command register will initiate erase suspend mode. The state machine will return to read mode automatically after suspend is ready. At this time, state machine only allows the command register to respond to the Read Memory Array, Erase Resume and Program commands.

The system can determine the status of the program operation using the Q7 (data bit 7) or Q6 (data bit 6) status bits, just as in the standard program operation. After an erase-suspend operation is complete, the software can once again read array data within non-suspended sectors.

Erase Resume

This command will cause the command register to clear the suspend state and return back to Sector Erase mode but only if an Erase Suspend command was previously issued. Erase Resume will not have any effect in all other conditions. Another Erase Suspend command can be written after the chip has resumed erasing. The minimum time from Erase Resume to next Erase Suspend is 400us. Repeatedly suspending the device more often may have undetermined effects.

Note: Repeatedly suspending the device more often may have undetermined effects.

Figure 31: Erase Suspend/Erase Resume Flowchart

Automatic Program Commands

To initiate Automatic Program mode, a three-cycle command sequence is required. There are two "unlock" write cycles, followed by writing the Automatic Program command A0H. The program address and data are written next, which in turn initiate the embedded Program Algorithm. Once the Automatic Program command is initiated, the next write causes a transition to an active programming operation. The software is not required to provide further controls or timings. The Flash memory will automatically provide an adequate internally generated program pulse and verify the programmed cell margin.

When the embedded Program algorithm is complete, the Flash memory then returns to reading array data and addresses are no longer latched. The Flash memory provides Q2, Q3, Q5, Q6 and Q7 (i.e., data bit 2, 3, 5, 6, and 7) to determine the status of a write operation. If the program operation was unsuccessful, the data on Q5 is "1"(see Table 8), indicating the program operation exceed internal timing limit. The automatic programming operation is completed when the data read on Q6 stops toggling for two consecutive read cycles and the data on Q7 and Q6 are equivalent to data written to these two bits, at which time the Flash memory returns to the Read mode (no program verify command is required).

Any commands written to the Flash memory during the embedded Program Algorithm are ignored. Note that a hardware reset on RST_N pin immediately terminates the programming operation. The Byte Program command sequence should be reinitiated once the Flash memory has reset to reading array data, to ensure data integrity. Programming is allowed in any sequence and across sector boundaries. Please note that a bit cannot be programmed from a "0" back to a "1". Attempting to do so may halt the operation and set the Q5 to "1", or cause the Data# Polling algorithm to indicate the operation was successful. However, a succeeding read will show that the data is still "0". Only erase operations can convert a "0" to a "1".

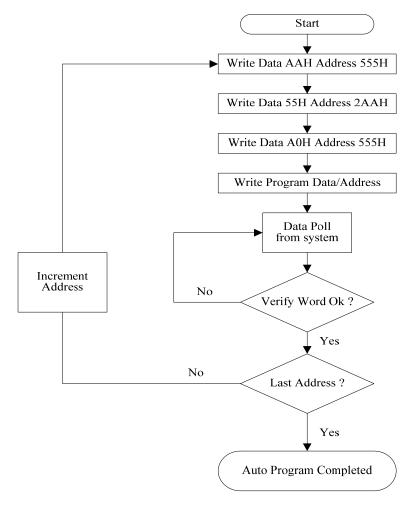


Figure 32: Automatic Programming Algorithm Flowchart

Write Operation Status

The Flash memory provides several bits on data bus to determine the status of a write operation: Q2, Q3, Q5, Q6 and Q7. Table 8 and the following subsections describe the functions of these bits. Q7 and DQ6 each offer a method for determining whether a program or erase operation is complete or in progress. These three bits are discussed first.

		Status	Q7 (Note 1)	Q6	Q5 (Note 2)	Q3	Q2
	Byte Progra	m in Auto Program Algorithm	Q7#	Toggle	0	N/A	No Toggle
	Auto Erase	Algorithm	0	Toggle	0	1	Toggle
In Progress	Erase Suspended	Erase Suspend Read (Erase Suspended Sector)	1	No Toggle	0	N/A	Toggle
	Mode	de Erase Suspend Read Non-Erase Suspended Sector)		Data	Data	Data	Data
		Erase Suspend Program	Q7#	Toggle	0	N/A	N/A
Freedad	Byte Progra	m in Auto Program Algorithm	Q7#	Toggle	1	N/A	No Toggle
Exceeded Time Limits	Auto Erase	Algorithm	0	Toggle	1	1	Toggle
	Erase Suspe	end Program	Q7#	Toggle	1	N/A	N/A

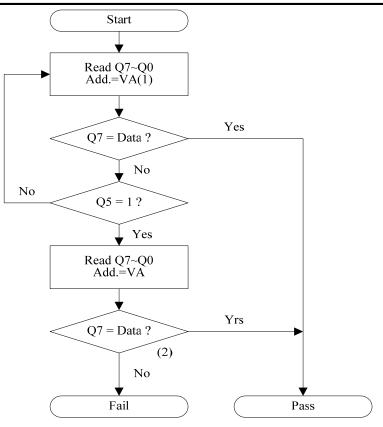
Note:

- 1. Q7 and Q2 require a valid address when reading status information. Refer to the appropriate subsection for further details.
- 2. Q5 switches to '1' when an Auto Program or Auto Erase operation has exceeded the maximum timing limits. See "Q5: Exceeded Timing Limits " for more information.

Table 8:Write Operation Status

Q7: Data# Polling

The Data# Polling bit, Q7, indicates to the software whether an Automatic Algorithm is in progress or completed, or whether the Flash memory is in Erase Suspend.


During the Automatic Program algorithm, the Flash memory outputs on Q7 the complement of the datum programmed to Q7. This Q7 status also applies to programming during Erase Suspend. When the Automatic Program algorithm is complete, the device outputs the datum programmed to Q7. The software must provide the program address to read valid status information on Q7. If a program address falls within a protected sector, Data# Polling on Q7 is active for approximately 1 us, then the device returns to reading array data.

During the Automatic Erase algorithm, Data# Polling produces a "0" on Q7. When the Automatic Erase algorithm is complete, or if the Flash memory enters the Erase Suspend mode, Data# Polling produces a "1" on Q7. This is analogous to the complement/true datum output described for the Automatic Program algorithm: the erase function changes all the bits in a sector to "1" prior to this, the Flash memory outputs the "complement," or "0". The software must provide an address within any of the sectors selected for erasure to read valid status information on Q7.

After an erase command sequence is written, if all sectors selected for erasing are protected, Data# Polling on Q7 is active for approximately 100 us, then the Flash memory returns to reading array data. If not all selected sectors are protected, the Automatic Erase algorithm erases the unprotected sectors, and ignores the selected sectors that are protected.

When the software detects Q7 has changed from the complement to true data, it can read valid data at Q7-Q0 on the following read cycles.

Note:

- 1. VA=Valid address for programming
- 2. Q7 should be re-checked even Q5="1" because Q7 may change simultaneously with Q5.

Figure 33: Data# Polling Algorithm

Q6: Toggle BIT I

Toggle Bit I on Q6 indicates whether an Automatic Program or Erase algorithm is in progress or complete, or whether the Flash memory has entered the Erase Suspend mode. Toggle Bit I may be read at any address, in the command sequence (prior to the program or erase operation), and during the sector timeout.

During an Automatic Program or Erase algorithm operation, successive read cycles to any address cause Q6 to toggle. When the operation is complete, Q6 stops toggling.

After an erase command sequence is written, if all sectors selected for erasing are protected, Q6 toggles and returns to reading array data. If not all selected sectors are protected, the Automatic Erase algorithm erases the unprotected sectors, and ignores the selected sectors that are protected.

The software can use Q6 and Q2 together to determine whether a sector is actively erasing or is erase be suspended. When the Flash memory is actively erasing (that is, the Automatic Erase algorithm is in progress), Q6 start toggling. When the Flash memory enters the Erase Suspend mode, Q6 stops toggling. However, the software must also use Q2 to determine which sectors are erasing or erase-suspended. Alternatively, the system can use Q7.

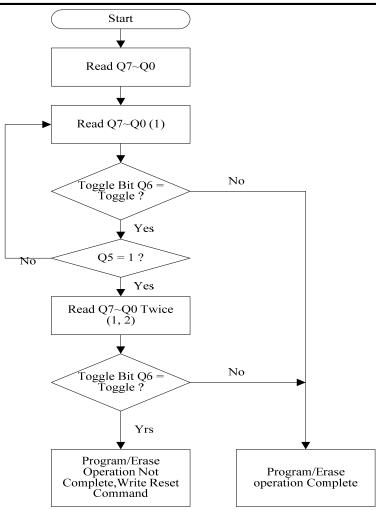
If a program address falls within a protected sector, Q6 toggles for approximately 2 us after the program command sequence is written, then returns to reading array data.

Q6 also toggles during the erase-suspend-program mode and stops toggling once the Automatic Program algorithm is complete.

Q2: Toggle Bit II

The "Toggle Bit II" on Q2, when used with Q6, indicates whether a particular sector is actively erasing (that is, the Automatic Erase algorithm is in process), or whether that sector is erase-suspended.

Q2 toggles when the software reads at addresses within those sectors that have been selected for erasure. But Q2 cannot distinguish whether the sector is actively erasing or is erase-suspended. Q6, by comparison, indicates whether the Flash memory is actively erasing, or is in Erase Suspend, but cannot distinguish which sectors are selected for erasure. Thus, both status bits are required for sectors and mode information. Refer to Table 8 to compare outputs for Q2 and Q6.


Reading Toggle Bits Q6/ Q2

Whenever the software initially begins reading toggle bit status, it must read Q7-Q0 at least twice in a row to determine whether a toggle bit is toggling. Typically, the software would note and store the value of the toggle bit after the first read. After the second read, the software would compare the new value of the toggle bit with the first. If the toggle bit is not toggling, the Flash memory has completed the program or erase operation. The software can read array data on Q7-Q0 on the following read cycle.

However, if after the initial two read cycles, the software determines that the toggle bit is still toggling, the software also should note whether the value of Q5 is high (see the section on Q5). If it is, the software should then determine again whether the toggle bit is toggling, since the toggle bit may have stopped toggling just as Q5 went high. If the toggle bit is no longer toggling, the Flash memory has successfully completed the program or erase operation. If it is still toggling, the Flash memory did not complete the operation successfully, and the software must write the reset command to return to reading array data.

The remaining scenario is that software initially determines that the toggle bit is toggling and Q5 has not gone high. The software may continue to monitor the toggle bit and Q5 through successive read cycles, determining the status as described in the previous paragraph. Alternatively, it may choose to perform other system tasks. In this case, the software must start at the beginning of the algorithm when it returns to determine the status of the operation.

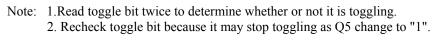


Figure 34: Toggle Bit Algorithm

Q5: Exceeded Timing Limits

Q5 will indicate if the program or erase time has exceeded the specified limits (internal pulse count). Under these conditions Q5 will produce a "1". This time-out condition indicates that the program or erase cycle was not successfully completed. Data# Polling and Toggle Bit are the only operating functions of the device under this condition.

If this time-out condition occurs during sector erase operation, it specifies that a particular sector is bad and it may not be reused. However, other sectors are still functional and may be used for the program or erase operation. The Flash memory must be reset to use other sectors. Write the Reset command sequence to the Flash memory, and then execute program or erase command sequence. This allows the software to continue to use the other active sectors in the Flash memory.

If this time-out condition occurs during the chip erase operation, it specifies that the entire chip is bad or combination of sectors is bad.

If this time-out condition occurs during the byte programming operation, it specifies that the entire sector containing that byte is bad and this sector may not be reused, (other sectors are still functional and can be reused).

The time-out condition will not appear if a user tries to program a non-blank location without erasing. Please note that this is not a Flash memory failure condition since the Flash memory was incorrectly used.

Q3: Sector Erase Timer

After the completion of the initial sector erase command sequence, the sector erase time-out will begin. Q3 will remain low until the time-out is complete. Data# Polling and Toggle Bit are valid after the initial sector erase command sequence.

If Data# Polling or the Toggle Bit indicates the Flash memory has been written with a valid erase command, Q3 may be used to determine if the sector erase timer window is still open. If Q3 is high ("1") the internally controlled erase cycle has begun; attempts to write subsequent commands to the Flash memory will be ignored until the erase operation is completed as indicated by Data# Polling or Toggle Bit. If Q3 is low ("0"), the Flash memory will accept additional sector erase commands. To insure the command has been accepted, the software should check the status of Q3 prior to and following each subsequent sector erase command. If Q3 were high on the second status check, the command may not have been accepted.

Erase and Programming Performance

Parameter		Unit		
	Min.	Тур.	Max.	
Sector Erase Time		0.7	15	sec
Chip Erase Time		4	32	sec
Byte Programming Time		9	300	us
Chip Programming Time		4.5	13.5	sec
Erase/Program Cycles	100,000			cycles

Program Code Read Protection in On-chip Flash Memory

When the program code in on-chip Flash memory needs to be protected from unauthorized downloading for copyright protection purpose, the on-chip Flash memory offers a hardware mechanism to support this. The on-chip Flash memory location 0x03FFF in bit 7 is used to enable/disable the on-chip Flash memory read protection. Setting or clearing this bit will not affect normal program code execution by the CPU core. See below Table 9 for detailed description.

On-chip Flash Memory Lo	cation 0x003FFF	CPU Debugger Access
Bit 7 = Read Protection Disable bit	Bit [6:0]	
1	Reserved and put 0x00	CPU Debugger access is enabled. The program code can be downloaded from Flash memory to CPU Debugger software. This setting is usually used during software development in progress.
0	Reserved and put 0x00	CPU Debugger access is disabled. The program code cannot be downloaded from Flash memory to CPU Debugger software. This setting is usually used after the software development is complete and ready for production.

Table 9: On-chip Flash Memory Read Protection

4.6 Memory Arbiter & Boot Loader

Figure 35 below shows Memory Arbiter, Boot Loader, and Flash Programming Controller block diagram.

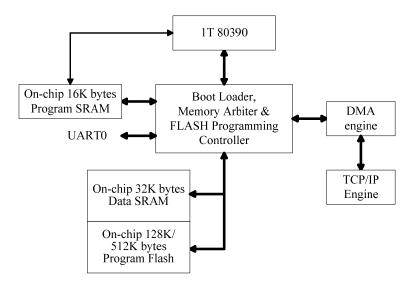


Figure 35: Boot Loader, Memory Arbiter & Flash Programming Controller Block Diagram

4.6.1 Boot Loader

The Boot Loader supports "program code mirroring" purpose. After power-on reset or software reboot command via setting SW_RBT bit (CSREPR.1), the boot loader will read the Flash memory to load the program code to the internal 16K byte Program SRAM first before allowing CPU core to start running.

The "program code mirroring" allows the program code residing on on-chip Flash memory space 0~16K bytes to be mirrored to on-chip 16Kbytes SRAM before the 1T 80390 CPU starts running. This on-chip 16Kbytes SRAM located at program memory space 0~16K bytes of the 1T 80390 CPU will be used to execute program code with 0 wait state to achieve top performance of 100 MIPS. During time of firmware update via Ethernet or UART, the 16K bytes of mirrored program code on SRAM shall perform Flash write commands to write new firmware into the Flash memory. This allows the program code being executed continuously while the Flash memory is being updated.

Note that in on-chip Flash memory address location $0x00_3FFF$, the bit 7 is used for program code read protection bit. Please see Table 9 for details.

The time the Boot Loader spends to copy the 16KB program code from on-chip Flash memory to on-chip Program SRAM is listed in Table 10 below.

System Clock	Boot Loader Loading Time (typical)
100Mhz	4.1 ms
50Mhz	4.3 ms
25Mhz	4.9 ms

Table 10: Boot Loader Loading Time Table

Clock Speed, Software Reset and Ext. Program Memory Select Register (CSREPR, 0x8Fh)

Bit	7	6	5	4	3	2	1	0
Name	SCS	[1:0]	ICD	Rese	rved	FARM	SW_RBT	SW_RST
Reset Value	0	0	0	0	0	0	0	0

Bit	Name	Access	Description
0	SW_RST	R/W1	Software Reset. Setting to "1" to reset all peripheral logics and CPU itself. Upon activated,
			this bit will be cleared by chip hardware automatically.
1	SW_RBT	R/W1	Software Reboot. Setting to "1" to reset and reboot the whole chip including CPU and all
			peripherals. This step will cause the Boot Loader to redo the program mirroring step and
			reload the content of I2C Configuration EEPROM to related registers. Upon activated, this bit
			will be cleared by chip hardware automatically.
2	FARM	R/W	Flash Address Re-Mapping. See section 4.6.3 for detailed description.
			1: To enable software to gain access to the first 16KB (0x00_0000~0x00_3FFF) of the
			on-chip Flash memory. After enabled, software can access to the first 16KB of the Flash
			memory by accessing the program memory space 16K~32K (x00_4000~0x007FFF) which
			then will be remapped to $0\sim 16K (0x00_0000\sim 0x00_3FFF)$ address space of on-chip Flash
			memory by the "Memory Arbiter" hardware. Note that when enabled, the software
			accessing to the lower 16KB of program memory space is still accessing to the internal
			16KB Program SRAM as usual, and the accessing of the 16KB~32KB address space of
			on-chip Flash memory is temporarily disabled.
			0: To disable software accessing the first 16KB of on-chip Flash memory. When disabled,
			software accessing to the program memory space $16K \sim 32K (0x00_4000 \sim 0x007FFF)$ would be accessing to the same address space of the on-chip Flash memory without
			re-mapping (default). Note that when disabled, the software accessing to the first 16KB of
			program memory space is still accessing to the internal 16KB Program SRAM as usual.
3	Reserved	R/W	Please always write 0.
4		RO	Always read as 0.
5		RO	I2C Configuration EEPROM is Disabled during boot-up. This bit reflects the current setting
5	ICD	ĸo	of the input pin I2C BOOT DISABLE.
			1: I2C Configuration EEPROM is disabled during boot, meaning that the I2C controller has
			not loaded configuration data from I2C EEPROM during reset.
			0: I2C Configuration EEPROM is enabled during boot, meaning that the I2C controller has
			loaded the configuration data from I2C EEPROM during reset.
7:6	SCS [1:0]	RO	System Clock Select. These bits reflect the current setting of input pin SYSCK SEL[1:0],
			which configures the operating system clock frequency.
			11: 100 MHz
			10: Reserved for test mode
			01: 50 MHz
			00: 25 MHz

4.6.2 Memory Arbiter

During normal CPU core access operations, the Memory Arbiter manages the Program and xDATA memory bus access to the embedded program/data memory. During DMA access, the Memory Arbiter arbitrates the xDATA memory bus access between the CPU core and the DMA engine.

When DMA Engine receives DMA requests from TOE initiated DMA or software initiated DMA, it will cause Memory Arbiter to generate an interrupt request to INT2, notifying CPU and software that it needs the ownership of xDATA memory bus in order to perform DMA access on xDATA memory. Within the interrupt service routine (ISR) of INT2, the CPU and software can then grant the DMA request to DMA engine through SFR register DBAR as shown below. Note that the interrupt service routine for INT2 for DMA request should always be stored within the internal Program SRAM region (0x00_0000 ~ 0x00_3FFF) to allow DMA access properly.

DMA Bus Arbitration Register (DBAR, 0x9Ah)

Bit	7	6	5	4	3	2	1	0
Name	BUS_GR		Reserved					BUS_REQ
Reset Value	0				00			0

Bit	Name	Access	Description
0	BUS_REQ	RO	Bus Request. The Memory Arbiter will set this bit to "1" to request to switch the ownership
			of xDATA memory bus to DMA engine in order to perform DMA transfer. The types of
			event to trigger this bit being set include software DMA transfer, and Ethernet packet
			transmit/receive events. Upon DMA transfer completed, the Memory Arbiter will clear this
			bit automatically.
			Note: The interrupt service routine (ISR) of INT2 for DMA transfer in software should keep
			polling this bit and only after seeing this bit being cleared, then the ISR is allowed to exit.
6:1	Reserved	RO	
7	BUS_GR	W1/R	Bus Grant. The CPU or software sets this bit to 1 to grant the ownership of xDATA memory
			bus to DMA engine allowing the DMA transfer to start. Upon DMA transfer completed, the
			Memory Arbiter will clear this bit automatically.

Note:

1. The interrupt for initiating DMA transfer is being assigned to INT2. Software should set INT2 to high priority to avoid other interrupt sources to intercept the DMA transfer in progress. When the CPU is servicing a high priority interrupt within an ISR while another high priority interrupt is occurring, the CPU will continue servicing the pending ISR until finished.

4.6.3 Flash Memory Address Re-mapping for the Lower 16KB Boot Sector

The lower 16KB (0x00_0000 to 0x00_3FFF) of CPU's program memory space is being defined as ROM space to the CPU and the AX11001/AX11005 embeds a 16KB internal Program SRAM for storing program code of that address space. By default, the CPU program read or program write access to that 16KB space would be accessing the 16KB internal Program SRAM. When there comes the time that the software needs to read or write the lower 16KB (0x00_0000 to 0x00_3FFF) of the on-chip Flash memory, it needs a **Flash memory Address Re-mapping mechanism** to be able to gain access to the on-chip Flash memory instead of the on-chip 16KB Program SRAM.

Following section describes proper software procedures to perform read/write access to the lower 16KB of on-chip Flash memory.

On-chip Flash Memo	ry Physical Address	3	CPU's Program Memory Address		
0x01_FFFF or 0x07_FFFF				0x01_FFFF or 0x07_FFFF	
	Runtime code				
0x00_8000				0x00_8000	
0x00 7FFF 0x00_4000	16K~32KB	Address mapping directly	16K~32KB	0x00 7FFF 0x00_4000	
0x00_3FFF 0x00_0000	16K Boot Sector	Program code mirrored	16KB internal Prog. SRAM	0x00_3FFF 0x00_0000	

Figure 36: Flash Memory Address Without Re-Mapping, FARM bit = 0 (in SFR register CSREPR.2) (default)

On-chip Flash Memory Physical Address

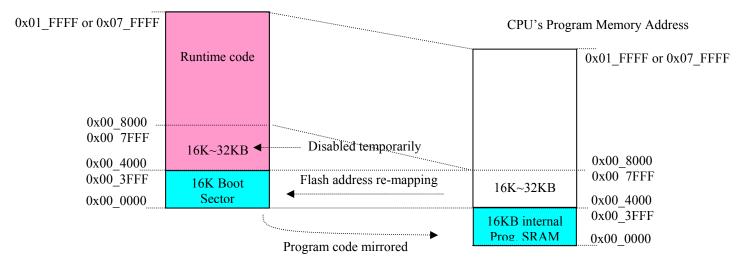


Figure 37: Flash Memory Address Re-Mapping Enabled, FARM bit = 1 (in SFR register CSREPR.2)

Case 1: Programming procedure to read the lower 16KB of on-chip Flash memory

- Step 1: Software first writes FARM bit = 1 (CSREPR.2, 0x8F), to enable Flash memory address re-mapping mechanism.
- Step 2: Reading any program address space 16K~32K (0x00_4000~0x007FFF) will be remapped to the 0K~16K (0x00_0000~0x00_3FFF) address space of the Flash memory. Therefore, the memory content of lower 16KB of the on-chip Flash memory can now be accessed. Note that the accessing of the 16KB~32KB address space of on-chip Flash memory is temporarily disabled after step 1.
- Step 3: After done with accessing the lower 16KB of on-chip Flash memory, the software then writes FARM bit = 0 (CSREPR.2), to disable Flash memory address re-mapping mechanism. Now the access of program address space 16KB~32KB would revert back to the same address space of the on-chip Flash memory as usual, and the accessing of 0K~16K (0x00_0000~0x00_3FFF) address space of the Flash memory is disabled again.

Case 2: Programming procedure to write the lower 16KB of on-chip Flash memory

- Step 1: Software first writes PWE bit = 1 (PCON.4, 0x87), to enable program write in CPU.
- Step 2: Software writes FARM bit = 1 (CSREPR.2, 0x8F), to enable Flash memory address re-mapping mechanism. Now accessing the 0K~16K (0x00_0000~0x00_3FFF) address space of the Flash memory would come from software accessing the program address space 16K~32K (0x00_4000~0x007FFF).
- Step 3: Programming sequence for performing "Sector Erase" commands for on-Flash memory:
 - 1. Write (0x4000 + 0x555) = 0xAA
 - 2. Write (0x4000 + 0x2AA) = 0x55
 - 3. Write (0x4000 + 0x555) = 0x80
 - 4. Write (0x4000 + 0x555) = 0xAA
 - 5. Write (0x4000 + 0x2AA) = 0x55
 - 6. Write (0x4000 + 0x000) = 0x30
 - 7. Repeatedly read (0x4000 + 0x3FFF). If equal to 0xFF, the Sector Erase command is completed.

Step 4: Programming sequence for performing "Byte Program" commands for on-Flash memory:

- 1. Write (0x4000 + 0x555) = 0xAA
- 2. Write (0x4000 + 0x2AA) = 0x55
- 3. Write (0x4000 + 0x555) = 0xA0
- 4. Write (0x4000 + PA) = PD (where PA: any 0~16KB of on-chip Flash memory address to be programmed, PD: write data)
- 5. Repeatedly read (0x4000 + PA). If equal to PD, then the "Byte Program" command is completed.

Step 5: Software writes FARM bit = 0 (CSREPR.2), to disable Flash memory address re-mapping.

Step 6: Software writes PWE bit = 0 (PCON.4), to disable program write in CPU.

Case 3: Programming procedure to write 16KB above address space of on-chip Flash memory

Step 1: Software first writes PWE bit = 1 (PCON.4, 0x87), to enable program write in CPU.

Step 2: Software writes FARM bit = 1 (CSREPR.2, 0x8F), to enable Flash memory address re-mapping mechanism.

Step 3: Programming sequence for enabling "Byte Program" command for on-Flash memory:

- 1. Write (0x4000 + 0x555) = 0xAA
- 2. Write (0x4000 + 0x2AA) = 0x55
- 3. Write (0x4000 + 0x555) = 0xA0

Step 4: Software writes FARM bit = 0 (CSREPR.2), to disable Flash memory address re-mapping mechanism.

Step 5: Now perform the actual byte write command.

- 1. Write PA = PD (where PA: any 16KB above Flash memory address to be programmed, PD: write data)
- 2. Repeatedly read PA. If equal to PD, then the Program command is completed.

Step 6: Software writes PWE bit = 0 (PCON.4), to disable program write in CPU.

4.6.4 Flash Programming Controller

When asserting chip reset (via RST_N pin) to AX11001/AX11005 and also asserting "BURN_FLASH_EN" pin to high, the AX11001/AX11005 will enter into Flash memory programming enabled mode. Upon enabled, the Flash programming controller can start receiving command packets from Flash Programming utilities through the RXD0 pin of UART0, decoding the packets, passing the decoded command to perform on-chip Flash memory erase/programming tasks, and then returning the acknowledgement packets with the result back to Flash Programming utilities running on a PC. The Flash programming controller is responsible for generating the waveform for Flash memory access. The Flash programming speed via UART0 can support two speeds, 115.2 Kbps (BURN_FLASH_912K pin set to low) and 921.6Kbps (BURN_FLASH_912K pin set to high).

Note that during Flash programming enabled mode, the internal CPU core is not running. Therefore, after Flash programming is completed, another chip reset (via RST_N pin) should be applied to AX11001/AX11005 without asserting "BURN_FLASH_EN" pin to allow CPU to start running normally.

4.7 DMA Engine

As shown in figure below, the DMA engine supports direct External Data (xDATA) Memory read and write access without CPU intervention for the TCP/IP Offload Engine (TOE) as well as bulk data copy for software DMA.

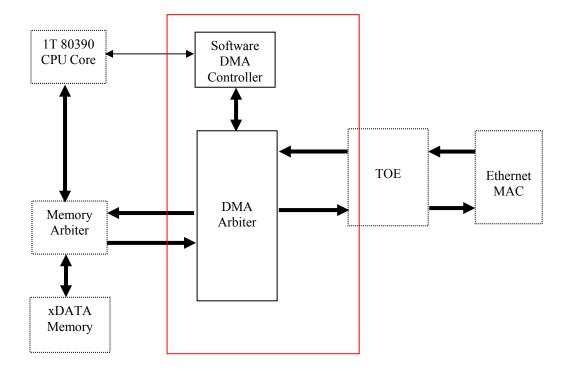


Figure 38: DMA Engine Block Diagram

4.7.1 DMA Transfers for Ethernet Packet Receive and Transmit

Packet Receive

During normal Ethernet packet receive process, the Ethernet MAC shall forward the received packets from its receive buffer to TOE receive block which then moves and stores the received packets into xDATA memory via DMA write access. The received packets will be stored in "Receive Packet Buffer Ring" region of xDATA memory being defined by software during initialization. See section 4.14 for more detailed description. During this process, the DMA arbiter will receive DMA request from TOE receive block and then it will trigger the Memory Arbiter to generate an interrupt to CPU on INT2 to notify CPU the pending DMA request from TOE receive block and waiting for CPU to grant it. After CPU grants it, if the received packet size is more than 256 bytes, it will be executed in several transfers, with maximum of 256 bytes per transfer. For example, as shown in Figure 40, for a 1500 bytes Ethernet packet, it will take up to 6 DMA transfers to finish moving it into "Receive Packet Buffer Ring" region of xDATA memory. The gap between each transfer is programmable by TL4DGR register, see section 4.14 for more details. In DMA write access case, each byte will take (CKCON[2:0] +2) operating system clocks to write into xDATA memory, where CKCON is SFR register offset 0x8E.

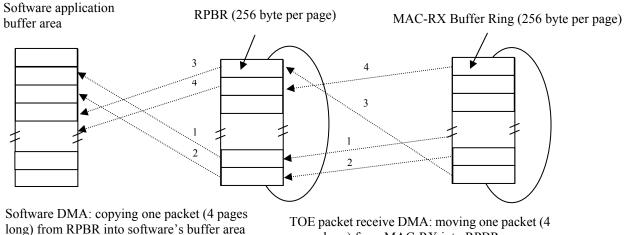
Packet Transmit

In normal Ethernet packet transmit process, the software first prepares the to-be-transmitted packets and stores them in the "Transmit Packet Buffer Ring" region of xDATA memory being defined by software during initialization. The software then configures the TL4CMR [SP] bit to initiate the packet transmit process in TOE transmit block for moving packets to Ethernet MAC transmit buffer. Please Refer to section 4.14 for more details. Now the TOE transmit block will send DMA request to DMA arbiter which again will trigger the Memory Arbiter to generate an interrupt to CPU on INT2 to notify CPU the pending DMA request from TOE transmit block and waiting for CPU to grant it. After CPU grants it, if the to-be-transmitted packet size is more than 256 bytes, it will be executed in several transfers, with maximum of 256 bytes per transfer. For example, for a 1518 bytes Ethernet packet, it will take up to 6 DMA transfers to finish moving it out of "Transmit Packet Buffer Ring" region of xDATA memory. The gap between each transfer is programmable by TL4DGR register. During this DMA read access case, each byte will take (CKCON[2:0] +2) operating system clocks to read from xDATA memory, where CKCON is SFR register offset 0x8E.

4.7.2 Software DMA

The software DMA can perform bulk data copy from one region of xDATA memory to another region in a timely manner, based on software configuration. This hardware based software DMA controller can greatly reduce the time spending in bulk data movement very often needed in network protocol stack processing, and, hence, help achieve better performance on micro-controller computing power.

If software DMA transfer size is more 128 bytes, it will be executed in several transfers, with maximum of 128 bytes per transfer. For example, to copy 512 bytes data from one region to another region of xDATA memory, it will take 4 DMA transfers to complete. The gap between each transfer is programmable by TL4DGR register.


When software DMA transfer involves copying one Ethernet packet from the "Receive Packet Buffer Ring (RPBR)" to the software's application buffer area or from the software's application buffer area to the "Transmit Packet Buffer Ring (TPBR)", in that case, the software DMA controller has been designed with "ring-aware" architecture and can deal with the ring structure of RPBR and TPBR automatically, particularly, the buffer ring wrap-around issue.

For example, when copying a packet from RPBR to software's application buffer area, if the packet data happens to across the ring boundary, (i.e., the packet data starts at the last few pages of the ring and wraps around to the first few pages of the ring), the software DMA controller will automatically make sure the packet data is retrieved from the ring structure of RPBR without having the software to worry about the packet crossing RPBR ring boundary issue and having to perform this software DMA in two times to take care of the boundary issue.

The same applies to the case when the software needs to move an Ethernet packet from software's application buffer area into TBPR, and software doesn't have to worry about packet data crossing TPBR ring boundary.

However, please note that the software DMA controller do not have the knowledge of data structure of software's application buffer area, therefore, it cannot deal with the ring boundary crossing issue for software's application buffer area. It's software's responsibility to cover its buffer area wrap-around scenario when software initiates such DMA transfer. Because for non-RPBR and non-TPBR types of DMA transfers, the software DMA controller can only increase DMA source address or target address linearly after each byte transferred, therefore, it can not adjust these address for the ring type of data structure in software's application buffer area in xDATA memory.

pages long) from MAC-RX into RPBR

Figure 39: Ring-aware Software DMA Example

Software DMA and Millisecond Timer Related SFR Register Map

Address	Name	Description
0x9B	DCIR	DMA Command Index Register is used to indicate the address of to-be-accessed register
		listed in Table 12.
0x9C	DDR	DMA Data Register is used to read data from or write data to the specific register provided
		by DCIR.
0x94	SDSTSR	Software DMA and Millisecond Timer Status Register

Table 11: Software DMA and Millisecond Timer Related SFR Register Map

DMA Command Index Register (DCIR, 0x9B)

Bit	7	6	5	4	3	2	1	0
Name	RI							
Reset Value	0x00							

Bit	Name	Access	Description				
			Register Index	legister Index.			
			Value	Description			
[7:0]	RI	WO	0x00~0x0f	Indicate to access which of the Software DMA and Millisecond Timer			
				registers listed in Table 12.			
			0xff	Command Abort			

DMA Data Register (DDR, 0x9C)

Bit	7	7 6 5 4 3 2 1 0									
Name		DR									
Reset Value	0x00										

Bit	Name	Access	Description
[7:0]	DR	R/W	Data Register is used to write data to or read data from Software DMA and Millisecond Timer registers.

86

Software DMA and Millisecond Timer Status Register (SDSTSR, 0x94)

Bit	7	6	1	0
Name			STT	SDC
Reset Value				

Bit	Name	Access	Description
0	SDC		The Software DMA transfer is Completed. When reading "1", this bit indicates that the software DMA transfer requested via SDCSR has been completed.
1	STT	CP	The Millisecond Timer has Timed out. When reading "1", this bit indicates that the Millisecond Timer has reached the timeout value being set in MSTR register.
7:2	Reserved		

Software DMA and Millisecond Timer Register Indirect Access Method

Software shall use indirect access method through DCIR and DDR registers to read or write the Software DMA and Millisecond Timer register listed in Table 12 below.

Read a register from Software DMA and Millisecond Timer:

- Step 1. Write DCIR: Software indicates the Software DMA or Millisecond Timer register address to be accessed as the data and write it to the SFR register DCIR.
- Step 2. Read DDR: Software then read SFR register DDR. The data read from DDR is the Software DMA or Millisecond Timer register data indicated in step 1. Keep reading from DDR if the Software DMA or Millisecond Timer registers have more than one byte, in that case, the first byte being read back is LSB byte.

Write a register to Software DMA and Millisecond Timer:

- Step 1. Write DDR: Software writes the data you want to write into Software DMA or Millisecond Timer registers to the SFR register DDR. Keep writing to DDR if the Software DMA or Millisecond Timer registers have more than one byte, in that case, the first byte being written should be LSB byte.
- Step 2. Write DCIR: After writing Software DMA or Millisecond Timer register data to DDR, software then indicates the target Software DMA or Millisecond Timer register address as data and write it to DCIR.

Address	Register Name	Description
0x00	SDCSR	Software DMA Command Status Register
0x02	SDSSAR	Software DMA Source Starting Address Register (24 bits)
0x06	SDTSAR	Software DMA Target Starting Address Register (24 bits)
0x0A	SDBCR	Software DMA Byte Count Register (16 bits)
0x0C	MSTR	Millisecond Timer Register (10 bits)

Software DMA and Millisecond Timer Register Map

Table 12: Software DMA and Millisecond Timer Register Map

Software DMA Command Status Register (SDCSR, 0x00)

Bit	7	6	5	4	3	2	1	0
Name	EI_SDC	Reserved	TAIT	SAIR	Reserved	DMAERR	FS	GO
Reset Value	0	0	0	0	0	0	0	0

Bit	Name	Access	Description
0	GO	W1/R	Software sets GO bit to "1" to initiates the "software DMA transfer" which facilitates
			copying a block of data from the specified range of xDATA Memory to another
			specified range of xDATA Memory. This bit will remain "1" while the DMA transfer is
			still in progress and will be cleared automatically after the requested DMA transfer is
			completed or stopped by software via FS bit. Note: Software can only write "1" to this bit
1	DO	11/D	and can't write "0".
1	FS	W1/R	Force to Stop the software DMA transfer in progress. This bit will remain "1" while the
			software DMA controller is trying to stop the DMA transfer and will be cleared
2	DMAERR	CR	automatically after software DMA controller is completely stopped. DMA Error indication. When reading back a "1", it indicates that the requested software
2	DWAEKK	CK	DMA Error indication. when reading back a 1, it indicates that the requested software DMA has encountered error and can't be finished.
			DWA has encountered error and can't be minshed.
			The condition that causes DMA error could be that, for example:
			- The value of SDBCR register = 0 byte
			- Or the value of target memory address, SDTSAR register is equal to the value of
			source memory address, SDSSAR register
			- Or the memory address range of target (SDTSAR + SDBCR) is overlapping with the
			memory address range of the source (SDSSAR + SDBCR).
			- If SAIR bit is set and SDSSAR is not in the range of RSPP and REPP.
			- If TAIT bit is set and SDTSAR is not in the range of TSPP and TEPP.
3	Reserved		
4	SAIR	W1/R	Source Address Is in RPBR. Software sets SAIR to "1" at the same time as setting GO bit
			to "1" to indicate that the requested DMA involves copying packet data from RPBR to
			the target location. This way the software DMA controller will base on the ring structure
			of RPBR to locate the source data and will wrap around the ring of RPBR when the last
			page of the ring is hit. This bit will remain "1" while the DMA transfer is still in progress
			and will be cleared automatically after the requested DMA transfer is completed or stopped by software via FS bit.
5	TAIT	W1/R	Target Address Is in TPBR. Software sets TAIT to "1" at the same time as setting GO bit
5	IAII	W 1/K	to "1" to indicate that the requested DMA involves copying packet data from source
			location to TPBR. This way the software DMA controller will base on the ring structure
			of TPBR to write the data and will wrap around the ring of TPBR when the last page of
			the ring is hit. This bit will remain "1" while the DMA transfer is still in progress and will
			be cleared automatically after the requested DMA transfer is completed or stopped by
			software via FS bit.
6	Reserved		
7	EI_SDC	R/W	Enable Interrupt whenever the requested Software DMA is Completed. The interrupt is
			asserted on INT 5.

Software DMA Source Starting Address Register (SDSSAR, 0x02)

Bit	7	7 6 5 4 3 2 1 0										
Name	S_ADDR 0 S_ADDR 1											
S ADDR 2												
Reset Value		0x00_0000										

Bit	Name	Access	Description
7:0	S_ADDR 0	R/W	The Source starting Address for software DMA transfer. This is the 24-bit starting
15:8	S_ADDR 1		address of the source memory block to be copied from in CPU's xDATA Memory.

23:16 S_ADDR 2

Software DMA Target Starting Address Register (SDTSAR, 0x06)

Bit	7	7 6 5 4 3 2 1 0									
Name		T_ADDR 0									
		T_ADDR 1									
		T ADDR 2									
Reset Value		0x00_0000									

Bit	Name	Access	Description
7:0	T_ADDR 0	R/W	The Target starting Address for software DMA transfer. This is the 24-bit starting
15:8	T_ADDR 1		address of target memory block to be copied to in CPU's xDATA Memory.
23:16	T ADDR 2		

Software DMA Byte Count Register (SDBCR, 0x0A)

Bit	7 6 5 4 3 2 1 0										
Name	B_CNT 0										
		B CNT 1									
Reset Value	0x0000										

Bit	Name	Access	Description
7:0	B_CNT 0	R/W	The block of data in terms of bytes the software DMA transfer is to be copied from source
15:8	B_CNT 1		memory address to target memory address. Note that if the byte count is greater than 128
	_		bytes, then the software DMA transfer will be executed in separate transfer with 128 bytes
			per transfer until all the requested bytes are copied to the target memory block.

Millisecond Timer Register (MSTR, 0x0C)

Bit	7	6	5	4	3	2	1	0
Name	MS_TMR 0							
	EI_STT	Reserved	RS_TMR	ST_TMR	Rese	erved	MS_	ГMR 1
Reset Value		0x0001						

Bit	Name	Access	Description
7:0	MS_TMR 0	R/W	Millisecond Timer Timeout value. Each count is about 1 msec in time. For example,
9:8	MS_TMR 1		0x001 = 1 msec. $0x002 = 2$ msec. The maximum timeout is 1024 msec. Whenever the
			Million-Second Timer reaches the timeout value being set here, the timer will reset to 0
			to restart the timer all over again. And if the EI_STT register is enabled, it will also
			generate an interrupt on INT5 to CPU.
11:10	Reserved		
12	ST_TMR	R/W	Setting the ST_TMR bit to "1" to enable the Millisecond Timer to start counting.
13	RS_TMR	R/W1	Setting the RS_TMR bit to "1" to reset the Millisecond Timer to 0 and this bit will then
			be cleared to "0" by hardware automatically.
14	Reserved	R/W	
15	EI_STT	R/W	Enable Interrupt whenever the Millisecond Timer reaches the timeout value being set
			in MS_TMR 1,0 register. The interrupt is asserted on INT 5.

Software DMA Programming Procedure

Software needs to use indirect access procedure to read or write the specific Software DMA or Millisecond Timer registers through SFR registers, DCIR (0x9B) and DDR (0x9C). Following describes how to initiate a Software DMA transfer.

- 1. Software first writes to DDR register with data of S_ADDR 0 for SDSSAR.
- 2. Software writes to DDR register with data of S_ADDR 1 for SDSSAR.
- 3. Software writes to DDR register with data of S_ADDR 2 for SDSSAR.
- 4. Software writes to DCIR register with data of 0x02 (the address of SDSSAR)
- _____
- 5. Software writes to DDR register with data of T_ADDR 0 for SDTSAR.
- 6. Software writes to DDR register with data of T_ADDR 1 for SDTSAR.
- 7. Software writes to DDR register with data of T_ADDR 2 for SDTSAR.
- 8. Software writes to DCIR register with data of 0x06 (the address of SDTSAR)

9. Software writes to DDR register with data of B_CNT 0 for SDBCR.

10. Software writes to DDR register with data of B_CNT 1 for SDBCR.

11. Software writes to DCIR register with data of 0x0A (the address of SDBCR)

- 12. Software then writes to DDR register with data of SDCSR (e.g. set GO = 1, FS = 0).
- 13. Software then writes to DCIR register with data of 0x00 (the address of SDCSR)

- 14. Now software can wait for a while or wait for the interrupt to verify if the requested software DMA transfer is completed by software DMA controller or not.
- 15. Software first writes to DCIR register with data of 0x00 (the address of SDCSR).
- 16. Software then reads from DDR register with data of SDCSR. If the GO bit is still "1", then the DMA operation is still in progress. Until software reads "0" on GO bit, it indicates that the DMA operation is completed.
- 17. If software reads back a "1" on DMAERR bit, that means that an error has occurred during the software DMA transfer. At this point, the software has to force to stop the unfinished DMA by setting the FS bit to "1" in order to clear the GO bit.
- 18. Software then writes to DDR register with data of SDCSR (e.g. set FS = 1).
- 19. Software then writes to DCIR register with data of 0x00 (the address of SDCSR)

4.7.3 DMA Arbitration

The DMA arbiter arbitrates the simultaneous DMA requests that come from Ethernet packet receive, Ethernet packet transmit and software DMA. If TOE and software DMA both request DMA transfers at the same time, software's DMA request will be granted first. The arbitration rules are as follows:

- Software DMA transfer has priority over DMA transfers for Ethernet packet receive and packet transmit.
- Between DMA transfer for packet receive and packet transmit, it is round-robin fashion.

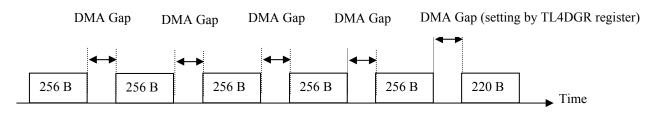


Figure 40: Example: Ethernet Packet Receive DMA Transfer Only (receiving a 1500-byte packet)

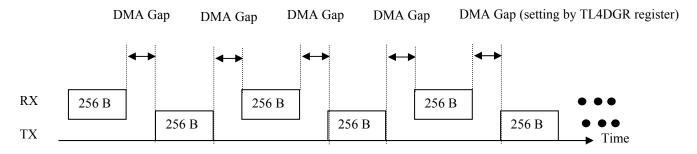


Figure 41: Example: Ethernet Packet Receive and Transmit DMA Transfers Simultaneously (receiving and transmitting a 1500-byte packet)

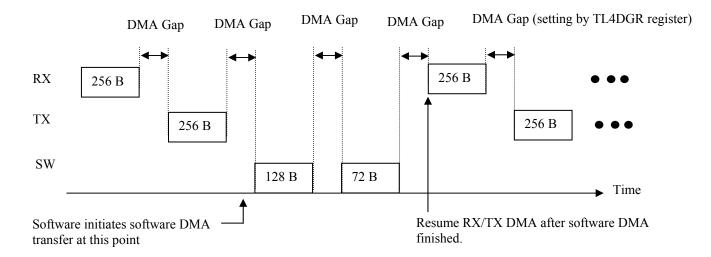


Figure 42: Example: Ethernet Packet Receive and Transmit and software DMA Transfers Simultaneously (receiving and transmitting a 1500-byte packet, and software copying a 200-bytes data block)

4.8 Interrupt Controller

The interrupt controller supports 2 external interrupt pins, INT0 and INT1, each having two levels of interrupt priority control. They can be in high or low-level priority group (set via SFR register IP and EIP). The INT0 and INT1 external interrupt pins can be either low-level trigger or falling-edge trigger. Also, the interrupt controller supports various interrupt requests internal to the AX11001/AX11005, again each having two levels of interrupt priority control.

The interrupts flag summary is as shown in Table 13 below. Each interrupt vector can be individually enabled or disabled by setting or clearing a corresponding bit in the SFR register IE (0xA8) and EIE (0xE8). The IE contains global interrupt system disable/enable bit called EA bit (IE.7), which has to be set in order to enable individual interrupt requests listed in Table 13.

Interrupt Flag	Function	Active (level/edge)	Flag resets	Vector	Natural priority
IE0	The external interrupt input pin, INT0	Low/Falling	Hardware	0x03	1
TF0	The internal Timer 0 interrupt request	-	Hardware	0x0B	2
IE1	The external interrupt input pin, INT1	Low/Falling	Hardware	0x13	3
TF1	The internal Timer 1 interrupt request	-	Hardware	0x1B	4
TI0 & RI0	The internal UART 0 interrupt request	-	Software	0x23	5
TF2	The internal Timer 2 interrupt request	-	Software	0x2B	6
TI1 & RI1	The internal UART 1 interrupt request	-	Software	0x33	7
INT2F	The internal DMA transfer interrupt request for TOE and software DMA mode. Please set to high priority	-	Hardware	0x3B	8
INT3F	The internal programmable counter array interrupt request	-	Hardware	0x43	9
INT4F	The internal peripheral interrupt request for TOE, MAC/PHY, I2C, SPI, 1-Wire, UART2, etc.	-	Hardware	0x4B	10
INT5F	The internal software DMA complete and millisecond timer timeout interrupt	-	Software	0x53	11
INT6F	The wake-up interrupt request (resume from CPU STOP mode)	-	Software	0x5B	12
WDIF	Internal watchdog interrupt	-	Software	0x63	13

Table 13: Interrupts Flag Summary

4.8.1 Interrupt Controller SFR Register Map

Address	Name	Description
0xA8	IE	Interrupt Enable Register
0xB8	IP	Interrupt Priority Register
0x88	TCON	Timer 0,1 Configuration Register
0x98	SCON0	UART 0 Configuration Register
0xC0	SCON1	UART 1 Configuration Register
0xE8	EIE	Extended Interrupt Enable Register
0xF8	EIP	Extended Interrupt Priority Register
0x91	EIF	Extended interrupt Flag Register
0x9E	PISS1R	Peripheral Interrupt Status Summary 1 Register
0x9F	PISS2R	Peripheral Interrupt Status Summary 2 Register

Table 14: Interrupt Controller SFR Register Map

Interrupt Enable Register (IE, 0xA8)

Bit	7	6	5	4	3	2	1	0
Name	EA	ES1	ET2	ES0	ET1	EX1	ET0	EX0
Reset Value		0x00						

Bit	Name	Access	Description
			Enable INT0 interrupt.
0	EX0	R/W	1: Enabled.
			0: Disabled.
			Enable Timer 0 interrupt.
1	ET0	R/W	1: Enabled.
			0: Disabled.
			Enable INT1 interrupt.
2	EX1	R/W	1: Enabled.
			0: Disabled.
			Enable Timer 1 interrupt.
3	ET1	R/W	1: Enabled.
			0: Disabled.
			Enable UART0 interrupt.
4	ES0	R/W	1: Enabled.
			0: Disabled.
			Enable Timer 2 interrupt.
5	ET2	R/W	1: Enabled.
			0: Disabled.
			Enable UART1 interrupt.
6	ES1	R/W	1: Enabled.
			0: Disabled.
			Enable global interrupt.
7	EA	R/W	1: Enabled.
			0:Disabled.

Interrupt Priority Register (IP, 0xB8)

Bit	7	6	5	4	3	2	1	0
Name	Reserved	PS1	PT2	PS0	PT1	PX1	PT0	PX0
Reset Value		0x00						

Bit	Name	Access	Description					
0	PX0	R/W	TO priority level control.1: High level.0: Low level.					
1	PT0	R/W	mer 0 priority level control. 1: High level. 0: Low level.					
2	PX1	R/W	NT1 priority level control. 1: High level. 0: Low level.					
3	PT1	R/W	'imer 1 priority level control. 1: High level. 0: Low level.					
4	PS0	R/W	UART0 priority level control. 1: High level. 0: Low level.					
5	PT2	R/W	Timer 2 priority level control.					

Copyright © 2006-2011 ASIX Electronics Corporation. All rights

Γ				1: High level.
				0: Low level.
	6	PS1	R/W	UART1 priority level control. 1: High level. 0: Low level.
	7	Reserved		

In TCON register, all of bits that generate interrupts can be set or cleared by software, with the same result as if they had been set or cleared by hardware. That is, interrupts can be generated or pending interrupts can be cancelled by software. The only exceptions are the request flags IE0 bit (TCON.1) and IE1 bit (TCON.3). If the external interrupt pin INT0 or INT1 is programmed to be level activated, IE0 and IE1 are controlled by the external source via pin INT0 and INT1, respectively. Thus, writing a one to these bits will not set the request flag IE0 and/or IE1. The same exception also applies to INT5F and INT6F.

Timer 0,1 Register (TCON, 0x88)

Bit	7	6	5	4	3	2	1	0
Name	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
Reset Value		0x00						

Bit	Name	Access	Description
			INTO level or edge sensitivity.
0	IT0	R/W	1: Edge triggered.
			0: Level triggered.
1	IE0	RO	INT0 interrupt flag. This bit is cleared by hardware automatically when CPU branches to
1	ILU	KO	interrupt routine.
			INT1 level or edge sensitivity.
2	IT1	R/W	1: Edge triggered.
			0: Level triggered.
3	IE1	RO	INT1 interrupt flag. This bit is cleared by hardware automatically when CPU branches to
5	IL/I	KO	interrupt routine.
			Timer 0 run control bit.
4	TR0	R/W	1: Enabled.
			0: Disabled.
5	TF0	R/W	Timer 0 interrupt (overflow) flag. This bit is cleared by hardware when CPU branches to
5	110	IX/ W	interrupt routine.
			Timer 1 run control bit.
6	TR1	R/W	1: Enabled.
			0: Disabled.
7	TF1	R/W	Timer 1 interrupt (overflow) flag. This bit is cleared by hardware when CPU branches to
	111	11/ 11	interrupt routine.

UARTO Configuration Register (SCON0, 0x98)

Bit	7	6	5	4	3	2	1	0
Name	SM00	SM01	SM02	REN0	TB08	RB08	TI0	RIO
Reset Value				0x	00			

Bit	Name	Access	Description
0	RI0	R/W	UART0 receive interrupt flag, set by hardware after completion of a serial reception. Must be
0	KI0	K/ W	cleared by software.
1	TIO	R/W	UART0 transmit interrupt flag, set by hardware after completion of a serial transfer. Must be
1	110	K/ W	cleared by software.
2	RB08	R/W	In Modes 2 and 3 it is the 9th data bit received. In Mode 1, if SM02 is 0, RB08 is the stop bit.
2	KD00	K/ W	In Mode 0 this bit is not used.

3	TB08	R/W	The 9th transmitted data bit in Modes 2 and 3. Set or cleared by the CPU, depending on the function it performs (parity check, multiprocessor communication etc.).
4	REN0	R/W	If set, enables serial reception on UART0. Cleared by software to disable reception.
5	SM02	R/W	Enables a multiprocessor communication feature.
6	SM01	R/W	Sets baud rate.
7	SM00	R/W	Sets baud rate.

UART1 Configuration Register (SCON1, 0xC0)

Bit	7	6	5	4	3	2	1	0
Name	SM10	SM11	SM12	REN1	TB18	RB18	TI1	RI1
Reset Value				0x	00			

Bit	Name	Access	Description
0	RI1	R/W	UART1 receive interrupt flag, set by hardware after completion of a serial reception. Must
0	KII	IV W	be cleared by software.
1	TI1	R/W	UART1 transmit interrupt flag, set by hardware after completion of a serial transfer. Must be
1	111	K/W	cleared by software.
2	RB18	R/W	In Modes 2 and 3 it is the 9th data bit received. In Mode 1, if SM12 is 0, RB18 is the stop bit.
2	KDIO	K/W	In Mode 0 this bit is not used.
3	TB18	R/W	The 9th transmitted data bit in Modes 2 and 3. Set or cleared by the CPU, depending on the
3	1010	N/ W	function it performs (parity check, multiprocessor communication etc.).
4	REN1	R/W	If set, enables serial reception on UART1. Cleared by software to disable reception.
5	SM12	R/W	Enables a multiprocessor communication feature.
6	SM11	R/W	Sets baud rate.
7	SM10	R/W	Sets baud rate.

Extended Interrupt Enable Register (EIE, 0xE8)

Bit	7	7 6		4	3	2	1	0
Name	Reser	Reserved		EINT6	EINT5	EINT4	EINT3	EINT2
Reset Value				0x	00			

Bit	Name	Access	Description
0	ENIT2	R/W	Enable INT2 interrupt for the DMA transfer interrupt request, which comes from the Memory Arbiter for the TOE or software DMA mode. 1: Enabled. 0: Disabled.
1	ENIT3	R/W	Enable INT3 interrupt for the programmable counter array interrupt request. 1: Enabled. 0: Disabled.
2	EINT4	R/W	 Enable INT4 interrupt for the peripheral interrupt requests, which may be generated by TOE, MAC/PHY, I2C, SPI, 1-Wire, and UART2 modules. 1: Enabled. When enabled, the summary of these peripheral interrupts are given in SFR register, PISS1R (0x9E) and PISS2R (0x9F). 0: Disabled.
3	EINT5	R/W	Enable INT5 interrupt for the internal software DMA complete and millisecond timer timeout interrupt. 1: Enabled. 0: Disabled.
4	EINT6	R/W	Enable INT6 interrupt for the wake-up interrupt request (when resuming from CPU STOP mode). 1: Enabled. 0: Disabled.
5	EWDI	R/W	Enable Watchdog interrupt. 1: Enabled.

 0: Disabled.

 7:6

 Reserved

Extended Interrupt Priority Register (EIP, 0xF8)

Bit	7	6	5	4	3	2	1	0
Name	Reser	Reserved		PINT6	PINT5	PINT4	PINT3	PINT2
Reset Value			PWDI PINT6 PINT5 PINT4 PINT3 PI 0x00					

Bit	Name	Access	Description
0	PINT2	R/W	INT2 priority level control for DMA transfer interrupt request for TOE or software DMA mode. Please set to high priority.1: High level.0: Low level.
1	PINT3	R/W	INT3 priority level control for the internal programmable counter array interrupt request.1: High level.0: Low level.
2	PINT4	R/W	 INT4 priority level control for the peripheral interrupt requests, which may be generated by TOE, MAC/PHY, I2C, SPI, 1-Wire, and UART2 modules. 1: High level. 0: Low level.
3	PINT5	R/W	INT5 priority level control for the internal software DMA complete and millisecond timer timeout interrupt request.1: High level.0: Low level.
4	PINT6	R/W	INT6 priority level control for the wake-up interrupt request.1: High level.0: Low level.
5	PWDI	R/W	Watchdog priority level control. 1: High level. 0: Low level.
7:6	Reserved		

Extended Interrupt Flag Register (EIF, 0x91)

Bit	7 6 5		4	3	2	1	0	
Name	Reserved			INT6F	INT5F	INT4F	INT3F	INT2F
Reset Value				0x	00			

Bit	Name	Access	Description
0	INT2F	RO	INT2 interrupt flag for the DMA transfer interrupt request, which comes from the Memory Arbiter for the TOE or software DMA mode. This bit is cleared by hardware automatically when CPU branches to interrupt routine.
1	INT3F		INT3 interrupt flag for the programmable counter array interrupt request. This bit is cleared by hardware automatically when CPU branches to interrupt routine.
2	INT4F	RO	INT4 interrupt flag for the peripheral interrupt requests, which may be generated by TOE, MAC/PHY, I2C, SPI, 1-Wire, and UART2 modules. This bit is cleared by hardware automatically when CPU branches to interrupt routine.
3	INT5F		INT5 interrupt flag for the internal software DMA complete and millisecond timer timeout interrupt. This bit must be cleared by software within interrupt routine.
4	INT6F		INT6 interrupt flag for the wake-up interrupt request (when resuming from CPU STOP mode). This bit must be cleared by software within interrupt routine.
7:5	Reserved		

The on-chip peripheral modules such as TOE, Ethernet MAC, Ethernet PHY, I2C, SPI, 1-Wire, and UART2 share the same interrupt request, INT4. The interrupt requests generated by these modules are first being merged (OR'ed) together to generate one single interrupt signal on INT4 to CPU. When CPU receives interrupt(s) on INT4, the software within interrupt routine can read SFR register, PISS1R and PISS2R to identify the source of pending interrupt(s) is coming from which module(s) and then base on the status provided here to further read the interrupt status register of each modules, corresponding to the bit being flagged.

Peripheral Interrupt Status Summary 1 Register (PISS1R, 0x9Eh)

Bit	7	6	5	4	3	2	1	0
Name	Reserved	I2C_INT	SPI_INT	OW_INT	TOE_INT	ETH_INT	Rese	erved
Reset Value	0	0	0	0	0	0	0	0

Bit	Name	Access	Description
1:0	Reserved	RO	
2	ETH_INT	RO	Reading "1" indicates that the Ethernet MAC/PHY has pending interrupt.
3	TOE_INT	RO	Reading "1" indicates that the TOE has pending interrupt.
4	OW_INT	RO	Reading "1" indicates that the 1-Wire controller has pending interrupt.
5	SPI_INT	RO	Reading "1" indicates that the SPI controller has pending interrupt.
6	I2C_INT	RO	Reading "1" indicates that the I2C controller has pending interrupt.
7	Reserved		

Peripheral Interrupt Status Summary 2 Register (PISS2R, 0x9Fh)

Bit	7	6	5	4	3	2	1	0	
Name		Reserved							
Reset Value	00							0	

Bit	Name	Access	Description
0	UART2_INT	RO	Reading "1" indicates that the UART 2 has pending interrupt.
7:1	Reserved		

4.9 Watchdog Timer

The watchdog timer of AX11001/AX11005 is a user programmable clock counter that can serve as:

- A time-base generator
- An event timer
- System supervisor

As shown in Figure 43, the watchdog timer is driven by the operating system clock, which is supplied to a series of dividers. The divider output is selectable, and determines interval between timeouts. When the timeout is reached, an interrupt flag will be set, and if enabled, a reset will occur (to reset CPU core). The interrupt flag will cause an interrupt to occur if enabled. The reset and interrupt are discrete functions that may be acknowledged or ignored, together or separately for various applications.

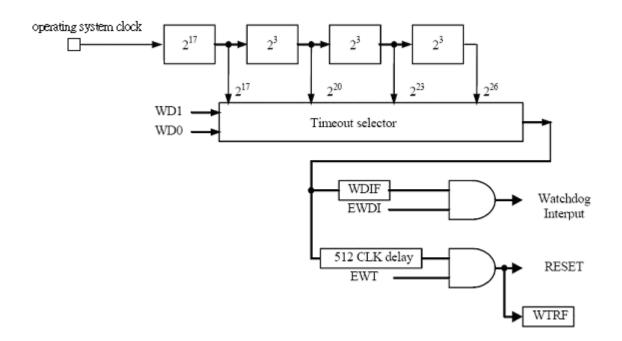


Figure 43: Watchdog Timer Block Diagram

4.9.1 Watchdog SFR Register Map

The watchdog timer has several SFR bits that contribute to its operation. It can be enabled to function as either a reset source, interrupt source, software polled timer or any combination of the three. Both the reset and interrupt have status flags. The watchdog also has a bit that restarts the timer.

Address	Name	Description
0xE8	EIE	Extended Interrupt Enable Register
0xF8	EIP	Extended Interrupt Priority Register
0xA8	IE	Interrupt Enable register.
0xD8	WDCON	Watchdog Control register.
0x8E	CKCON	Clock Control register.

Table 15: Watchdog Timer SFR Register Map

Register	Bit name	Bit position	Description
EIE	EWDI	EIE.5	Enable Watchdog Timer Interrupt.
EIP	PWDI	EIP.5	Priority of Watchdog Timer Interrupt.
CKCON	WD[1:0]	CKCON.7-6	Watchdog Interval
	RWT	WDCON.0	Reset Watchdog Timer
WDCON	EWT	WDCON.1	Enable Watchdog Timer Reset
WDCON	WTRF	WDCON.2	Watchdog Timer Reset flag
	WDIF	WDCON.3	Watchdog Interrupt flag

A summary table showing the bit locations of SFR register used for watchdog function is below.

4.9.2 Watchdog Interrupt

The watchdog interrupt can be turned on/off by EIE register, and set into high/low priority group by EIP register. Please refer to section 4.8 for details. Upon enabled, the watchdog interrupt flag is reported in WDIF bit (WDCON.3). This bit that generates interrupts can be set or cleared by software, with the same result as if they had been set or cleared by hardware. That is, interrupts can be generated or pending interrupts can be cancelled by software.

Watchdog Control Register (WDCON, 0xD8)

Bit	7	6	5	4	3	2	1	0
Name	Reserved				WDIF	WTRF	EWT	RWT
Reset Value	0x00							

Bit	Name	Access	Description
0	RWT	R/W	 Reset Watchdog Timer. 1: Setting RWT resets the watchdog timer count. Timed Access procedure must be used to set this bit before the watchdog timer expires, or a watchdog timer reset and/or interrupt will be generated if enabled. 0: After software sets this bit, the hardware will automatically clear it.
1	EWT	R/W	Enable Watchdog Timer Reset. The reset of CPU by watchdog timer is controlled by this bit. This bit has no effect on the ability of the watchdog timer to generate a watchdog interrupt. Timed Access procedure must be used to modify this bit. 1: Watchdog timer timeout resets CPU. 0: Watchdog timer timeout doesn't reset CPU.
2	WTRF	R/W	 Watchdog Timer Reset Flag. 1: When set by hardware, indicates that a watchdog timer reset has occurred. Set by software do not generate a watchdog timer reset. 0: It is cleared by chip reset pin, RST_N, but otherwise must be cleared by software. The watchdog timer has no effect on this bit, when EWT bit is cleared.
3	WDIF	R/W	 Watchdog Interrupt Flag. 1: WDIF in conjunction with the Enable Watchdog Interrupt bit (EIE.5), and EWT, indicates if a watchdog timer event has occurred and what action should be taken. Setting WDIF in software will generate a watchdog interrupt if enabled. Timed access registers procedure can be used to modify this bit. 0: This bit must be cleared by software before exiting the interrupt service routine, or another interrupt is generated.
7:4	Reserved		

A Watchdog timeout reset will not disable the Watchdog Timer, but restarts the timer. In general, software should set the Watchdog to whichever state is desired, just to be certain of its state.

EWT	EWDI	WDIF	Result
Х	Х	0	No watchdog event.
0	0	1	Watchdog time-out has expired. No interrupt has been generated.
0	1	1	Watchdog interrupt has occurred.
1	0		Watchdog time-out has expired. No interrupt has been generated. Watchdog timer
1	0		reset will occur in 512 clock periods (of operating system clock) if RWT is not strobed.
1	1	1	Watchdog interrupt has occurred. Watchdog timer reset will occur in 512 clock periods
1	1	1	(of operating system clock) if RWT is not set using Timed Access procedure.

Table below summarizes Watchdog Control bits and taken operation concerned to theirs values.

Table 16: Watchdog Bits And Actions

4.9.3 Watchdog Timer Reset

The Watchdog Timer Reset function works as follows. After initializing the correct timeout interval, software first restarts the Watchdog using RWT bit (WDCON.0) and then enables the reset mode by setting the EWT bit (WDCON.1). At any time prior to reaching its user selected terminal value, software can set the RWT bit (WDCON.0). If RWT is set before the timeout is reached, the timer will start over. If the timeout is reached without RWT bit being set, the Watchdog will reset the CPU. Hardware will automatically clear RWT after software sets it. When the reset occurs, the WTRF bit (WDCON.2) will automatically be set to indicate the cause of the reset, however software must clear this bit manually. A Watchdog timeout reset will not disable the Watchdog Timer, but restarts the timer. In general, software should set the Watchdog to whichever state is desired, just to be certain of its state.

4.9.4 Simple Timer

The Watchdog Timer is a free running timer. When used as a simple timer with both the reset (EWT=0, WDCON.1) and interrupt functions disabled (EWDI=0, EIE.5), the timer will continue to set the Watchdog Interrupt flag each time the timer completes the selected timer interval as programmed by WD[1:0] bits (CKCON.7-6). Restarting the timer using the RWT bit (WDCON.0), allows software to use the timer in a polled timeout mode. The WDIF bit is cleared by software or any reset. The Watchdog Interrupt is also available for applications that do not need a true Watchdog Reset but simply a very long timer. The interrupt is enabled using the EWDI bit (EIE.5). When the timeout occurs, the Watchdog Timer will set the WDIF bit (WDCON.3), and an interrupt will occur if the global interrupt enable, EA bit (IE.7) is set. A potential Watchdog Reset is executed 512 clocks after setting of WDIF flag. The WDIF flag indicates the source of the interrupt, and software must clear WDIF flag. Proper use of the Watchdog Interrupt with the Watchdog Reset allows interrupt software to survey the system for errant conditions.

4.9.5 System Monitor

When using the Watchdog Timer as a system monitor, the Watchdog Reset function should be used. If the Interrupt function were used, the purpose of the watchdog would be defeated. For example, assume the system is executing errant code prior to the Watchdog Interrupt. The interrupt would temporarily force the system back into control by vectoring the CPU to the interrupt service routine. Restarting the Watchdog and exiting by an RETI or RET, would return the processor to the lost position prior to the interrupt. By using the Watchdog Reset function, the CPU is restarted from the beginning of the program, and therefore placed into a known state.

4.9.6 Clock Control

The Watchdog timeout selection is made using WD[1:0] bits in Clock control register, CKCON (0x8E), which select Watchdog timer timeout period. The Watchdog is clocked directly from operating system clock, and PMM mode directly affects its timeout period. It is increased 100 times slower when the CPU is in PMM mode (because operating system clock is running 1/100 of original frequency in PMM). This allows the watchdog period to remain synchronized with device operation. Number of clocks needed for timeout does not depend on PMM, and is constant as shown in table in below register. The Watchdog has four timeout selections based on the operating system clock frequency. The selections are a pre-selected number of clocks. Therefore, the actual timeout interval is dependent on the operating system clock frequency. Note that the periods shown above are for the interrupt events. The Reset, when enabled, is generated 512 clocks later regardless of whether the interrupt is used. Therefore, the actual Watchdog timeout period is the number shown above plus 512 clocks (of operating system clock).

Bit	7	6	5	4	3	2	1	0
Name	W	WD		T1M	T0M	MD		
Reset Value			0x07					

Clock Control Register (CKCON, 0x8E)

Bit	Name	Access	Description							
2:0	MD	R/W	MOVX in read/write = 111). The	nstruction for l e pulse length is he MD bits can	Externa equal t be cha	of on-chip 32K bytes SRA 1 Data Memory write and o 1 clock period (MD = 00) nged any time during prog c frequency, the recommer	d read access cycles. T 0) and maximal 8 clock ram execution.	The Minimal periods (MD		
			5	System Clock	Data I	Memory Wait State Settin MD	ng,			
				25Mhz		001				
				50Mhz		001				
				100Mhz		001				
				This bit controls the division of the system clock that drives Timer 0.						
3	T0M	R/W			2	of the operating system cl	1 5			
						2 of the operating system of the system clock that drive				
4	T1M	R/W				5				
-	1 1 1 1 1	10 11	 1: Timer 1 uses a divide-by-4 of the operating system clock frequency. 0: Timer 1 uses a divide-by-12 of the operating system clock frequency. 							
						he system clock that drives		effect when		
5	T2M	R/W		is in baud rate g						
5	1 2111		IX/ W	K/ W	K/ W				of the operating system cl	
			0: Time	er 2 uses a divid	le-by-1	2 of the operating system of	clock frequency.			
			WD bits s	select Watchdog	g timer					
				WD		Watchdog Interval	Number of Clocks			
7:6	WD	R/W		00		2 ¹⁷	131072			
7.0	WD	K/ W		01		2^{20}	1048576			
				10		2^{23}	8388608			
				11		2 ²⁶	67108864			

4.9.7 Timed Access Register

Timed Access registers have built in mechanism preventing them from accidental writes. TA is located at 0xEB SFR address. To do a correct write to such register the following sequence has to be applied:

MOV TA, #0xAA MOV TA, #0x55 ; Any direct addressing instruction writing timed access register.

The time elapsed between first, second, and third operation does not matter (any number of Program Wait Sates is allowed). The only correct sequence is required. Any third instruction causes protection mechanism to be turned on. This means that time protected register is opened for write only for single instruction. Reading from such register is never protected. Timed Access registers are listed in table below.

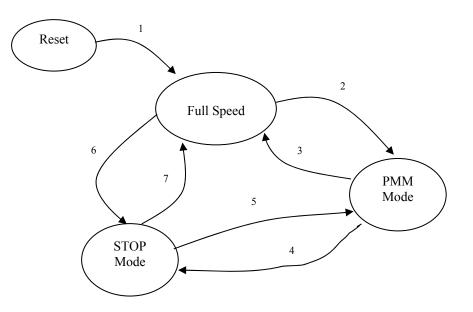

Register name	Description
WDCON (0xD8)	Watchdog Configuration.
ACON (0x9D)	Address Control register.

Table 17: Timed Access Registers

4.10 Power Management Unit

The figure below shows 3 possible modes of operation of AX11001/AX11005. The Full Speed mode is when the operating system clock is running at full clock rate (i.e., 25Mhz, 50Mhz, or 100Mhz, depending on SYSCK_SEL[1:0] setting). The PMM (Power Management Mode) is when the operating system clock is running at 1/100 of full clock rate. The STOP mode is when the operating system clock is turned off and the CPU is in complete stop mode. For typical power consumption of AX11001/AX11005 in these operating modes, please refer to section 5.2.

Symbol	Description
1	Reset condition puts the chip in Full Speed mode after the reset removal.
2	Software sets PMM bit = 1 (PCON.0) with SWB bit = 1 or 0 (PCON.2) to enter the PMM mode with
	switchback enabled or disabled.
3	See section 4.10.2 for detailed description.
4,6	Software sets STOP bit = 1 (PCON.1) to enter STOP mode.
5,7	See section 4.10.3 for detailed description.

Figure 44: AX11001/AX11005 Operating Mode Transition Diagram

4.10.1 Power Management Unit SFR Register Map

Address	Name	Description
0x87	PCON	Power Configuration Register.
0xE9	STATUS	Status Register.

Table 18: Power Management Unit SFR Register Map

4.10.2 Power Management Mode

The Power Management Mode (PMM) feature allows software dynamically matches operating frequency and current consumption with the need for processing power. Instead of the full clock rate provided to the CPU core and most system logic, the PMM mode tells the clock generation block to divide the operating system clock frequency by 100 to operate the chip in reduced speed to conserve power.

The Switchback feature allows the CPU almost immediately returning to full speed mode upon acknowledgment of an external interrupt or a falling edge on a serial port receiver pin, RXD0/RXD1 of UART0/UART1. Additionally, CPU operating in PMM would normally be unable to sample an incoming serial transmission and properly receive it. The switchback feature allows the CPU to return to full speed operation in time to receive incoming serial port data and process interrupts with no loss in performance.

STATUS (0xE9) register is incorporated to prevent the software from accidentally reducing the clock rate during the servicing of an external interrupt or serial port activity. This register can be interrogated to determine if a high priority, or low priority interrupt is in progress, or if serial port activity is occurring. Based on this information the software can delay or reject a planned change in the clock divider rate in clock generation block of AX11001/AX11005.

STATUS Register (STATUS, 0xE9)

Bit	7	6	5	4	3	2	1	0
Name	Reserved	HIP	LIP	Reserved	SPTA1	SPRA1	SPTA0	SPRA0
Reset Value	0x00							

Bit	Name	Access	Description
0	SPRA0 RO		UART0 receiver activity status. 1: UART0 receiver active.
1	SPTA0	RO	0: UART0 receiver inactive. UART0 transmitter activity status. 1: UART0 transmitter active. 0: UART0 transmitter inactive.
2	SPRA1	RO	UART1 receiver activity status. 1: UART1 receiver active. 0: UART1 receiver inactive.
3	SPTA1	RO	UART1 transmitter activity status. 1: UART1 transmitter active. 0: UART1 transmitter inactive.
4	Reserved		
5	LIP	RO	Low Priority (LP) interrupt status. 1: LP interrupt progressing. 0: no LP interrupt.
6	HIP	RO	High Priority (HP) interrupt status. 1: HP interrupt progressing. 0: no HP interrupt.
7	Reserved		

When PMM is invoked via setting PMM bit (PCON.0), it controls the clock generation block to divide the operating system clock frequency by 100. Note that all internal functions, on-chip timers (including serial port baud rate generation), watchdog timer, millisecond timer, and software timing loops will run at the reduced speed. In addition, use of the switchback feature is possible to affect a return from PMM to the full speed mode. This allows both hardware and software to cause an exit from PMM. It is the responsibility of the software to test for UART activity before attempting to change speed, as a modification of the operating system clock during a UART operation will corrupt the data. In general, it is not possible to generate standard baud rates while in PMM, and the user is advised to avoid PMM or use the Switchback feature if UART operation is desired.

Power Configuration Register (PCON, 0x87)

Bit	7	6	5	4	3	2	1	0
Name	SMOD0	SMOD1	Reserved	PWE	RSM	SWB	STOP	PMM
Reset Value	0x00							

Bit	Name	Access	Description
0	PMM	R/W	Power Management Mode Enable bit. 1: PMM entered. 0: PMM disabled.
1	STOP	R/W	STOP mode bit. 1: STOP mode entered. 0: Disabled.
2	SWB	R/W	 Switchback enable. 1: Enabled interrupts and serial ports cause switchback. PMM bit is cleared. 0: Interrupts and serial ports don't affect PMM bit. Note that after leaving PMM mode, the software shall also clear this bit.
3	RSM	R/W	 Regulator Standby Mode. 1: Set the internal 3.3V to 1.8V regulator to operate at standby mode (when the 1.8V current drawn is less than 30mA) for better conversion efficiency. 0: Set the internal 3.3V to 1.8V regulator to full operating mode (when the 1.8V current drawn is more than 30mA) for better conversion efficiency.
4	PWE	R/W	Program memory Write Enable bit.1: Enable Program Memory write access signal activity during MOVX instructions.0: Disabled.
5	Reserved	R/W	
6	SMOD1	R/W	UART1 double baud rate bit.
7	SMOD0	R/W	UART0 double baud rate bit.

Switchback Feature

The Switchback feature solves one of the most vexing dilemmas faced by power conscious systems. Many applications are unable to use STOP mode because they require constant computation. The feature allows a system to operate at a relatively slow speed, and burst to a faster mode when required by an external event. Enable this feature by setting the SWB bit (PCON.2), a qualified interrupt (interrupt which has occurred and been acknowledged) or serial port reception or transmission cause the CPU to return to full speed mode. An interrupt must be enabled and not blocked by a higher priority interrupt. Software should manually return the CPU to PMM after the event is completed. The following events can trigger AX11001/AX11005 switchback to full speed mode from PMM:

- 1. Receive interrupt on external interrupt pin, INT0 or INT1 if enabled in EX0 bit (IE.0) or EX1 bit (IE.2)
- 2. Detect falling-edge transition (start bit) on RXD0 pin of UART0 or RXD1 pin of UART1 if enabled in REN0 bit (SCON0.4) or REN1 bit (SCON1.4).
- 3. Transmit buffer loaded in UART0 or UART1.
- 4. Watchdog timer reset.

In addition, the following events can also trigger AX11001/AX11005 switchback to full speed mode from PMM, via INT 6:

- 1. Receive rising-edge signal on external remote-wakeup trigger input pin, EXT_WKUP, if enabled in EPWT bit (SPWIE.5).
- 2. Receive Magic packet from Ethernet, if enabled in RWMP bit (SPWIE.4).
- 3. Receive pre-defined Wakeup frame from Ethernet, if enabled in MWFE bit (SPWIE.6) and EWFF0/1 bit (WFCR.0/2).

- 4. Detect link-up signal from the embedded Ethernet PHY, if enabled in PPLWE bit (SPWIE.0).
- 5. Detect falling-edge transition (start bit) on RXD2 pin or falling-edge transition on RI pin of UART 2, if enabled in WE bit (HSIER.4, 0xE2).

In the case of a UART0/1-initiated switchback, the switchback is not generated by the associated interrupt. This is because the AX11001/AX11005 operating in PMM will not be able correctly receiving a byte of data to generate an interrupt. Instead, Switchback is generated by a UART0/1 reception on the falling edge associated with the start bit, if the associated receiver enable bit (SCON0.4 or SCON1.4) is set. For UART transmissions, a switchback is generated when the UART0/1 buffer is loaded. This ensures the CPU will be operating in full speed mode when the data is being transmitted, and eliminates the need for a write to the PMM bit (PCON.0) to exit PMM before transmitting. The Switchback feature is unaffected by the state of the serial port interrupt flags.

Switchback Feature Timing

The timing of the Switchback is dependent on the source. Interrupt–initiated (such as INT0, INT1, INT6) switchbacks will occur at the start of the first cycle following the event initiating the Switchback. If the current instruction in progress is a write to the IE, IP, EIE, or EIP registers, interrupt processing will be delayed until the completion of the following instruction. UART-initiated (such as UART0/1) switchbacks occur at the start of the instruction following the MOV that loads SBUF0 or SBUF1. UART-initiated (such as UART0/1) switchbacks occur during the cycle in which the falling edge was detected.

There are a few points that must be considered when using a serial port reception to generate Switchback. Under normal circumstances, noise on the line or an aborted transmission would cause the serial port to timeout and the data to be ignored. This presents a problem if the Switchback is used, however, because Switchback would occur but there is no indication to the system that one has occurred. If PMM and serial port Switchback functions are used in a noisy environment, the user is advised periodically checking if AX11001/AX11005 has accidentally exited PMM. A similar problem can occur if multiprocessor communication protocols are used in conjunction with PMM. The problem is that an invalid address that should be ignored by a particular processor will still generate Switchback. As a result, it is not recommended to use a multiprocessor communication scheme in conjunction with PMM. If the system power considerations will allow for an occasional erroneous Switchback, a polling scheme can be used to place the AX11001/AX11005 back into PMM.

4.10.3 STOP Mode

The STOP mode is the lowest power state that the AX11001/AX11005 can enter. This is achieved by cutting off the clock feeding to the CPU core and the peripheral logics. When entering the STOP mode, the TOFFOP bit (Flag.1) in I2C EEPROM determines whether the 25Mhz oscillator and internal PLL will be disabled or not during STOP mode. When AX11001/AX11005 is running in Full Speed or PMM mode, software can enter STOP mode by setting STOP bit (PCON.1).

If the STOP mode is entered with 25Mhz oscillator and PLL completely disabled (TOFFOP bit (Flag.1)= 1), the STOP mode can be exited in following ways:

- 1. Receive rising-edge signal on external remote-wakeup trigger pin, EXT_WKUP, if enabled in EPWT bit (SPWIE.5).
- 2. Detect falling-edge transition (start bit) on RXD2 pin or falling-edge transition on RI pin of UART 2, if enabled in WE bit (HSIER.4).
- 3. Receive hardware reset on RST_N pin (CPU operation will resume execution at address 0x00_0000).

Please note that if software sets both EPWT bit (SPWIE.5) and WE bit (HSIER.4, 0xE2) to "0" prior to entering STOP mode while the TOFFOP bit = 1, then the chip can not be awaked by any event at all and only the hardware chip reset can remove the chip from STOP mode back to normal functional mode.

If the STOP mode is entered with 25Mhz oscillator and PLL still running (TOFFOP bit (Flag.1) = 0), the STOP mode can be exited in following ways, depending on software configuration before entering the STOP mode:

- 1. Receive rising-edge signal on external remote-wakeup trigger pin, EXT_WKUP, if enabled in EPWT bit (SPWIE.5).
- 2. Receive Magic packet from Ethernet, if enabled in RWMP bit (SPWIE.4).
- 3. Receive pre-defined Wakeup frame from Ethernet, if enabled in MWFE bit (SPWIE.6) and EWFF0/1 bit (WFCR.0/2).
- 4. Detect link-up signal from the embedded Ethernet PHY, if enabled in PPLWE bit (SPWIE.0).
- 5. Detect falling-edge transition (start bit) on RXD2 pin or falling-edge transition on RI pin of UART 2, if enabled in WE bit (HSIER.4).
- 6. Receive hardware reset on RST_N pin (CPU operation will resume execution at address 0x00_0000).

Example Programming Procedure

Case 1: Using a rising-edge signal on EXT_WKUP pin to awake up the chip, the software shall:

- 1. Enable wakeup interrupt by setting EPWT bit (SPWIE.5) and EINT6 bit (EIE.4), disable Ethernet PHY to reduce power consumption by setting PHY register's Power-Down bit (BMCR.11), and stop oscillator and PLL during STOP mode by setting TOFFOP bit (Flag.1) = 1.
- 2. Then set STOP bit (PCON.1) to enter STOP mode. Now the system clock will be turned off and the oscillator and PLL will be stopped too.
- 3. Upon detecting a rising-edge on EXT_WKUP pin, the oscillator and PLL will first resume running and the clock generation block will re-enable the system clock after it is stabled enough, and then the INT 6 will be asserted to notify CPU.

Case 2: Using receiving Magic packet or Wakeup frame to awake up the chip, the software shall:

- 1. Enable wakeup interrupt by having RWMP bit (SPWIE.4) or MWFE bit (SPWIE.6), keep Ethernet PHY power-on to allow receiving Ethernet packet by clearing PHY register's Power-Down bit (BMCR.11), keep oscillator and PLL running by setting TOFFOP bit (Flag.1) = 0.
- 2. If Wakeup frame wakeup event is used, also define the Wakeup frame pattern in related registers.
- 3. Then set STOP bit (PCON.1) to enter STOP mode. Now the system clock will be turned off while oscillator and PLL keeps on running.
- 4. Upon receiving Magic packet or Wakeup frame from Ethernet, the clock generation block will re-enable the system clock and then the INT 6 will be asserted to notify CPU.

Case 3: Using the link-up event of the embedded Ethernet PHY to awake up the chip, the software shall:

- 1. Enable wakeup interrupt by setting PPLWE bit (SPWIE.0) and EINT6 bit (EIE.4), keep Ethernet PHY power-on to allow link-up detection by clearing PHY register's Power-Down bit (BMCR.11), keep oscillator and PLL running by setting TOFFOP bit (Flag.1) = 0.
- 2. Then set STOP bit (PCON.1) to enter STOP mode. Now the system clock will be turned off while oscillator and PLL keeps on running.
- 3. Upon detecting the link-up event on embedded Ethernet PHY, the clock generation block will re-enable the system clock and then the INT 6 will be asserted to notify CPU.

4.11 Timers and Counters

The AX11001/AX11005 contains three 16-bit timer/counters, namely, Timer 0, Timer 1, and a fully compatible with the standard 8052 Timer 2, and one dedicated Millisecond Timer which is programmable with 1ms resolution for software use.

In the "timer mode", timer registers are incremented every 12 or 4 operating system clock periods when appropriate timer is enabled. In the "counter mode" the timer registers are incremented every falling transition on their corresponding input pins: TM1_CK, or TM2_CK (Timer 0 clock input is not available). The input pins are sampled every operating system clock period. The following table shows Timer 1, 2 pin description. All pins are input direction and no three-state output pin.

Pin	I/O	Polarity	Description
TM1_CK	Ι	Falling	Timer 1 external clock input
TM1_GT	Ι	High	Timer 1 clock input gate control input to facilitate pulse width measurements.
TM2_CK	Ι	Falling	Timer 2 external clock input
TM2_GT	Ι	High	Timer 2 clock input gate control input.

Table 19: Timer 1, 2 Pin Description

4.11.1 Timers 0, 1, 2 Related SFR Register Map

Address	Name	Description
0x89	TMOD	Timer 0,1 Control Mode Register.
0x88	TCON	Timer 0,1 Configuration Register.
0x8E	CKCON	Clock Control Register.
0x8A	TL0	Timer 0 Low Byte Register.
0x8C	TH0	Timer 0 High Byte Register.
0x8B	TL1	Timer 1 Low Byte Register.
0x8D	TH1	Timer 1 High Byte Register.
0xA8	IE	Interrupt Enable Register.
0xB8	IP	Interrupt Priority Register.
0xC8	T2CON	Timer 2 Configuration Register.
0xCA	RLDL	Timer 2 Reload Low Byte Register.
0xCB	RLDH	Timer 2 Reload High Byte Register.
0xCC	TL2	Timer 2 Low Byte Register.
0xCD	TH2	Timer 2 High Byte Register.

Table 20: Timers 0, 1, 2 Related SFR Register Map

4.11.2 Timer 0, 1

Timer 0 and Timer 1 are fully compatible with the standard 8051 timers. Each timer consists of two 8-bit registers, and they are TH0 (0x8C), TL0 (0x8A), TH1 (0x8D), and TL1 (0x8B). Timers 0 and Timer 1 work in the same four modes, namely, Mode 0, Mode 1, Mode 2, and Mode 3, as described in following TMOD register description.

Timer 0, 1 Control Mode Register (TMOD, 0x89)

Bit	7	6	5	4	3	2	1	0
Name	GATE	СТ	M1	M0	GATE	СТ	M1	M0
Reset Value				0x	00			

	Access		Description							
		Timer 0 m	ode s	elect	bits. The table below shows the 4 operating modes of Timer 0.					
		Mode	M1	M0	Timer 0 Operating Mode Description					
	0 5 7 1	-	DAN	DAN	DAV	D/W	0	0	0	TH0 operates as 8-bit timer/counter with a divide by 32 prescaler served by lower 5-bit of TL0.
M1, M0	K/W	1	0	1	16-bit timer/counter. TH0 and TL0 are cascaded.					
		2	1	0	TL0 operates as 8-bit timer/counter with 8-bit auto-reload by TH0.					
		3	1	1	TL0 is configured as 8-bit timer/counter controlled by the standard Timer 0 bits. TH0 is an 8-bit timer controlled by the Timer 1 control bits. Timer 1 holds its count.					
		Timer 0 C	ounte	r or '	Timer select bit. Since Timer 0 external clock input is not available in					
СТ	R/W				, please always write 0.					
CI	IX/ W		use external clock source.							
			0: Timer mode, Timer 0 clock source is internally clocked.							
GATE	R/W	AX11001/ 1: Time facili	 Timer 0 Gating control. Since Timer 0 gate control input is not available in AX11001/AX11005, please always write 0. 1: Timer 0 enabled while TM0_GT pin is high and TR0 control bit (TCON.4) is set, to facilitate pulse width measurements. 0: Timer 0 enabled while TR0 control bit (TCON.4) is set. 							
					bits. The table below shows the 4 operating modes of Timer 1.					
		Mode	M1	MO	Timer 1 Operating Mode Description					
	DAV	0	0	0	TH1 operates as 8-bit timer/counter with a divide by 32 prescaler served by lower 5-bit of TL1.					
M1, M0	K/W	1	0	1	16-bit timer/counter. TH1 and TL1 are cascaded.					
		2	1	0	TL1 operates as 8-bit timer/counter with 8-bit auto-reload by TH1.					
				TL0 is configured as 8-bit timer/counter controlled by the standard Timer 0 bits. TH0 is an 8-bit timer controlled by the Timer 1 control bits. Timer 1 holds its count.						
		Timer 1 Counter or Timer select bit.								
СТ	R/W 1: Counter mode, Timer 1 clock source from TM1_CK pin.									
		0: Timer mode, internally clocked.								
GATE	R/W	1: Time facili	 Filter 1 Gating control. 1: Timer 1 enabled while TM1_GT pin is high and TR1 control bit (TCON.6) is set, to facilitate pulse width measurements. 0: Timer 1 enabled while TR1 control bit (TCON.6) is set. 							
	M1, M0	CT R/W GATE R/W M1, M0 R/W CT R/W	M1, M0 R/W M1, M0 R/W GATE R/W M1, M0 R/W M1 R/W M	$ M1, M0 = R/W = \frac{Mode M1}{0} = 0 \\ \hline 1 = 0 \\ \hline 2 = 1 \\ \hline 0 \\ \hline 1 = 0 \\ \hline 2 = 1 \\ \hline 3 = 1 \\ \hline 1 = 0 \\ \hline 2 = 1 \\ \hline 3 = 1 \\ \hline 1 = 0 \\ \hline $	$ M1, M0 = R/W = R/W = \frac{Mode M1 M0}{0} = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =$					

Timer 0, 1 Configuration Register (TCON, 0x88)

Bit	7	6	5	4	3	2	1	0
Name	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
Reset Value				0x	00			

Bit	Name	Access	ccess Description			
0	IT0	R/W	INTO level or edge sensitivity. 0: Level triggered. 1: Edge triggered.			
1	IE0	ко	INTO interrupt flag. This bit is cleared by hardware automatically when CPU branches to interrupt routine.			
2	IT1	R/W	INT1 level or edge sensitivity. 0: Level triggered. 1: Edge triggered.			
3	IE1	RO	INT1 interrupt flag. This bit is cleared by hardware automatically when CPU branches to			

			interrupt routine.
4	TR0	R/W	Timer 0 run control bit. 1: Enabled. 0: Disabled.
5	TF0	RO	Timer 0 interrupt (overflow) flag. This bit is cleared by hardware when CPU branches to interrupt routine.
6	TR1	R/W	Timer 1 run control bit. 1: Enabled. 0: Disabled.
7	TF1	RO	Timer 1 interrupt (overflow) flag. This bit is cleared by hardware when CPU branches to interrupt routine.

In the "timer mode", timer registers are incremented every 12 or 4 operating system clock periods, configured by T0M and T1M bits (CKCON.3~4).

The Timer 0 and Timer 1 interrupt enable registers are ET0 bit (IE.1, 0xA8) and ET1 bit (IE.3), respectively, and their interrupt priority registers are PT0 bit (IP.1) and PT1 bit (IP.3), respectively. The Timer 0 and Timer 1 interrupt (overflow) flag are TF0 bit (TCON.5) and TF1 (TCON.7), respectively. Please refer to section 4.8 for details.

Clock Control Register (CKCON, 0x8E)

Bit	7	6	5	4	3	2	1	0
Name	WD		T2M	T1M	T0M		MD	
Reset Value				0x	07			

Bit	Name	Access		Description							
2:0	MD	R/W	MOVX in read/write = 111). Th	nstruction for I pulse length is he MD bits can	Externa equal t be cha	of on-chip 32K bytes SRA I Data Memory write an o 1 clock period (MD = 00 nged any time during prog k frequency, the recommen	d read access cycles. T 0) and maximal 8 clock gram execution.	'he Minimal periods (MD			
			5	System Clock	Da	ta Memory Wait State Setting, MD					
				25Mhz		001					
				50Mhz		001					
				100Mhz		001					
	TO 1	D/III				the system clock that drive					
3	T0M	R/W		ock frequency.							
				Timer 0 uses a divide-by-12 of the operating system clock frequency. bit controls the division of the system clock that drives Timer 1.							
4	T1M	R/W									
•	1 1 1 1 1	10 11	 Timer 1 uses a divide-by-4 of the operating system clock frequency. Timer 1 uses a divide-by-12 of the operating system clock frequency. 								
						he system clock that drives		effect when			
5	T2M	R/W	the timer	is in baud rate g	enerat	or mode.					
5	1 2111	M K/W	1: Time	er 2 uses a divid	e-by-4	of the operating system cl	ock frequency.				
						2 of the operating system	clock frequency.				
			WD bits s	elect Watchdog	, timer						
				WD		Watchdog Interval	Number of Clocks				
7.6	WD	D/W/		00		2 ¹⁷	131072				
7:6	WD	R/W		01		2^{20}	1048576				
				10		2 ²³	8388608				
			11 2 ²⁶ 67108864								

Timer 0 - Mode 0

In this mode, the Timer 0 register is configured as a 13-bit register. As the count rolls over from all 1s to all 0s, Timer 0 interrupt flag TF0 is set. The counted input is enabled to the Timer 0 when TCON.4 = 1. The 13-bit register consists of all 8 bits of TH0 and the lower 5 bits of TL0. The upper 3 bits of TL0 are indeterminate and should be ignored.

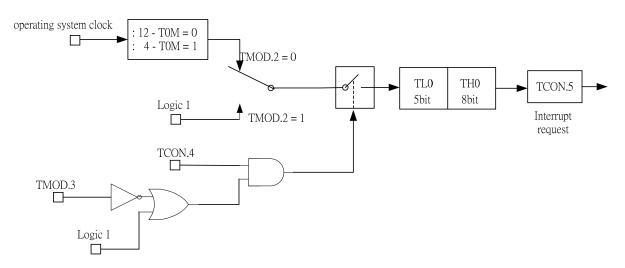


Figure 45: Timer/Counter 0, Mode 0: 13-Bit Timer/Counter

Timer 0 - Mode 1

Mode 1 is the same as Mode 0, except that the timer register is running with all 16 bits. Mode 1 is shown in figure below.

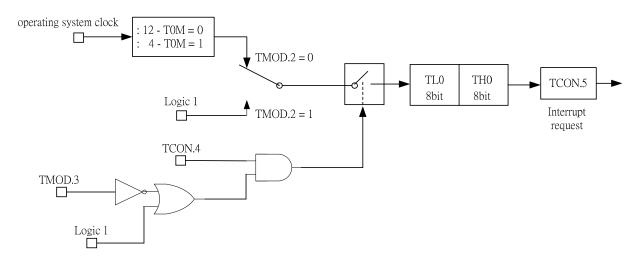


Figure 46: Timer/Counter 0, Mode 1: 16-Bit Timer/Counter

Timer 0 - Mode 2

Mode 2 configures the timer register as an 8-bit counter (TL0) with automatic reloads, as shown in figure below. Overflow from TL0 not only sets TF0, but also reloads TL0 with the contents of TH0, which is loaded by software. The reload leaves TH0 unchanged.

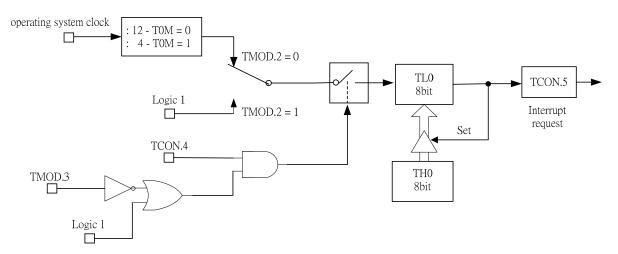


Figure 47: Timer/Counter 0, Mode 2: 8-Bit Timer/Counter With Auto-Reload

Timer 0 - Mode 3

Timer 0 in Mode 3 establishes TL0 and TH0 as two separate counters. The logic for Mode 3 on Timer 0 is shown in figure below. TL0 uses the Timer 0 control bits: CT, GATE, TR0, and TF0. TH0 is locked into a timer function and uses the TR1 and TF1 flags from Timer 1 and controls Timer 1 interrupt. Mode 3 is provided for applications requiring an extra 8-bit timer/counter. When Timer 0 is in Mode 3, Timer 1 can be turned off by switching it into its own Mode 3, or can still be used by the serial channel (UART0/1) as a baud rate generator, or in any application where interrupt from Timer 1 is not required.

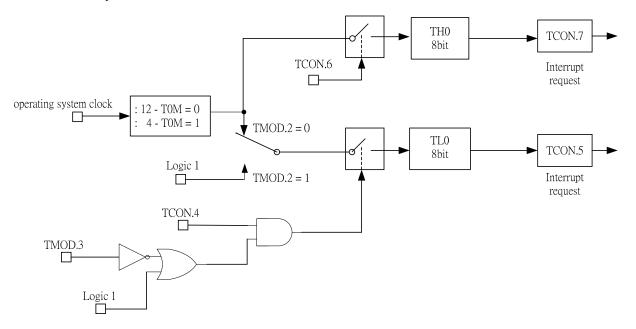


Figure 48: Timer/Counter 0, Mode 3: Two 8-Bit Timers/Counters

Timer 1 - Mode 0

In this mode, the Timer 1 register is configured as a 13-bit register. As the count rolls over from all 1s to all 0s, Timer 1 interrupt flag TF1 is set. The counted input is enabled to the Timer 1 when TCON.6 = 1 and either TMOD.6 = 0 or TM1_GT = 1. (Setting TMOD.7 = 1 allows the Timer 1 to be controlled by external input TM1_GT, to facilitate pulse width measurements). The 13-bit register consists of all 8 bits of TH1 and the lower 5 bits of TL1. The upper 3 bits of TL1 are indeterminate and should be ignored.

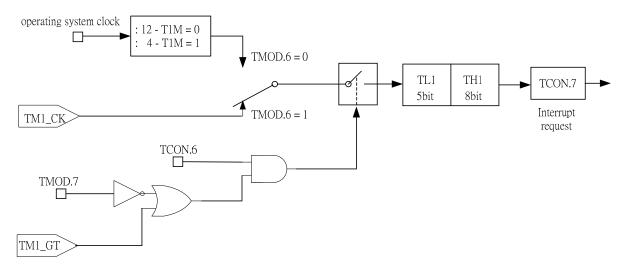


Figure 49: Timer/Counter 1, Mode 0: 13-Bit Timers/Counters

Timer 1 - Mode 1

Mode 1 is the same as Mode 0, except that the timer register is running with all 16 bits. Mode 1 is shown in figure below.

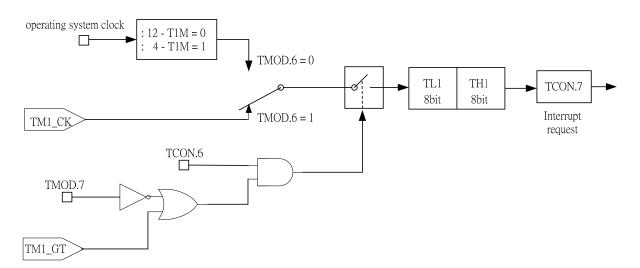


Figure 50: Timer/Counter 1, Mode 1: 16-Bit Timers/Counters

Timer 1 - Mode 2

Mode 2 configures the timer register as an 8-bit counter (TL1) with automatic reloads, as shown in figure below. Overflow from TL1 not only sets TF1, but also reloads TL1 with the contents of TH1, which is loaded by software. The reload leaves TH1 unchanged.

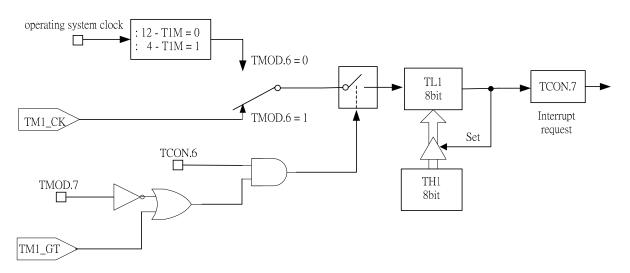


Figure 51: Timer/Counter 1, Mode 2: 8-Bit Timer/Counter With Auto-Reload

Timer 1 - Mode 3

Timer 1 in Mode 3 is held counting. The effect is the same as setting TR1=0.

4.11.3 Timer 2

Timer 2 is fully compatible with the standard 8052 Timer 2. Totally five SFR control the Timer 2 operation: TH2/TL2 (0xCD/0xCC) counter registers, RLDH/RLDL (0xCB/0xCA) capture registers and T2CON (0xC8) control register. Timer 2 works in the three modes selected by T2CON bits as shown in Table 21 below.

RCLK, TCLK	CPRL2	TR2	Timer 2 Operating Mode Description
0	0	1	16-bit auto-reload mode. The Timer 2 overflow sets TF2 bit and the TH2, TL2 registers are reloaded 16-bit value from RLDH, RLDL.
0	1		16-bit capture mode. The Timer 2 overflow sets TF2 bit. When the EXEN2=1 the TH2, TL2 register values are stored into RLDH, RLDL while falling edge is detected on TM2_GT pin.
1	Х	1	Baud rate generator for the UART0 interface.
Х	Х	0	Timer 2 is off.

Table 21: Timer 2 Mode of Operation

Timer 2 Configuration Register (T2CON, 0xC8)

Bit	7	6	5	4	3	2	1	0
Name	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	CT2	CPRL2
Reset Value				0x	00			

Bit	Name	Access	Description
0	CPRL2	R/W	 Capture/reload select. 1: TM2_GT pin falling edge causes capture to occur when EXEN2=1. 0: Automatic reload occurs: on Timer 2 overflow or falling edge of TM2_GT pin when EXEN2=1. When RCLK or TCLK is set this bit is ignored and automatic reload on Timer 2 overflow is forced.
1	CT2	R/W	Timer/counter select. 1: External event counter. Clock source is TM2_CK pin. 0: Timer internally clocked.
2	TR2	R/W	Start/stop Timer 2. 1: Start. 0: Stop.
3	EXEN2	R/W	Enable TM2_GT pin functionality. 1: Allows capture or reload as a result of TM2_GT pin falling edge. 0: Ignore T2EX events.
4	TCLK	R/W	Transmit clock enable.1: UART0 transmitter is clocked by Timer 2 overflow pulses.0: UART0 transmitter is clocked by Timer 1 overflow pulses.
5	RCLK	R/W	Receive clock enable. 1: UART0 receiver is clocked by Timer 2 overflow pulses. 0: UART0 receiver is clocked by Timer 1 overflow pulses.
6	EXF2	R/W	Falling edge indicator on TM2_GT pin when EXEN2=1. Must be cleared by software.
7	TF2	R/W	Timer 2 interrupt (overflow) flag. Must be cleared by software. The flag will not be set when either RCLK or TCLK is set.

The Timer 2 interrupt enable register is ET2 bit (IE.5, 0xA8) and its interrupt priority register is PT2 bit (IP.5, 0xB8). The Timer 2 interrupt (overflow) flag is TF2 bit (T2CON.7). The TF2 bit that generates interrupts can be set or cleared by software, with the same result as if they had been set or cleared by hardware. That is, interrupts can be generated or pending interrupts can be cancelled by software. Please refer to section 4.8 for details.

Timer 2 in Timer Mode

Timer 2 related bits are shown in Figure 52 below. The timer register can be clocked by the external TM2_CK pin or internal operating system clock. If internal operating system clock is used, it can be incremented every 12 or 4 operating system clock periods, configured by T2M bit (CKCON.5, 0x8E).

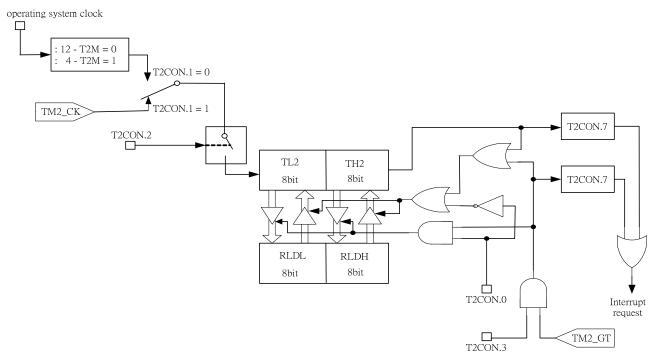
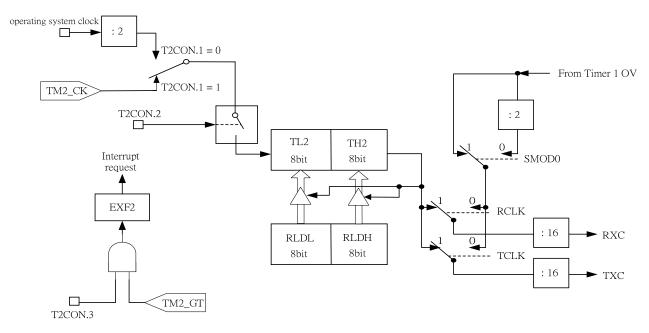



Figure 52: Timer 2 Block Diagram In Timer Mode

Timer 2 in UART0 Baud Rate Generator Mode

Interrupt is also generated at falling edge of TM2_GT pin, while EXEN2 bit is set. This interrupt doesn't set TF2 flag, but EXF2 only and used 0x2B vector. Please see Figure 53 below.

4.11.4 Millisecond Timer

The dedicated Millisecond Timer can be used as a coarse timing reference in software programming (such as TCP/IP protocol stack processing) and is programmable with 1ms resolution. The timeout period can be programmed from 1ms to 1024ms. When Millisecond Timer times out, upon enabled, an interrupt on INT5 will be generated to CPU. The INT5 is shared with Software DMA transfer. For detailed register description related to Millisecond Timer, please refer to section 4.7.2, on Millisecond Timer Register, MSTR (0x0C).

The divider ratio of internal 1ms timing pulse in Millisecond Timer is generated based on the setting of SYSCK_SEL[1:0] pins, which also determine the operating system clock frequency.

SYSCK_SEL	Clock Divider Ratio for	Description
[1:0] Setting	Internal 1ms Timing Pulse	
00	25,000	This sets the operating system clock frequency to be 25Mhz (if internal osclk is used as main clock source) or close to 25Mhz (if LB_CLK is used as clock source). Please note that if LB_CLK input pin is used as clock source, e.g., input frequency = 24Mhz, then the 1ms timing pulse will be about 1.04ms instead.
01	50,000	This sets the operating system clock frequency to be 50Mhz (if internal osclk is used as main clock source) or close to 50Mhz (if LB_CLK is used as clock source). Please note that if LB_CLK input pin is used as clock source, e.g., input frequency = 48Mhz, then the 1ms timing pulse will be about 1.04ms instead.
11	100,000	This sets the operating system clock frequency to be 100Mhz (if internal osclk is used as main clock source) or close to 100Mhz (if LB_CLK is used as clock source). Please note that if LB_CLK input pin is used as clock source, e.g., input frequency = 96Mhz, then the 1ms timing pulse will be about 1.04ms instead.
10	Reserved	Reserved.

Table 22: Millisecond Timer Divider Ratio

4.12 UARTs

AX11001/AX11005 supports 3 UART interfaces, namely, UART 0, UART 1, and UART 2. The UART 0 and UART 1 have the same functionality as standard 8051 UARTs. Each is full duplex, meaning it can transmit and receive concurrently. Each is receive double-buffered, meaning it can commence reception of a second byte before a previously received byte has been read from the receive register. The UART 2 is designed to be maximally compatible with standard 16550. It can communicate with MODEM or other external device (e.g. computer) by using RS-232 protocol. The UART 2 has 16-bytes deep transmit/receive FIFO and its transfer rate can be up to 921600 bps.

Address	Name	Description			
0x98	SCON0	UART 0 Configuration Register.			
0x99	SBUF0	UART 0 Buffer Register.			
0x87	PCON	Power Configuration Register.			
0xA8	IE	nterrupt Enable Register.			
0xB8	IP	Interrupt Priority Register.			
0xC0	SCON1	UART 1 Configuration Register.			
0xC1	SBUF1	UART 1 Buffer Register.			

4.12.1 UART 0, 1 SFR Register Map

Table 23: UART 0, 1 SFR Register Map

4.12.2 UART 0

The UART 0 has the same functionality as a standard 8051 UART 0. The UART 0 serial port is full duplex, receive double-buffered, meaning it can commence reception of a second byte before a previously received byte has been read from the receive register. The UART 0 can operate in 4 modes: one synchronous and three asynchronous modes.

- Mode 0, synchronous mode
- Mode 1, 8-bit UART, variable baud rate, Timer 1 or Timer 2 clock source
- Mode 2, 9-bit UART, fixed baud rate
- Mode 3, 9-bit UART, variable baud rate, Timer 1 or Timer 2 clock source

Mode 2 and 3 has a special feature for multiprocessor communications. The feature is enabled by setting SM02 bit in SCON0 register. The master processor first sends out an address byte, which identifies the target slave. An address byte differs from a data byte in that the 9th bit is 1 in an address byte and 0 in a data byte. With SM02 = 1, no slave will be interrupted by a data byte. An address byte will interrupt all slaves. The addressed slave will clear its SM02 bit and prepare to receive the data bytes that will be coming. The slaves that were not being addressed leave their SM02 set and ignoring the incoming data.

The UART 0 related registers are: SBUF0 (0x99), SCON0 (0x98), PCON (0x87), IE (0xA8) and IP (0xB8). The UART0 data buffer (SBUF0) consists of two separate registers: transmit and receive registers. A data writes into the SBUF0 sets this data in UART0 output register and starts a transmission. A data reads from SBUF0, reads data from the UART0 receive register. Writing to SBUF0 loads the transmit register, and reading SBUF0 reads a physically separate receive register.

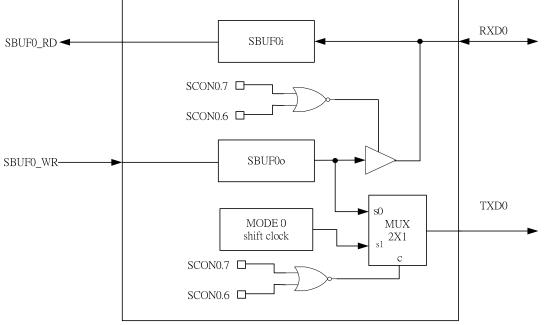


Figure 54: UART 0 Block Diagram

UART 0 Configuration Register (SCON0, 0x98)

Bit	7	6	5	4	3	2	1	0			
Name	SM00	SM01	SM02	REN0	TB08	RB08	TI0	RI0			
Reset Value		0x00									

Bit	Name	Access				Ľ	Description					
0	RI0	R/W	Receive ir software.	nterrupt f	lag, set b	y hardware afte	r completion of a serial rec	eption. Must be cleared by				
1	TI0	R/W	Transmit i software.	nterrupt	flag, set	by hardware aft	er completion of a serial tr	ansfer. Must be cleared by				
2	RB08	R/W	In Modes Mode 0 th			th data bit receiv	ved. In Mode 1, if SM02 is	0, RB08 is the stop bit. In				
3	TB08	R/W					nd 3. Set or cleared by the cessor communication etc.	e CPU, depending on the				
4	REN0	R/W	If set, enal	bles seria	al reception	on. Cleared by s	oftware to disable receptio	n.				
5	SM02	R/W	Enables a	multipro	cessor co	mmunication fe	eature.					
6	SM01		Sets baud rate.									
			Mode	SM00	SM01	Description	n UART 0 Baud Rate					
			0	0	0	Shift register	Fsys_c	lk/12				
						8-bit UART	Variable.					
							SMOD0 bit (PCON.7)	Baud Rate				
			1	0	1		0	T1ov/32 or T2ov/16				
		R/W	1	0	1		1	T1ov/16 or T2ov/16				
7	SM00	K/ W					Tlov is Timer 1 overflow	rate, and T2ov is Timer 2				
							overflow rate.					
						9-bit UART	SMOD0 bit (PCON.7)	Baud Rate				
			2	1	0		0	Fsys_clk//64				
							1	Fsys_clk/32				
			3	1	1	9-bit UART	Variable, same as Mode 1	above				
			Note: Fsys	s_clk is o	perating	system clock fr	equency.					

The UART 0 interrupt enable register is ES0 bit (IE.4, 0xA8) for both RI0 and TI0 interrupt flags in SCON0. Its interrupt priority register is PS0 bit (IP.4, 0xB8). The RI0 and TI0 bits that generates interrupts can be set or cleared by software, with the same result as if they had been set or cleared by hardware. That is, interrupts can be generated or pending interrupts can be cancelled by software. Please refer to section 4.8 for details.

UART 0 Buffer Register (SBUF0, 0x99)

Bit	7	6	5	4	3	2	1	0			
Name		SB0									
Reset Value		0x00									

Bit	Name	Access	Description
7:0	SB0		A data writes into the SBUF0 sets this data in UART0 output register and starts a transmission. A data reads from SBUF0, reads data from the UART0 receive register.

Mode 0, Synchronous Mode

Pin RXD0 serves as input and output. TXD0 output is a shift clock. The baud rate is fixed at 1/12 of the operating system clock frequency. Eight bits are transmitted with LSB first. Reception is initialized by setting the flags in SCON0 as follows: RI0 = 0 and REN0 = 1.

	0ns 200ns 400ns 600ns 600ns 1.0us 1.2us 1.4us 1.6us 1.8us 2.0us 2.2us
clk	
clk/12	
SBUF_write	γ
send	
SBUF_shift	
rxd	DO (D1)(D2)(D3)(D4)(D5)(D6)(D7 /
txd	
ti	

Figure 55: UART 0, Mode 0 Transmit Timing Diagram

Mode 1, 8-bit UART, Variable Baud Rate, Timer 1 or Timer 2 Clock Source

Pin RXD0 serves as input, and TXD0 serves as serial output. 10 bits are transmitted: a start bit (always 0), 8 data bits (LSB first), and a stop bit (always 1). On receive, a start bit synchronizes the transmission, 8 data bits are available by reading SBUF0, and stop bit sets the flag RB08 in the SFR register SCON0. The baud rate is variable and depends from Timer 1 or Timer 2 mode. To enable Timer 2 clocking set the TCLK, RCLK bits located in T2CON (0xC8) register.

	Ous	10us	20us	30us	40us	50us	, 60us	70us	80us	90us	100us
tx_clk	$\square \Lambda$										
SBUF_write											
send											
SBUF_shift											
rxd											
txd		START /	DO X	D1)	D2)	D3 (D4)	D5 (D6 (D7 /	STOP
ti											

Figure 56: UART 0, Mode 1 Transmit Timing Diagram

Mode 2, 9-bit UART, Fixed Baud Rate

This mode is similar to Mode 1 with two differences. The baud rate is fixed at 1/32 or 1/64 of operating system clock frequency, and 11 bits are transmitted or received: a start bit (0), 8 data bits (LSB first), a programmable 9th bit, and a stop bit (1). The 9th bit can be used to control the parity of the UART0 interface: at transmission, bit TB08 in SCON0 is output as the 9th bit, and at receive, the 9th bit affects RB08 in SCON0.

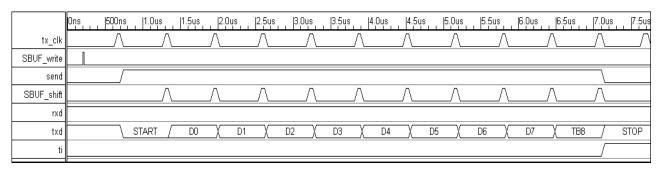


Figure 57: UART 0, Mode 2 Transmit Timing Diagram

Mode 3, 9-bit UART, Variable Baud Rate, Timer 1 or Timer 2 Clock Source

The only difference between Mode 2 and Mode 3 is that the baud rate is a variable in Mode 3. When REN0 = 1 data receiving is enabled. The baud rate is variable and depends from Timer 1 or Timer 2 mode. To enable Timer 2 clocking set the TCLK, RCLK bits located in T2CON (0xC8) register.

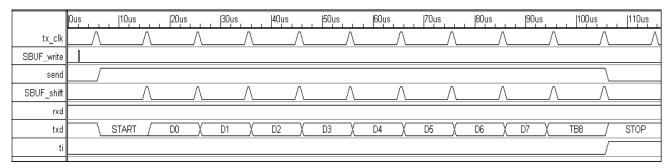


Figure 58: UART 0, Mode 3 Transmit Timing Diagram

4.12.3 UART 1

The UART1 has the same functionality as a standard 8051 UART1. The UART 1 serial port is full duplex, receive double-buffered, meaning it can commence reception of a second byte before a previously received byte has been read from the receive register. The UART 1 can operate in 4 modes: one synchronous and three asynchronous modes.

- Mode 0, synchronous mode
- Mode 1, 8-bit UART, variable baud rate, Timer 1 clock source
- Mode 2, 9-bit UART, fixed baud rate
- Mode 3, 9-bit UART, variable baud rate, Timer 1 clock source

Mode 2 and 3 has a special feature for multiprocessor communications. The feature is enabled by setting SM12 bit in SCON1 register. The master processor first sends out an address byte, which identifies the target slave. An address byte differs from a data byte in that the 9th bit is 1 in an address byte and 0 in a data byte. With SM12 = 1, no slave will be interrupted by a data byte. An address byte will interrupt all slaves. The addressed slave will clear its SM12 bit and prepare to receive the data bytes that will be coming. The slaves that were not being addressed leave their SM12 set and ignoring the incoming data.

The UART1 related registers are: SBUF1 (0xC1), SCON1 (0xC0), PCON (0x87), IE (0xA8) and IP (0xB8). The UART1 data buffer (SBUF1) consists of two separate registers: transmit and receive registers. A data writes into the SBUF1 sets this data in UART1 output register and starts a transmission. A data reads from SBUF1, reads data from the UART1 receive register. Writing to SBUF1 loads the transmit register, and reading SBUF0 reads a physically separate receive register.

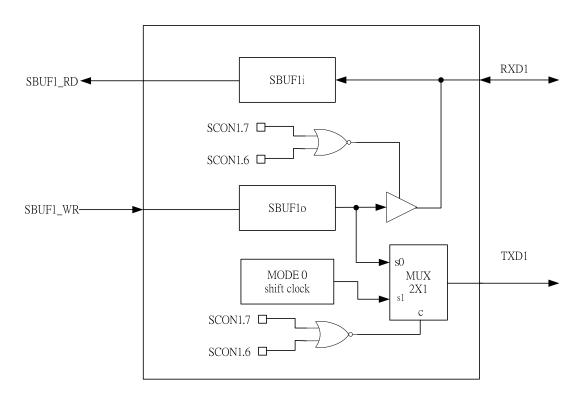


Figure 59: UART 1 Block Diagram

UART 1 Configuration register (SCON1, 0xC0)

_										
Bit	7	6	5	4	3	2	1	0		
Name	SM10	SM11	SM12	REN1	TB18	RB18	TI1	RI1		
Reset Value	0x00									

Bit	Name	Access				De	escription				
			Receive ir	nterrupt	flag set		fter completion of a serial reception. Must be				
0	RI1	R/W	cleared by			log nuravure u					
1	TI 1	R/W				et by hardware a	after completion of a serial transfer. Must be				
1	TI1	K/ W	cleared by	[,] softwa	re.						
2	RB18	R/W					eived. In Mode 1, if SM12 is 0, RB18 is the stop				
2	KD10	10/ 10	bit. In Mo								
3	TB18	R/W					nd 3. Set or cleared by the CPU, depending on the				
				unction it performs (parity check, multiprocessor communication etc.)							
4	REN1	R/W		If set, enables serial reception. Cleared by software to disable reception. Enables a multiprocessor communication feature							
5	SM12	R/W			ocessor	communication	n feature				
6	SM11		Sets baud	rate							
			Mode	SM10	SM11	Description	UART 0 Baud Rate				
			0	0	0	Shift register	Fsys_clk/12				
						8-bit UART	Variable.				
							SMOD1 bit (PCON.6) Baud Rate				
			1	0	1		0 T1ov/32				
7	SM10	R/W					1 T1ov/16				
/	SIMITO						Tlov is Timer 1 overflow rate.				
						9-bit UART	SMOD1 bit (PCON.6) Baud Rate				
			2	1	0		0 Fsys_clk//64				
					1 Fsys_clk/32						
			3	1	1	9-bit UART	Variable, same as Mode 1 above				
			Note: Fsy	s_clk is	operatir	ng system clock	frequency.				

The UART 1 interrupt enable register is ES1 bit (IE.6, 0xA8) for both RI1 and TI1 interrupt flags in SCON1. Its interrupt priority register is PS1 bit (IP.6, 0xB8). The RI1 and TI1 bits that generates interrupts can be set or cleared by software, with the same result as if they had been set or cleared by hardware. That is, interrupts can be generated or pending interrupts can be cancelled by software. Please refer to section 4.8 for details.

UART 1 Buffer Register (SBUF1, 0xC1)

Bit	7	6	5	4	3	2	1	0			
Name		SB1									
Reset Value				02	x00						

Bit	Name	Access	Description
7:0	SB1 R/W	R/W	A data writes into the SBUF1 sets this data in UART1 output register and starts a
7.0	SDI	K/W	transmission. A data reads from SBUF1, reads data from the UART1 receive register.

Mode 0, Synchronous Mode

Pin RXD1 serves as input and output. TXD1 output is a shift clock. The baud rate is fixed at 1/12 of the operating system clock frequency. Eight bits are transmitted with LSB first. Reception is initialized by setting the flags in SCON1 as follows: RI1 = 0 and REN1 = 1.

	Ons 200ns	400ns 600n	s BOOns	1.0us	1.2us	1.4us 1.6	us 1.8us	2.0us	2.2us
clk									
clk/12	Λ							Λ	Λ
SBUF_write									
send									
SBUF_shift								Λ	Λ
rxd		D0 (D1) D2) D3) D4) D5) D6) D7	
txd									/
ti									

Figure 60: UART 1, Mode 0 Transmit Timing Diagram

Mode 1, 8-bit UART, Variable Baud Rate, Timer 1 Clock Source

Pin RXD1 serves as input, and TXD1 serves as serial output. 10 bits are transmitted: a start bit (always 0), 8 data bits (LSB first), and a stop bit (always 1). On receive, a start bit synchronizes the transmission, 8 data bits are available by reading SBUF1, and stop bit sets the flag RB18 in the SCON1. The baud rate is variable and depends from Timer 1.

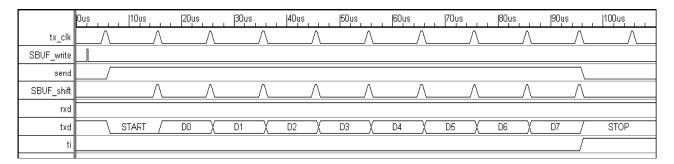


Figure 61: UART 1, Mode 1 Transmit Timing Diagram

Mode 2, 9-bit UART, Fixed Baud Rate

This mode is similar to Mode 1 with two differences. The baud rate is fixed at 1/32 or 1/64 of CLK clock frequency, and 11 bits are transmitted or received: a start bit (0), 8 data bits (LSB first), a programmable 9th bit, and a stop bit (1). The 9th bit can be used to control the parity of the UART 1 interface: at transmission, bit TB18 in SCON1 is output as the 9th bit, and at receive, the 9th bit affects RB08 in SCON1.

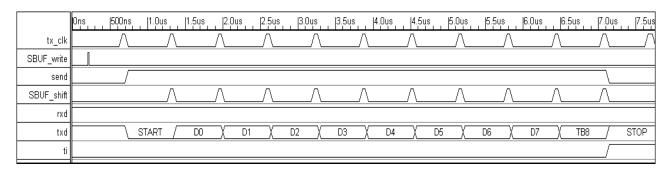
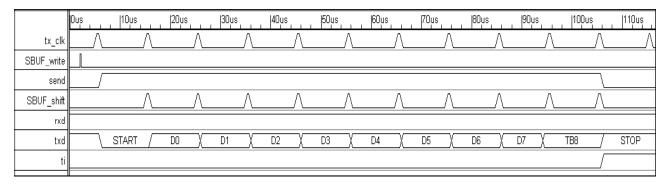
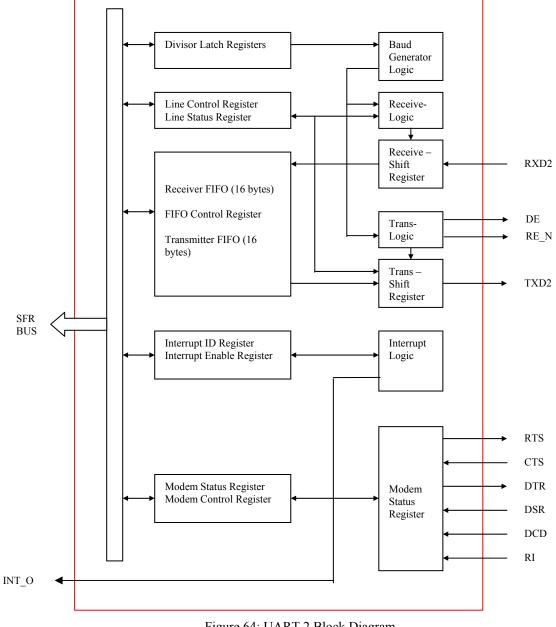
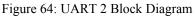


Figure 62: UART1, Mode 2 Transmit Timing Diagram

Mode 3, 9-bit UART, Variable Baud Rate, Timer 1 Clock Source

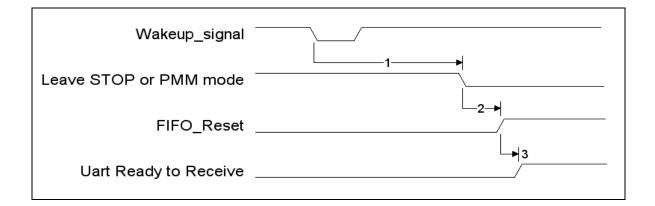
The only difference between Mode 2 and Mode 3 is that the baud rate is a variable in Mode 3. When REN1=1 data receiving is enabled. The baud rate is variable and depends from Timer 1.


Figure 63: UART 1, Mode 3 Transmit Timing Diagram

4.12.4 UART 2

The UART 2 of AX11001/AX11005 is designed to be maximally compatible with standard 16550. It provides serial communication capabilities, which allow communication with modem or other external device (e.g. computer) by using RS232 protocol. It contains 16-bytes deep transmit FIFO and receive FIFO and its transfer rate can be up to 921600 bps. It includes a programmable baud rate generator capable of dividing the operating system clock by (27*N), where N = 1~65535, for generating wide range of baud rate for the internal transmitter/receiver logic.


The main features of UART 2 are listed below,

- 16 bytes deep receive and transfer FIFO
- Support up to 921600 bps baud
- Detection of bad data in the receiver FIFO
- Full-duplex asynchronous channel
- Automatic send data control (ASDC) for automatically transmitter/receiver enable control for RS-485
- Modem control functions (CTS, RTS, DSR, DTR, RI and DCD)
- Fully programmable serial interface
 - Even, odd, no parity bit generation and detection
 - 5, 6, 7, 8 data bit
 - 1, 1.5, 2 stop bit generation
- Line break generation and detection
- Internal diagnostic capabilities (loopback controls, break, parity, overrun and framing error)
- Transmit, receive, line status, and data set interrupts independently controlled
- Complete status reporting capabilities
- Remote wakeup by detecting falling-edge transition (start bit) on RXD2 pin or falling-edge transition on RI pin

Wakeup Function

The UART 2 supports remote wakeup function. Upon detecting wakeup signals, it can wake up the CPU of AX11001/AX11005 from PMM or STOP mode (with or without OSC/PLL turned off). The wakeup signals can be either a falling-edge transition (start bit) on RXD2 pin when receiving a byte of serial data or a falling-edge transition on RI pin from a modem ring signal. Note that because baud rate of UART 2 can be incorrect during PMM or STOP mode, therefore, the receiver FIFO normally requires a reset after wakeup to ensure proper operation.

Upon detecting the wakeup signal, normally the system clock may need some time to become stable, so the UART 2 may not be able to receive serial data properly during this time period. Following describes the timing requirements for awaking from PMM and STOP modes.

Case 1: Wakeup from STOP mode with 25Mhz oscillator and PLL completely stopped

During this STOP mode with OSC/PLL stopped, the first receive serial data byte on RXD2 or a low pulse on RI is being used as wakeup event to awake up the CPU and will not be received correctly into receiver FIFO. To correctly receive the 2nd serial data byte on RXD2, it should be separated by at least 100us (operating system clock = 100Mhz), 200us (operating system clock = 50Mhz), or 400us (operating system clock = 25Mhz), respectively, from the first wakeup byte. Because after detecting the wakeup events, the internal system clock will need abovementioned time frame to resume running (to allow the internal OSC/PLL to become stabilized), any RXD2 activity within the mentioned time range will not be received properly. Also, after awaking up the CPU, the software should generate a FIFO reset command to reset the receiver FIFO via RFR bit (HS_FCR.1) after the first wakeup byte has been completely received through.

Symbol	Description	Operating	Min	Тур	Max	Unit
		System Clock				
1	Falling-edge transition of the wakeup signal to the	100 Mhz	100			us
	CPU leaving STOP mode.	50 Mhz	200			us
		25 Mhz	400			us
2	The CPU leaving STOP mode to the time software		3			byte time
	should generate receiver FIFO reset to allow the					(1)
	wakeup byte to be completely received through.					
3	The time software should generate receiver FIFO		10			system
	reset to the UART 2 ready to receive data.					clocks

Note: 1. The byte time is the time period to receive one serial data byte.

Case 2: Wakeup from STOP mode with 25Mhz oscillator and PLL still running

Symbol	Description	Operating	Min	Тур	Max	Unit
		System Clock				
1	Falling-edge transition of the wakeup signal to the	100 Mhz	100			ns
	CPU leaving STOP mode.	50 Mhz	200			ns
		25 Mhz	400			ns
2	The CPU leaving STOP mode to the time software		3			byte time
	should generate receiver FIFO reset to allow the					(1)
	wakeup byte to be completely received through.					
3	The time software should generate receiver FIFO		10			system
	reset to the UART 2 ready to receive data.					clocks

Note: 1. The byte time is the time period to receive one serial data byte.

Case 3: Wakeup from PMM mode with switchback enabled

Symbol	Description	Operating System Clock	Min	Тур	Max	Unit
			_			
1	Falling-edge transition of the wakeup signal to the	100 Mhz	5			us
	CPU leaving PMM mode.	50 Mhz	10			us
		25 Mhz	20			us
2	The CPU leaving PMM mode to the time software		3			byte time
	should generate receiver FIFO reset to allow the					(1)
	wakeup byte to be completely received through.					
3	The time software should generate receiver FIFO		10			system
	reset to the UART 2 ready to receive data.					clocks

Note: 1. The byte time is the time period to receive one serial data byte.

UART 2 SFR Register Map

Addres s	N	lame	Access	Description
0xE1	HS RTD	HS RBR	RO	Receiver Buffer Register: Receiver FIFO output.
0xE1	_	HS THR	WO	Transmitter Holding Register: Transmit FIFO input.
0xE1		HS DLLR	R/W	Divisor Latch Low Register: The LSB of the Divisor Latch Register. This
				register can be accessed after setting the 7 th (DLAB) bit of the Line
				Control Register to 1.
0xE2	HS_ID	HS_IER	R/W	Interrupt Enable Register: Enable/Mask Interrupts generated by UART.
0xE2	HS_DLHR		R/W	Divisor Latch High Register: The MSB of the Divisor Latch Register.
				This register can be accessed after setting the 7 th (DLAB) bit of the Line
				Control Register to 1.
0xE3	HS_IF	HS_IIR	R	Interrupt Identification Register: Get interrupt information.
0xE3		HS_FCR	W	FIFO Control Register: Control FIFO options.
0xE4	HS_LCR		R/W	Line Control Register: Control connection.
0xE5	HS_MCR		W	Modem Control Register: Control modem.
0xE6	HS_LSR		R	Line Status Register: Status information.
0xE7	HS_MSR	-	R	Modem Status Register: Modem Status.

Note: The Divisor Latch Register is 16-bit register. It can be accessed after setting the 7th(DLAB) bit of the Line Control Register to 1. After finish setting Divisor Latch Register, please set the 7th(DLAB) bit of the Line Control Register to 0.

Table 24: UART 2 SFR Register Map

HS Receive Buffer Register (HS_RBR, 0xE1)

Bit	7	6	5	4	3	2	1	0
Name					RBR			
Reset Value					0x00			

Bit	Name	Access	Description
7:0	RBR	RO	Receive Buffer Register only active at Reading.

HS Transmit Holding Register (HS THR, 0xE1)

Bit	7	6	5	4	3	2	1	0
Name					THR			
Reset Value					0x00			

]	Bit	Name	Access	Description
	7:0	THR	WO	Transmit Holding Register.

HS Divisor Latch Low Register (HS DLLR, 0xE1)

Bit	7	6	5	4	3	2	1	0
Name		DLLR						
Reset Value	0x00							

Bit	Name	Access	Description
7:0	DLLR	R/W	The LSB (7:0 bits) of the Divisor Latch Register. This register can be accessed after setting the 7 th bit of LCR to '1'. You should set this bit to '0' after finish setting the divisor latches. Divisor Latch Register is a 2 bytes register. The HS_DLHR (Divisor Latch High Register) register in conjunction with HS_DLLR (Divisor Latch Low Register) forms a 16-bit Divisor Latch Register that contains the baud rate divisor for the UART 2. The internal counter starts

129

Copyright © 2006-2011 ASIX Electronics Corporation. All rights

to work when the LSB of Divisor Latch Register is written, so when setting the divisor, write the MSB first and the LSB last. The output baud rate is equal to the operating system clock frequency divided by (27 times the value of the baud rate divisor), shown as follows.

t	frequency divided by	y (27 times the value of the	baud rate divisor)	, shown as follow
			em Clock Frequen	icy
	Baud F		visor Latch Regist	ter
	Following is suggest	ed Divisor Latch Register	value for different	baud rate,
		Operating System (
	Baud Rate	Divisor Latch Register	Actual Baud	Tolerance %
	921600	0x0001	925926	0.47%
	115200	0x0008	115741	0.47%
	57600	0x0010	57870	0.47%
	38400	0x0018	38580	0.47%
	19200	0x0030	19290	0.47%
	9600	0x0060	9645	0.47%
	7200	0x0081	7178	0.31%
	4800	0x00c1	4798	0.05%
	3600	0x0101	3603	0.08%
		Operating System (Clock = 50 Mhz	
	Baud Rate	Divisor Latch Register	Actual Baud	Tolerance %
	921600	0x0002	925926	0.47%
	115200	0x0010	115741	0.47%
	57600	0x0020	57870	0.47%
	38400	0x0030	38580	0.47%
	19200	0x0060	19290	0.47%
	9600	0x00c1	9595	0.05%
	7200	0x0101	7206	0.08%
	4800	0x0182	4798	0.05%
	3600	0x0202	3603	0.08%
		Operating System C		
	Baud Rate	Divisor Latch Register	Actual Baud	Tolerance %
	921600	0x0004	925926	0.47%
	115200	0x0020	115741	0.47%
	57600	0x0040	57870	0.47%
	38400	0x0060	38580	0.47%
	19200	0x00c1	19190	0.05%
	9600	0x0182	9595	0.05%
	7200	0x0202	7206	0.08%
	4800	0x0304	4798	0.05%
	3600	0x0405	3599	0.02%

HS Interrupt Enable Register (HS IER, 0xE2)

Bit	7	6	5	4	3	2	1	0
Name	Res	served	WS	WE	MSI	RLSI	THRI	RDI
Reset Value		0x00						

Bit	Name	Access	Description
			Received Data available interrupt.
0	RDI	R/W	1: Enabled.
			0: Disabled.
			Transmitter Holding Register empty Interrupt.
1	THRI	R/W	1: Enabled.
			0: Disabled.
			Receiver Line Status Interrupt.
2	RLSI	R/W	1: Enabled.
			0: Disabled.
			Modem Status Interrupt.
3	MSI	R/W	1: Enabled.
			0: Disabled.
			Wakeup Enable to wakeup the CPU from PMM or STOP mode. Whenever RXD2 or RI
			pin become active (high to low transition), the UART 2 will generate interrupt to INT 6 to
4	WE	RW	wakeup the CPU (and to re-enable OSC/PLL and system clock).
			1: Enabled.
			0: Disabled.
			Wakeup Status.
5	WS	CR	1: When reading "1", this bit indicate that the CPU is awaked up by UART 2.
			0: This bit will be cleared automatically after software reads it.
7:6	Reserved		

HS Divisor Latch High Register (HS DLHR, 0xE2)

Bit	7	6	5	4	3	2	1	0
Name		DLHR						
Reset Value		0x00						

Bit	Name	Access	Description
7:0	DLHR	R/W	The MSB (15:8 bits) of the Divisor Latch Register. See HS_DLLR for details.

HS Interrupt Identification Register (HS IIR, 0xE3)

Bit	7	6	5	4	3	2	1	0
Name		Reserved			BIT3	BIT2	BIT1	BIT0
Reset Value	1	1	0	0	0	0	0	1

Bit	Name	Access	Description
0	BIT0	RO	Please see Table 25 below for more description.
1	BIT1	RO	
2	BIT2	RO	
3	BIT3	RO	
4		RO	Always 0.
5	Reserved	RO	Always 0.
6	Reserveu	RO	Always 1.
7		RO	Always 1.

Bit3	Bit2	Bit1	Bit0	Priorit	Interrupt Type	Interrupt Source	Interrupt Reset Control
				У			
0	0	0	1	-	None	None	-
0	1	1	0	1^{st}	Receiver Line Status	Parity, Overrun or Framing errors or Break Interrupt	Reading the Line Status Register
0	1	0	0	2^{nd}	Receiver Data available	66	FIFO drops below trigger level
1	1	0	0	2 nd			Reading from the FIFO (Receiver Buffer Register)
0	0	1	0	3 rd	Transmitter Holding Register empty		Writing to the Transmitter Holding Register (HS_THR) or reading HS_IIR
0	0	0	0	4 th	Modem Status		Reading the Modem status register (HS_MSR)

Table 25: UART2 Interrupt Identification Register

HS FIFO Control Register (HS FCR, 0xE3)

Bit	7	6	5	4	3	2	1	0
Name	F	FITL Reserved					RFR	FIFOE
Reset Value	1100 0001							

Bit	Name	Access	Description
0	FIFOE	WO	This UART only supports FIFO mode, so always write 1 to this bit.
1	RFR		Writing 1 to this bit clears the Receiver FIFO and resets its logic. But it doesn't clear the shift register, receiving of the current character continues. This bit will be cleared by chip hardware automatically.
2	TFR		Writing 1 to this bit clears the Transmitter FIFO and resets its logic. The shift register is not cleared, transmitting of the current character continues. This bit will be cleared by chip hardware automatically.
5:3	Reserved	WO	
7:6	FITL	WO	 FIFO Trigger level: Define the Receiver FIFO interrupt level. '00': 1 byte. '01': 4 bytes. '10': 8 bytes. '11': 14 bytes.

Copyright © 2006-2011 ASIX Electronics Corporation. All rights

HS Line Control Register (HS LCR, 0xE4)

Bit	7	6	5	4	3	2	1	0
Name	DLAB	BCB	SPB	EPS	PE	NSB	N	IBPC
Reset Value	0	0	0	0	0	0		11

Bit	Name	Access	Description
0:1	NBPC	R/W	The number of bits per character in each transmitted or received serial character. '00': 5 bits. '01': 6 bits. '10': 7 bits. '11': 8 bits.
2	NSB	R/W	Specify the number of generated stop bits. Note that the receiver always checks the first stop bit only. 1: 1.5 stop bits when 5-bit character length selected and 2 bits otherwise. 0: 1 stop bit.
3	PE	R/W	Parity Enable. 1: Parity bit is generated on each outgoing character and is checked on each incoming one. 0: No parity.
4	EPS	R/W	 Even Parity select 1: Even number of logic 1 is transmitted in each word. 0: Odd number of logic1 is transmitted and checked in each word (data and parity combined). In other words, if the data has an even number of logic 1 in it, then the parity bit is logic 1.
5	SPB	R/W	 Stick Parity bit. 1: If bits 3 and 4 are logic 1, the parity bit is transmitted and checked as logic 0. If bit 3 is logic 1 and bit 4 is logic 0 then the parity bit is transmitted and checked as logic 1. 0: Stick Parity disabled.
6	BCB	R/W	Break Control bit. 1: The serial out is forced into logic 0 (break state). 0: Break is disabled.
7	DLA B	R/W	Divisor Latch Access bit. 1: The divisor latches can be accessed. 0: The normal registers are accessed.

HS Modem Control Register (HS MCR, 0xE5)

Bit	7	6	5	4	3	2	1	0
Name	DEF	REC	Reserved	LOOPB	OUT2	OUT1	RTS	DTR
Reset Value				0)x00			

Bit	Name	Access	Description
			Data Terminal Ready (DTR) Signal Control.
0	0 DTR	WO	1: DTR will output logic 0.
			0: DTR will output logic 1.
			Request To Send (RTS) signal control.
1	RTS	WO	1: RTS will output logic 0.
			0: RTS will output logic 1.
2	OUT1	WO	Out1. In Loopback mode, connected to Ring Indicator (RI) signal input.
3	OUT2	WO	Out2. In Loopback mode, connected to Data Carrier Detect (DCD) signal input.
			Loopback mode.
4	LOOPB	WO	1: Loopback mode. When in loopback mode, the serial output signal (TXD2) is set to
4	LUUPD	wO	logic 1. The signal of the transmitter shift register is internally connected to the input
			of the receiver shift register.

	D		DT RT Ou Ou	The following connections are made during loopback mode: DTR → DSR RTS → CTS Out1 → RI Out2 → DCD 0: Normal operation.					
5	Reserved		т ·	D' E 11 (DE '					
7:6	DEREC	WO	DEREC 00 01 10 11	Mode Sleep Single Twisted Pair Half Duplex Single Twisted Pair Half Duplex or Double Twisted Pair Full Duplex (Slave) Double Twisted Pair Full Duplex (Master)	In this mode DE will automatically output logic 1 whenever TX FIFO is non-empty In this mode DE will automatically output logic 1 whenever TX FIFO is non-empty	RE_N pin RE_N keeps output logic 1 RE_N will output logic 1 whenever transmitting data and output logic 0 when it is not transmitting. RE_N keeps output logic 0 RE_N keeps output logic 0 RE_N keeps output logic 0			

HS Line Status Register (HS LSR, 0xE6)

Bit	7	6	5	4	3	2	1	0
Name	FERR	TEMT	THRE	BI	FE	PE	OE	DR
Reset Value	0	0	0	0	0	0	0	0

Bit	Name	Access	Description
0	DR	RO	Data Ready (DR) indicator.1: At least one character has been received and is in the FIFO.0: No characters in the FIFO.
1	OE	CR	 Overrun Error (OE) indicator. 1: If the FIFO is full and another character has been received in the receiver shift register. If another character is starting to arrive, it will overwrite the data in the shift register but the FIFO will remain intact. The bit is cleared upon reading from the register. This will generates Receiver Line Status interrupt. 0: No overrun state.
2	PE	CR	 Parity Error (PE) indicator. 1: The character that is currently at the top of the FIFO has been received with parity error. The bit is cleared upon reading from the register. This will generate Receiver Line Status interrupt. 0: No parity error in the current character.
3	FE	CR	 Framing Error (FE) indicator. 1: The received character at the top of the FIFO did not have a valid stop bit. Of course, generally, it might be that all the following data is corrupted. The bit is cleared upon reading from the register. This will generate Receiver Line Status interrupt. 0: No framing error in the current character.
4	BI	CR	 Break Interrupt (BI) indicator 1: A break condition has been reached in the current character. The break occurs when the line is held in logic 0 for a time of one character (start bit + data + parity + stop bit). In that case, one zero character enters the FIFO and the UART2 waits for a valid start bit to receive next character. The bit is cleared upon reading from the register. This will generate Receiver Line Status interrupt.

			0: No break condition in the current character.
5	THRE	RO	 Transmit FIFO is empty. 1: The transmitter FIFO is empty. This will generate Transmitter Holding Register Empty interrupt. The bit is cleared when data is being written to the transmitter FIFO.
			0: Otherwise.
6	TEMT	RO	 Transmitter Empty indicator. 1: Both the transmitter FIFO and transmitter shift register are empty. The bit is cleared when data is being written to the transmitter FIFO. 0: Otherwise.
7	FERR	CR	 At least one parity error, framing error or break indications have been received and are inside the FIFO. The bit is cleared upon reading from the register. Otherwise.

HS Modem Status Register (HS MSR, 0xE7)

Bit	7	6	5	4	3	2	1	0
Name	DCD	RI	DSR	CTS	DDCD	TERI	DDSR	DCTS
Reset Value	0	0	0	0	0	0	0	0

Bit	Name	Access	Description
0	DCTS	CR	Delta Clear To Send (DCTS) indicator.
0	DC15	UK	1: The CTS line has changed its state.
1	DDSR	CR	Delta Data Set Ready (DDSR) indicator.
1	DDSK	CK	1: The DSR line has changed its state.
2	TERI	CR	Trailing Edge of Ring Indicator (TERI) detector.
2	IERI CK	UK	1: The RI line has changed its state from low to high state.
3	DDCD	CR	Delta Data Carrier Detect (DDCD) indicator.
3	DDCD	CK	1: The DCD line has changed its state.
4	CTS	RO	Complement of the CTS input or equals to RTS in Loopback mode.
5	DSR	RO	Complement of the DSR input or equals to DTR in Loopback mode.
6	RI	RO	Complement of the RI input or equals to Out1 in Loopback mode.
7	DCD	RO	Complement of the DCD input or equals to Out2 in Loopback mode.

4.13 GPIOs

The AX11001/AX11005 supports two 8-bit bi-directional, open-drain, general purpose input and output ports, namely, P0 [7:0], P1 [7:0]. Each port bit can be individually accessed by bit addressable instructions. The driving strength of the GPIO ports is programmable (4mA or 8mA, via I2C Configuration EEPROM offset 0x04, see section 3.1.4 for details).

The Table 26 below shows GPIO pin list.

Pin	I/O	Polarity	Ref. Clock	Description
$P07 \sim P00$	В	-	Operating system clock	Port 0 input/output, bi-directional pins.
$P17 \sim P10$	В	-	Operating system clock	Port 1 input/output, bi-directional pins.

Table 26: General Purpose I/O Ports Pins Description

4.13.1 GPIO SFR Register Map

Address	Name	Description
0x80	P0	Port0 Register.
0x90	P1	Port1 Register.

Table 27: GPIO SFR Register Map

Read and write accesses to the I/O ports are performed via their corresponding SFRs, namely, P0 (0x80), P1 (0x90). Some port-reading instructions read the data register and others read the port's pin. The "Read-Modify-Write" instructions are directed to the data registers and are shown below. All the other instructions used to read a port exclusively read the port's pin.

Instruction	Function description
ANL	Logic AND.
ORL	Logic OR.
XRL	Logic eXclusive OR.
JBC	Jump if bit is set and clear.
CPL	Complement bit.
INC, DEC	Increment, decrement byte.
DJNZ	Decrement and jump if not zero.
MOV Px.y, C	Move carry bit to bit y of port x.
CLR Px.y	Clear bit y of port x.
SETB Px.y	Set bit y of port x.

Table 28: Read-Modify-Write instructions

The port's pin logic and timing diagrams are shown in figures below.

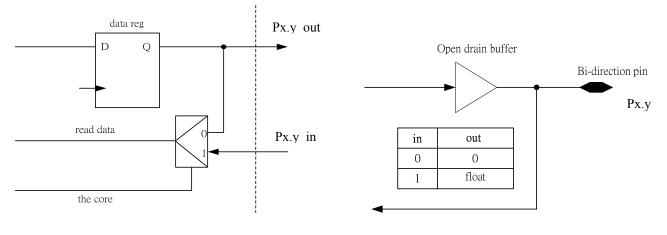


Figure 65: Ports Pin Logic

Figure 66: Data Register Accessed by Read-Modify-Write Instructions

	Ons 10ns	20ns	30ns	40ns	50ns	60ns	70ns	80ns	90ns	100ns	110ns	120ns
clk			<u>\</u>		<u> </u>				<u> </u>		\	
instruction		(mov dir, A)										
Px		old value								new value	9	

Figure 67: Ports write timing diagram

	Ons 10ns 20ns 30ns 40ns 50ns 60ns 70ns 80ns 90ns ′	100ns 110ns 120ns								
clk										
instruction	X mov dir, dir X									
	♀ sample									
Px	new value									
destination	old value X new value									

Figure 68: Ports read timing diagram

Port0 Register (P0, 0x80)

Bit	7	6	5	4	3	2	1	0
Name	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
Reset Value				0xF	FF			

Bit	Name	Access	Description
7:0	P0.[7:0]	R/W	Write 1 then P0.y is tri-state. Write 0 then P0.y is low. If P0.y is tri-state and P0.y_in = 0, then read P0.y is 0. If P0.y is tri-state and P0.y_in = 1, then read P0.y is 1.

Port1 Register (P1, 0x90)

Bit	7	6	5	4	3	2	1	0
Name	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
Reset Value				0xF	ΈF			

Bit	Name	Access	Description
7:0	P1.[7:0]	R/W	Write 1 then P1.y is tri-state. Write 0 then P1.y is low. If P1.y is tri-state and P1.y_in = 0, then read P1.y is 0. If P1.y is tri-state and P1.y_in = 1, then read P1.y is 1.

4.14 TCP/IP Offload Engine

The TCP/IP Offload Engine (TOE) of AX11001/AX11005 supports some network layer 2 to 4 header processing functions in hardware. The TOE block diagram is shown in below Figure 69. The TOE can operate in two different modes - "Non-Transparent" mode and "Transparent" mode.

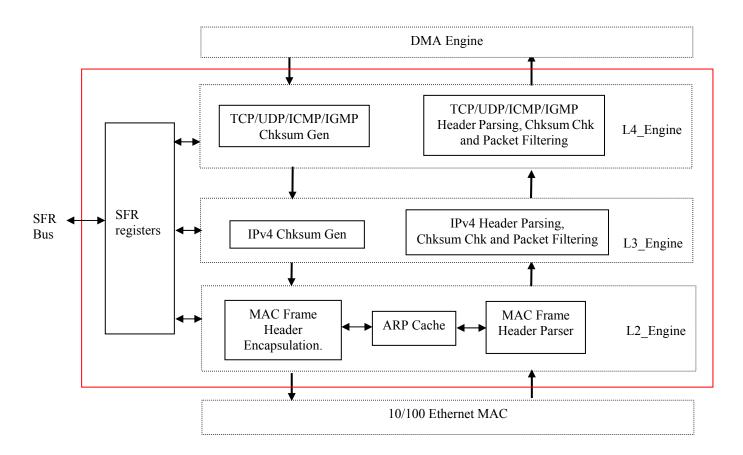


Figure 69: TOE Block Diagram

When TOE operating in "Transparent" mode, the L2_Engine is in transparent mode where hardware processing Ethernet MAC header is disabled. It supports following features,

- VLAN ID filtering for received packets, if enabled
- On-the-fly IPv4 packet header checksum check and generation (with or without PPPoE header, RFC2516)
- Received packet filtering for IPv4 packets with error header checksum
- On-the-fly TCP and UDP segment checksum check and generation
- On-the-fly ICMP and IGMP message checksum check and generation
- Received packet filtering for TCP/UDP/ICMP/IGMP packets with error checksum

When TOE operating in "Non-Transparent" mode, L2_Engine is actively processing Ethernet MAC header. It supports following features,

- Layer-2 functions (the recognizable packet types are Ethernet II encapsulation (RFC894), IEEE 802.2/802.3 SNAP encapsulation (RFC1042), IEEE 802.2/802.3 encapsulation, and NetWare 802.3 RAW encapsulation)
 - Ethernet MAC frame header parsing and encapsulation, including DA, SA, Length/Type, VLAN Tag fields.
 - ARP Cache:
 - When receiving, automatically learns the source IP address and SA of the received Ethernet MAC frames into ARP Cache SRAM
 - When transmitting, automatically sends out ARP-Request packet when the ARP Cache is not found
 - Upon receiving ARP-Request packet, automatically responds with ARP-Reply packet and updates ARP Cache
 - Upon receiving ARP-Reply packet, automatically updates ARP Cache
 - Software programmable timeout value for ARP Cache Timeout
 - ♦ ARP Cache SRAM is software accessible
 - VLAN ID filtering for received packets and VLAN Tag insertion for transmit packets, if enabled
 - Received packet filtering for ARP-Request packet
 - Remove layer 2 header of receive IPv4-type packets before forwarding up to Layer-3 function
 - Append layer 2 header of transmit IPv4-type packets from Layer-3 function before passing down to Ethernet MAC
- Layer-3 functions:
 - IPv4 header parsing, including version, header length, total length, protocol, header checksum, source IP address, destination IP address fields
 - On-the-fly IPv4 header checksum check and generation (only when without PPPoE header bytes)
 - Received packet filtering for IPv4 packets with version not equal to 4 or error header checksum
 - Received packet filtering for IPv4 packets with wrong destination IP address (not equal to owned IP address, and not equal to broadcast IP address, and not equal to multicast IP address) and wrong source IP address (equal to broadcast IP address, or equal to multicast IP address)
- Layer 4 functions:
 - On-the-fly TCP and UDP segment checksum check and generation
 - On-the-fly ICMP and IGMP message checksum check and generation
 - Received packet filtering for TCP/UDP/ICMP/IGMP packets with error checksum

There are 5 different types of frame encapsulation that can be received from Ethernet MAC, namely, Ethernet II encapsulation (RFC894), IEEE 802.2/802.3 SNAP encapsulation (RFC1042), IEEE 802.2/802.3 encapsulation, NetWare 802.3 RAW encapsulation, and PPPoE encapsulation (RFC2516). In the first 4 encapsulation types there can be with or without VLAN Tag bytes. Therefore, this makes up total of 9 different encapsulation frame formats that can be received through TOE.

Internal to TOE, it classifies packets into two types, "**IP-type**" packet and "**Non-IP-type**" packet. The "IP-type" packets are those with IPv4 header in it and are most commonly used in TCP/IP protocol stack. They include IP, TCP, UDP, ICMP, and IGMP packets, etc. In its layer 2 header, they may use Ethernet II encapsulation (RFC894), IEEE 802.2/802.3 SNAP encapsulation (RFC1042), or with addition PPPoE header (RFC2516). The "Non-IP-type" packets are those without IPv4 header, such as IPX, IPv6, ARP-Request, ARP-Reply, NETBIOS packets, etc.

When sending or receiving "IP-type" packets, the TOE can process the header information. When sending or receiving "Non-IP-type" packets, the TOE will bypass those packets and have software do the header processing jobs.

Software configures xDATA memory of 1T 80390 CPU with two logical buffer rings, one buffer ring called Receive Packet Buffer Ring (RPBR) and another called Transmit Packet Buffer Ring (TPBR). When TOE receives packets from Ethernet MAC's receive buffer, the L2_Engine shall examine Ethernet header of the packet, the L3/L4_Engine will examine the packet's IPv4 header, validate the IP/TCP/UDP/ICMP/IGMP checksum and then en-queue the packet into RPBR via DMA transfer. Software will then be able to retrieve the packets out of the RPBR for further processing.

On transmit direction, software first en-queues the packet into TPBR, it then instructs TOE to de-queue the packet out of TPBR via DMA transfer and move it to Ethernet MAC's transmit buffer. During this process, the TOE will calculate the IP/TCP/UDP/ICMP/IGMP checksum and append the Ethernet MAC header for the transmit packets.

L2 Engine in	Packet Type	TOE Operation
Transparent Mode	IP-type Packets	TOE retains Ethernet MAC header when receive or transmit and software can receive full packet data of receive packet. Software processes layer-2, layer-3, and layer-4 headers of the packets, but TOE performs IP/TCP/UDP/ICMP/IGMP checksum check and generation for packets with RFC894, RFC1042, and RFC2516 frame format. Packets treated as "IP-type" are: IP, TCP, UDP, ICMP, IGMP packets with RFC894 or RFC1042 frame format (with or without VLAN tag), or with PPPoE header (Eth Type = 8864, RFC2156).
	Non-IP-type Packets	TOE bypasses processing these packets and retains Ethernet MAC header when receive or transmit. Software can receive full packet data of received packet and should process packet headers of transmit and receive packets. Packets treated as "Non-IP-type" are: IPX, IPv6, NETBIOS, ARP packets, or packets with PPPoE header (Eth Type = 8863).
Non-Transparent Mode	IP-type Packets	TOE maintains the ARP function and processes ARP-Request and ARP-Reply packets. TOE strips out Ethernet MAC header when receive and appends Ethernet MAC header when transmit. Software processes layer-3 and layer-4 headers of the packets, but TOE performs IP/TCP/UDP/ICMP/IGMP checksum check and generation for packets with RFC894 and RFC1042 frame format. Packets treated as "IP-type" are: IP, TCP, UDP, ICMP, IGMP packets with RFC894 or RFC1042 frame format (with or without VLAN tag), and ARP-Request and ARP-Reply packets.
	Non-IP-type Packets	TOE bypasses processing these packets and retains Ethernet MAC header when receive or transmit. Software can receive full packet data of received packet and should process packet headers of transmit and receive packets. Packets treated as "Non-IP-type" are: IPX, IPv6, NETBIOS, or packets with PPPoE header (Eth Type = 8863 or 8864).

Following table summarizes how different packets are being processed in TOE.

Table 29: TOE Operation Modes

4.14.1 TOE SFR Register Map

Address	Name	Description
0xAE	TCIR	TOE Command Index Register is used to indicate the address of to-be accessed TOE register.
0xAF	TDR	TOE Data Register is used to read data from or write data to specified TOE register.

Table 30: TOE SFR Register Map

TOE Command Index Register (TCIR, 0xAE)

Bit	7	6	5	4	3	2	1	0
Name]	TCIR			
Reset Value				(0x00			

Bit	Name	Access	Description
7:0	TCIR	WO	Indicate which of the TOE register as listed in Table 31 is to be accessed.

TOE Data Register (TDR, 0xAF)

Bit	7	6	5	4	3	2	1	0
Name					TDR			
Reset Value					0x00			

Bit	Name	Access	Description
7:0	TDR	R/W	Data Register is used to write data to or read data from the TOE registers.

TOE Register Indirect Access Method

Software shall use indirect access method through TCIR and TDR registers to do read and write access to the TOE registers as listed in Table 31 below.

Read a register from TOE:

- Step 1. Write TCIR: Software indicates the TOE register address to be accessed as the data and write it to the SFR register TCIR.
- Step 2. Read TDR: Software then read SFR register TDR. The data read from TDR is the TOE register data indicated in step 1. Keep reading from TDR if the TOE registers have more than one byte, in that case, the first byte being read back is LSB byte.

Write a register to TOE:

- Step 1. Write TDR: Software writes the data you want to write into TOE registers to the SFR register TDR. Keep writing to TDR if the TOE registers have more than one byte, in that case, the first byte being written should be LSB byte.
- Step 2. Write TCIR: After writing TOE register data to TDR, software then indicates the target TOE register address as data and write it to TCIR.

Note: While software is reading or writing TOE Registers during a sequence of SFR accesses, software can abort that process by writing TCIR with 0xFF.

TOE Register Map

Address	Register Name	Description					
	Layer 2 Related						
0x00	TL2CR	TOE L2 Control Register					
0x01	Reserved						
0x02	TRVTR	TOE RX VLAN Tag Register (16 bits)					
0x04	TTVTR	TOE TX VLAN Tag Register (16 bits)					
0x06	TACSR	TOE ARP Cache Command Status Register					
0x07	TACAR	TOE ARP Cache Address Register					
0x08	TACDR	TOE ARP Cache Data Register (48 bits)					
0x0E	TACTR	TOE ARP Cache Timeout Register					
Layer 3 Related							
0x10	TSIAR	TOE Source IP Address Register (32 bits)					
0x14	TSMR	TOE Subnet Mask Register (32 bits)					
0x18	TDGIAR	TOE Default Gateway IP Address Register (32 bits)					
0x1C	TCSR	TOE Checksum Status Register					
		Layer 4 Related					
0x20	TL4CR	TOE L4 Control Register					
0x21	TL4CMR	TOE L4 Command Register					
0x22	TL4BDPR	TOE L4 BDP pointer Register (16 bits)					
0x24	TL4DGR	TOE L4 DMA Transfer Gap Register					
		Interrupt and Status Related					
0x30	TSR	TOE Status Register					
0x31	TIER	TOE Interrupt Enable Register					

Table 31: TOE Register Map

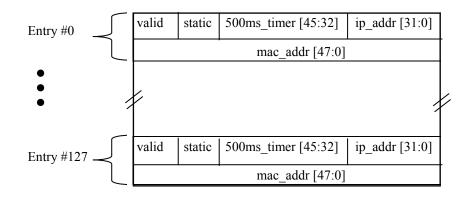
4.14.2 L2_Engine Function Description

ARP Cache

The ARP Cache SRAM as shown in Figure 70 supports up to 128 entries. Each entry stores the one-to-one mapping information of IP address and its associated MAC address. There is a timer value stored in each entry, which is used for cache timeout purpose. When this timer value reaches a predefined value set by software in TACTR register, it will cause the entry to be flushed out and become invalid (by making the "valid" bit to '0').

When L2_Engine operates in Non-Transparent mode, the ARP Cache Arbiter arbitrates access request to ARP Cache SRAM among software, the Cache timeout timer, during receiving packet, and during sending out packet. Software can write or read to ARP Cache SRAM to create or delete a static entry, which will never time out. The Cache timeout timer is used to flush out the dynamic entries in the Cache SRAM whenever the entries are not being refreshed for a predefined time period. This timeout period is software programmable.

When receiving an "IP-type" packet from Ethernet MAC, the ARP Cache SRAM will be accessed once to refresh the timer for the entry corresponding to the received source IP address of the packet. When sending out an "IP-type" packet, the ARP Cache SRAM will be accessed once to retrieve the destination MAC address of the transmit packet, based on the destination IP address provided by L3 Engine. Note that when transmitting "Non-IP-type" packets, software should provide full MAC header in the packet and should not rely on L2_Engine to search into ARP Cache SRAM. In fact, these types of packet contain no valid destination IP address.



The ARP Cache SRAM supports up to 128 entries. Its address has [7:0] bits, within which the [7:1] bits are the Hash Key for indexing the 128 entries. The Hash Key is first generated based on "Linear Addressing" mode by using the lower 7 bits of the given IP address.

Hash Key [7:1] bit = IP address [6:0]

If the hash collision occurs, then the "XOR Addressing" mode is used next. The XOR Addressing mode is calculated as follows,

Hash Key [7] bit = IP address [31] ^ [23] ^ [15] ^ [7] Hash Key [6] bit = IP address [30] ^ [22] ^ [14] ^ [6] Hash Key [5] bit = IP address [29] ^ [21] ^ [13] ^ [5] Hash Key [4] bit = IP address [28] ^ [20] ^ [12] ^ [4] Hash Key [3] bit = IP address [27] ^ [19] ^ [11] ^ [3] Hash Key [2] bit = IP address [26] ^ [18] ^ [10] ^ [2] Hash Key [1] bit = IP address [25] ^ [17] ^ [9] ^ [1]

Note:

- 1. The "valid" bit indicates that the entry is valid.
- 2. The "static" bit means the entry is a static and fixed entry, which will not get expired. When software needs to configure the static ARP cache, set this bit to "1".
- 3. The "500ms_timer" field is the number of count the 500ms ARP Cache Timeout Timer has ticked so far. This counter number is increased by "1" on every 500ms.
- 4. The "ip_addr" field is the IP address values.
- 5. The "mac_addr" field is the MAC address values.

Figure 70: ARP Cache SRAM Memory Map

ARP Request and ARP Reply Packet Processing

When L2_Engine operates in Non-Transparent mode, upon receiving an ARP Request packet from Ethernet MAC with "Target IP address" matching with IP address of this chip set in TSIAR, the L2_Engine will automatically reply with ARP-Reply packet. At the same time, it will use the "Sender Ethernet address" and "Sender IP address" in the received ARP packet to update the entry for this packet in ARP Cache SRAM. When receiving an ARP Reply packet from Ethernet MAC, the L2_Engine will save the "Sender Ethernet address" and "Sender IP address" and then update the entry for this packet in ARP Cache SRAM.

IP Address Translation

Upon receiving "IP-type" packets, ARP-Request and ARP-Reply packets from Ethernet MAC, the L2_Engine will use the packet's source IP address if the IP address is within the same subnet. Otherwise, if it is not within the same sub-net (by comparing with the subnet mask) and the default gateway's IP address != 0.0.0.0 (provided in TDGIAR), then it will use the default gateway's IP address to generate the Hash Key for looking up ARP Cache SRAM. This can conserve the ARP Cache entry usage.

When transmitting "IP-type" packets to Ethernet MAC, the L2_Engine will check the destination IP address of the packet based on following rules to generate correct DA field of Ethernet MAC header. If the look-up fails two times, meaning the entry for the given destination IP address does not exist, the packet will be discarded and this event will be reported to software and an ARP-Request packet will be sent out automatically instead.

Destination IP Address	DA Field Generation Rule
If equal to broadcast destination IP address	Use DA = FFFF_FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
If equal to multicast IP address	Use DA = {01005e, {0, Dest_IP[22:0]}} without looking up to the ARP Cache SRAM.
If equal to unicast IP address	Use the packet's destination IP address to look up to ARP Cache SRAM if the IP address is within the same subnet. Otherwise, if it is not within the same sub-net (by comparing with the subnet mask) and the default gateway's IP address != 0.0.0.0 (provided in TDGIAR), then use the default gateway's IP address to look up to ARP Cache SRAM.

Table 32: DA Field Generation Rule in Transmit Direction

TOE L2 Control Register (TL2CR, 0x00)

Bit	7	6	5	4	3	2	1	0
Name	TX_SO	TX_SNAP_	TX_TRANS	TX_VLAN_	RX_SO	Reserved	RX_TRANS	RX_VLAN_
		EN		EN				EN
Reset Value	0	0	0	0	0	0	0	0

Bit	Name	Access	Description						
0	RXVLAN	R/W	RX VLAN Enable.						
	_EN		1: Setting "1" enables the receiving of VLAN-tagged frame on L2_Engine RX						
			direction, when the TCI byte of received VLAN-tagged frame is matched with						
			TRVTR register and the ETPID is equal 8100 (hex).						
			0: Setting "0" causes all VLAN-tagged frame to be discarded by L2_Engine.						
1	RX_TRAN	R/W	RX Transparent.						
	S		1: Setting "1" enables the transparent mode on L2_Engine RX direction, which allows						
			entire MAC frame of "IP-type" packets and ARP packets to be passed up to						
			software.						
			0: Setting "0" enables L2_Engine function and causes the MAC frame header of						
			"IP-type" packets and ARP-Request packets to be removed by L2_Engine and not						
			being passed up to software.						
	Reserved		For normal operation, set to "0".						
3	RX_SO	R/W	RX Start Operating.						
			1: Setting "1" enables the operation of RX path of L2/L3/l4 Engine.						
			0: Setting "0" disables the operation of RX path of L2/L3/l4 Engine.						
4	TXVLAN_	R/W	TX VLAN Enable.						
	EN		1: Setting "1" enables the VLAN Tag byte insertion on L2_Engine TX direction, and						
			the content in TTVTR register is used to fill in the TCI bytes of transmitted						
			VLAN-tagged frame.						

			0: Setting "0" disables VLAN Tag byte insertion.							
5	TX_TRAN	R/W	TX Transparent.							
	s –		1: Setting "1" enables the transparent mode on L2_Engine TX direction, which means							
			the software is responsible for inserting MAC header for "IP-type" packets and							
			generating ARP packets.							
			0: Setting "0" enables L2_Engine function, which allows L2_Engine to insert							
			Ethernet MAC header for IP-type packets.							
6	TX_SNAP	R/W	1: Setting "1" enables 802.2/802.3 SNAP encapsulation (RFC1042) mode on							
	EN		L2_Engine TX direction.							
			0: Disables SNAP encapsulation on L2_Engine TX direction.							
7	TX_SO	R/W	TX Start Operating.							
			1: Setting "1" enables the operation of TX path of L2/L3/l4 Engine.							
			0: Disables the operation of TX path of L2/L3/l4 Engine.							

Following is the truth table of L2_Engine RX settings and its behavior.

Bit Se	ttings	Resultant Packet	Receive Conditions
RX_TR	RX_VL	When receiving packets of Ethernet II,	When receiving packets of Ethernet II,
ANS	AN_EN	SNAP, or Non-IP-type without VLAN Tag	SNAP, or Non-IP-type with VLAN Tag
0	0	The "IP-type" packets will be received but	All 3 types of packet will be dropped.
		the L2 header will be removed before passing	
		up to software.	
		The "non-IP-type" packets will be received	
0	1	and full packet will be passed up to software.	
0	1	The "IP-type" packets will be received but	The "IP-type" packets with ETPID = 8100 and
		the L2 header will be removed before passing up to software.	matching with TRVTR register or with VID =
		up to software.	0x000 will be received, but the L2 header will
		The "non-IP-type" packets will be received	be removed before passing up to software.
		and full packet will be passed up to software.	be removed before passing up to software.
		and full pucket will be pussed up to software.	The "non-IP-type" packets with $ETPID = 8100$
			and TCI byte of received VLAN-tagged frame
			matching with TRVTR register or with VID =
			0x000 will be received and full packet will be
			passed up to software.
			Packets with other TCI byte values will be
1	0	All 3 types of packet will be received and the	dropped.
1	0	full packet will be passed up software.	All 5 types of packet will be dropped.
1	1		Packets with ETPID = 8100 and TCI byte of
1	1	full packet will be passed up software.	received VLAN-tagged frame matching with
		ran paener will be passed up soleware.	TRVTR register or with VID = $0x000$ will be
			received, and the full packet will be passed to
			software. Packet with other TCI byte values
			will be dropped.

Table 33: L2_Engine RX Truth Table

Following is the truth table of L2_Engine TX settings and its behavior.

	Bit Setting	s	Resultant Packet Transmit Conditions
TX_TR	TX_VLA	TX_SNAP	
ANS	N_EN	_EN	
0	0	0	Send IP-type packets with Ethernet II without VLAN Tag and without SNAP.
			Send Non-IP transparently.
0	0	1	Send IP-type packets with Ethernet II with SNAP, but without VLAN Tag.
			Send Non-IP transparently.
0	1	0	Send IP-type packets with Ethernet II with VLAN Tag (ETPID = 8100 and TCI
			byte = TTVTR), but without SNAP.
			Send Non-IP transparently.
0	1	1	Send IP-type packets with Ethernet II with VLAN (ETPID = 8100 and TCI byte
			= TTVTR), and with SNAP.
1	0	0	Send Non-IP transparently.
1	0	0	Send IP-type packets with Ethernet II transparently. Software is responsible for
			adding the Ethernet II header for every transmitted packet.
1	0	1	Send Non-IP transparently.
1	0	1	Send IP-type packets with Ethernet with SNAP transparently. Software is
			responsible for adding the Ethernet II and SNAP header for every transmitted packet.
			Send Non-IP transparently.
1	1	0	Send IV-in transparently. Send IP-type packets with Ethernet with VLAN transparently. Software is
1	1	0	responsible for adding the Ethernet II and VLAN header for every transmitted
			packet.
			Send Non-IP transparently.
1	1	1	Send IP-type packets with Ethernet with VLAN and SNAP transparently.
			Software is responsible for adding the Ethernet II, VLAN, and SNAP header for
			every transmitted packet.
			Send Non-IP transparently.

Table 34: L2_Engine TX Truth Table

TOE RX VLAN Tag Register (TRVR, 0x02)

Bit	7	6	5	4	3	2	1	0
Name	TCI 0							
	Reserved						CI 1	
Reset Value		Reset value is determined by the I2C EEPROM						

Bit	Name	Access	Description
7:0	TCI 0	R/W	The TCI 1~0 represents the VLAN ID of Tag Control Information bytes of VLAN-tagged
11:8	TCI 1		frame. When setting RX_VLAN_EN bit (TL2CR.0) to "1", the content in this register is
			used to compare against TCI byte of received VLAN-tagged frame. Only when matched, the
			received VLAN-tagged frame is passed up to software. Note that a special case of VID =
			0x000 in received VLAN-tagged frame will also be passed up to software.

TOE TX VLAN Tag Register (TTVTR, 0x04)

Bit	7	6	5	4	3	2	1	0
Name		TCI 0						
		TCI 1						
Reset Value		Reset value is determined by the I2C EEPROM						
Bit Name	Bit Name Access Description							

Bit	Name	Access	Description
7:0	TCI 0	R/W	The TCI 1~0 represents the Tag Control Information bytes of VLAN-tagged frame. When
15:8	TCI 1		TX_VLAN_EN bit (TL2CR.4) = "1", the content in this register is used to insert the TCI
			byte of transmitted VLAN-tagged frame.

TOE ARP Cache Command Status Register (TACSR, 0x06)

Bit	7	6	5	4	3	2	1	0
Name			GO	READ				
Reset Value				0	1			

Bit	Name	Access	Description
0	READ	R/W	1: Setting READ bit to "1" indicates to read from ARP Cache SRAM.
			0: Setting to "0" indicates to write to ARP Cache SRAM.
1	GO	W1/R	 Setting GO to "1" initiates the ARP Cache SRAM read or write access request to the internal Cache SRAM arbiter. This bit will remain "1" while the access request is still in progress. O: Arbiter hardware automatically clears this bit after current access request is completed.

TOE ARP Cache Address Register (TACAR, 0x07)

Bit	7	6	5	4	3	2	1	0	
Name	SRAM_ADDR								
Reset Value	0x00								

Bit	Name	Access	Description
7:0	SRAM_ADDR	R/W	The read or write address of the ARP Cache SRAM.

TOE ARP Cache Data Register (TACDR, 0x08)

Bit	7	6	5	4	3	2	1	0				
Name		CACHE_DATA 0										
		CACHE_DATA 1										
		CACHE DATA 2										
		CACHE DATA 3										
				CACHE	DATA 4							
		CACHE DATA 5										
Reset Value	0x0000_0000											

Bit	Name	Access	Description
7:0	CACHE_DATA	R/W	The CACHE_DATA 5~0 is the content of the ARP Cache SRAM where
	0		CACHE_DATA 5 represents bit 47~40 of the ARP Cache SRAM while
47:40			CACHE_DATA 0 represents bit 7~0. When writing to the ARP Cache SRAM,
	CACHE_DATA		software needs to first write desired data into this register before issuing TACSR
	5		register. When reading from the ARP Cache SRAM, software first issues
			TACSR register and then retrieves the SRAM data from this register.

TOE ARP Cache Timeout Register (TACTR, 0x0E)

	Bit	7	6	5	4	3	2	1	0	
	Name	ARP_TIMEOUT								
	Reset Value	Reset value is determined by the I2C EEPROM								
Bit	Name	Access]	Descriptio	n			
Bit 7:0	Name ARP TIMEOUT		Software se	tting of AR				t is about 8	sec in time.	
		R/W	Software se For example		P cache tim	neout value.	Each coun		sec in time. 2040 sec	

4.14.3 L3_Engine Function Description

The L3_Engine parses IPv4 header in received packets, recalculates the checksum of IPv4 header and compares it with received checksum bytes. The packets with wrong IP header checksum can be discarded by this block. The block also calculates and inserts the checksum for the transmitted IP header.

When L2_Engine in Non-Transparent mode, the L3 Engine will discard following received IP-type packets:

- Ethernet Type = 0800 but IP version != 4
- IP header checksum error
- Wrong destination IP address (not equal to source IP address of this chip in TSIAR register, and not equal to broadcast IP address, and not equal to multicast IP address). The valid broadcast IP in destination IP address fields are:
 - Limited broadcast: 255.255.255.255
 - Net-directed broadcast for class A: 0 + Net_ID (7 bits) + Host_ID (24 bits), where Host_ID = All ones
 - Net-directed broadcast for class B: $10 + \text{Net_ID}(14 \text{ bits}) + \text{Host_ID}(16 \text{ bits})$, where Host_ID = All ones.
 - Net-directed broadcast for class C: 110 + Net_ID (21 bits) + Host_ID (8 bits), where Host_ID = All ones.
 - Subnet-directed broadcast: Net_ID + Subnet_ID + Host_ID, where Subnet_ID is a specific number and Host_ID = All ones.
 - All subnet-directed broadcast: Net_ID + Subnet_ID + Host_ID, where Subnet_ID = All ones, and Host_ID = All ones.
- Wrong source IP address (equal to broadcast IP address, or equal to multicast IP address)

TOE Source IP Address Register (TSIAR, 0x10)

Bit	7	6	5	4	3	2	1	0			
Name	IP_ADDR 0										
	IP_ADDR 1										
	IP ADDR 2										
	IP ADDR 3										
Reset Value		Reset value is determined by the I2C EEPROM									

В	it	Name	Access	Description
7:	:0	IP_ADDR 0	R/W	The IP_ADDR 3~0 is the IP address of this device where IP_ADDR 3 represents bit
				31~24 of IP address while IP_ADDR 0 represents bit 7~0.
31:	:24	IP_ADDR 3		

TOE Subnet Mask Register (TSMR, 0x14)

Bit	7	6	5	4	3	2	1	0			
Name				SUBNET_N	ASK 0						
	SUBNET_MASK 1 SUBNET_MASK 2										
-											
Reset Value	Reset value is determined by the I2C EEPROM										

Bit	Name	Access	Description
7:0	SUBNET_MASK 0	R/W	The SUBNET_MASK 3~0 is the IP subnet mask of this device where
			SUBNET_MASK 3 represents bit 31~24 of subnet mask while
31:24	SUBNET_MASK 3		SUBNET_MASK 0 represents bit 7~0.

TOE Default Gateway IP Address Register (TDGIAR, 0x18)

Bit	7	6	5	4	3	2	1	0				
Name		GATEWAY_IP 0										
	GATEWAY_IP 1											
	GATEWAY IP 2											
		GATEWAY IP 3										
Reset Value	0x0000_0000											

Bit	Name	Access	Description
7:0	GATEWAY_IP 0	R/W	The GATEWAY_IP 3~0 is the default gateway's IP address of this device.
			The GATEWAY_IP 3 represents the bit 31~24 of the default gateway's IP
31:24	GATEWAY_IP 3		address while GATEWAY_IP 0 represents bit 7~0.

TOE Checksum Status Register (TCSR, 0x1C)

Bit	7	4	3	2	1	0
Name	Res	L4CSER		L3CSER		
Reset Value	0	0	000			0

Bit	Name	Access	Description
0	L3CSER	CR	L3 CheckSum ERror.
			1: When reading "1", this bit indicates that there is at least one received packet with its
			IP header checksum error.
			0: No IP header checksum error is found so far.
3:1	Reserved		
4	L4CSER	CR	L4 CheckSum ERror.
			1: When reading "1", this bit indicates that there is at least one received packet with its
			TCP or UDP or ICMP or IGMP packet checksum error.
			0: No TCP or UDP or ICMP or IGMP packet checksum error is found so far.
7:5	Reserved		

4.14.4 L4_Engine Function Description

The L4_Engine parses the TCP/ UDP/ICMP/IGMP header of received packets, recalculates checksum of received packet and then compares with received checksum. The packets with wrong checksum can be discarded by this block. This block also calculates and inserts the TCP/UDP/ICMP/IGMP checksum for the transmitted packets.

TOE L4 Control Register (TL4CR, 0x20)

Bit	7	6	5	4	3	2	1	0
Name		Rese	erved		ETCB	ERCB	EHCI	DPCE
Reset Value				0	0	1	1	

Bit	Name	Access	Description
0	DPCE	R/W	Drop Packet with Checksum Error.
			1: Setting "1" enables TCP/UDP/ICMP/IGMP packet with checksum error to be
			dropped by L4 Engine.
			0: Setting "0" allows those packets with checksum error to be received into RPBR.
1	EHCI	R/W	Enable Hardware Checksum Insertion.
			1: Setting "1" enables hardware to generate and insert the Layer 3 and Layer 4
			checksum fields for transmitted TCP/UDP/ICMP/IGMP packet.
			0: Disables checksum insertion.
2	ERCB	R/W	Enable Receive packet to Cross RPBR Boundary.
			1: Setting "1" enables receive packets to be stored in buffer pages crossing REPP
			boundary in RPBR, which allows the packet storing in xDATA memory as a ring
			fashion, i.e., non-contiguous memory range. Please refer to section 4.14.5 for RPBR
			description.
			0: Setting "0" indicates that the receive packets are always stored in xDATA memory as non-ring fashion, i.e., contiguous memory range.
3	ETCB	R/W	Enable Transmit packet to Cross TPBR Boundary.
			1: Setting "1" enables transmit packets to be stored in buffer pages crossing TEPP
			boundary in TPBR, which allows the packet storing in xDATA memory as a ring
			fashion, i.e., non-contiguous memory range. Please refer to section 4.14.5 for TPBR
			description.
			0: Setting "0" to indicate that the transmit packets are always stored in xDATA memory
			as non-ring fashion, i.e., contiguous memory range.
7:4	Reserved	R/W	

TOE L4 Command Register (TL4CMR, 0x21)

Bit	7	6	5	4	3	2	1	0
Name		Reserved		SP		Reserved		RPR
Reset Value				0:	x00			

Bit	Name	Access	Description
0	RPR	W1/R	Resume Packet Receive.
			 Software can set this bit to "1" to resume the packet receive process on the entire RX direction of TOE. This is normally used after the entire RX direction of TOE is halted due to RPBR full condition and the software has de-queued some packets in a previously full RPBR. This bit will be cleared to "0" after the L4 resumes packet receiving process.
3:1	Reserved	R/W	
4	SP	W1/R	Send Packet.
			 Setting this bit "1" tells the L3/L4 Engine to de-queue one packet from the TPBR based on the BDP in TL4BDPR register. This bit will remain "1" until the L4 Engine completes sending out the packet. L4 Engine when done transmitting will clear this bit to "0" automatically.
7:5	Reserved	R/W	

TOE L4 BDP Pointer Register (TL4BDPR, 0x22)

Bit	7	6	5	4	3	2	1	0				
Name		BDPP 0										
				BDPP	1							
Reset Value				0x000)0							
	•											
D'4 N				D	•							

Bit	Name	Access	Description
7:0	BDPP 0	R/W	Software shall configure this register with the BDP pointer of the packet buffer ring so
15:8	BDPP 1		that when a packet is received or transmitted, the L4 Engine knows where the RPBR or
			TPBR in CPU's xDATA Memory. Please refer to section 4.14.5 for BDP description.

TOE L4 DMA Transfer Gap Register (TL4DGR, 0x24)

Bit	7	6	5	4	3	2	1	0
Name				DMA_GA	AP			
Reset Value	Reset value is determined by the I2C EEPROM							
Rit Name	Access			Dec	crintion			

	Bit	Name	Access	Description
7	0:7	DMA_GA	R/W	Software setting of time gap between each 256 bytes of DMA write/read transfer during
		Р		packet receive or transmit. Each count is 64 system clocks. For example, $0x01 = 64$ system clocks. $0x02 = 128$ system clocks. The maximum time gap is 16320 system clocks.
				CIOCKS.

TOE Status Register (TSR, 0x30)

Bit	7	6	5	4	3	2	1	0
Name	Reserved	CSP	TPBRE	ACNF	Reserved	RPBRF	RPBRNE	ACHC
Reset Value				0:	x00			

Bit	Name	Access	Description
0	ACHC	CR	ARP Cache Hashing Collision.
			1: When reading "1", this bit indicates that the keys (after both Linear Addressing and
			XOR Addressing schemes are used as search key) being used to hash the ARP Cache
			SRAM have returned with result that the entries are pre-occupied by other IP address.
			0: No ARP Cache hash collision.
1	RPBRNE	CR	RX Packet Buffer Ring is Not Empty.
			1: When reading "1", this bit indicates that there is at least one packet being stored in
			RPBR.
			0: RPBR is empty.
2	RPBRF	CR	RX Packet Buffer Ring is Full.
			1: When reading "1", this bit indicates that the RPBR in TL4BDPR register has
			encountered buffer full condition. Most likely reason is that the L3/L4 Engine is
			receiving a packet into RPBR and there are no enough free pages to store the received
			packet.
			0: RPBR is not full.
3	Reserved	R	
4	ACNF	CR	ARP Cache Not Found.
			1: When reading "1", this bit indicates that the destination MAC address of the packet
			currently being sent can not be found in ARP Cache SRAM (after both Linear
			Addressing and XOR Addressing schemes are used as search key) and an
			ARP-Request packet has been sent out instead.
			0: Normal status.
5	TPBRE	CR	TX Packet Buffer Ring is Empty.
			1: When reading "1", this bit indicates that TPBR in TL4BDPR register is empty. Most
			likely reason is that the software has not stored any packets in TPBR before setting

Copyright © 2006-2011 ASIX Electronics Corporation. All rights

			the SP bit (TL4CMR.4) to ask L4 Engine to send out one packet.
			0: TPBR is not empty.
6	CSP	CR	L4/L3 Engine has Completed sending out one Packet on TX.
			1: When reading "1", after software sets the "SP" bit (TL4CMR.4), this bit indicates
			that the L4/L3 Engine has completed sending out one packet on TX.
			0: TOE TX is still sending packet or in idle state.
7	Reserved	R	

TOE Interrupt Enable Register (TIER, 0x31)

Bit	7	6	5	4	3	2	1	0
Name	Reserved	EI_CSP	EI_TPBRE	EI_ACNF	Reserved	EI_RPBRF	EI_RPBRNE	EI_ACHC
Reset Value					0x00			

Bit	Name	Access	Description
0	EI_ACHC	R/W	Enable Interrupt whenever there is ARP Cache Hashing Collision.
			1: Enables generating interrupt to INT4 whenever ACHC flag is set.
			0: Disables interrupt.
1	EI_RPBRNE	R/W	Enable Interrupt when RPBR is Not Empty.
			1: Enables generating interrupt to INT4 whenever RPBRNE flag is set.
			0: Disables interrupt.
2	EI_RPBRF	R/W	Enable Interrupt when RPBR is Full.
			1: Enables generating interrupt to INT4 whenever RPBRF flag is set.
			0: Disables interrupt.
3	Reserved	R/W	
4	EI_ACNF	R/W	Enable Interrupt whenever there is ARP Cache Not Found.
			1: Enables generating interrupt to INT4 whenever ACNF flag is set.
			0: Disables interrupt.
5	EI_TPBRE	R/W	Enable Interrupt for TPBR Empty condition.
			1: Enables generating interrupt to INT4 whenever TPBRE flag is set.
			0: Disables interrupt.
6	EI_CSP	R/W	Enable Interrupt whenever L4/L3 Engine completes sending out one packet on TX.
			1: Enables generating interrupt to INT4 whenever CSP flag is set.
			0: Disables interrupt.
7:6	Reserved	R/W	

4.14.5 Packet Buffer Ring in xDATA Memory of 1T 80390 CPU

During software initialization, software is responsible for partitioning the CPU xDATA memory into several logical memory pages (in terms of 256 bytes boundary). The packet buffer ring requires 1 Buffer Descriptor Page and 2 Packet Buffer Rings each having N pages (one Receive Packet Buffer Ring and one Transmit Packet Buffer Ring). This is as shown in Figure 71 below.

The Buffer Descriptor Page is used for storing buffer pointers. The RX/TX Packet Buffer Rings are used for storing actual packet data in a circular buffer fashion. Software shall configure Start Page Pointer and End Page Pointer of both RX and TX Packet Buffer Rings in Buffer Descriptor Page, to indicate the boundary of the two packet buffer rings.

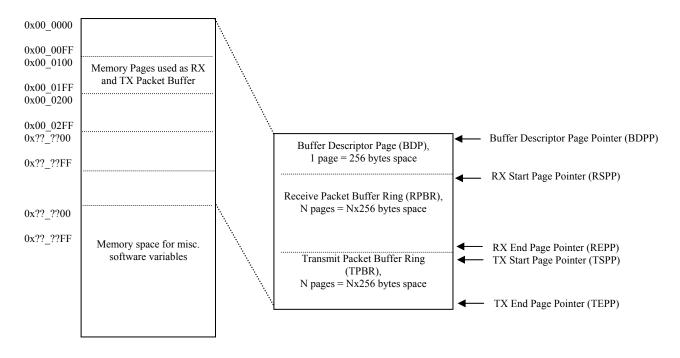
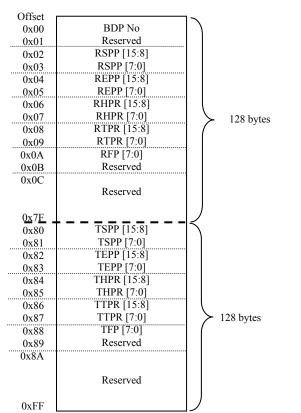



Figure 71: The External Data (xDATA) Memory of CPU

The detailed pointer definition in BDP page is shown in Figure 72. Software should initialize these pointers prior to enabling TOE to active mode. During normal operation, some pointer fields are being updated by software and some are being updated by L4_Engine.

The RPBR and TPBR packet buffer area can operate in a ring fashion or non-ring fashion. This is programmable by software via ERCB bit (TL4CR.2) and ETCB bit (TL4CR.3). Using ring fashion allows xDATA memory use more efficient but may require slightly more complex software driver code. Using non-ring fashion makes software driver code slightly simpler but may waste memory. The two examples of RPBR and TPBR operating in ring fashion are shown in Figure 73 and Figure 74. The detailed pointer and data structure of RPBR and TPBR is described in section 4.14.6.

Offset	Name	Description
0x00	BDP No	The number of this Buffer Descriptor Page. This number is filled by the software to identify the
		BDP in the CPU's xDATA memory.
0x02~03	RSPP	RX Start Page Pointer of RX Packet Buffer Ring (RPBR), indicating the beginning page of the
		RPBR in the xDATA memory.
0x04~05	REPP	RX End Page Pointer of RPBR, indicating the ending page of RPBR in the xDATA memory.
0x06~07	RHPR	RX Head Pointer of RPBR, pointing to the first page of first packet in RPBR. Initial value = RSPP.
		During packet receive process, software shall always de-queue the packet pointed by RHPR and
		then update RHPR to point to next packet once done de-queuing one packet.
0x08~09	RTPR	RX Tail Pointer of RPBR, pointing to the next empty page in RPBR. Initial value = RSPP. During
		packet receive process, the L4_Engine shall update RTPR whenever successfully en-queuing one
		packet into RPBR. The empty buffer ring condition is indicated by having RTPR = RHPR.
0x0A	RFP	The number of Free Pages remains available in RPBR. Initial value = REPP – RSPP. During packet
		receive process, the L4_Engine will decrease this value by the page count of the packet currently
		being en-queued, while software will increase this value by the page count of the packet currently
		being de-queued.
0x80~81	TSPP	TX Start Page Pointer of TX Packet Buffer Ring (TPBR), indicating the beginning page of the
		TPBR in the xDATA memory.
0x82~83	TEPP	TX End Page Pointer of TPBR, indicating the ending page of TPBR in the xDATA memory.
0x84~85	THPR	TX Head Pointer of TPBR, pointing to the first page of first packet in TPBR. Initial value = TSPP.
		During packet transmit process, the L4_Engine shall de-queue the packet pointed by THPR in
0.06.07	TTDD	TPBR and then update THPR to point to next packet once done de-queuing one packet.
0x86~87	TTPR	TX Tail Pointer of TPBR, pointing to the next empty page in TPBR. Initial value = TSPP. During
		packet transmit process, software shall update TTPR after en-queuing one packet into TPBR. The
0.00	TED	empty buffer ring condition is indicated by having TTPR = THPR.
0x88	TFP	The number of Free Pages remains available in TPBR. Initial value = TEPP – TSPP. During packet
		transmit process, software will decrease this value by page count of the packet currently being
		en-queued while L4_Engine will increase this value by the page count of the packet currently being
		de-queued.

Figure 72: The Content of Buffer Descriptor Page (BDP)

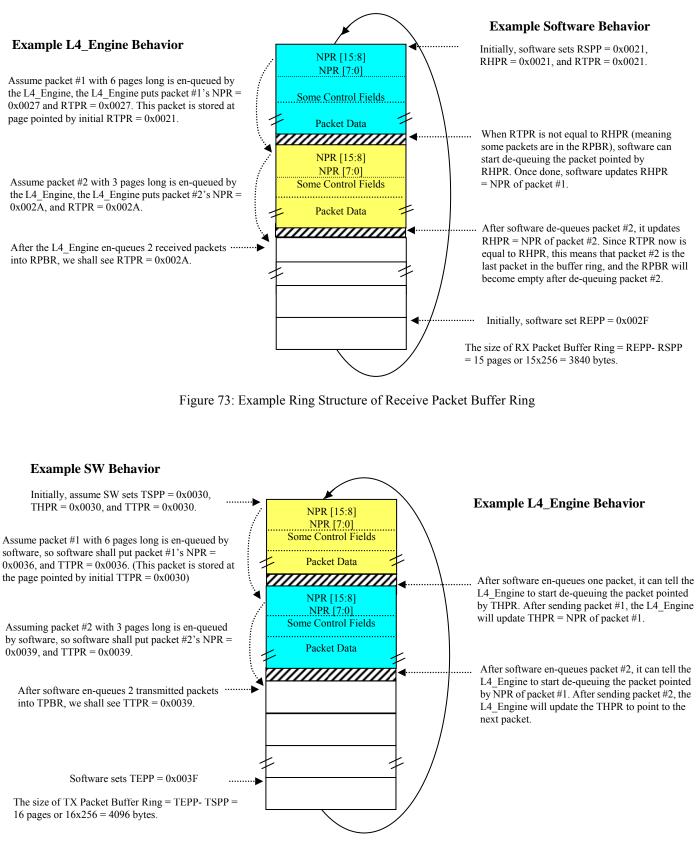


Figure 74: Example Ring Structure of Transmit Packet Buffer Ring

4.14.6 Packet Format in Packet Buffer Ring

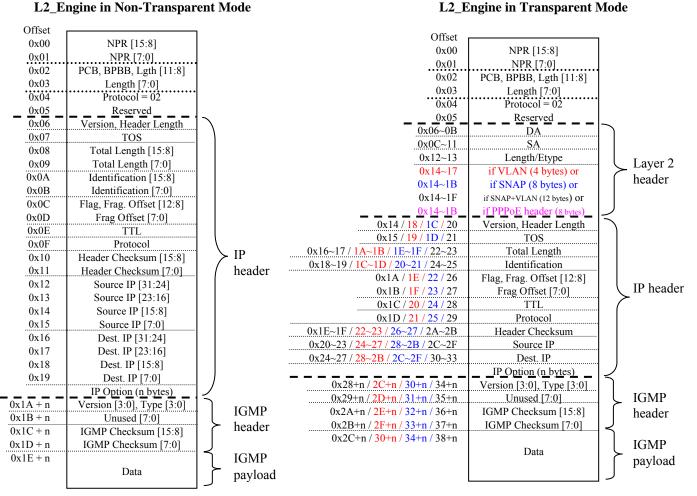
Receive Packet Buffer Ring

In TOE RX direction, the L4_Engine is responsible for en-queuing the received packets into RPBR while software is responsible for de-queuing the received packets out of the RPBR. The packets in the ring are linked together via Next Pointer (NPR) field in each packet as shown below. The DMA transfer mechanism is used to move received packets from Ethernet MAC receive buffer through TOE to RPBR. Below Figure 75 to Figure 79 show the different packet format in RPBR.

1. ICMP Packet Format in RPBR

L2_Engine in Non-Transparent Mode L2_Engine in Transparent Mode Offset Offset NPR [15:8] 0x00 0x00 NPR [15:8] NPR [7:0] 0x01 NPR [7:0] PCB, BPBB, Lgth [11:8] 0x01 0x02 PCB, BPBB, Lgth [11:8] 0×02 0x03 Length [7:0] 0x03 Length [7:0] 0x04 Protocol = 01 0x04 Protocol = 01 0x05 Reserved 0x05 Reserved Version, Header Length 0x06 0x06~0B DA 0x07 TOS 0x0C~11 SA 0x08 Total Length [15:8] 0x12~13 Length/Etype Layer 2 0x09 Total Length [7:0] if VLAN (4 bytes) or 0x14~17 0x0A Identification [15:8] header 0x14~1B if SNAP (8 bytes) or 0x0B Identification [7:0] 0x14~1F if SNAP+VLAN (12 bytes) or Flag, Frag. Offset [12:8] 0x0C Frag Offset [7:0] 0x0D 0x14/18/1C/20 Version, Header Length 0x0E TTL 0x15 / 19 / 1D / 21 TOS 0x0F Protocol IP 0x16~17 / 1A~1B / 1E~1F / 22~23 Total Length 0x10 Header Checksum [15:8] 0x18~19 / 1C~1D / 20~21 / 24~25 Identification header Header Checksum [7:0] 0x11 0x1A / 1E / 22 / 26 Flag, Frag. Offset [12:8] Source IP [31:24] 0x12 IP header 0x1B / 1F / 23 / 27 Frag Offset [7:0] Source IP [23:16] 0x13 0x1C / 20 / 24 / 28 TTL 0x14 Source IP [15:8] 0x1D/21/25/29 Protocol Source IP [7:0] 0x15 0x1E~1F / 22~23 / 26~27 / 2A~2B Header Checksum 0x16 Dest. IP [31:24] 0x20~23 / 24~27 / 28~2B / 2C~2F Source IP 0x17 Dest. IP [23:16] 0x24~27 / 28~2B / 2C~2F / 30~33 Dest. IP Dest. IP [15:8] 0x18 IP Option (n bytes) Dest. IP [7:0] 0x19 0x28+n72C+n/30+n/34+nType [7:0] IP Option (n bytes) 0x29+n/2D+n/31+n/35+n Code [7:0] ICMP 0x1A + nType [7:0] ICMP 0x2A+n / 2E+n / 32+n / 36+n ICMP Checksum [15:8] header 0x1B + nCode [7:0] ICMP Checksum [7:0] header 0x2B+n/2F+n/33+n/37+n0x1C + nICMP Checksum [15:8] 0x2C+n/30+n/34+n/38+n 0x1D + nICMP Checksum [7:0] ICMP Data ICMP 0x1E + npayload Data payload

Offset	Bit	Field Name	Description
0x00	7:0	NPR [15:8]	The Next Pointers of RPBR: The NPR field indicates the first page of the next packet
0x01	7:0	NPR [7:0]	in the RPBR.
0x02	7	PCB	When TL4CR[ERCB] = 1, the PCB flag indicates that this Packet Crosses the packet
0x02	6:4	BPBB	buffer ring Boundary. In that case, when PCB flag is "1", BPBB[2:0] field indicates the # of Buffer Pages being used for this packet Before REPP Boundary. When PCB flag is "0", BPBB field is undefined. When TL4CR[ERCB] = 0, PCB and BPBB are undefined.
0x02	3:0	Length [11:8]	The Length field indicates the total length in bytes from (Version, Header Length) field
0x03	7:0	Length [7:0]	to Data field in Non-Transparent mode, or from DA field to Data field in Transparent mode.
0x04	7:0	Protocol	The Protocol = $0x01$ indicating that the packet is an ICMP packet

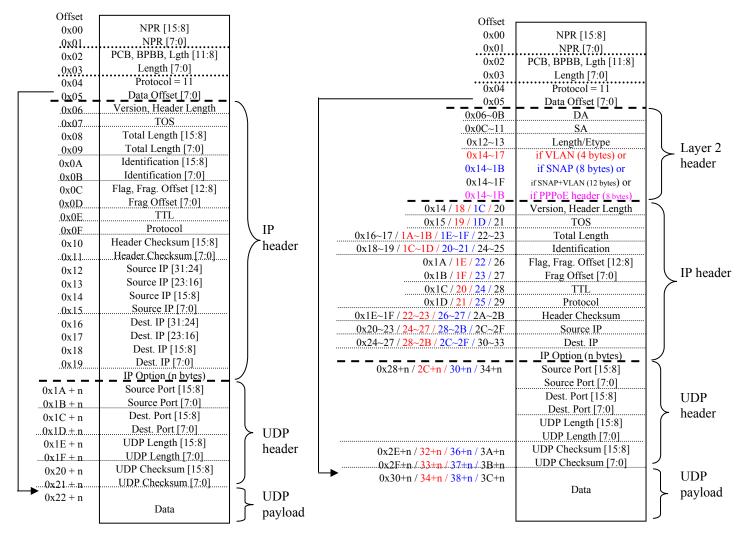

Figure 75: ICMP Packet Format in RPBR

Copyright © 2006-2011 ASIX Electronics Corporation. All rights

2. **IGMP Packet Format in RPBR**

L2_Engine in Non-Transparent Mode

Offset	Bit	Field Name	Description
0x00	7:0	NPR [15:8]	Same as description for ICMP packet.
0x01	7:0	NPR [7:0]	
0x02	7	PCB	Same as description for ICMP packet.
0x02	6:4	BPBB	
0x02	3:0	Length [11:8]	Same as description for ICMP packet.
0x03	7:0	Length [7:0]	
0x04	7:0	Protocol	The Protocol = $0x02$ indicating that the packet is an IGMP packet


Figure 76: IGMP Packet Format in RPBR

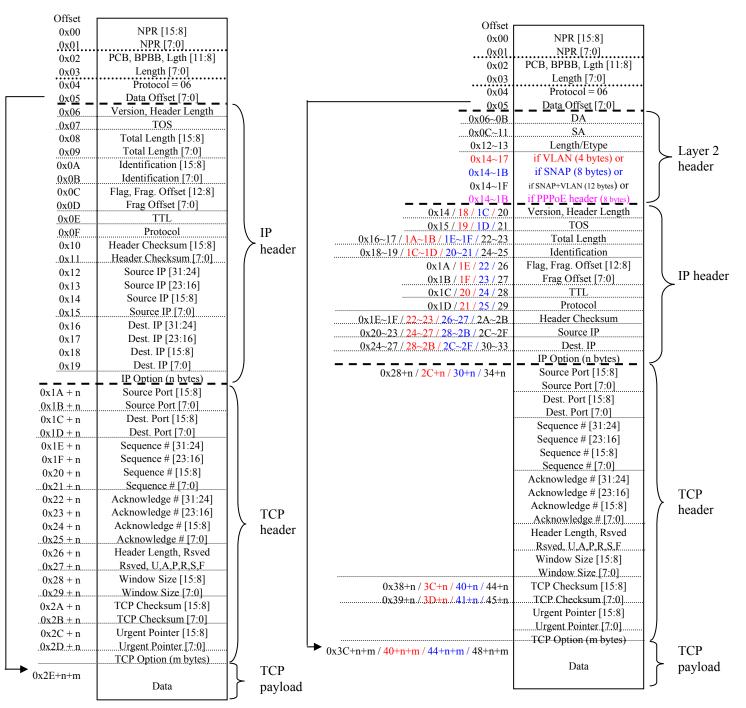
L2-Engine in Transparent Mode

3. UDP Packet Format in RPBR

L2-Engine in Non-Transparent Mode

Offset	Bit	Field Name	Description
0x00	7:0	NPR [15:8]	Same as description for ICMP packet.
0x01	7:0	NPR [7:0]	
0x02	7	PCB	Same as description for ICMP packet.
0x02	6:4	BPBB	
0x02	3:0	Length [11:8]	Same as description for ICMP packet.
0x03	7:0	Length [7:0]	
0x04	7:0	Protocol	The Protocol = $0x11$ indicating that the packet is an UDP packet
0x05	7:0	Data Offset	The Data Offset field indicates the address offset of where the first UDP payload byte
			is located. For example, if without IP Option field, this field normally is 28 (dec) for
			Non-Transparent or 42 (dec) for Transparent without VLAN/SNAP/PPPoE.
			Therefore, the real memory address of first UDP payload byte = the real memory
			address of Data Offset field + the value of Data Offset + 1.

Figure 77: UDP Packet Format in RPBR



L2-Engine in Transparent Mode

TCP Packet Format in RPBR 4.

L2-Engine in Non-Transparent Mode

Offset	Bit	Field Name	Description
0x00	7:0	NPR [15:8]	Same as description for ICMP packet.
0x01	7:0	NPR [7:0]	
0x02	7	PCB	Same as description for ICMP packet.
0x02	6:4	BPBB	
0x02	3:0	Length [11:8]	Same as description for ICMP packet.
0x03	7:0	Length [7:0]	

Copyright © 2006-2011 ASIX Electronics Corporation. All rights


160

0x04	7:0	Protocol	The Protocol = $0x06$ indicating that the packet is an TCP packet
0x05	7:0	Data Offset	The Data Offset field indicates the address offset of where the first TCP payload byte is
			located. For example, if without IP Option field and TCP Option field, this field
			normally is 40 (dec) for Non-transparent or 54 (dec) for Transparent without
			VLAN/SNAP/PPPoE. Therefore, the real memory address of first TCP payload byte =
			the real memory address of Data Offset field + the value of Data Offset + 1.

Figure 78: TCP Packet Format in RPBR

5. Non-IP-type Packet Format in RPBR

Offset	Bit	Field Name	Description
		NPR [15:8]	Same as description for ICMP packet.
0x01	7:0	NPR [7:0]	
0x02		PCB	Same as description for ICMP packet.
		BPBB	
		Length [11:8]	The Length field indicates the total length in bytes from DA field to Data field regardless
		Length [7:0]	it's either in Non-transparent or Transparent mode.
0x04	7:0	Protocol	 When in L2 Engine Non-Transparent mode, the following packet encapsulation will be treated as "Non-IP-type" packet by TOE RX (i.e., the Protocol field will be put with 0xFF), IEEE 802.2/802.3 Encapsulation (BPDU/GMRP/GVRP, NETBIOS, IPX) NetWare 802.3 RAW Encapsulation (IPX) IPv6 Packet (Etype = 0x86DD) PPPoE frame (if Etype = 0x8863 or if Etype = 0x8864)
			 When in L2 Engine Transparent mode, the following packet encapsulation will be treated as "Non-IP-type" packet by TOE RX (i.e., the Protocol field will be put with 0xFF), IEEE 802.2/802.3 Encapsulation (BPDU/GMRP/GVRP, NETBIOS, IPX) NetWare 802.3 RAW Encapsulation (IPX) IPv6 Packet (Etype = 0x86DD) PPPoE frame (if Etype = 0x8863) or (if Etype = 0x8864 and Protocol !== 0021)

Transmit Packet Buffer Ring

In TOE TX direction, software is responsible for en-queuing the transmitted packets into TPBR while the L4_Engine is responsible for de-queuing the transmitted packets out of the TPBR. The packets in the ring are linked together via Next Pointer (NPR) field in each packet as shown below. The DMA transfer mechanism is used to move transmitted packets from TPBR through TOE to Ethernet MAC transmit buffer. Below Figure 80 to Figure 84 shows the packet format in TPBR.

1. ICMP Packet Format in TPBR

L2-Engine in Non-Transparent Mode L2-Engine in Transparent Mode Offset Offset 0x00 NPR [15:8] NPR [15:8] 0x00 NPR [7:0] 0x01 0x01 NPR [7:0] 0x02 Length [15:8] 0x02 Length [15:8] 0x03 Length [7:0] 0x03 Length [7:0] 0x04 Protocol = 01 Protocol = 010x04 0x05 Reserved = 000x05 PPPoE, Reserved[6:0] 0x06 Version, Header Length 0x06~0B DA 0x07 TOS 0x0C~11 SA 0x08 Total Length [15:8] Length/Etype 0x12~13 0x09 Total Length [7:0] Layer 2 0x14~17 if VLAN (4 bytes) or 0x0A Identification [15:8] header if SNAP (8 bytes) or 0x14~1B 0x0B Identification [7:0] 0x14~1F if SNAP+VLAN (12 bytes) or 0x0C Flag, Frag. Offset [12:8] PPoE header (8 bytes 0x0D Frag Offset [7:0] 0x14/18/1C/20 0x15/19/1D/21 Version, Header Length 0x0E TTL IP TOS 0x0F Protocol 0x16~17 / 1A~1B / 1E~1F / 22~23 Total Length header Header Checksum = 00 0x10 0x18~19 / 1C~1D / 20~21 / 24~25 Identification 0x11 Header Checksum = 000x1A / 1E / 22 / 26 Flag, Frag. Offset [12:8] 0x12 Source IP [31:24] IP header 0x1B / 1F / 23 / 27 Frag Offset [7:0] 0x13 Source IP [23:16] 0x1C / 20 / 24 / 28 TTL 0x14 Source IP [15:8] 0x1D / 21 / 25 / 29 Protocol 0x15 Source IP [7:0] Header Chksum = 0000 0x1E~1F / 22~23 / 26~27 / 2A~2B Dest. IP [31:24] 0x16 0x20~23 / 24~27 / 28~2B / 2C~2F Source IP 0x17 Dest. IP [23:16] 0x24~27 / 28~2B / 2C~2F / 30~33 Dest. IP Dest. IP [15:8] 0x18 IP Option (n bytes) 0x19 Dest. IP [7:0] 0x28+n / 2C+n / 30+n / 34+n Type [7:0] IP Option (n bytes) **ICMP** 0x29+n / 2D+n / 31+n / 35+n Code [7:0] 0x1A + nType [7:0] ICMP 0x2A+n / 2E+n / 32+n / 36+n ICMP Checksum = 00 header 0x1B + nCode [7:0] header 0x2B+n / 2F+n / 33+n / 37+n ICMP Checksum = 00 0x1C + nICMP Checksum = 00 0x2C+n / 30+n / 34+n / 38+n 0x1D + nICMP Checksum = 00 ICMP Data ICMP 0x1E + npayload Data payload

Offset	Bit	Field Name	Description
0x00	7:0	NPR [15:8]	The Next Pointers of TPBR: The NPR field indicates the first page of the next packet in
0x01	7:0	NPR [7:0]	the TPBR.
0x02	7:0	Length [11:8]	The Length field indicates the total length in bytes from (Version, Header Length) field
0x03	7:0	Length [7:0]	to Data field in Non-Transparent mode, or from DA field to Data field in Transparent
			mode.
0x04	7:0	Protocol	The Protocol = $0x01$ indicating that the packet is an ICMP packet.
0x05	7	PPPoE	Set PPPoE flag to 1 when PPPoE header (8 bytes) is present in the packet format.
0x14~	7:0	VLAN or	If VLAN Tag (4 bytes) is present, the TL2CR[TX_VLAN_EN] should also be set to 1 to
		SNAP or	allow TOE to operate properly.
		VLAN+SNAP	If SNAP header (8 bytes) is present, the TL2CR[TX_SNAP_EN] should also be set to 1
		or	to allow TOE to operate properly.
		PPPoE Header	If both VLAN Tag (4 bytes) and SNAP header (8 bytes) are present, the
			TL2CR[TX_VLAN_EN and TX_SNAP_EN] should also be set to 1 to allow TOE to
			operate properly.
			If PPPoE header (8 bytes) is present, the above PPPoE flag should also be set to 1 and

162

Copyright © 2006-2011 ASIX Electronics Corporation. All rights


TL2CR[TX_SNAP_EN] should be cleared to 0 to allow TOE to operate properly.

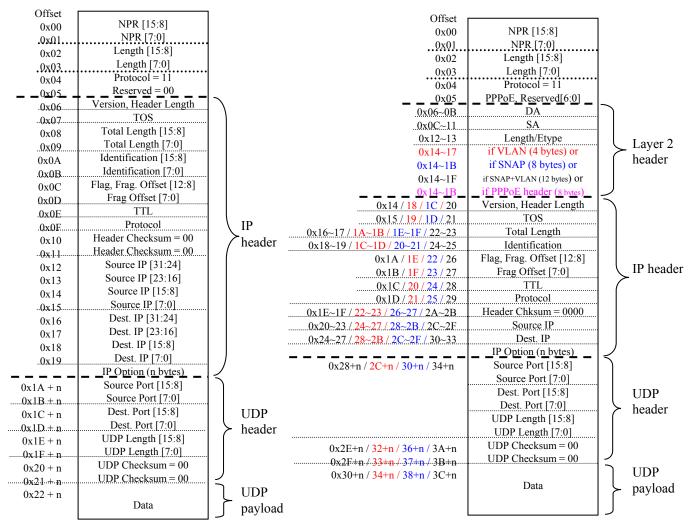
Figure 80: ICMP Packet Format in TPBR

2. IGMP Packet Format in TPBR

L2-Engine in Non-Transparent Mode

L2-Engine in Transparent Mode

Offset	Bit	Field Name	Description
0x00	7:0	NPR [15:8]	Same as description for ICMP packet.
0x01	7:0	NPR [7:0]	
0x02	7:0	Length [11:8]	Same as description for ICMP packet.
0x03	7:0	Length [7:0]	
0x04	7:0	Protocol	The Protocol = $0x02$ indicating that the packet is an IGMP packet.
0x05	7	PPPoE	Same as description for ICMP packet.
0x14~	7:0	VLAN or	Same as description for ICMP packet.
		SNAP or	
		VLAN+SNAP or	
		PPPoE Header	


Figure 81: IGMP Packet Format in TPBR

L2-Engine in Transparent Mode

3. UDP Packet Format in TPBR

L2-Engine in Non-Transparent Mode

Offset	Bit	Field Name	Description
0x00	7:0	NPR [15:8]	Same as description for ICMP packet.
0x01	7:0	NPR [7:0]	
0x02	7:0	Length [11:8]	Same as description for ICMP packet.
0x03	7:0	Length [7:0]	
0x04	7:0	Protocol	The Protocol = $0x11$ indicating that the packet is an UDP packet.
0x05	7	PPPoE	Same as description for ICMP packet.
0x14~	7:0	VLAN or	Same as description for ICMP packet.
		SNAP or	
		VLAN+SNAP or	
		PPPoE Header	

Figure 82: UDP Packet Format in TPBR

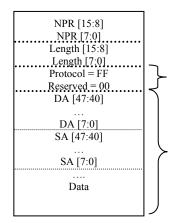
L2-Engine in Transparent Mode

4. TCP Packet Format in TPBR

L2-Engine in Non-Transparent Mode

Offset			Offset		
0x00	NPR [15:8]		0x00	NPR [15:8]	
.0x.01	NPR [7:0]			NPR [7:0]	
0x02	Length [15:8]			Length [15:8]	
0x03	Length [7:0]		0x02	Length [7:0]	
0x04	Protocol = 06		0x03. 0x04	Protocol = 06	
<u>0x05</u>	<u>Reserved = 00</u>	_	$- \Omega x 05$	<u>PPPoE, Reserved[6:0]</u>	
0x06	Version, Header Length			DA	
0x07	TOS		0x00~05 0x0C~11	SA	
0x08	Total Length [15:8]		0x12~13	Length/Etype	L T
0x09	Total Length [7:0]		0x14~17	if VLAN (4 bytes) or	\succ Layer 2
0x0A	Identification [15:8]		0x14~17 0x14~1B	if SNAP (8 bytes) or	header
0x0B	Identification [7:0]		0x14~1B 0x14~1F	if SNAP+VLAN (12 bytes) Or	
0x0C	Flag, Frag. Offset [12:8]		0x14~1P	if PPPoE header (8 bytes)	
0x0D	Frag Offset [7:0]			Version, Header Length	5
0x0E	TTL			TOS	
0x0F	Protocol	\ IP		Total Length	
0x10	Header Checksum = 00	∕ header	0x18~19 / 1C~1D / 20~21 / 24~25	Identification	
0x.1.1	Header Checksum = 00		0x1A / 1E / 22 / 26	Flag, Frag. Offset [12:8]	
0x12	Source IP [31:24]		0x1B / 1F / 22 / 20	Frag Offset [7:0]	IP header
0x13	Source IP [23:16]		0x1C / 20 / 24 / 28	TTL	
0x14	Source IP [15:8]		0x1D / 21 / 25 / 29	Protocol	
.0x15	Source IP [7:0]		0x1E~1F / 22~23 / 26~27 / 2A~2B	Header Chksum = 0000	
0x16	Dest. IP [31:24]		0x20~23 / 24~27 / 28~2B / 2C~2F	Source IP	
0x17	Dest. IP [23:16]		0x24~27/28~2B/2C~2F/30~33	Dest. IP	
0x18	Dest. IP [15:8]			IP Option (n bytes)	Į.
<u>0x19</u>	Dest. IP [7:0]		0x28+n / 2C+n / 30+n / 34+n	Source Port [15:8]	
	IP Option (n bytes)			Source Port [7:0]	
0x1A + n	Source Port [15:8]			Dest. Port [15:8]	
0x1B + n	Source Port [7:0] Dest. Port [15:8]			Dest. Port [7:0]	
0x1C + n	Dest. Port [7:0]			Sequence # [31:24]	
0x1D + n	Sequence # [31:24]			Sequence # [23:16]	
0x1E + n 0x1F + n	Sequence # [23:16]			Sequence # [15:8]	
0x1F + n 0x20 + n	Sequence $\# [25:10]$ Sequence $\# [15:8]$			Sequence # [7:0]	
0x20 + n 0x21 + n	Sequence # [7:0]			Acknowledge # [31:24]	
0x22 + n	Acknowledge # [31:24]			Acknowledge # [23:16]	\ TCP
0x22 + n 0x23 + n	Acknowledge # [23:16]	ТСР		Acknowledge # [15:8]	/ header
0x23 + n 0x24 + n	Acknowledge # [15:8]			Acknowledge # [7:0]	
0x25 + n	Acknowledge # [7:0]	header		Header Length, Rsved	
0x26 + n	Header Length, Rsved			Rsved, U,A,P,R,S,F	
0x20 + n 0x27 + n	Rsved, U,A,P,R,S,F			Window Size [15:8]	
0x28 + n	Window Size [15:8]			Window Size [7:0] TCP Checksum = 00	
0x29 + n	Window Size [7:0]		0x38+n / 3C+n / 40+n / 44+n	TCP Checksum = 00	
0x2A + n	TCP Checksum = 00		0x39+n√· <mark>3D+n√·41+n</mark> √·45+n··	Urgent Pointer [15:8]	
0x2B + n	TCP Checksum = 00			Urgent Pointer [7:0]	
0x2C + n	Urgent Pointer [15:8]			TCP Option (m bytes)]]
0x2D + n	Urgent Pointer [7:0]		$0x_{3}C_{n+m} / 40_{n+m} / 44_{n+m} / 48_{n+m}$	101 Option (moytes)] TCP
	TCP Option (m bytes)	く		Data	> payload
0x2E+n+m] ТСР			
	Data				

Offset	Bit	Field Name	Description
0x00	7:0	NPR [15:8]	Same as description for ICMP packet.
0x01	7:0	NPR [7:0]	
0x02	7:0	Length [11:8]	Same as description for ICMP packet.
0x03	7:0	Length [7:0]	
0x04	7:0	Protocol	The Protocol = $0x06$ indicating that the packet is a TCP packet.
0x05	7	PPPoE	Same as description for ICMP packet.
0x14~	7:0	VLAN or	Same as description for ICMP packet.


165 Copyright © 2006-2011 ASIX Electronics Corporation. All rights

SNAP or	
VLAN+SNAP or	
PPPoE Header	

Figure 83: TCP Packet Format in TPBR

5. Non-IP-type Packet Format in TPBR

Protocol = FF indicates this as a Non-IP-type packet

Full MAC frame without CRC bytes

Offset	Bit	Field Name	Description
0x00	7:0	NPR [15:8]	Same as description for ICMP packet.
0x01	7:0	NPR [7:0]	
0x02	7	PCB	Same as description for ICMP packet.
0x02	6:4	BPBB	
0x02		Length [11:8]	The Length field indicates the total length in bytes from DA field to Data field regardless
0x03	7:0	Length [7:0]	it's either in non-transparent or transparent mode.
0x04	7:0	Protocol	When in L2 Engine Non-Transparent mode, the following packet encapsulation should be treated as Non-IP-type packet by software, i.e., software should put the Protocol field = 0xFF, IEEE 802.2/802.3 Encapsulation (BPDU/GMRP/GVRP, NETBIOS, IPX)
			 NetWare 802.3 RAW Encapsulation (IPX) IPv6 Packet (Etype = 0x86DD) PPPoE frame (if Etype = 0x8863 or if Etype = 0x8864)
			When in L2 Engine Transparent mode, the following packet encapsulation should be treated as Non-IP-type packet by software, i.e., software should put the Protocol field = $0xFF$,
			 IEEE 802.2/802.3 Encapsulation (BPDU/GMRP/GVRP, NETBIOS, IPX) NetWare 802.3 RAW Encapsulation (IPX) IPv6 Packet (Etype = 0x86DD) PPPoE frame (if Etype = 0x8863) or (if Etype = 0x8864 and Protocol !== 0021)

Figure 84: Non-IP-type Packet Format in TPBR

4.15 10/100M Ethernet MAC

The 10/100 Ethernet MAC core block diagram is shown in Figure 85 below. It supports 802.3 and 802.3 u MAC sub-layer functions as listed below,

- Ethernet MAC frame receive from and transmit to embedded 10/100 Ethernet PHY
- With dedicated receive buffer of 8K bytes SRAM and transmit buffer of 4K bytes SRAM
- Flow-control support in full-duplex mode by monitoring receive buffer usage to compare with high water mark and low water mark for triggering flow control
- Received MAC frame CRC check and transmit MAC frame CRC generation
- Received packet filtering for broadcast, multicast, unicast, or CRC error MAC frames, etc. if enabled
- Support collision-detection, exponential backoff, packet retransmission, and backpressure in half-duplex mode
- Support Magic packet, predefined Wakeup frame, and Ethernet PHY linkup remote-wakeup mode. Upon detecting wakeup event, it can awake the AX11001/AX11005 up from PMM or STOP mode

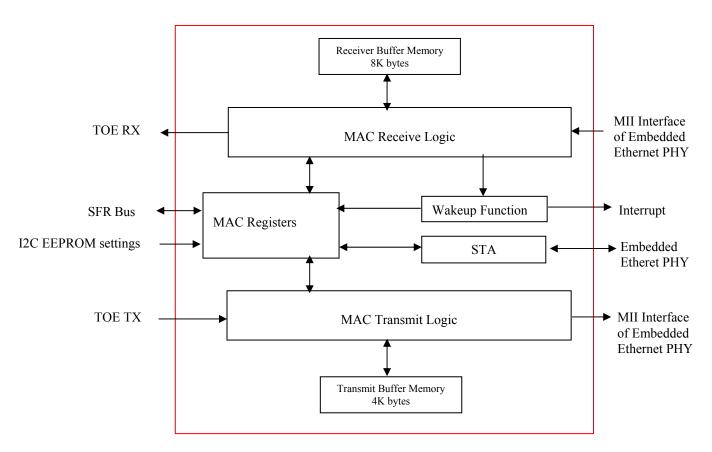


Figure 85: 10/100M Ethernet MAC Block Diagram

4.15.1 10/100M Ethernet MAC SFR Register Map

Address	Address Name Description					
0xB6	MCIR	MAC Command Index Register is used to indicate the address of Ethernet MAC registers.				
0xB7	MDR	MAC Data Register is used to read data from or write data to the specified Ethernet MAC register.				

Table 35: 10/100M Ethernet MAC SFR Register Map

MAC Command Index Register (MCIR, 0xB6)

Bit	7	6	5	4	3	2	1	0			
Name		MCIR									
Reset Value		0x00									

Bit	Name	Description	
7:0	MCIR	WO	Indicate which of the Ethernet MAC register as listed in Table 36 is to be accessed.

MAC Data Register (MDR, 0xB7)

Bit	7	6	5	4	3	2	1	0
Name]	MDR			
Reset Value	e 0x00							

Bit	Name	Access	Description
7:0	MDR	R/W	Data Register is used to write data to or read data from the Ethernet MAC registers.

10/100M Ethernet MAC Register Indirect Access Method

Software shall use indirect access method through MCIR and MDR registers to do read and write access to the 10/100M Ethernet MAC registers as listed in Table 36 below.

Read a register from 10/100M Ethernet MAC:

- Step 1. Write MCIR: Software indicates the MAC register address to be accessed as the data and write it to the SFR register MCIR.
- Step 2. Read MDR: Software then read SFR register MDR. The data read from MDR is the MAC register data indicated in step 1. Keep reading from MDR if the MAC registers have more than one byte, in that case, the first byte being read back is LSB byte.

Write a register to 10/100M Ethernet MAC:

- Step 1. Write MDR: Software writes the data you want to write into MAC registers to the SFR register MDR. Keep writing to MDR if the MAC registers have more than one byte, in that case, the first byte being written should be LSB byte.
- Step 2. Write MCIR: After writing MAC register data to MDR, software then indicates the target MAC register address as data and write it to MCIR.

Note: While software is reading or writing Ethernet MAC Registers during a sequence of SFR accesses, software can abort that process by writing MCIR with 0xFF.

Address	Register Name	Description
0x00	RTSCR	RX/TX SRAM Command Register
0x02	RTSDR	RX/TX SRAM Data Register
0x0A	RCR	RX Control Register
0x0C	IPGCR	IPG Control Register
0x10	MACAR	MAC Address Register
0x16	MFA	Multicast Filter Array
0x1E	TR	Test Register
0x20	MSMR	Medium Status and Mode Register
0x22	PCR	PHY Control Register
0x24	SPWIE	STOP and PMM Wakeup Interrupt Enable Register
0x26	PLCIE	PHY Link Change Interrupt Enable Register
0x28	WPLS	Wakeup and PHY Link Status Register
0x30	WFCR	Wakeup Frame Command Register
0x32	WFBM0	Wakeup Frame Byte Mask 0 Register
0x36	WFCRC0	Wakeup Frame CRC 0 Register
0x38	WFOS0	Wakeup Frame Offset 0 Register
0x3A	WFLB0	Wakeup Frame Last Byte 0 Register
0x40	WFBM1	Wakeup Frame Byte Mask 1 Register
0x44	WFCRC1	Wakeup Frame CRC 1 Register
0x46	WFOS1	Wakeup Frame Offset 1 Register
0x48	WFLB1	Wakeup Frame Last Byte 1 Register
0xFF		Command Abort

10/100 Ethernet MAC Core Register Map

Table 36: 10/100M Ethernet MAC Register Map

4.15.2 Ethernet MAC Receive Filtering

The address filtering logic compares the Destination Address field (first 6 bytes of the received packet) to the Ethernet MAC address registers (MACAR) of AX11001/AX11005. If any one of the six bytes does not match the pre-programmed MACAR registers, the Ethernet MAC Receive Logic rejects the packet. This is for unicast address filtering. All multicast destination addresses are filtered using a hashing algorithm. See following description. If the multicast address indexes a bit that has been set in the filter bit array of the "Multicast Filter Array", the packet is accepted. Otherwise the Ethernet MAC rejects it. Each destination address is also checked for all 1's, which is the reserved broadcast address.

Unicast Packet Filtering

The MAC address registers (MACAR) are used to compare the destination address (DA[47:0]) of incoming packets for rejecting or accepting packets. Comparisons are performed on a byte wide basis. The bit assignment shown below relates the sequence in NODE_ADDR_0 – NODE_ADDR_5 registers to the bit sequence of the received packet.

	D7	D6	D5	D4	D3	D2	D1	D0
NODE_ADDR_0	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0
NODE_ADDR_1	DA15	DA14	DA13	DA12	DA11	DA10	DA9	DA8
NODE_ADDR_2	DA23	DA22	DA21	DA20	DA19	DA18	DA17	DA16
NODE_ADDR_3	DA31	DA30	DA29	DA28	DA27	DA26	DA25	DA24
NODE_ADDR_4	DA39	DA38	DA37	DA36	DA35	DA34	DA33	DA32
NODE_ADDR_5	DA47	DA46	DA45	DA44	DA43	DA42	DA41	DA40
N	Jota Thak	it and unange	of the reasing	rad maalrat				

Note: The bit sequence of the received packet is DA0, DA1, ..., DA7, DA8,, DA47.

MAC Address Register (MACAR, 0x10)

Bit	7	6	5	4	3	2	1	0			
	NODE ADDR 0										
	NODE_ADDR 1										
NAME	NODE_ADDR 2										
NAME	NODE ADDR 3										
	NODE ADDR 4										
	NODE ADDR 5										
Reset Value	Reset value is determined by the I2C EEPROM										

Bit	Name	Access	s Description						
7:0	NODE_ADDR 0		The NODE_ADDR 5~0 is the MAC address of this device where						
		R/W	NODE_ADDR 0 represents bit 7~0 of MAC address while NODE_ADDR						
47:40	NODE_ADDR 5		5 represents bit 47~40.						

RX Control Register (RCR, 0x0A)

Bit	7	6	5	4	3	2	1	0
Name	SO	AC	AP	AM	AB	SEP	AMALL	PRO
Reset Value	0	1	0	1	1	0	0	0

Bit	Name	Access	Description
			PRO: PACKET_TYPE_PROMISCUOUS.
0	PRO	R/W	1: All frames received by the Ethernet MAC are forwarded up toward the CPU.
			0: Disabled (default).
			AMALL: PACKET_TYPE_ALL_MULTICAST.
			1: All multicast frames received by the Ethernet MAC are forwarded up toward the CPU,
			not just the frames whose scrambling result of DA matching with multicast address list
1	AMALL	R/W	provided in Multicast Filter Array Register.
			0: Disabled. This only allows multicast frames whose scrambling result of DA field
			matching with multicast address list provided in Multicast Filter Array Register to be
			forwarded up toward the CPU (default).
			SEP: Save Error Packet.
2	SEP	R/W	1: Received packets with CRC error are saved and forwarded to the CPU anyway.
			0: Received packets with CRC error are discarded automatically without forwarding to
			the CPU (default). AB: PACKET_TYPE_BROADCAST.
			1: All broadcast frames received by the Ethernet MAC are forwarded up toward the CPU
3	AB	R/W	(default).
			0: Disabled.
			AM: PACKET TYPE MULTICAST.
			1: All multicast frames whose scrambling result of DA matching with multicast address
4	AM	R/W	list are forwarded up to the CPU (default).
			0: Disabled.
			AP: Accept Physical Address from Multicast Filter Array.
			1: Allow unicast packets to be forwarded up toward CPU if the lookup of scrambling
			result of DA is found within multicast address list defined in Multicast Filter Array
5	AP	R/W	Register.
			0: Disabled, that is, unicast packets filtering are done without regarding multicast address
			list. This only allows unicast packets matching with MACAR register to be accepted
			(default).
6	AC	R/W	AC: Reserved bit. For normal operation, please always write 1 to this bit.
	20	D /III	SO: Start Operation of Ethernet MAC.
7	SO	R/W	1: start operation.
			0: stop operation and reset Ethernet MAC packet buffer (default).

Following is the truth table about unicast packet filtering condition.

DA Matching MACAR?	PRO bit	Broadcast or Multicast Packet?	Unicast Packet Filtered by Ethernet MAC?
No	0	No	Yes
No	1	No	No
Yes (see Note below)	0	No	No

Note: DA Matching MACAR including following two cases:

1. Destination Address field of incoming packets matches with MACAR.

2. When AP (RCR.5) is set to 1 and the scrambling result of DA is found within multicast address list.

Multicast Packet Filtering

As shown in Figure 86 below, the Multicast Filter Array (MFA) provides filtering of multicast addresses hashed through the CRC logic. All Destination Address field are fed through the 32 bits CRC generation logic and as the last bit of the Destination Address field enters the CRC, the 6 most significant bits of the CRC generator are latched. These 6 bits are then decoded by a 1 to 64 decoder to index a unique filter bit (FB0-63) in the Multicast Filter Array. If the filter bit selected is set, the multicast packet is accepted. The system designer would use a program to determine which filter bits to set in the multicast registers. All multicast filter bits that correspond to Multicast Filter Array Registers accepted by the node are then set to one. To accept all multicast packets all of the registers are set to all ones. Note that received Pause Frames are always filtered by Ethernet MAC regardless of MFA setting.

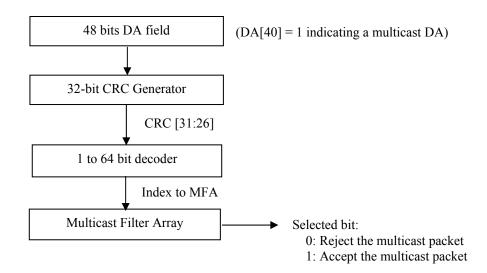


Figure 86: Multicast Filter Array Hashing Algorithm

Example: If the accepted multicast packet's destination address Y is found to hash to the value 32 (0x20), then FB32 in MA4 should be initialized to "1". This will allow the Ethernet MAC to accept any multicast packet with the destination address Y. Although the hashing algorithm does not guarantee perfect filtering of multicast address, it will perfectly filter up to 64 logical address filters if these addresses are chosen to map into unique locations in the multicast filter. Note: The LSB bit of received packet's first byte being "1" signifies a Multicast Address.

	D7	D6	D5	D4	D3	D2	D1	D0
MA0	FB7	FB6	FB5	FB4	FB3	FB2	FB1	FB0
MA1	FB15	FB14	FB13	FB12	FB11	FB10	FB9	FB8
MA2	FB23	FB22	FB21	FB20	FB19	FB18	FB17	FB16
MA3	FB31	FB30	FB29	FB28	FB27	FB26	FB25	FB24
MA4	FB39	FB38	FB37	FB36	FB35	FB34	FB33	FB32
MA5	FB47	FB46	FB45	FB44	FB43	FB42	FB41	FB40
MA6	FB55	FB54	FB53	FB52	FB51	FB50	FB49	FB48
MA7	FB63	FB62	FB61	FB60	FB59	FB58	FB57	FB56

Figure 87: Multicast Filter Array Bit Mapping

Multicast Filter Array (MFA, 0x16)

Bit	7	6	5	4	3	2	1	0			
	MA 0										
	MA 1										
				М	A 2						
NAME	MA 3										
NAME	MA 4										
	MA 5										
	MA 6										
				М	A 7						
Reset Value				$0 \times 0000 0000$	0_0000_000	0					

Bit	Name	Access	Description				
7:0	MA 0	R/W	The MA 7~0 is the multicast address bit map used by multicast frame filtering block				
			where MA 0 represents bit 7~0 while MA 7 represents bit 63~56. For example.				
63:56	MA 7		DA = 81 81 81 81 81 81 81				
			CRC32 {crc31, 30,29,28,27,26}				
			Address [5:0]=0x1A				
			MFA [63:0] = 0000_0000_0400_0000				

Following is the truth table about multicast packet filtering condition.

	PRO bit	AMALL bit	AM bit	Pass Hashing Algorithm?	Multicast Packet Filtered by Ethernet MAC?
	0	0	0	0	Yes
	0	0	0	1	Yes
	0	0	1	0	Yes
ſ	0	0	1	1	No
	0	1	0/1	0/1	No
ſ	1	0/1	0/1	0/1	No

Note: Passing Hashing Algorithm means that the selected bit in MFA of CRC-32 result is set to "1".

Broadcast Packet Filtering

Following is a truth table about broadcast packet filtering condition.

PRO bit	AB bit	Broadcast Packet?	Broadcast Packet Filtered by Ethernet MAC?
0	1	Yes	No
0	0	Yes	Yes
1	0/1	Yes	No

CRC-Error Packet Filtering

Normally, all the packets received with CRC error will be rejected by Ethernet MAC. When SEP bit (RCR.2) is enabled the packet with CRC error will be received and forwarded to CPU.

Packet Filtering During Remote-Wakeup Enable Mode

When CPU entering STOP or PMM mode with the remote wakeup function being enabled, the packet receive function of Ethernet MAC will be disabled and all the packets received will be filtered.

The Magic Packet wakeup function is enabled by RWMP bit (SPWIE.4). The external pin, EXT_WKUP, wakeup function is enabled by EPWT bit (SPWIE.5). The Microsoft Wakeup Frame wakeup Function can be enabled by MWFE bit (SPWIE.6) and WFCR bit 0 or 2.

RWMP bit (SPWIE.4)	EPWT bit (SPWIE.5)	EWFF0 bit (WFCR.0)	EWFF1 bit (WFCR.2)	Received Packet Type?	Packet Filtered by Ethernet MAC?
0	0	0	0	Any packets but	Based on unicast, multicast, and broadcast
				Magic Packet	filtering rule
0	0	0	0	Magic Packet	No
1	0	0	0	Any packets but	CPU not in STOP/PMM mode -> No.
				Magic Packet	CPU in STOP/PMM mode -> Yes.
1	0	0	0	Magic packet	CPU not in STOP/PMM mode -> No.
					CPU in STOP/PMM mode -> Yes and the
					CPU will be awaked up.
0	1	0	0	Any packets	No
0	0	10, 01	, or 11	Any packets but	CPU not in STOP/PMM mode -> No.
				Wakeup Frame	CPU in STOP/PMM mode -> Yes.
0	0	10, 01	, or 11	Microsoft Wakeup	CPU not in STOP/PMM mode -> No.
				Frame	CPU in STOP/PMM mode -> Yes and the
					CPU will be awaked up.
1	1	10, 01	, or 11	Any packets but	CPU not in STOP/PMM mode -> No.
				Magic Packet and	CPU in STOP/PMM mode -> Yes.
				Wakeup Frame	
1	1	10, 01	, or 11	Magic Packet or	CPU not in STOP/PMM mode -> No.
				Wakeup Frame	CPU in STOP/PMM mode -> Yes and the
					CPU will be awaked up.

Following is the truth table about packet filtering condition during remote-wakeup enable mode.

Table 37: Packet Filtering During Remote-Wakeup Enable Mode

Note that when the primary PHY linkup wakeup function is enabled, it normally means the Ethernet PHY link is down during PMM or STOP mode. Therefore, there will be no packets coming in to Ethernet MAC from the Ethernet PHY so the packet filtering is meaningless here.

4.15.3 Ethernet MAC Packet Transmit

Preamble, Sync, Padding and CRC

When transmitting the Ethernet packets, the Ethernet MAC will automatically append the preamble and sync byte at the beginning of the packet. It will also generate the padding bytes (if transmitted packet size is less than 60 bytes) and the 4 bytes CRC field at the end of the packet (if ACB bit in Flag byte in I2C EEPROM is enabled). The minimum size of an Ethernet packet without preamble is 64 bytes.

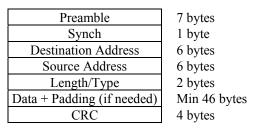


Figure 88: Ethernet Packet Format

Collision

During transmission when operating in half duplex mode, the Ethernet MAC monitors the collision signal from Ethernet PHY to determine if a collision has occurred. If a collision is detected, the Ethernet MAC will reset the FIFO and restore the transmit pointers for retransmission of the packet based on exponential backoff algorithm. If 15 retransmissions each result in a collision, the transmission will be aborted and the transmitted packet is discarded after 16 transmission attempts.

Medium Status and Mode Register (MSMR, 0x20)

Bit	7	6	5	4	3	2	1	0
Name	RFC	PS	FD	TFC	PF	RE	BPC	SM
Reset Value	1	1	1	1	0	0	0	0

Bit	Name	Access	Description
0	SM	R/W	SM: Super Mac support.1: Enable Super Mac to shorten exponential back-off time during each transmit retries.0: Disabled (default).
1	BPC	R/W	 BPC: Backpressure Continuously. 1: When TFC bit = 1, setting this bit enables backpressure on TX direction "continuously" during RX buffer full condition in half duplex mode. 0: When TFC bit = 1, setting this bit enable backpressure on TX direction "intermittently" during RX buffer full condition in half duplex mode (default).
2	RE	R/W	RE: Receive Enable. 1: Enable RX path of the Ethernet MAC. 0: Disabled (default).
3	PF	R/W	 PF: Check only "length/type" field for Pause Frame. 1: Enable, i.e., Pause frame is identified only based on L/T filed. 0: Disabled, i.e., Pause frames are identified based on both DA and L/T fields (default).
4	TFC	R/W	 TFC: TX Flow Control enable. 1: Enable transmitting pause frame on TX direction in full duplex mode or enable transmitting jam pattern on TX direction in half duplex mode during RX buffer's free buffer less than low water mark setting (default). 0: Disabled.
5	FD	R/W	FD: Full Duplex mode1: Full Duplex mode (default).0: Half Duplex mode.

6	PS	R/W	PS: Port Speed in Ethernet MAC. 1: 100 Mbps (default). 0: 10 Mbps.
7	RFC	R/W	RFC: RX Flow Control enable.1: Enable receiving pause frame on RX direction during full duplex mode (default).0: Disabled.

IPG Control Register (IPGCR, 0x0C)

Bit	7	6	5	4	3	2	1	0				
	CPEF	CPEF IPG 0										
	Reserve	eserve IPG 1										
NAME	d											
Reserve IPG 2 d												
Reset Value	0x12_0C_95											

Bit	Name	Access	Description
6:0	IPG 0	R/W	IPG 0 [6:0]: Inter Packet Gap for back-to-back transfer on TX direction in Ethernet MAC (default = 15h).
7	CPEF		 Capture Effective setting in half duplex operation. 1: To shorten backoff time for 2nd collision retransmission in half duplex mode (default). 0: Normal exponential backoff time is used for 2nd collision retransmission in half duplex mode.
14:8	IPG 1	R/W	IPG1 [6:0]: IPG part1 value (default = 0Ch). Bit 15 is reserved.
22:16	IPG 2	R/W	IPG2 [6:0]: IPG part1 value + part2 value (default = 12h). Bit 23 is reserved.

Test Register (TR, 0x1E)

Bit	7	6	5	4	3	2	1	0
Name		Rese	erved		ABORT	Reserved	CRC_ER	LDRND
Reset Value				0	0			

Bit	Name	Access	Description
0	LDRND	R/W	LDRND: Load Random number into Ethernet MAC's exponential back-off timer. User writes a "1" to enable loading a small random number into MAC's back-off timer to shorten the back-off duration in each retry after collision. This register is used for test purpose. Default value = 0 .
1	CRC_ER	CR	This bit will be '1' whenever receiving packets with CRC error. This bit will be clear after software reads it.
2	Reserved		
3	ABORT	CR	In half duplex mode, this bit will be '1' whenever the transmitted frame has been aborted and dropped by Ethernet MAC after 15 retransmission attempts. This bit is not used in full duplex mode.
7: 4	Reserved		

4.15.4 Ethernet MAC Buffer Management

Receive/Transmit Packet Buffer SRAM Map

The Ethernet MAC embeds a dedicated 8K bytes SRAM for its Receive Packet Buffering and a dedicated 4K bytes SRAM for its Transmit Packet Buffering. The RX Packet Buffer is divided into 32 pages while the TX Packet Buffer is divided into 16 pages. Each page has 256 bytes of storage space.

Figure 89 shows the data structure of the Packet Buffer memory. The first 8 bytes preceding each Ethernet packets are status bytes. After the 8 status bytes is the Ethernet packet DA, SA, LT fields, etc. Both Receive and Transmit Packet Buffer memory can be access via RTSCR and RTSDR registers described below. Note that these two registers are used only for debug purpose and normal packet receive/transmit should be accessed through TOE as described in section 4.14.

${0}$		b	oit 63			bit 0	
31	Page 0		NPR [15:0]	WPR [15:0]	Length[15:0]	~Length[15:0]	
		· · · · ·	D	A[47:0]	1	SA[47:32]	
31	Page 1		SA[31:0]	L/T[15:0]	Payload	
0	\frown					·	
/	\bigcirc						
		· · · · · · · · · · · · · · · · · · ·					
					• • •	e next Etherne	t frame.
	Page 31 or 16		WPR: Indicat				
			Length: Leng ~Length: Bitv			· · ·	ling CRC field.
		, ,	~Lengui. Ditv	vise negatic	m or Length I	iciu.	

Figure 89: Ethernet Packet Buffer Data Structure in Ethernet MAC

		•		·					
Bit	7	6	5	4	3	2	1	0	
Name				Al	DDR[7:0]				
Ivallie	READ GO TX Reserved ADDR[9:8]								
Reset Value	0x0000								

Bit	Name	Access	Description
7:0			The read/write address {ADDR [9:8], ADDR [7:0]} of RX Packet SRAM.
9:8	ADDK	IX/ VV	The read/write address {ADDR [8], ADDR [7:0]} of TX Packet SRAM.
13	ТХ	R/W	RAM selection. 0: indicates to read/write to RX Packet SRAM. 1: indicates to read/write to TX Packet SRAM. [4:2] Reserved
14	GO	R/W1	Setting GO bit to "1" to initiates the SRAM read or write access request to the internal SRAM arbiter. This bit will remain "1" while the access request is still in progress and be cleared automatically by arbiter after current access request is completed. Note: software can only write"1" to this bit and can't write"0".
15	READ	R/W	Setting READ bit to "1" indicates to read from SRAM. Setting READ bit to "0" indicates to write to SRAM.

Rx/Tx SRAM Data Register (RTSDR, 0x02)

Bit	7	6	5	4	3	2	1	0				
Name	BUFFER DATA 0											
	BUFFER DATA 1											
	BUFFER_DATA 2											
	BUFFER_DATA 3											
	BUFFER DATA 4											
	BUFFER_DATA 5											
	BUFFER_DATA 6											
				BUFFE	R_DATA 7							
Reset Value												

Bit	Name	Access	Description
	BUFFER_DATA 0 BUFFER_DATA 7	R/W	The BUFFER_DATA 7~0 is the content of the RX or TX SRAM where BUFFER_DATA 0 represents bit 7~0 of the SRAM while BUFFER_DATA 7 represents bit 63~56. When writing to the SRAM, software needs to first write desired data into this register before issuing RTSCR register. When reading from the SRAM, software first issues RTSCR register and then retrieves the SRAM data from this register.

Flow Control in Full Duplex Mode

Flow Control on RX Direction

Flow control in RX direction is used to avoid RX packet buffer being overflowed in full-duplex mode, it's enabled by TFC and FD bit (MSMR bit 4,5). The Ethernet MAC uses a Buffer Ring structure to store the received packets (see Figure 90) and maintain a Free Buffer Counter (FBC). The FBC is counting the free memory pages. When flow control is enabled, the Ethernet MAC will send out Pause ON frame to notify the other end to stop sending packets when its FBC is less than "Low Water Mark" being defined in I2C EEPROM offset 0x11. The format of the Pause Frame is shown in Figure 91. The Ethernet MAC will send out Pause OFF frame when its FBC is over "High Water Mark" being defined in I2C EEPROM offset 0x10.

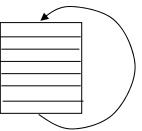
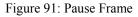



Figure 90: Transmit/Receive Buffer Ring Structure

DA = 0180 C200 0001	SA= 0000 0000 0000	L/T= 8808	0001	Pause Time FF00	Padding					
Pause On Frame										
DA =	SA=	L/T=		Pause Time	Padding					
0180 C200 0001			0001	0000	radding					
Pause OFF Frame										

Flow Control on TX Direction

When enabled RFC bit (MSMR.7) in full duplex mode, the Ethernet MAC will stop sending packets out towards the other end, upon receiving the Pause ON Frame. It will resume transmitting packets after the pause timer times out. The duration of this pause timer is specified in the received packet's Pause Time Field. The Ethernet MAC can recognize either one of the following conditions as a Pause Frame:

- Destination Address field equals to the multicast address, 01-80-C2-00-00-01, and Length/Type Field = 0x8808
- Length/Type Field = 0x8808

Above condition is determined by PF bit (MSMR.3).

Backpressure in Half Duplex Mode

The backpressure mechanism is used to avoid RX packet buffer being overflowed in half-duplex mode, it's enabled by TFC bit (MSMR.4). When backpressure mechanism is enabled, the Ethernet MAC will send out Jam pattern to force collision and force the other end to backoff from current transmission when its FBC is less than "Low Water Mark". The format of this Jam pattern consists of 16 bytes of 0x55.

4.15.5 Magic Packet and Wakeup Frame

When the PMM or STOP mode is invoked, the CPU can be awaked up by two types of Ethernet frame - Magic Packet or Microsoft Wakeup Frame. Note that during these two types of packet remote wakeup mode, the Ethernet PHY shall not be set in reset or power down mode in BMCR register to allow Ethernet packet reception.

Magic Packet Wakeup Function

Magic Packet is an easy and simple MAC layer Ethernet frame used to awake up the AX11001/AX11005. Setting RWMP bit (SPWIE.4) prior to entering STOP or PMM mode can enable Magic Packet Wakeup Function. Once the Ethernet MAC has been put into the Magic Packet wakeup enable mode, it monitors all incoming frames for a specific data sequence. This sequence can be located anywhere after the Length/Type field but is preceded by a synchronization stream (6 bytes of 0xFF). The data sequence is 16 iterations of the MAC address of this chip. See Figure 92 below. When Ethernet MAC detects this type of packet, it will generate interrupt on INT6 to awake up the CPU and report this wakeup event in WPLS register.

DA	SA	L/T	Payload
00123456789a	*****		xxxx_FFFFFFFFF_00123456789a_00123456789a_00123456789a_001234 56789a_00123456789a_00123456789a_00123456789a_00123456789a_00123 456789a_00123456789a_00123456789a_00123456789a_00123456789a_0012 3456789a_00123456789a_00123456789a_xxxxxxx

Assume the MAC address of this chip is "00123456789A".

Figure 92: Example Magic Packet Format

Wakeup Frame Wakeup Function.

Wakeup Frame is used to awake up the AX11001/AX11005 from receiving a more complex Ethernet frame, which can be defined with specific TCP/IP header and payload pattern. User can define the pattern of this wakeup frame and set MWFE bit (SPWIE.6) and either EWFF0 or WSFF1 bit in WFCR register to enable this Wakeup Frame wakeup function prior to entering STOP or PMM mode. Once enabled, the Ethernet MAC monitors all incoming frames for this user-defined pattern. If matched, the Ethernet MAC will generate interrupt on INT6 to awake up the CPU and report this wakeup event in WPLS register.

There are two filter sets supported in the Ethernet MAC, which can define two different patterns of Wakeup Frame. The filter set consists of Wakeup Frame Command Register, Wakeup Frame Byte Mask Register, Wakeup Frame CRC Register, Wakeup Frame Offset Register, and Wakeup Frame Last Byte Register. Also, if a more complex pattern of

Wakeup Frame is needed, user can choose to cascade the two filter sets into one and specify a longer pattern for Wakeup Frame matching.

STOP and PMM Wakeup Interrupt Enable Register (SPWIE, 0x24)

Bit	7	6	5	4	3	2	1	0
Name	Reserved	MWFE	EPWT	RWMP		Reserved		PPLWE
Reset Value	0	0	0	0		000		0

Bit	Name	Access	Description
			PPLWE: Primary PHY Linkup Wakeup Enable Register
0	PPLWE	R/W	1: Enable Interrupt
			0: Disable Interrupt (Default)
3:	Reserved	R/W	Please always write 000.
1	Reserveu	IX/ W	
			RWMP: Remote Wakeup trigger by Magic Packet.
4	RWMP	R/W	1: Enable.
			0: Disabled (default).
			EPWT: External Pin Wakeup trigger
5	EPWT	R/W	1: Enable
			0: Disabled (default).
			MWFE: Microsoft Wakeup Frame Enable Register
6	MWFE	R/W	1: Enable
			0: Disabled (default).
7	Reserved		

Note:

1. The CPU can be awaked up by various wakeup events if software enables this register. Upon enabled, the wakeup events will trigger the INT 6 of the CPU.

2. After the CPU awakes up, software can read WPLS register to identify the source of wakeup events.

PHY Link Change Interrupt Enable Register (PLCIE, 0x26)

Bit	7	6	5	4	3	2	1	0
Name	Reserved							
Reset Value	000_0000							

Bit	Name	Access	Description
			PLCIE: Primary PHY Link Change Interrupt Enable Register.
0	PLCIE	R/W	1:Enable Primary PHY Interrupt.
			0:Disable Primary PHY Interrupt (Default).
7:1	Reserved	R/W	Please always write 0.

Note:

1. The Ethernet MAC will check the link status of embedded Ethernet PHY for every 200ms, if the link status is changed and above PLCIE is also enabled, an interrupt on INT 4 is generated to CPU (both link-up or link-down transition can cause an interrupt to be generated)

2. After the CPU is interrupted, the software can read WPLS register on PPLSCR and PPLSR bits to learn about the latest link status.

Wakeup and PHY Link Status Register (WPLS, 0x28)

Bit	7	6	5	4	3	2	1	0
Name	Reserved	MWFSR	EWPSR	MPSR	Reser	ved	PPLSR	PPLSCR
Reset Value	0	0	0	0		00		0

Bit	Name	Access	Description
			PPLSR: Primary PHY Link Status Changed Register.
0) PPLSCR	CR	1: Whenever Primary PHY's Link status changed, this bit will be set to 1.
			0: This bit will be cleared after software reads it.
			PPLSR: Primary PHY Link Status Register.
1	PPLSR	R	1: The link status of Primary PHY is link-up.
			0: The link status of Primary PHY is link-down.
3:2	Reserved		
			MPSR: Magic Packet Status Register.
4	MPSR	CR	1: Whenever Ethernet MAC receives Magic Packet and awakes up the CPU.
			0: This bit will be cleared after software reads it.
			EWPSR: External Wakeup Pin Status Register.
5	EWPSR	CR	1: Whenever user triggers the external wakeup pin, EXT_WKUP, and awakes up the
5	LWISK	CK	CPU.
			0: This bit will be cleared after software reads it.
			MWFSR: Microsoft Wakeup Frame Status Register.
6	MWFSR	CR	1: Whenever Ethernet MAC receives Microsoft Wakeup Frame and awakes up the
0		CK	CPU.
			0: This bit will be cleared after software reads it.
7	Reserved		

Note:

1. Both SPWIE and PLCIE use WPLS register to report status, the software should read this register after receiving INT 6 or INT 4.

Wakeup Frame Command Register (WFCR, 0x30)

Bit	7	6	5	4	3	2	1	0
Name	Reserved			ECFF	EUM1	EWFF1	EUM0	EWFF0
Reset Value		000		0	0	0	0	0

Bit	Name	Access	Description
0	EWFF0		 Enable Wakeup Frame Filter 0 (WFF0), which consists of WFBM0, WFCRC0, WFOS0, and WFLB0 registers. Please program WFBM0, WFCRC0, WFOS0, and WFLB0 registers before setting this bit. 1: Enabled wakeup frame detection mode for WFF0. 0: Disabled wakeup frame detection mode for WFF0.
1	EUM0	RW	 Enable Unicast Match mode for Wakeup Frame Filter 0. 1: When receiving frame with DA equal to MACAR and WFF0 is matched, then the packet is considered as valid wakeup frame. 0: When receiving frame with any DA but the WFF0 is matched, then the packet is considered as valid wakeup frame.
2	EWFF1		 Enable Wakeup Frame Filter 1 (WFF1), which consists of WFBM1, WFCRC1, WFOS1, and WFLB1 registers. Please program WFBM1, WFCRC1, WFOS1, and WFLB1 registers before setting this bit. 1: Enabled wakeup frame detection mode for WFF1. 0: Disabled wakeup frame detection mode for WFF1.
3	EUM1	RW	 Enable Unicast Match mode for Wakeup Frame Filter 1. 1: When receiving frame with DA equal to MACAR and WFF1 is matched, then the packet is considered as valid wakeup frame. 0: When receiving frame with any DA but the WFF1 is matched, then the packet is considered as valid wakeup frame.

180

4	ECFF	RW	 Enable Cascading wakeup Frame Filter. 1: Enable cascading the WFF0 and WFF1 into one filter. When enabled, the WFBM0, WFBM1, WFOS0, WFOS1, WFLB1, WFCRC1 will be used, and the WFCRC0 and WFLB0 registers are not used. When enabled, the EWFF0, EWFF1 should both be set to 1 at the same time, and the EUM0, EUM1 should both be set to 1 or 0 at the same time. The value of WFOS1 indicates the offset from the last byte of first filter, WFF0. For example, if WFOS0 = 0x08, and WFOS1 = 0x06, then the first bit of WFBM1 is used as byte mask for the ((8*2) + 32 + (6*2) + 1)th byte in the wakeup frame. In other words, the first bit of WFBM1 is the byte mask of ((WFOS0*2) + 32 + (WFOS1*2) +1)th byte in the wakeup frame. 0: The WFF0 and WFF1 functions as two independent wakeup frame filters.
7: 5	Reserved		o. The wirt o and wirt i functions as two independent wakeup frame inters.

Wakeup Frame Byte Mask 0 Register (WFBM0, 0x32)

Bit	7	6	5	4	3	2	1	0			
	BM_0_0										
Nama	BM_0_1										
Name				BM	[_0_2						
				BM	[0]3						
Reset Value				0x0	000_0000						

Bit	Name	Access	Description
7:0	BM 0 0		$BM_0_3 \sim 0_0$ is the 32 bit for byte mask. The byte mask defines which bytes in the
		RW	incoming frame will be examined to determine whether or not this is a wake-up frame.
31:24	BM_0_3		The BM_0_0 represents bit $7\sim0$ and BM_0_3 represents bit $31\sim24$.

Wakeup Frame CRC 0 Register (WFCRC0, 0x36)

Bit	7	6	5	4	3	2	1	0		
Nomo	CRC 0 0									
Name	CRC 0 1									
Reset Value				C)x0000					

Bit	Name	Access	Description
7:0 15:8	CRC_0_0 CRC_0_1	RW	This register defines the 16-bit CRC value of the valid wakeup frames. Software should calculate this based on the valid wakeup frame patterns, WFOS0 and WFBM0 settings. This value is used to compare with the CRC calculated on the incoming frame, when matched and the WFLB0 is also matched, then the frame is considered as valid wakeup frame. CRC_0_0 represents bit 7~0 and CRC_0_1 represents bit 15~8. CRC-16 Polynomials = $X^{16} + X^{15} + X^{2} + 1$

Wakeup Frame Offset 0 Register (WFOS0, 0x38)

Bit	7										
Name				OFF	SET_0						
Reset Value					0x00						

Bit	Name	Access	Description
7: 0	OFFSET_ 0	ĸw	This register defines the offset of the first byte in the incoming frame from which the CRC is calculated for the wakeup frame recognition. Each value represents two bytes in the frame. For example: The offset value of 0 is the first byte of the incoming frame's destination address. The offset value of 1 is the 3rd byte of the incoming frame, etc.

Wakeup Frame Last Byte 0 Register (WFLB0, 0x3A)

Bit	7 6 5 4 3 2 1 0									
Name		LB 0								
Reset Value					0x00					

Bit	Name	Access	Description
7: 0	LB_0	RW	This 1-byte pattern is used to compare with the last masked byte in the incoming frame. The last masked byte is the byte of the last bit mask being 1 in WFBM0. A valid wakeup frame shall have both WFCRC0 and WFLB0 match conditions.

Wakeup Frame Byte Mask 1 Register (WFBM1, 0x40)

Bit	7	6	5	4	3	2	1	0				
		BM_1_0										
Nomo	BM_1_1											
Name	BM 1 2											
				BM	[_1_3							
Reset Value				0x0	000_0000							

Bit	Name	Access	Description
7:0	BM 1 0		BM_1_3 ~ 1_0 is the 32 bit for byte mask. The byte mask defines which bytes in the
		RW	incoming frame will be examined to determine whether or not this is a wake-up frame.
31:24	BM_1_3		The BM_1_0 represents bit $7\sim0$ and BM_1_3 represents bit $31\sim24$.

Wakeup Frame CRC 1 Register (WFCRC1, 0x44)

Bit	7 6 5 4 3 2 1 CRC_1_0										
Name		CRC 1 0									
Name	CRC 1 1										
Reset Value				C)x0000						

Bit	Name	Access	Description
7:0 15:8	CRC 1_0 CRC 1_1	RW	This register defines the 16-bit CRC value of the valid wakeup frames. Software should calculate this based on the valid wakeup frame patterns, WFOS0 and WFBM0 settings. This value is used to compare with the CRC calculated on the incoming frame, when matched and the WFLB0 is also matched, then the frame is considered as valid wakeup frame. CRC_1_0 represents bit 7~0 and CRC_1_1 represents bit 15~8. CRC-16 Polynomials = $X^{16} + X^{15} + X^{2} + 1$.

Wakeup Frame Offset 1 Register (WFOS1, 0x46)

Bit	7	6	5	4	3	2	1	0				
Name				OFF	SET_1							
Reset Value		0x00										

Bit	Name	Access	Description
7: 0	OFFSET_ 1	RW	This register defines the offset of the first byte in the incoming frame from which the CRC is calculated for the wakeup frame recognition. Each value represents two bytes in the frame. For example: The offset value of 0 is the first byte of the incoming frame's destination address. The offset value of 1 is the 3rd byte of the incoming frame, etc.

Wakeup Frame Last Byte 1 Register (WFLB1, 0x48)

Bit	7	6	5	4	3	2	1	0				
Name				L	B_1							
Reset Value		0x00										

Bit	Nam e	Access	Description
7: 0	LB_1	RW	This 1-byte pattern is used to compare with the last masked byte in the incoming frame. The last masked byte is the byte of the last bit mask being 1 in WFBM0. A valid wakeup frame shall have both WFCRC1 and WFLB1 match conditions.

Wakeup Frame Example

If following packet pattern is defined as a Wakeup Frame and the Ethernet MAC will monitor packet with $DA = 1234_{5678}$ gabc and L/T=0800.

Field			D	A					S	A			L/	Т]	Pay	loa	d							
Byte Mask	1	1	1	1	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mask Data	12	34	56	78	9a	bc							08	00																		

Software should set following registers,

- 1. SPWIE: Enable MWFE bit.
- 2. WFBM0: Set to $0x0000_303f$, where BM_0_0 = 0x3f (indicating byte 0 to 5 are used to compare and byte 6~7 are not used), BM_0_1 = 0x30, BM_0_2 = 0x00, and BM_0_3 = 0x00.
- 3. WFCRC0: The pattern is "12, 34, 56, 78, 9a, bc, 08, 00", so the CRC-16 result is 0x8fbb.
- 4. WFOS0: The pattern is compared at the first byte of packet, so offset is 0x00.
- 5. WFLB0: The last byte of the pattern is 00, so set this register to 0x00.
- 6. WFCR: Set this register to 0x01 to enable the filter set 0. This register should be set at the end of the procedure.

PHY Control Register (PCR, 0x22)

Bit	7	6	5	4	3	2	1	0
Name		F	Reserved			IPRL	Reserved	Reserved
Reset Value			0	1	1	1		

Bit	Name	Access	Description
1:0	Reserved	R/W	Please always write 11.
2	IPRL	R/W	 IPRL: Internal Ethernet PHY Reset control. This bit controls the reset signal of internal Ethernet PHY. 1: Internal Ethernet PHY is in operating state (default). 0: Internal Ethernet PHY in reset state.
7:3	Reserved		

4.16 10/100M Ethernet PHY

The 10/100 Ethernet PHY of AX11001/AX11005 is compliant with IEEE 802.3 and IEEE 802.3u standards. It contains an on-chip crystal oscillator, PLL-based clock multiplier, and digital phase-locked loop for data/timing recovery. It provides over-sampling mixed-signal transmit drivers complying with 10/100BASE-TX transmit wave-shaping / slew rate control requirements. It has robust mixed-signal loop adaptive equalizer for receiving signal recovery.

- Support full-duplex mode, half-duplex mode, and auto-negotiation
- Support twisted pair crossover detection and auto-correction (Auto-MDIX)
- DSP-based adaptive line equalizer, providing superior immunity to near end crosstalk and inter-symbol interference
- Fully compliant with 100BASE-TX, and 10BASE-T PMD level standards (IEEE 802.3u and IEEE 802.3)
- DSP-controlled symbol timing recovery circuit
- Baseline wander corrective circuits to compensate data dependent offset due to AC coupling transformers
- Over-sampling mixed-signal transmit driver complies with 10/100BASE-TX transmit wave-shaping/slew-control requirements

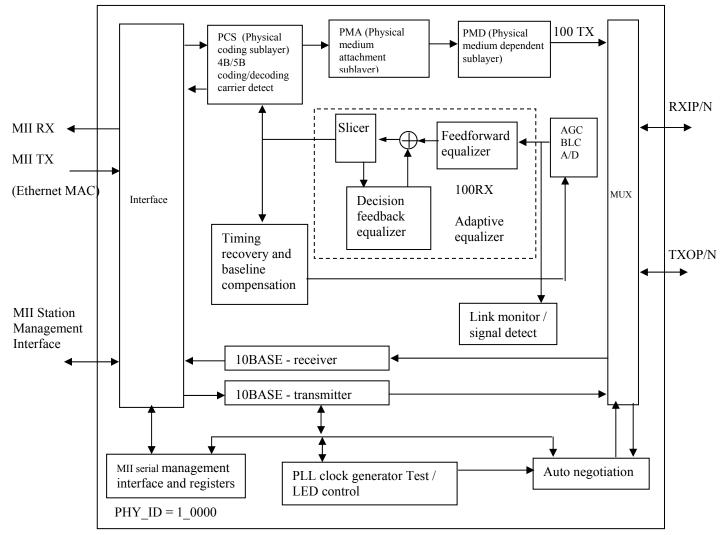


Figure 93: 10/100M Ethernet PHY Block Diagram

4.16.1 MII Station Management Function

The primary function of station management is to transfer control and status information of the Ethernet PHY to a management entity. This function is accomplished by the MDC clock input from Ethernet MAC (frequency is about 1.5 MHz) along with the MDIO signal to/from the Ethernet PHY. The embedded Ethernet PHY's ID address is fixed to "1_0000". Frames transmitted on the MII management interface will have the frame structure shown in Figure 94. The order of bit transmission is from left to right. Note that reading and writing the management register must be completed without interruption.

Read/Write	Preamble	ST	OP	PHY ID	REGAD	TA	IDLE	
Read	11	01	10	AAAAA	RRRRR	Z0	DDDDDDDDDDDDDDDD	Ζ
Write	11	01	01	AAAAA	RRRRR	10	DDDDDDDDDDDDDDDD	Ζ

Field	Description
Preamble	Preamble of MII station management frame, which consists of 32 bits of 1.
ST	Start of Frame. The start of frame is indicated by a 01 pattern.
OP	Operation Code . The operation code for a read transaction is 10. The operation code for a write transaction is a 01.
PHY ID	PHY Address . The PHY address is 5 bits, allowing for 32 unique addresses. The first PHY address bit transmitted and received is the MSB of the address. A station management entity that is attached to multiple PHY entities must have prior knowledge of the appropriate PHY address for each entity. The embedded Ethernet PHY's address is fixed to "1_0000".
REGAD	Register Address. The register address is 5 bits, allowing for 32 unique registers within each PHY. The first register address bit transmitted and received is the MSB of the address.
ТА	Turnaround . The turnaround time is a two-bits time spacing between the register address field, and the data field of a frame, to avoid drive contention on MDIO during a read transaction. During a write to the PHY, these bits are driven to 10 by the station. During a read, the MDIO is not driven during the first bit time and is driven to a 0 by the PHY during the second bit time.
DATA	Data . The data field is 16 bits. The first bit transmitted and received will be bit 15 of the register being addressed.
IDLE	Idle Condition. The IDLE condition on MDIO is a high-impedance state. All three state drivers will be disabled and the PHY's pull-up resistor will pull the MDIO line to logic 1.

Figure 94: MII Station Management Frame Format

4.16.2 10/100M Ethernet PHY SFR Register Map

Address	Name	Description
0xBE	EPCR	Ethernet PHY Command Register
0xBF	EPDR	Ethernet PHY Data Register

Table 38: 10/100 Ethernet PHY SFR Register Map

Ethernet PHY Command Register (EPCR, 0xBE)

Bit	7	6	5	4	3	2	1	0
Nome		Reserved				REG_ADD	R	
Name	READ	GO	Reserved			PHYID		
Reset Value				0x0(000			

Bit	Name	Access	Description
4:0	REG_ADDR	R/W	The PHY register address to be accessed as listed in Table 39.
7:5	Reserved		These bits must be 0, except for "command abort" command.
12:8	PHYID	R/W	The PHY ID value. When accessing the embedded Ethernet PHY, write "1_0000".
13	Reserved		This bit must be 0, except for "command abort" command.
14	GO	R/W1	Setting GO bit to "1" to initiate read or write access request to the Ethernet PHY registers. This bit will remain "1" while the access request is still in progress and be cleared to 0 automatically after current access request is completed. Note: software can only write"1" to this bit and can't write"0".
15	READ	R/W	Setting READ bit to "1" indicates to read data from Ethernet PHY through EPDR. Setting READ bit to "0" indicates to write data to Ethernet PHY through EPDR.

Note: Command Abort operation: While software is reading/writing EPCR, the command can be aborted by writing EPCR register with data = 0xFF. After generating the "Command Abort operation", the following EPCR read/write command will start with accessing bit 7~0 of EPCR.

Ethernet PHY Data Register (EPDR, 0xBF)

Bit	7	6	5	4	3	2	1	0	
PHY DATA 0									
NAME	PHY_DATA 1								
Reset Value		0x0000							

Bit	Name	Access	Description
7:0	PHY_DATA 0	R/W	The PHY_DATA 1~0 is the register data being written to or read back from the
15:8	PHY_DATA 1		Ethernet PHY. When writing to Ethernet PHY, software needs to first write
			desired data into this register before issuing EPCR register. When reading from the
			Ethernet PHY, software first issues EPCR register and then retrieves the read data
			from this register.

Note: Command Abort operation: While software is reading/writing EPDR, the command can be aborted by writing EPCR register with data = 0xFF. After generating the "Command Abort operation", the following EPDR read/write command will start with accessing bit 7~0 of EPDR.

10/100M Ethernet PHY Register Indirect Access Method

Software shall use indirect access method through EPCR and EPDR registers to do read and write access to the Ethernet PHY registers as listed in Table 39.

Read a register from 10/100M Ethernet PHY:

- Step 1. Write EPCR two times: Software indicates REG_ADDR in first write and indicates PHYID and sets READ=1 and GO=1 in second write to SFR register EPCR.
- Step 2. Read EPCR: Software should keep reading EPCR until GO bit become 0. When GO bit is clear, the Ethernet PHY register data is presented on SFR register EPDR. Note that each EPCR read cycle consists of two SFR bus read accesses to retrieve the 16 bits wide data in EPCR.
- Step 3. Read EPDR two times: Software then read SFR register EPDR which now stores the read data of Ethernet PHY register provided in step 1. Note that the first read returns the 7:0 bits of Ethernet PHY register data.

Write a register to 10/100M Ethernet PHY:

- Step 1. Write EPDR two times: Software writes the data you want to write into Ethernet PHY register to SFR register EPDR. The first write is the LSB byte that maps to Ethernet PHY register's 7:0 bits.
- Step 2: Write EPCR two times: Software indicates REG_ADDR in first write and indicates PHYID and sets READ=0 and GO=1 in second write to SFR register EPCR.
- Step 3: Read EPCR: Software should keep reading EPCR until GO bit become 0. When GO bit is clear, the requested write to Ethernet PHY register is completed. Note that each EPCR read cycle consists of two SFR bus read accesses to retrieve the 16 bits wide data in EPCR.

Address	Register Name	Description			
0h	BMCR	Basic mode control register, basic register.			
1h	BMSR	Basic mode status register, basic register.			
2h	PHYIDR1	PHY identifier register 1, extended register.			
3h	PHYIDR2	PHY identifier register 2, extended register.			
4h	ANAR	Auto negotiation advertisement register, extended register.			
5h	ANLPAR	Auto negotiation link partner ability register, extended register.			
6h	ANER	Auto negotiation expansion register, extended register.			
7h	Reserved	Reserved and currently not supported.			
8h-Fh	IEEE reserved	IEEE 802.3u reserved.			

Embedded 10/100M Ethernet PHY Register Map

Table 39: Embedded 10/100M Ethernet PHY Register Map

Basic Mode Control Register (BMCR, 0x00)

Bit	Bit Name	Reset Value	Access	Description
		0		Reset.
15	Reset		R/W/SC	1: Software reset.
				0: Normal operation.
		0		Loopback.
14	Loopback		R/W	1: Loopback enabled.
				0: Normal operation.
	Speed	1		Speed selection.
13	selection		R/W	1: 100 Mb/s.
	selection			0: 10 Mb/s.
		1		Auto-negotiation enable.
	Auto-negotia			1: Auto-negotiation enabled. Bits 8 and 13 of this register are
12	tion enable		R/W	ignored when this bit is set.
	tion enable			0: Auto-negotiation disabled. Bits 8 and 13 of this register
				determine the link speed and mode.
		0		Power down.
11	Power down		R/W	1: Power down.
				0: Normal operation.
		,		Isolate. $(PHYAD = 00000)$
10	Isolate		R/W	1: Isolate.
				0: Normal operation.
	Restart	0		Restart auto-negotiation.
9	auto-negotiat		R/W/SC	1: Restart auto-negotiation.
	ion			0: Normal operation.
		1		Duplex mode.
8	Duplex mode		R/W	1: Full duplex operation.
				0: Normal operation.
		0		Collision test.
7	Collision test		R/W	1: Collision test enabled.
				0: Normal operation.
6:0	Reserved		RO	

Basic Mode Status Register (BMSR, 0x01)

Bit	Bit Name	Reset Value	Access	Description
15	100BASE-T4	0	RO/PS	100BASE-T4 capable.
		0	10/10	0: This PHY is not able to perform in 100BASE-T4 mode.
14	100BASE-TX	1	RO/PS	100BASE-TX full-duplex capable.
	full duplex	-	110/15	1: This PHY is able to perform in 100BASE-TX full-duplex mode.
13	100BASE-TX	1	RO/PS	100BASE-TX half-duplex capable.
_	half duplex	-		1: This PHY is able to perform in 100BASE-TX half-duplex mode.
1.7	10BASE-T	1	RO/PS	10BASE-T full-duplex capable.
	full duplex			1: This PHY is able to perform in 10BASE-T full-duplex mode.
	10BASE-T	1	RO/PS	10BASE-T half-duplex capable.
	half duplex	0	DO	1: This PHY is able to perform in 10BASE-T half-duplex mode.
10:7	Reserved	0	RO	Reserved. Write as 0, read as "don't care".
6	MF preamble	0		Management frame preamble suppression.
0	suppression	0	RO/PS	0: This PHY will not accept management frames with preamble
				suppressed. Auto-negotiation completion.
5	Auto-negotiati	0	RO	1: Auto-negotiation process completed.
5	on complete	0	KÜ	0: Auto-negotiation process not completed.
				Remote fault.
				1: Remote fault condition detected (cleared on read or by a chip
4	Remote fault	0	RO/LH	reset).
				0: No remote fault condition detected.
	Auto-negotiati			Auto configuration ability.
	on ability	1	RO/PS	1: This PHY is able to perform auto-negotiation.
				Link status.
2	Link status	0	RO/LL	1: Valid link established (100Mb/s or 10Mb/s operation)
-		0	110/22	0: Link not established.
				Jabber detection.
1	Jabber detect	0	RO/LH	1: Jabber condition detected.
				0: No Jabber condition detected.
	F (1 1			Extended capability.
α	Extended	1	RO/PS	1: Extended register capable.
	capability			0: Basic register capable only.

PHY Identifier Register 1 (PHYIDR1, 0x02)

Bit	Bit Name	Reset Value	Access	Description
15:0	OUI_MSB	0x003B	RO/PS	OUI most significant bits. Bits 3 to 18 of the OUI are mapped to bits 15 to 0 of this register respectively. The most significant two bits of the OUI are ignored.

PHY Identifier Register 2 (PHYIDR2, 0x03)

Bit	Bit Name	Reset Value	Access	Description
15:10	OUI_LSB			OUI least significant bits:
		00_0110		Bits 19 to 24 of the OUI are mapped to bits 15 to 10 of this register respectively.
9:4	VNDR_MDL	00_0101	RO/PS	Vendor model number.
3:0	MDL_REV	0001	RO/PS	Model revision number.

Auto Negotiation Advertisement Register (ANAR, 0x04)

Bit	Bit Name	Reset Value	Access	Description
15	NP	0		Next page indication.
			RO/PS	0: No next page available. The PHY does not support the next page
				function.
14	ACK	0		Acknowledgement.
			RO	1: Link partner ability data reception acknowledged
				0: Not acknowledged
13	RF	0		Remote fault.
			R/W	1: Fault condition detected and advertised
				0: No fault detected
12:11	Reserved	Х	R/W	Reserved. Write as 0, read as "don't care".
10	Pause	0		Pause.
			R/W	1: Pause operation enabled for full-duplex links
				0: Pause operation not enabled
9	T4	0	RO/PS	100BASE-T4 support.
			KU/PS	0: 100BASE-T4 not supported
8	TX_FD	1		100BASE-TX full-duplex support.
			R/W	1: 100BASE-TX full-duplex supported by this PHY.
				0: 100BASE-TX full-duplex not supported by this PHY.
7	TX_HD	1		100BASE-TX half-duplex support:
			R/W	1: 100BASE-TX half-duplex supported by this PHY.
				0: 100BASE-TX half-duplex not supported by this PHY.
6	10_FD	1		10BASE-T full-duplex support.
			R/W	1: 10BASE-T full-duplex supported by this PHY.
				0: 10BASE-T full-duplex not supported by this PHY.
5	10_HD	1		10BASE-T half-duplex support.
			R/W	1: 10BASE-T half-duplex supported by this PHY.
				0: 10BASE-T half-duplex not supported by this PHY.
4:0	Selector	0_0001		Protocol selection bits.
1			R/W	These bits contain the binary encoded protocol selector supported by
			11/ 11	this PHY. "0 0001" indicates that this PHY supports IEEE 802.3u
				CSMA/CD.

Auto Negotiation Link Partner Ability Register (ANLPAR, 0x05)

Bit	Bit Name	Reset Value	Access	Description
				Next page indication.
15	NP	0	RO	1: Link partner next page enabled
				0: Link partner not next page enabled
				Acknowledgement.
14	ACK	0	RO	1: Link partner ability for reception of data word acknowledged
				0: Not acknowledged
				Remote fault.
13	RF	0	RO	1: Remote fault indicated by link partner
				0: No remote fault indicated by link partner
12:11	Reserved	Х	RO	Reserved. Write as 0, read as "don't care".
				Pause.
10	Pause	0	RO	1: Pause operation supported by link partner
				0: Pause operation not supported by link partner
				100BASE-T4 support.
9	T4	0	RO	1: 100BASE-T4 supported by link partner
				0: 100BASE-T4 not supported by link partner
				100BASE-TX full-duplex support.
8	TX_FD	0	RO	1: 100BASE-TX full-duplex supported by link partner
				0: 100BASE-TX full-duplex not supported by link partner

189

Copyright © 2006-2011 ASIX Electronics Corporation. All rights

7	TX_HD	0	RO	100BASE-TX half-duplex support.1: 100BASE-TX half-duplex supported by link partner0: 100BASE-TX half-duplex not supported by link partner
6	10_FD	0	RO	10BASE-T full-duplex support.1: 10BASE-T full-duplex supported by link partner0: 10BASE-T full-duplex not supported by link partner
5	10_HD	0	RO	10BASE-T half-duplex support.1: 10BASE-T half-duplex supported by link partner0: 10BASE-T half-duplex not supported by link partner
4:0	Selector	0_0000	00	Protocol selection bits. Link partner's binary encoded protocol selector.

Auto Negotiation Expansion Register (ANER, 0x06)

Bit	Bit Name	Reset Value	Access	Description
15:5	Reserved	0	0, RO	Reserved. Write as 0, read as "don't care".
4	PDF	0	0, RO / LH	Parallel detection fault.
				1: Fault detected via the parallel detection function
				0: No fault detected
3	LP_NP_AB	0	0, RO	Link partner next page enable.
				1: Link partner next page enabled
				0: Link partner not next page enabled
2	NP_AB	0	· ·	PHY next page enable.
				0: PHY is not next page able.
1	Page_RX	0	0, RO / LH	New page reception.
				1: New page received
				0: New page not received
0	LP_AN_AB	0	0, RO	Link partner auto-negotiation enable.
				1: Link partner auto-negotiation supported.

4.17 Programmable Counter Array

The Programming Counter Array (PCA) provides more timing capabilities with less CPU intervention than the standard timer/counter. Its advantages include reduced software overhead and improved accuracy. As shown in Figure 95, the PCA consists of a dedicated timer/counter, which serves as the time base for an array of 5 compare/capture modules. The PCA uses 6 I/O pins, one external clock input pin, ECI, and five bi-directional capture/compare signal pins, CEX [4:0]. Each of the five modules can be programmed in any of the following modes:

- Rising and/or falling edge capture
- Software timer
- High speed output
- Pulse Width Modulator (PWM)

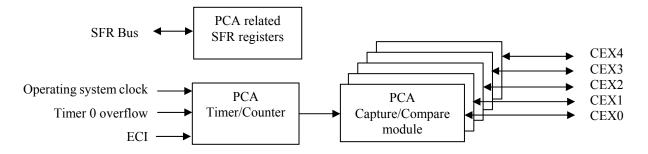


Figure 95: Programmable Counter Array Block Diagram

4.17.1	Programmable	Counter	Array	SFR	Register M	lap
		000000		~		

Address	Register Name	Description
0xC2	CMOD	PCA Timer/Counter Mode Register.
0xC3	CCON	PCA Timer/Counter Control Register.
0xC4	CL	PCA Timer/Counter.
0xC5	СН	
0xD1	CCAPM0	PCA Compare/Capture Module Mode Register 0.
0xB1	CCAP0L	PCA Module 0 Compare/Capture Registers.
0xB9	CCAP0H	
0xD2	CCAPM1	PCA Compare/Capture Module Mode Register 1.
0xB2	CCAP1L	PCA Module 1 Compare/Capture Registers.
0xBA	CCAP1H	
0xD3	CCAPM2	PCA Compare/Capture Module Mode Register 2.
0xB3	CCAP2L	PCA Module 2 Compare/Capture Registers.
0xBB	CCAP2H	
0xD4	CCAPM3	PCA Compare/Capture Module Mode Register 3.
0xB4	CCAP3L	PCA Module 3 Compare/Capture Registers.
0xBC	ССАР3Н	
0xD5	CCAPM4	PCA Compare/Capture Module Mode Register 4.
0xB5	CCAP4L	PCA Module 4 Compare/Capture Registers.
0xBD	CCAP4H	

Table 40: Programmable Counter Array SFR Register Map

4.17.2 PCA Timer/Counter

The PCA timer is a free-running 16-bit timer consisting of registers CH and CL (the high and low bytes of the count values). As shown in Figure 96 and Table 41, the PCA timer/counter's reference timing tick can be selected from operating system clock with 4 different divider ratios, Timer 0 overflow, and the ECI pin input. The PCA timer is the common time base for all five modules. The timer/counter source is determined from the CPS[2:0] bits in the CMOD register.

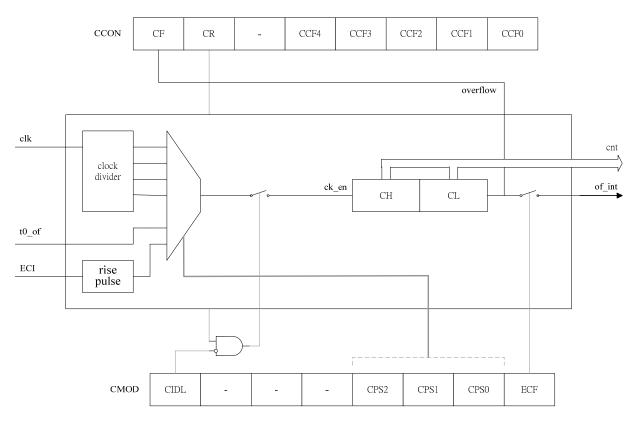


Figure 96: PCA Timer/Counter

PCA Time	r/Counter Mode	PCA Timer/Counter Reference Timing Tick						
		Operating System Clock Frequency (Fclk)						
		25MHz	50MHz	100MHz				
Mode 0: (Fclk / 25)		1µsec	0.5µsec	0.25µsec				
Mode 1: (Fclk / 19)		0.76µsec	0.38µsec	0.19µsec				
Mode 2: (Fclk / 8)		0.32µsec	0.16µsec	0.08µsec				
Mode 3: (Fclk / 6)		0.24µsec	0.12µsec	0.06µsec				
Mode 4: Timer 0	8-bit mode	Note 1	Note 1	Note 1				
Overflows. Timer 0	16-bit mode	Note 1	Note 1	Note 1				
programmed to:	8-bit auto-reload	Note 1	Note 1	Note 1				
		> 80ns	> 40ns	> 20ns				
	Mode 0: (Fclk / 25) Mode 1: (Fclk / 19) Mode 2: (Fclk / 8) Mode 3: (Fclk / 6) Mode 4: Timer 0 Overflows. Timer 0 programmed to: Mode 5: External inp	Mode 0: (Fclk / 25)Mode 1: (Fclk / 19)Mode 2: (Fclk / 8)Mode 3: (Fclk / 6)Mode 4: Timer 08-bit modeOverflows. Timer 016-bit modeprogrammed to:8-bit auto-reload	Operating SMode 0: (Fclk / 25)1µsecMode 1: (Fclk / 19)0.76µsecMode 2: (Fclk / 8)0.32µsecMode 3: (Fclk / 6)0.24µsecMode 4: Timer 08-bit modeNote 1Note 1Overflows. Timer 016-bit modeprogrammed to:8-bit auto-reloadMode 5: External input pin ECI (The max input> 80ns	Operating System Clock Free $25MHz$ $50MHz$ Mode 0: (Fclk / 25)1µsec0.5µsecMode 1: (Fclk / 19)0.76µsec0.38µsecMode 2: (Fclk / 8)0.32µsec0.16µsecMode 3: (Fclk / 6)0.24µsec0.12µsecMode 4: Timer 08-bit modeNote 1Note 1Overflows. Timer 016-bit modeNote 1Note 1programmed to:8-bit auto-reloadNote 1Note 1Mode 5: External input pin ECI (The max input> 80ns> 40ns				

Note:

1. The reference timing tick is determined by the Timer 0 overflow rate programmed by software. In Mode 4, the overflow interrupt for Timer 0 does not need to be enabled.

Table 41:PCA Timer/Counter Input Sources and Reference Timing Tick

4.17.3 Compare/Capture Modules

Each PCA module has a mode register with it. These registers are: CCAPM0 for module 0, CCAPM1 for module 1, etc. Each register contains 7 bits that are used to control the mode in which each module will operate.

Capture Mode

Capture mode is used to capture the PCA timer/counter value into a module's capture registers (CCAPnH and CCAPnL). As shown in Figure 97 below, the capture will occur on a positive edge, negative edge, or both on the corresponding module's CEX[n] pin. To use one of the PCA modules in the capture mode, either one or both the CCAPM register bits CAPN and CAPP for that module must be set. When a valid transition occurs on the CEX[n] pin corresponding to the module used, the PCA hardware loads the 16-bit value of the PCA counter register (CH and CL) into the module's capture registers (CCAPnL and CCAPnH).

The CCFn bit for the module in the CCON register is set by hardware. The value of trigger event CEXn after last trigger is reflected is CEXn bit of CCAPMn register. If the ECCFn bit in the CCAPMn register is set, then an interrupt on INT3 will be generated. In the interrupt service routine, the 16-bit capture value must be saved in memory before the next event capture occurs. If a subsequent capture occurred, the original capture values would be lost. After the event flag (CCFn) has been set by hardware, the user must clear the flag in software.

A common use for the PCA capture mode is to measure the properties of a waveform. Properties such as the period, pulse width or the phase difference of two waveforms are measured by determining the difference in capture values between two edges of the waveform. The hardware support of the PCA capture mode allows accurate measurement of these properties with low software overhead.

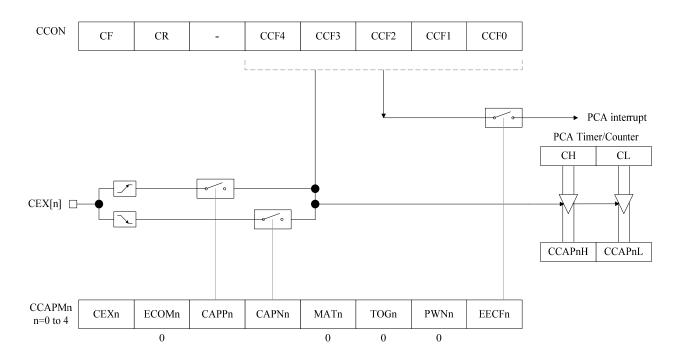


Figure 97: PCA Capture Mode

16-bit Software Timer Mode

The 16-bit software timer mode is used to trigger interrupt routines, which must occur at periodic intervals. As shown in Figure 98, it is setup by setting both the ECOM and MAT bits in the module's CCAPMn register. The PCA timer will be compared to the module's capture registers (CCAPnL and CCAPnH) and when a match occurs, an interrupt on INT3 will occur, if the ECCFn bit in CCAPMn register for the module is set.

If necessary, a new 16-bit compare value can be loaded into CCAPnH and CCAPnL during the interrupt routine. The user should be aware that the hardware temporarily disables the comparator function while these registers are being updated so that an invalid match will not occur. Thus, it is recommended that the user write to the low byte first (CCAPnL) to disable the comparator, then write to the high byte (CCAPnH) to re-enable it. If any updates to the registers are done, the user may want to hold off any interrupts from occurring by clearing the ECCFn bit or the EA bit.

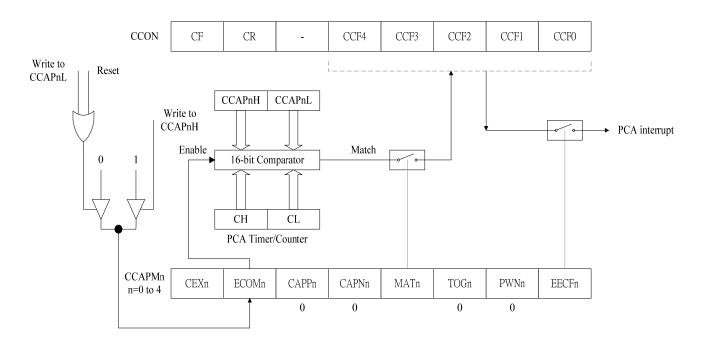


Figure 98: PCA Software Timer Mode (Compare Mode)

High Speed Output Mode

In this mode, the CEX[n] output pin associated with the PCA module will toggle every time there is a match between the PCA counter (CH and CL) and the capture registers (CCAPnH and CCAPnL). As shown in

Figure 99 below, to activate this mode, the user must set TOG, MAT, and ECOM bits in the module's CCAPMn register. High Speed Output mode is much more accurate than software pin toggling since the toggle occurs before branching to an interrupt. In this case, interrupt latency will not affect the accuracy of the output.

When using High Speed Output mode, using an interrupt is optional. Only if the user wishes to change the time for the next toggle is it necessary to update the compare registers. Otherwise, the next toggle will occur when the PCA timer rolls over and matches the last compare value.

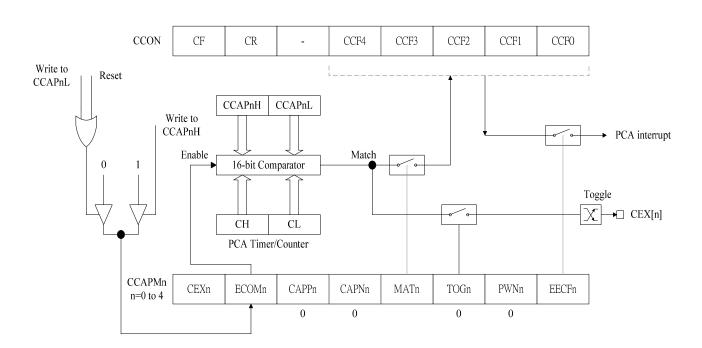
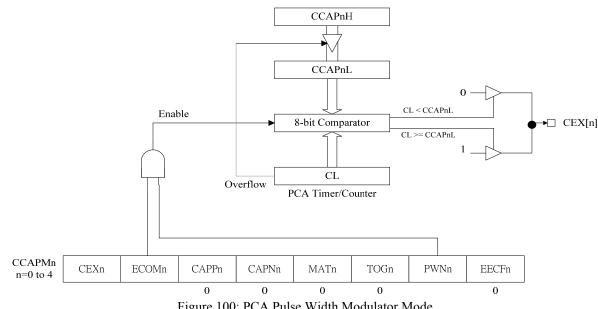


Figure 99: PCA High-Speed Output Mode

Pulse Width Modulator


The Pulse Width Modulator (PWM) mode is used to generate a continuous square-wave with an arbitrary duty cycle. As shown in Figure 100 below, it generates 8-bit PWM by comparing the low byte of the PCA timer (CL) with the low byte of the compare register (CCAPnL). When CL < CCAPnL the output of CEX[n] is low. When CL >= CCAPnL the output CEX[n] is high. To activate this mode, the user must set the PWM and ECOM bits in the module's CCAPMn register.

In PWM mode, the frequency of the output depends on the source for the PCA timer. See Table 42 below. Since there is only one set of CH and CL registers, all modules share the PCA timer and frequency. The frequency is fixed to 256 counts of the PCA timer. Duty cycle of the output is controlled by the value loaded into the high byte (CCAPnH). Since writes to the CCAPnH register are asynchronous, a new value written to the high byte will not be shifted into CCAPnL for comparison until the next period of the output (when CL rolls over from 255 to 00).

To calculate values for CCAPnH for any duty cycle, use the following equation:

CCAPnH = 256 * (1 - Duty Cycle)

Where CCAPnH is an 8-bit integer and duty cycle is a fraction.

Figure 1	100:	PCA	Pulse	Width	Modulator	Mode
----------	------	-----	-------	-------	-----------	------

	Max. PWM Frequency						
imer Mode	Operating System Clock (Fclk)						
	25MHz	50MHz	100MHz				
ote 1	3.91 KHz	7.81 KHz	15.63 KHz				
ote 1	5.14 KHz	10.28 KHz	20.56 KHz				
e 1	12.22 KHz	24.41 KHz	48.83 KHz				
e 1	16.28 KHz	32.55 KHz	65.1 KHz				
pit	Note 2	Note 2	Note 2				
bit	Note 2	Note 2	Note 2				
oit Auto-Reload	Note 2	Note 2	Note 2				
pin ECI (The max input	<48.8 KHz,	< 97.7 KHz,	< 195.3 KHz,				
s than Fclk / 2)	Note 3	Note 3	Note 3				
	te 1 te 1 e 1 e 1 it bit it Auto-Reload pin ECI (The max input	Imer Mode Operation 25MHz 25MHz te 1 3.91 KHz te 1 5.14 KHz e 1 12.22 KHz e 1 16.28 KHz it Note 2 bit Note 2 it Auto-Reload Note 2 pin ECI (The max input < 48.8 KHz,	Operating System Clock 25MHz 50MHz te 1 3.91 KHz 7.81 KHz te 1 5.14 KHz 10.28 KHz e 1 12.22 KHz 24.41 KHz e 1 16.28 KHz 32.55 KHz it Note 2 Note 2 bit Note 2 Note 2 pin ECI (The max input < 48.8 KHz,				

Note:

Max. PWM frequency = (Fclk / Divider) / 256, where Divider is 25, 19, 8, 6 for Mode 0, 1, 2, 3, respectively. 1.

Max. PWM frequency = Timer 0 overflow rate / 256. 2.

Max. PWM frequency = ECI frequency / 256. 3.

Table 42: Pulse Width Modulator Frequency

PCA Timer/Counter Mode Register (CMOD, 0xC2)

Bit			7	6	5	4	3	2	1	0			
Nam	e	CI	DL		Reserved		CPS			ECF			
Rese	t Value		0		00			00		0			
Bit	Name	1 00000				Dogo	mintion						
DIL	Ivame	Access	DCA End	bla Count	er Overflow		ription						
0	ECF	R/W			t in CCON t		n intorrun	4					
0	ECF	K/ W			F bit in CCO		in merrup	ι.					
				Count Pulse Select.									
			FCA COL	int ruise s	elect.								
			CPS			n	escription						
			000	Reference	e timing tic				d by 25				
			000		timing tick								
3:1	CPS	CPS R/W	010		timing tick								
5.1	015	10 00	010		timing tick								
			100						u 0y 0.				
			111	Reference timing tick = Timer 0 overflow rate. Reference timing tick = external clock at ECI pin (the max input frequency)						equency			
					e less than o					queriey			
			For more		lease refer to				_,				
6:4	Reserved	RO											
			Counter	dle Contro	ol.								
7	CIDL	R/W	1: Program the PCA Counter to be gated off during idle.										
					CA Counter				lle mode.				

PCA Timer/Counter Control Register (CCON, 0xC3)

Bit	7	6	5	4	3	2	1	0
Name	CF	CR	Res.	CCF4	CCF3	CCF2	CCF1	CCF0
Reset Value	0	0	0	0	0	0	0	0

Bit	Name	Access	Description
0	CCF0	CR	PCA Module 0 interrupt flag. Set by hardware when a match or capture occurs.
1	CCF1	CR	PCA Module 1 interrupt flag. Set by hardware when a match or capture occurs.
2	CCF2	CR	PCA Module 2 interrupt flag. Set by hardware when a match or capture occurs.
3	CCF3	CR	PCA Module 3 interrupt flag. Set by hardware when a match or capture occurs.
4	CCF4	CR	PCA Module 4 interrupt flag. Set by hardware when a match or capture occurs.
5	Reserved	RO	
6	CR	R/W	PCA Counter Run control bit. Set by software to turn the PCA counter on. Must be cleared
			by software to turn the PCA counter off.
7	CF	CR	PCA Counter Overflow Flag. Set by hardware when the counter rolls over. CF flags an
			interrupt to INT3 if bit ECF in CMOD is set.

The CCON register shown above is associated with all PCA timer functions. It contains the run control bit (CR) and overflow flags for the PCA timer (CF) and all modules (CCFx). To run the PCA the CR bit (CCON.6) must be set by software. Clearing the bit will turn off PCA.

When the PCA counter overflows, the CF (CCON.7) will be set, and an interrupt will be generated if the ECF bit (CMOD.0) is set. The CF bit can only be cleared by software.

Each module has its own timer overflow flag or capture flag (CCF0 for module 0, CCF4 for module 4, etc.). They are set when either a match or capture occurs. These flags can be cleared by software read.

PCA Timer/Counter (CL/CH)

<u>CL, 0xC4</u>

Bit	7	7 6 5 4 3 2 1 0								
Name		PTC[7:0]								
Reset Value		00								

<u>CH, 0xC5</u>

Bit	7	6	5	4	3	2	1	0	
Name		PTC[15:8]							
Reset Value	00								

Bit	Name	Access	Description
15:0	PTC	RO	PCA Timer/Counter.

PCA Compare/Capture Module Mode Register (CCAPMn)

CCAPM0, 0xD1

Bit	7	6	5	4	3	2	1	0
Name	CEX0	ECOM0	CAPP0	CAPN0	MAT0	TOG0	PWM0	ECCF0
Reset Value	0	0	0	0	0	0	0	0

CCAPM1, 0xD2

Bit	7	6	5	4	3	2	1	0
Name	CEX1	ECOM1	CAPP1	CAPN1	MAT1	TOG1	PWM1	ECCF1
Reset Value	0	0	0	0	0	0	0	0

CCAPM2, 0xD3

Bit	7	6	5	4	3	2	1	0
Name	CEX2	ECOM2	CAPP2	CAPN2	MAT2	TOG2	PWM2	ECCF2
Reset Value	0	0	0	0	0	0	0	0

CCAPM3, 0xD4

Bit	7	6	5	4	3	2	1	0
Name	CEX3	ECOM3	CAPP3	CAPN3	MAT3	TOG3	PWM3	ECCF3
Reset Value	0	0	0	0	0	0	0	0

CCAPM4, 0xD5

Bit	7	6	5	4	3	2	1	0
Name	CEX4	ECOM4	CAPP4	CAPN4	MAT4	TOG4	PWM4	ECCF4
Reset Value	0	0	0	0	0	0	0	0

Bit	Name	Access	Description
0	ECCFn	R/W	Enable CCF Interrupt.
			 Enable compare/capture flag CCF[4:0] in the CCON register to generate an interrupt. Disable compare/capture flag CCF[4:0] in the CCON register to generate an interrupt.
1	PWMn	R/W	Pulse Width Modulation mode.
			1: Enable CEX[n] pin to be used as a pulse width modulated output.

			0: Disable PWM mode.
2	TOGn	R/W	Toggle.
			1: A match of the PCA counter with this module's compare/capture register causes the
			CEX[n] pin to toggle.
			0: Disable toggle function.
3	MATn	R/W	Match: Set ECOM[4:0] and MAT[4:0] to implement the software timer mode.
			1: A match of the PCA counter with this module's compare/capture register causes the
			CCFn bit in CCON to be set, flagging an interrupt.
			0: Disable software timer mode.
4	CAPNn	R/W	Capture Negative.
			1: Enable negative edge capture on CEX[4:0].
			0: Disable negative edge capture on CEX[4:0].
5	CAPPn	R/W	Capture Positive.
			1: Enable positive edge capture on CEX[4:0].
			0: Disable positive edge capture on CEX[4:0].
6	ECOM	R/W	Enable Comparator.
	n		1: Enable the comparator function.
			0: Disable the comparator function.
7	CEXn	RO	Capture/Compare External In for PCA Module n.
			1: After last trigger event the CEX[n] is 1.
			0: After last trigger event the CEX[n] is 0.

The ECCFn bit (CCAPMn bit 0 where n = 0, 1, 2, 3, or 4 depending on module) will enable the CCFn flag in the CCON register to generate an interrupt when a match or compare occurs. PWM bit (CCAPMn.1) enables the pulse width modulation mode. The MATn bit (CCAPMn.3) when set will cause the CCFn bit in the CCON register to be set when there is a match between the PCA counter and the module's capture/compare registers. Additionally, the TOG bit (CCAPMn.2) when set, causes the CEX[n] output pin associated with that module to toggle when there is a match between the PCA counter and the module's capture/compare registers.

The CAPNn bit (CCAPMn.4) and CAPPn (CCAPMn.5) determine whether the capture input will be active on a positive edge or negative edge. The CAPNn bit enables a capture at the negative edge, and the CAPPn bit enables a capture at the positive edge. When both bits are set, both edges will be enabled and a capture will occur for either transition to measure pulse width. The ECOMn bit (CCAPMn.6) when set enables the comparator function.

CEXn bit (CCAPMn.7) shows after last trigger event the CEX[n] value in capture mode to determine whether it's positive or negative edge.

Table 43 and Table 44 show the CCAPMn settings for the various PCA functions.

Module Mode	ECOMn	CAPP	CAPN	MATn	TOGn	PWMn	ECCF
		n	n				n
No Operation	0	0	0	0	0	0	0
16-bit capture on positive-edge trigger at CEX[4:0]	0	1	0	0	0	0	0
16-bit capture on negative-edge trigger at CEX[4:0]	0	0	1	0	0	0	0
16-bit capture on positive/negative-edge trigger at	0	1	1	0	0	0	0
CEX[4:0]							
Compare: software timer	1	0	0	1	0	0	0
Compare: high-speed output	1	0	0	1	1	0	0
Compare: 8-bit PWM	1	0	0	0	0	1	0

Note: n = 0, 1, 2, 3, 4

Table 43: PCA Module Modes Without Interrupt Enabled

Module Mode	ECOMn	CAPP	CAPN	MATn	TOGn	PWMn	ECCF
		n	n				n
16-bit capture on positive-edge trigger at CEX[4:0]	0	1	0	0	0	0	1
16-bit capture on negative-edge trigger at CEX[4:0]	0	0	1	0	0	0	1
16-bit capture on positive/negative-edge trigger at	0	1	1	0	0	0	1
CEX[4:0]							
Compare: software timer	1	0	0	1	0	0	1
Compare: high-speed output	1	0	0	1	1	0	1
Compare: 8-bit PWM	1	0	0	0	0	1	Х

Note:

1. n = 0, 1, 2, 3, 4

2. No PCA interrupt is needed to generate the PWM.

Table 44: PCA Module Modes With Interrupt Enabled

PCA Module n Compare/Capture Registers (CCAPnL/CCAPnH)

There are two additional registers associated with each of the PCA modules: CCAPnH and CCAPnL. They are registers that hold the 16-bit count value when a capture occurs or a comparison occurs. When a module is used in PWM mode, these registers are used to control the duty cycle of the output.

CCAP0L, 0xB1

Bit	7	7 6 5 4 3 2 1 0								
Name		CCAP0[7:0]								
Reset Value		00								

CCAP0H, 0xB9

Bit	7	6	5	4	3	7 6 5 4 3 2 1 0								
Name		CCAP0[15:8]												
Reset Value	00													

CCAP1L, 0xB2

Bit	7	6	7 6 5 4 3 2 1 0								
Name		CCAP1[7:0]									
Reset Value		00									

CCAP1H, 0xBA

Bit	7	7 6 5 4 3 2 1 0									
Name		CCAP1[15:8]									
Reset Value		00									

CCAP2L, 0xB3

Bit	7	6	5	4	3	2	1	0
Name					2[7:0]			
Reset Value				0	0			

CCAP2H, 0xBB

Bit	7	6	5	4	3	2	1	0
Name		CCAP2[15:8]						
Reset Value	00							

CCAP3L, 0xB4

Bit	7	6	5	4	3	2	1	0
Name		CCAP3[7:0]						
Reset Value	00							

CCAP3H, 0xBC

Bit	7	6	5	4	3	2	1	0
Name		CCAP3[15:8]						
Reset Value	00							

CCAP4L, 0xB5

Bit	7	6	5	4	3	2	1	0
Name				CCAP	P 4[7:0]			
Reset Value	00							

CCAP4H, 0xBD

Bit	7	6	5	4	3	2	1	0
Name	CCAP4[15:8]							
Reset Value	00							

Bit	Name	Access	Description
15:0	CCAPn	RO	PCA Module n Compare/Capture Registers

4.18 I2C Controller

The I2C controller of AX11001/AX11005 supports Standard-mode (100K bps) and Fast-mode (400K bps), but not High-speed mode (3.4M bps) of the standard I2C bus spec. As shown in Figure 101, the I2C controller consists of an I2C master controller to support communication to external I2C devices, an I2C slave controller to support communication to external micro-controller with I2C master, and an I2C boot loader to support communication to external I2C EEPROM being used for storing chip configuration data.

The I2C master controller is compatible with I2C bus protocol. It provides eight registers to fully control and monitor I2C bus transaction, and it has separate receive and transmit registers to hold data for transactions between AX11001/AX11005 and the external I2C devices. The I2C master controller also provides arbitration for multi-master operation scenario and reports the arbitration status. Also, the I2C master controller accepts the SCL being extended low by the slow I2C slave devices as additional wait state indication during data or acknowledge cycles. The I2C clock frequency is software programmable.

The I2C slave controller allows an external micro-controller with I2C master to communicate with AX11001/AX11005. It provides an I2C device ID register to allow flexible assignment of AX11001/AX11005 with any I2C device address for either 7-bit or 10-bit address mode, and can automatically filter I2C bus transactions not belonging to AX11001/AX11005 in hardware. The I2C slave controller can extend the SCL line low when it needs additional wait state to respond to the external I2C master's bus transaction. The I2C slave controller supports 6 flexible command instructions for the external micro-controller to access the internal registers and memory resources of AX11001/AX11005.

The I2C boot loader is used to load chip configuration data from external I2C EEPROM. It is activated after hardware reset (either power-on-reset or RST_N input) or via the software reload command (via I2CCTR register). The detailed memory map of I2C EEPROM is described in section 3.1. The use of external I2C EEPROM is optional, when not used, the I2C_BOOT_DIS pin should be pulled up during chip hardware reset, in that case, the reset value listed in I2C EEPROM memory map shall be used by this chip by default.

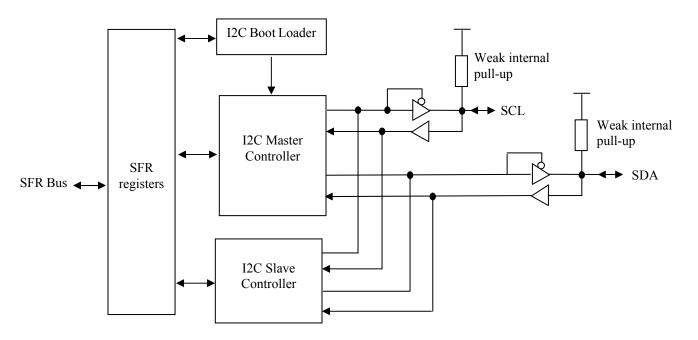


Figure 101: I2C Controller Block Diagram

4.18.1 I2C Controller SFR Register Map

Address	Name	Description
0x96	I2CCIR	I2C Command Index Register is used to indicate the address of I2C controller register.
0x97	I2CDR	I2C Data Register is used to read data from or write data to the specified I2C controller register.

Table 45: I2C Controller SFR Register Map

I2C Command Index Register (I2CCIR, 0x96)

Bit	7	6	5	4	3	2	1	0
Name		I2CCIR						
Reset Value	0x00							

Bi	t Name	Access	Description
7:	I2CCIR	WO	Indicate which of the I2C controller register as listed in Table 46 is to be accessed.

I2C Data Register (I2CDR, 0x97)

Bit	7	6	5	4	3	2	1	0
Name		I2CDR						
Reset Value	0x00							

Bit	Name	Access	Description
7:0	I2CDR	R/W	Data Register is used to write data to or read data from the I2C controller registers.

I2C Controller Register Indirect Access Method

Software shall use indirect access method through I2CCIR and I2CDR registers to do read and write access to the I2C controller registers as listed in Table 46 below.

Read a register from I2C controller:

- Step 1. Write I2CCIR: Software indicates the I2C controller register address to be accessed as the data and write it to the SFR register I2CCIR.
- Step 2. Read I2CDR: Software then read SFR register I2CDR. The data read from I2CDR is the I2C controller register data indicated in step 1. Keep reading from I2CDR if the I2C controller registers have more than one byte, in that case, the first byte being read back is LSB byte.

Write a register to I2C controller:

- Step 1. Write I2CDR: Software writes the data you want to write into I2C controller registers to the SFR register I2CDR. Keep writing to I2CDR if the I2C controller registers have more than one byte, in that case, the first byte being written should be LSB byte.
- Step 2. Write I2CCIR: After writing I2C controller register data to I2CDR, software then indicates the target I2C controller register address as data and write it to I2CCIR.

Note: While software is reading or writing I2C controller registers during a sequence of SFR accesses, software can abort that process by writing I2CCIR with 0xFF.

I2C Controller Register Map

Address	Name	Description
0x00	I2CCPR	I2C Clock Pre-scale Register.
0x02	I2CTR	I2C Transmit Register is used to transmit data to device.
0x03	I2CRR	I2C Receive Register is used to hold data that receive from device.
0x04	I2CCTR	I2C Control Register is used to configure operation mode.
0x05	I2CCR	I2C Command Register is used to configure operation mode.
0x06	I2CMSR	I2C Master Status Register is used to report status of the I2C master mode.
0x07	Reserved	
0x08	I2CSDA	I2C Slave Device Address Register
0x0A	I2CSSR	I2C Slave Status Register is used to report status of the I2C slave mode.

Table 46: I2C Controller Register Map

I2C Clock Pre-scale Register (I2CCPR, 0x00)

Bit	7	6	5	4	3	2	1	0		
Nama	PRER0									
Name	PRER1									
Reset Value	0xFFFF									

Bit	Name	Access		Description							
			This register is used to pre-scale t	This register is used to pre-scale the SCL clock line.							
			I2C SCL clock frequency = Oper	ating system clock fr	requency / (5* (PRER + 1))						
			Operating System Clock	PRER							
7.0			25 Mhz	0x00_0c]]						
7:0	PRER0	R/W	50 Mhz	0x00_18							
15:8	PRER1		75 Mhz	0x00_25	Fast mode						
			100 Mhz	0x00_31	J						
			25 Mhz	0x00_3a	1						
			50 Mhz	0x00_76							
			75 Mhz	0x00_B1	Standard mode						
			100 Mhz	0x00_C7]]						

I2C Transmit Register (I2CTR, 0x02)

Bit	7	6	5	4	3	2	1	0
Name		TXD						RW_TXD
Reset Value	000_0000						0	

Bit	Name	Access	Description
0	RW_TXD	R/W	 In case of a slave address transfer this bit represents the RW bit, where 1: Reading from slave. 0: Writing to slave. In case of a data transfer this bit represents the data's LSB bit.
7:1	TXD	R/W	Next byte to transmit on I ² C bus in either master or slave mode.

I2C Receive Register (I2CRR, 0x03)

Bit		7	6	5	4	3	2	1	0
Name RXD									
Reset Value					0	x00			
Bit	Name	Access Description							

7:0 RXD RO Last byte received from I^2C bus in either master or slave mode.

I2C Control Register (I2CCTR, 0x04)

Bit	7	6	5	4	3	2	1	0
Name	MSS	SIE	Reserved	RLE	TE	SD	EN	MIE
Reset Value	0	0	0	0	0	0	0	0

Bit	Name	Access	Description
0	MIE	R/W	 I2C Master mode Interrupt Enable. This bit is only valid when operating in I2C master mode. 1: Interrupt enable. 0: Interrupt disable.
1	EN	R/W	I2C controller Enable. 1: Enable I2C controller. 0: Disable I2C controller.
2	SD	R/W	I2C Speed in slave mode. This bit is only valid when operating in I2C slave mode.1: I2C slave mode operating in STANDARD mode.0: I2C slave mode operating in FAST mode.
3	TE	R/W	Ten address Enable. This bit is only valid when operating in I2C slave mode. 1: 10-bit address enable. 0: 7-bit address enable.
4	RLE	R/W1	 Re-load I2C Configuration EEPROM. 1: To reload the external I2C EEPROM's content. The I2C Boot Loader will automatically re-load the content of I2C EEPROM into the chip. This bit is cleared by hardware. The status of reload progress is reported in I2CMSR. 0: Normal operation mode.
5	Reserved	-	
6	SIE	R/W	I2C Slave mode Interrupt Enable. This bit is only valid when operating in I2C slave mode.1: Interrupt enable.0: Interrupt disable.
7	MSS	R/W	I2C Master/Slave mode Select.1: Set I2C controller to operate as I2C master.0: Set I2C controller to operate as I2C slave.

I2C Command Register (I2CCR, 0x05)

Bit	7	6	5	4	3	2	1	0
Name	STA	STO	RD	WR	MG	Reserved	SG	RLS
Reset Value	0	0	0	0	0	0	0	0

Bit	Name	Access	Description
0	RLS	R/W1	Release the SCL pin. This bit is only valid when operating in I2C slave mode. When the external I2C master controller is reading data from this chip, after each byte being transferred, normally the SCL line will be held low by the I2C slave controller of this chip so that the software can prepare for the next 8-bit data byte in I2CTR. This forces the external I2C master controller to wait for this chip. However, in the case of finishing the transfer of the last bit of the last byte during the external I2C master read command, software shall write 1 to this bit to release SCL pin of this chip to allow the STOP condition on I2C bus.
1	SG	R/W1	Slave Go. This bit is only valid when operating in I2C slave mode. Writing 1 to this bit starts the transfer in I2C slave mode. This bit remains set during the transfer and is automatically cleared after the transfer finished.
2	Reserved	-	
3	MG	R/W1	Master Go. This bit is only valid when operating in I2C master mode. Writing 1 to this bit starts the transfer in I2C master mode. This bit remains set during the transfer and is automatically cleared after the transfer finished.
4	WR	R/W1	When operating in I2C master mode, setting '1' to request to send the 8-bit data in I2CTR to the slave. This bit is only valid when operating in I2C master mode.
5	RD	R/W1	When operating in I2C master mode, setting '1' to request to receive data from slave. The received data is stored in I2CRR. Setting RD bit and STO bit at the same time will cause the transfer to end with a NACK condition to the addressed slave. Setting RD bit without setting STO bit will cause the transfer to end with an ACK condition to the addressed slave. This bit is only valid when operating in I2C master mode.
6	STO	R/W1	When operating in I2C master mode, setting '1' to request to generate the STOP condition on I2C bus. This bit is only valid when operating in I2C master mode.
7	STA	R/W1	When operating in I2C master mode, setting '1' to request to generate the START or ReSTART condition on I2C bus. This bit is only valid when operating in I2C master mode.

I2C Master Status Register (I2CMSR, 0x06)

Bit	7	6	5	4	3	2	1	0
Name	ACK	BUSY	AL	BLD	RLES	Reserved	TIP	IF
Reset Value	0	0	0	1	0	0	0	0

Bit	Name	Access	Description
0	IF	CR	 Interrupt Flag. This bit is set when following events occur, One byte transfer has been completed Arbitration is lost This will cause an interrupt request on INT4 if the MIE bit (I2CCTR.0) is set.
1	TIP	RO	Transfer in progress.1: When transferring data is in progress.0: When transfer is completed.
2	Reserved	-	
3	RLES	RO	 Reload EEPROM Status. 1: After software sets the RLE bit (I2CCTR.4) to '1', the I2C Boot Loader will reload the I2C EEPROM content and keeps this bit to '1' until the reload is completed. 0: The chip hardware will clear this bit after it completes the reload process.
4	BLD	RO	Boot Loader Done. 1: I2C Boot Loader has done with loading.

			0: I2C Boot Loader is still loading configuration data from I2C Configuration EEPROM.
5	AL	CR	 Arbitration Lost. This bit is set when the I2C master lose arbitration during multi-master scenario. Arbitration is lost when: A STOP signal is detected, but non requested The master drives SDA high, but SDA is low.
6	BUSY	RO	 12C bus Busy. 1: After the START signal is detected on I2C bus, the I2C bus is busy. 0: After the STOP signal is detected on the I2C bus, the I2C bus is not busy.
7	ACK	CR	This flag represents the Acknowledgement received from I2C slave after a transmit transfer (8-bit data being sent to the external I2C device). This bit is only meaningful after the TIP bit changes from '1' to '0' for a transfer. 1: NACK is received from the slave. 0: ACK is received from the slave.

I2C Slave Device Address (I2CSDA, 0x08)

Bit	7	6	5	4	3	2	1	0
Name	DA0							
	DA1							
Reset Value	0x00							

Bit	Name	Access	Description
7:0 9:8	DA0 DA1	R/W	Device Address of this chip operating in I2C slave mode. The {DA1, DA0} is the I2C device address of this chip operating in I2C slave mode. If the device is configured as 7-bits address mode then only bit [6:0] are valid. The 6th bit is MSB. If the device is configured as 10-bits address mode then bit [9:0] are valid. The 9th bit is MSB.
15:10	Reserved	-	

I2C Slave Status Register (I2CSSR, 0x0a)

Bit	7	6	5	4	3	2	1	0
Name	ERR	STOP	START	RE-START	RD	WR	NACK	STC
Reset Value	0	0	0	0	0	0	0	0

Bit	Name	Access	Description
0	STC		Slave Transfer Complete. Reading '1' indicates that the external I2C master has just completed one transfer on I2C bus.
1	NACK		NACK condition. Reading '1' indicates that the external I2C master returns a NACK condition during current transfer.
2	WR	RO	Write command. Reading '1' indicates that the external I2C master needs to transmit data to this chip. The data is held in I2CRR register.
3	RD	RO	Read command. Reading '1' indicates that the external I2C master needs to receive data from this chip. After knowing this, the software shall put the requested data in I2CTR register.
4	RE-STAR T		ReSTART condition detected. Reading '1' indicates that the ReSTART condition is detected on the I2C bus.
5	START		START condition detected. Reading '1' indicates that the SART condition is detected on the I2C bus.
6	STOP	(K	STOP condition detected. Reading '1' indicates that the STOP condition is detected on the I2C bus.
7	ERR	CR	Error. Reading '1' indicates that the I2C slave controller of this chip has detected an error on SCL and aborted the current transfer.

Example Programming Procedure in I2C Master Mode

Example 1: Write 1 byte of data = 0xAC to an external slave device with slave address = $0x51 (101_0001)$.

- 1. Write 0xA2 (slave address) to I2CTR. Set STA, WR, and MG bits to I2CCR.
- 2. Read TIP and ACK bits from I2CMSR until both read as '0' (polling mode or wait for interrupt in interrupt mode).
- 3. Write 0xAC to I2CTR. Set STO, WR, and MG bits to I2CCR.
- 4. Read TIP and ACK bits from I2CMSR until both read as '0'.

 First command sequence 	► Second command sequence ►
SDA <u> </u>	ck / ack P /
I2CCR STA = 1 STO = 0 WR = 1 RD = 0 MG = 1	I2CCR STA = 0 STO = 1 WR = 1 RD = 0 MG = 1

Figure 102: Transmitting Data to an I2C Slave Device

Example 2: Read a byte of data from location 0x20 of an I2C memory device with slave address = $0x4E(100_{1110})$

- 1. Write 0x9C (slave address) to I2CTR. Set STA, WR, and MG bits to I2CCR. Read TIP and ACK bits from I2CMSR until both read as '0'.
- 2. Write 0x20 to I2CTR. Set WR and MG bits to I2CCR. Read TIP and ACK bits from I2CMSR until both read as '0'.
- 3. Write 0x9D (slave address) to I2CTR. Set STA, WR, and MG bits to I2CCR. Read TIP and ACK bits from I2CMSR until both read as '0'.
- 4. Set RD, STO and MG bits to I2CCR. Read TIP and IF bits from I2CMSR until both read as '0'.

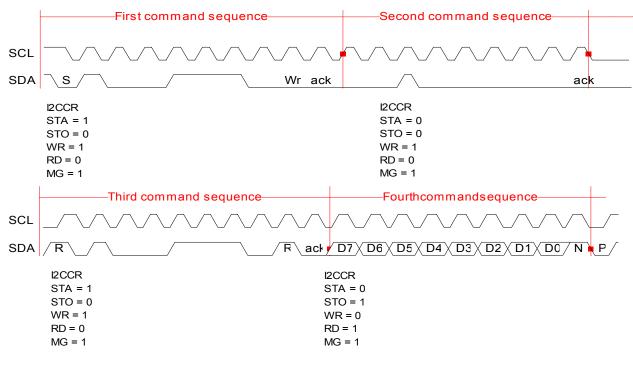


Figure 103: I2C Read Data

4.18.2 I2C Slave Mode Function Description

The I2C slave controller of this chip provides 6 reference command instructions, namely, SW_SFR, SR_SFR, IW_SFR, IR_SFR, BWDM, and BRDM commands, for the external I2C master to communicate with this chip. The external I2C master may use these commands to read or write the SFR registers or xDATA memory of this chip. Except for the I2C device address transfer that the I2C slave controller of this chip will be parsing, the remaining byte transfers are pretty much parsing by the software of AX11001/AX11005, therefore, these commands are allowed to make changes to meet user's applications.

The SW_SFR, SR_SFR, IW_SFR, and IR_SFR are single read or write commands, while BWDM and BRDM are burst read or write commands in one transfer with address automatically incremented.

Comman d Name	Op-code	Operation Description
SW_SFR	1010 0xxx (0xA0~0xA7)	Single Write SFR register. This command requests to write various bytes of data to the specified SFR register in this chip. The xxx indicates the number of bytes to be written to target register. For example, $xxx = 000$ for 1 byte, and $xxx = 111$ for 8 bytes.
SR_SFR	0010 0xxx (0x20~0x27)	Single Read SFR register. This command requests to read various bytes of data from the specified SFR register from this chip. The xxx indicates the number of bytes to be read from the target register. For example $xxx = 000$ for 1 byte, and $xxx = 111$ for 8 bytes.
IW_SFR	1011 xxxx (0xB0~0xBF)	Indirect Write SFR register. This command requests to indirectly write various bytes of data through the specified command index register in SFR to the given indirect register in this chip. The xxxx indicates the number of bytes to be written to target indirect register. For example, xxxx = 0000 for 1 byte, and xxxx = 1111 for 16 bytes. Typical indirect access registers uses following SFR register-pair to access through: DCIR/DDR, MCIR/MDR, EPCR/EPDR, TCIR/TDR, SPICIR/SPIDR, OWCIR/OWDR, etc.
IR_SFR	0011 xxxx (0x30~0x3F)	Indirect Read SFR register. This command requests to indirectly read various bytes of data through the specified command index register in SFR from the given indirect register in this chip. The xxxx indicates the number of bytes to be read from the target indirect register. For example, xxxx = 0000 for 1 byte, and xxxx = 1111 for 16 bytes. Typical indirect access registers uses following SFR register-pair to access through: DCIR/DDR, MCIR/MDR, EPCR/EPDR, TCIR/TDR, SPICIR/SPIDR, OWCIR/OWDR, etc.
BWDM	1100 0000	Burst write data to xDATA memory of this chip. The command requests to do burst or single write to xDATA memory. See Note 1.
BRDM	0100 0000	Burst read data from xDATA memory of this chip. This command requests to do burst or single read from the xDATA memory. See Note 1.

Note:

1. The memory burst write and memory burst read commands have no pre-defined limit on the number of burst bytes, user can define your own burst command in the lower nibble of the Op-Code like in first 4 commands to assist software decoding and handshaking between the external I2C master controller and internal software of AX11001/AX11005.

Table 47: Reference Command Instructions in I2C Slave Mode

Reference Transfer Format in I2C Slave Mode

4.19 1-Wire Controller

The 1-Wire controller of AX11001/AX11005 is a master-mode controller that controls the communication with multiple external 1-Wire devices. The data transmissions on 1-Wire bus are bit-asynchronous and half-duplex mode only. The 1-Wire controller provides some registers for software to easily perform reading/writing data from/to the 1-Wire devices without having to deal with time-consuming bus timing and control sequences on 1-Wire bus. It supports Standard mode, Standard – Long line mode, and Overdrive mode to work with various 1-Wire devices. For detailed 1-Wire interface timing, please refer to section 5.4.4.

The 1-Wire controller also supports Search ROM Accelerator, which relieves CPU from any single bit operations on the 1-Wire Bus. As shown in figure below, it also provides a strong pull-up control pin, STPZ, for the case of large loading or long line conditions. The DQ is an open-drain pin, which needs an external pulled-up resistor or a strong pull-up through a PMOS transistor.

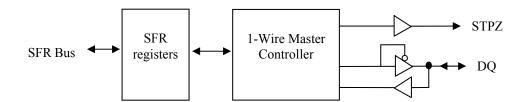


Figure 104: 1-Wire Controller Block Diagram

4.19.1 1-Wire Controller SFR Register Map

Address	Name	Description
0xD6	OWCIR	1-Wire Command Index Register is used to indicate the address of 1-Wire controller register.
0xD7	OWDR	1-Wire Data Register is used to read data from or write data to the specified 1-Wire controller
		register.

Table 48: 1-Wire Controller SFR Register Map

1-Wire Command Index Register (OWCIR, 0xD6)

Bit	7	6	5	4	3	2	1	0
Name	OWCIR							
Reset Value	ue 0x00							

Bit	Name	Access	Description
7:0	OWCIR	WO	Indicate which of the 1-Wire controller register as listed in Table 49 is to be accessed.

1-Wire Data Register (OWDR, 0xD7)

Bit	7	6	5	4	3	2	1	0
Name	OWDR							
Reset Value	0x00							

Bit	Name	Access	Description
7:0	OWDR	R/W	Data Register is used to write data to or read data from the 1-Wire controller registers.

1-Wire Controller Register Indirect Access Method

Software shall use indirect access method through OWCIR and OWDR registers to do read and write access to the 1-Wire controller registers as listed in Table 49 below.

Read a register from 1-Wire controller:

- Step 1. Write OWCIR: Software indicates the 1-Wire controller register address to be accessed as the data and write it to the SFR register OWCIR.
- Step 2. Read OWDR: Software then read SFR register OWDR. The data read from OWDR is the 1-Wire controller register data indicated in step 1.

Write a register to 1-Wire controller:

- Step 1. Write OWDR: Software writes the data you want to write into 1-Wire controller registers to the SFR register OWDR.
- Step 2. Write OWCIR: After writing 1-Wire controller register data to OWDR, software then indicates the target 1-Wire controller register address as data and write it to OWCIR.

Note: While software is reading or writing 1-Wire controller registers during a sequence of SFR accesses, software can abort that process by writing OWCIR with 0xFF.

Address	Name	Description
0x00	OWCR	1-Wire Command Register is used to configure 1-Wire operation mode.
0x01	OWTRR	1-Wire Transmit/Receive buffer Register is used to hold data to be transmitted or data
		being received from 1-Wire devices.
0x02	OWISR	1-Wire Interrupt Status Register.
0x03	OWIER	1-Wire Interrupt Enable Register.
0x04	OWCTR	1-Wire Control Register.
0x05	OWCD	1-Wire Clock Divider Register.

1-Wire Controller Register Map

Table 49: 1-Wire Controller Register Map

1-Wire Command Register (OWCR, 0x00)

Bit	7	6	5	4	3	2	1	0
Name			Reserve	ed		FOW	SRA	1WR
Reset Value			0_000)		0	0	0

Bit	Name	Access	Description
0	1WR	W1	 Wire Reset. If this bit is set a reset will be generated on the 1-Wire bus. Setting this bit automatically clears the SRA bit. This bit will be automatically cleared as soon as the 1-Wire reset completes. The 1-Wire Master will set the Presence Detect interrupt flag (PD) when the reset is complete and sufficient time for a presence detect to occur has passed. The result of the presence detect will be reported in the PDR bit (OWISR.1). If a presence detect pulse was received PDR bit will be cleared, otherwise it will be set.
1	SRA	R/W	Search ROM Accelerator.1: When this bit is set, the 1-Wire Master will switch to Search ROM Accelerator mode0: When this bit is set to 0, the master will function in its normal mode. This bit is cleared to 0 on a power-up or master reset.
2	FOW	R/W	 Force One Wire. 1: This bit can be used to bypass 1-Wire Master operations and drive the bus directly if needed. Setting this bit high will drive the bus low until it is cleared or the 1-Wire Master reset. While the 1-Wire bus is held low no other 1-Wire Master operations will function. By controlling the length of time this bit is set and the point when the

			 line is sampled, any 1-Wire communication can be generated by the software. To prevent accidental writes to the bus, the EN_FOW bit (OWCTR.2) must be set to a 1 before this bit will function. 0: software is not forcing the 1-Wire bus. This bit is cleared to a 0 on power-up or master reset.
7:	3 Reserved	-	

1-Wire Transmit/Receive buffer Register (OWTRR, 0x01)

Bit	7	6	5	4	3	2	1	0
Name				D	ATA			
Reset Value				(0x00			

Bit	Name	Access	Description
7:0	DATA		When the BIT_CTL bit (OWCTR.5) is 0, this holds the 8-bit data to be sent to or being received from the 1-Wire device. The LSB bit (bit 0) is serially shifted out or received in first.
			When the BIT_CTL bit is 1 (in "Bit Banging" mode), the LSB bit holds the 1-bit data to be sent to or being received from the 1-Wire device.

1-Wire Interrupt Status Register (OWISR, 0x02)

Bit	7	6	5	4	3	2	1	0
Name	OW_LOW	OW_SHORT	RSRF	RBF	TSRE	TBE	PDR	PD
Reset Value	0	0	0	0	0	0	0	0

Bit	Name	Access	Description
0	PD	CR	 Presence Detect. 1: After a 1-Wire Reset has been issued, this flag will be set to 1 after the appropriate amount of time for a presence detect pulse to have occurred. 0: This flag will be 0 when the master has not issued a 1-Wire Reset since the previous read of the OWISR.
1	PDR	RO	Presence Detect Result. When a presence detect interrupt occurs, this bit will reflect the result of the presence detect read - 1: if no part was found. 0: if a slave was found.
2	TBE	RO	 Transmit Buffer Empty. 1: This flag will be set to 1 when there is nothing in the Transmit Buffer and it is ready to receive the next byte of data. 0: When it is 0, it indicates that the Transmit Buffer is waiting for the Transmit Shift Register to finish sending its current data before updating it. This bit is cleared when data is written to the Transmit Buffer.
3	TSRE	RO	 Transmit Shift Register Empty. 1: This flag will be set to 1 when there is nothing in the Transmit Shift Register and it is ready to receive the next byte of data to be transmitted from the Transmit Buffer. 0: When this bit is 0, it indicates that the Transmit Shift Register is busy sending out data. This bit is cleared when data is transferred from the Transmit Buffer to the Transmit Shift Register.
4	RBF	RO	 Receive Buffer Full. 1: This flag will be set to 1 when there is a byte of data waiting to be read in the Receive Buffer. 0: When this bit is 0, it indicates that the Receive Buffer has no new data to be read. This bit will be cleared when the byte is read from the Receive Buffer. Following a read of the OWISR, while Enable Receive Buffer Full Interrupt (ERBF) is set to 1, if the ERBF is not cleared and the value is not read from the Receive Buffer, the

			interrupt will fire again.
5	RSRF	RO	 Receive Shift Register Full. 1: This flag will be set to 1 when there is a byte of data waiting in the Receive Shift Register. 0: When this bit is 0, it indicates that the Receive Shift Register is either empty or currently receiving data. This bit will be cleared by the hardware when data in the Receive Shift Register is transferred to the Receive Buffer.
6	OW_SH ORT	CR	 One Wire Short. 1: This flag will be set to a 1 when the 1-Wire line was low before the master was able to send out the beginning of a reset or a time slot. 0: When this flag is 0, it indicates that the 1-Wire line was high as expected prior to all resets and time slots.
7	OW_LO W	CR	 One Wire Low. 1: This flag will be set to 1 when the 1-Wire line is low while the master is in idle signaling that a slave device has issued a presence pulse on the 1-Wire (DQ) line.

1-Wire Interrupt Enable Register (OWIER, 0x03)

Bit	7	6	5	4	3	2	1	0
Name	EOWL	EOWSH	ERSRF	ERBF	ETSRE	ETBE	Reserved	EPD
Reset Value	0	0	0	0	0	0	0	0

Bit	Name	Access	Description
0	EPD	R/W	 Enable Presence Detect Interrupt. 1: Setting this bit to a 1 enables the Presence Detect Interrupt. If set, interrupt will be asserted on INT4 when the PD flag is set. 0: Clearing this bit disables PD as an active interrupt source.
1	Reserved	-	
2	ETBE	R/W	 Enable Transmit Buffer Empty Interrupt. 1: Setting this bit to a 1 enables the Transmit Buffer Empty Interrupt. If set, interrupt will be asserted on INT4 when the TBE flag is set. 0: Clearing this bit disables TBE as an active interrupt source.
3	ETSRE	R/W	 Enable Transmit Shift Register Empty Interrupt. 1: Setting this bit to a 1 enables the Transmit Shift Register Empty Interrupt. If set, interrupt will be asserted on INT4 when the TSRE flag is set. 0: Clearing this bit disables TSRE as an active interrupt source.
4	ERBF	R/W	 Enable Receive Buffer Full Interrupt. 1: Setting this bit to a 1 enables the Receive Buffer Full Interrupt. If set, interrupt will be asserted on INT4 when the RBF flag is set. 0: Clearing this bit disables RBF as an active interrupt source.
5	ERSRF	R/W	 Enable Receive Shift Register Full Interrupt. 1: Setting this bit to a 1 enables the Receive Shift Register Full Interrupt. If set, interrupt will be asserted on INT4 when the RSRF flag is set. 0: Clearing this bit disables RSRF as an active interrupt source.
6	EOWSH	R/W	 Enable One Wire Short Interrupt. 1: Setting this bit to a 1 enables the One Wire Short Interrupt. If set, interrupt will be asserted on INT4 when the OW_SHORT flag is set. 0: Clearing this bit disables OW_SHORT as an active interrupt source.
7	EOWL	R/W	 Enable One Wire Low Interrupt. 1: Setting this bit to a 1 enables the One Wire Low Interrupt. If set, interrupt will be asserted on INT4 when the OW_LOW flag is set. 0: Clearing this bit disables OW_LOW as an active interrupt source.

1-Wire Control Register (OWCTR, 0x04)

Bit	7	6	5	4	3	2	1	0
Name	Reserved	OD	BIT_CTL	STP_SPLY	STPEN	EN_FOW	PPM	LLM
Reset Value	0	0	0	0	0	0	0	0

Bit	Name	Access	Description
0	LLM	R/W	 Long Line Mode. 1: Setting this bit to a 1 will enable Long Line Mode timings on the 1-Wire line during standard mode communications. This mode effectively moves the write one release, the data sampling, and the time slot recovery times out to roughly 8us, 22us, and 14us respectively. This provides a less strict environment for long line transmissions. 0: Clearing this bit to 0 leaves the write one release, the data sampling, and the time slot recovery times at roughly 5us, 15us, and 7us respectively.
1	PPM	R/W	 Presence Pulse Masking Mode. 1: Setting this bit to a 1 will enable Presence Pulse Masking Mode. This mode causes the master to initiate the falling edge of a presence pulse during a 1-Wire Reset before the fastest slave would initiate one. This enables the master to prevent the larger amount of ringing caused by the slave devices when initiating a low on the DQ line. If the PPM bit is set, the PDR result bit in the Interrupt Register will always be set to a 0 showing that a slave device was on the line even if there were none. 0: Clearing this bit to a 0 disables the Presence Pulse Masking Mode. This mode only support standard mode.
2	EN_FOW	R/W	 Enable Force One Wire. 1: Setting this bit to a 1 will enable the functionality of the Force One Wire (FOW) bit (OWCR .2). 0: Clearing this bit will disable the functionality of the FOW bit.
3	STPEN	R/W	 Strong Pull-up Enable. 1: Setting this bit to a 1 enables the strong pull-up output enable (STPZ) pin's functionality which allows this output pin to enable an external strong pull-up any time the master is not pulling the line low or waiting to read a value from a slave device. This functionality is used for meeting the recovery time requirement in Overdrive mode and long-line standard communications. 0: Clearing this bit to a 0 will disable the STPZ output pin.
4	STP_SPL Y	R/W	 Strong Pull-up Supply. 1: Setting this bit to a 1 while STPEN is also set to a 1 will enable the STPZ output while the master is in an IDLE state. This will provide a stiff supply to devices requiring high current during operations. 0: Clearing this bit to a 0 disables the STPZ output while the master is in an IDLE state. The STP_SPLY bit is a don't-care if STPEN is set to a 0.
5	BIT_CTL	R/W	 Bit Control. 1: Setting this bit to a 1 will place the master into its "Bit Banging" mode of operation. In this mode, only the least significant bit of the Transmit/Receive register would be sent/received before enabling the interrupt flags that signal the end of the transmission. 0: Clearing this bit to 0 leaves the master operating in full byte boundaries.
6	OD	R/W	 Overdrive. 1: Setting this bit to a 1 will place the master into Overdrive mode that effectively changes the master's 1-Wire timings to match those outlined for Overdrive in the Book of iButton Standards. 0: Clearing this bit to a 0 leaves the master operating in Standard mode speed.
7	Reserved	-	

1-Wire Clock Divider Register (OWCD, 0x05)

Bit	7	6	5	4	3	2	1	0	
Name	CLK_EN	Reserved		DIV			PRE		
Reset Value	0	00		000			00		

Bit	Name	Access	Description						
1:0	PRE DIV	R/W R/W	-	Operating System Clock Frequency (MHz)	Divider Ratio	DIV[2:0]	PRE[1:0]		
				25	24	011	01		
				50	48	100	01		
				100	96	101	01		
6:5	Reserved	-							
	CLK_EN	R/W	Clock Enable for 1-Wire controller and its bus timing control logic.						
7			1: Enable 1-Wire controller and its bus timing control logic.						
			0: D	0: Disable 1-Wire controller and its bus timing control logic.					

4.20 SPI Controller

The serial peripheral interface (SPI) controller of AX11001/AX11005 provides a full-duplex, synchronous serial communication interface (4 wires) to flexibly work with numerous peripheral devices or micro-controller with SPI. As shown in Figure 105 below, the SPI controller consists of a SPI master controller with 3 slave select pins, SS0, SS1, SS2, to connect up to 3 SPI devices, and a SPI slave controller to support communication with external micro-controller with SPI master.

The SPI master controller supports 4 types of interface timing mode, namely, Mode 0, Mode 1, Mode 2, and Mode 3 to allow working with most SPI devices available. Please see Figure 106 for the timing diagram of these timing modes. It supports variable length of transfer word up to 32 bits per software command or even extended length of transfer word for a long burst transfer by keeping slave select pins active. It supports either MSB or LSB first data transfer, and the operating SPI clock, SCLK, is programmable by software and can be run up to 25 Mhz when operating system clock is at 100MHz.

The SPI slave controller allows an external micro-controller with SPI master to communicate with AX11001/AX11005. It supports 2 types of interface timing mode, namely, Mode 0 and Mode 3. In slave mode, only MSB first data transfer is supported and only the slave select pin, SS0, is used. The SPI slave controller supports 8 flexible command instructions for the external micro-controller to access the internal registers and memory resources of AX11001/AX11005. It contains a 16-bytes FIFO to hold receive/transmit data on SPI interface and the SPI clock can be run up to 6 Mhz when operating system clock is at 100MHz.

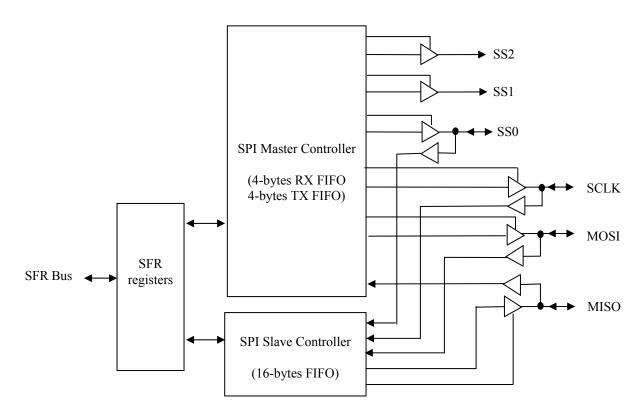
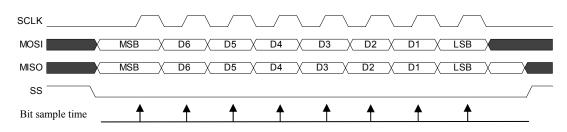
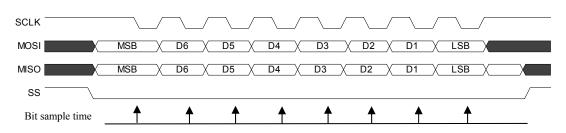
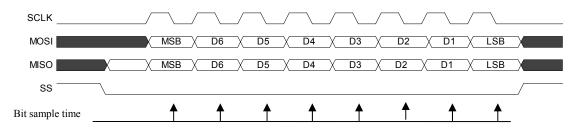



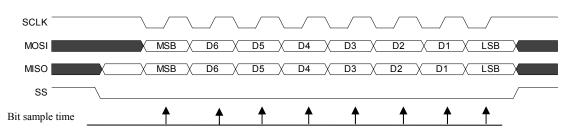
Figure 105: SPI Controller Block Diagram



Mode 0: CPHA (SPICR.1) = 0, CPOL (SPICR.2) = 0, LSB (SPICR.3) = 0, SPIMCR[CHAR_LEN] = 00111.


Note: SCLK pin needs external pull-down resistor and SSx pins need external pull-up resistor in Mode 0, SPI master mode.

Mode 1: CPHA (SPICR.1) = 0, CPOL (SPICR.2) = 1, LSB (SPICR.3) = 0, SPIMCR [CHAR_LEN] = 00111.


Note: SCLK pin needs external pull-up resistor and SSx pins need external pull-up resistor in Mode 1, SPI master mode.

Mode 2: CPHA (SPICR.1) = 1, CPOL (SPICR.2) = 0, LSB (SPICR.3) = 0, SPIMCR[CHAR_LEN] = 00111.

Note: SCLK pin needs external pull-down resistor and SSx pins need external pull-up resistor in Mode 2, SPI master mode.

Mode 3: CPHA (SPICR.1) = 1, CPOL (SPICR.2) = 1, LSB (SPICR.3) = 0, SPIMCR[CHAR_LEN] = 00111.

Note: SCLK pin needs external pull-up resistor and SSx pins need external pull-up resistor in Mode 3, SPI master mode.

Figure 106: SPI Timing Diagram

218 Copyright © 2006-2011 ASIX Electronics Corporation. All rights

4.20.1 SPI SFR Register Map

Ad	ldress	Name	Description
0	xCE	SPICIR	SPI Command Index Register is used to indicate the address of SPI controller register.
0	xCF	SPIDR	SPI Data Register is used to read data from or write data to the specified SPI controller register.

Table 50: SPI Controller SFR Register Map

SPI Command Index Register (SPICIR, 0xCE)

Bit	7	6	5	4	3	2	1	0
Name				SI	PICIR			
Reset Value	0x00							

Bit	Name	Access	Description
7:0	SPICIR	WO	Indicate which of the SPI controller register as listed in Table 51 is to be accessed.

SPI Data Register (SPIDR, 0xCF)

Bit	7	6	5	4	3	2	1	0
Name				S	PIDR			
Reset Value	0x00							

Bit	Name	Access	Description
7:0	SPIDR	R/W	Data Register is used to write data to or read data from the SPI controller registers.

SPI Controller Register Indirect Access Method

Software shall use indirect access method through SPICIR and SPIDR registers to do read and write access to the SPI controller registers as listed in Table 51 below.

Read a register from SPI controller:

- Step 1. Write SPICIR: Software indicates the SPI controller register address to be accessed as the data and write it to the SFR register SPICIR.
- Step 2. Read SPIDR: Software then read SFR register SPIDR. The data read from SPIDR is the SPI controller register data indicated in step 1. Keep reading from SPIDR if the SPI controller registers have more than one byte, in that case, the first byte being read back is LSB byte.

Write a register to SPI controller:

- Step 1. Write SPIDR: Software writes the data you want to write into SPI controller registers to the SFR register SPIDR. Keep writing to SPIDR if the SPI controller registers have more than one byte, in that case, the first byte being written should be LSB byte.
- Step 2. Write SPICIR: After writing SPI controller register data to SPIDR, software then indicates the target SPI controller register address as data and write it to SPICIR.

Note: While software is reading or writing SPI controller registers during a sequence of SFR accesses, software can abort that process by writing SPICIR with 0xFF.

SPI Controller Register Map

Address	Name	Description
0x00	SPIRBR	SPI RX Buffer Register
0x04	SPITBR	SPI TX Buffer Register
0x08	SPICR	SPI Control Register
0x09	SPIMCR	SPI Master Command Register
0x0A	SPIBRR	SPI Baud Rate Register
0x0B	SPISSR	SPI Slave Select Register
0x0C	SPIISR	SPI Interrupt Status Register
0x0D	SPIIER	SPI Interrupt Enable Register
0x0E	SPISCR	SPI Slave Command Register
0x0F	Reserved	
0x10	SPISB	SPI Slave Buffer

Table 51: SPI Controller Register Map

SPI RX Buffer Register (SPIRBR, 0x00)

Bit	7	6	5	4	3	2	1	0				
	SPIRBRO											
Nama	SPIRBR1											
Name				S	PIRBR2							
	SPIRBR3											
Reset Value				0x0	000_0000							

Bit	Name	Access	Description
7:0	SPIRBR0		When in SPI master mode, the SPIRBR registers hold the value of received data of the
31:24	 SPIRBR3	RO	last executed transfer. Valid bits depend on the CHAR_LEN bits of SPIMCR register. For example, if CHAR_LEN is less or equal to 0_0111, the value of SPIRBR1, SPIRBR2 and SPIRBR3 are undefined; if CHAR_LEN is less than 0_1111, the value of SPITBR2 and SPITBR3 are undefined, and so on.

SPI TX Buffer Register (SPITBR, 0x04)

Bit	7	6	5	4	3	2	1	0			
	SPITBR0										
Nomo	SPITBR1										
Name				S	PITBR2						
	SPITBR3										
Reset Value				0x0	000_0000						

Bit	Name	Access	Description
7:0	SPITBR0		When in SPI master mode, the SPITBR registers hold the data to be transmitted in the
			next transfer. Valid bits depend on the CHAR_LEN bits of SPIMCR. For example, if
31:24	SPITBR3	R/W	CHAR_LEN is less or equal to 0_0111, the value of SPITBR1, SPITBR2 and
			SPITBR3 are undefined, if CHAR_LEN is less than 0_1111, the value of SPITBR2
			and SPITBR3 are undefined, and so on.

SPI Control Register (SPICR, 0x08)

Bit	7	6	5	4	3	2	1	0
Name	SSOE	MSS	ASS	SPIEN	LSB	CPOL	СРНА	SSP
Reset Value	0	0	0	0	0	0	0	0

Bit	Name	Access	Description
			Slave Select pins (SS0, SS1, SS2) active Polarity. This bit is only valid in SPI master
			mode.
0	SSP	R/W	1: The slave select signals are active-high.
U	551	IX/ W	0: The slave select signals are active-low.
			When in SPI slave mode, this chip always uses SS0 for the SPI slave controller and it is
			always active-low.
			SPI Clock Phase Bit. This bit is used to control the SCLK pin, serial clock phase vs. serial
1	СРНА	R/W	data. This bit applies to both SPI master and SPI slave mode.
1	CITIA	IV/ W	1: The first SCLK edge is issued at the beginning of the 8-cycle transfer operation.
			0: The first SCLK edge is issued one-half cycle into the 8-cycle transfer operation.
			SPI Clock Polarity Bit.
2	CPOL	R/W	1: Active-low clock selected.
			0: Active-high clock selected.
			When in SPI master mode, this bit indicates that the LSB bit is transmitted/received first.
			1: The LSB of SPITBR is sent first on the line, and the first bit received from the line
			will be put in the LSB position in the SPIRBR register.
3	LSB	R/W	0: The MSB of SPITBR is transmitted first and the first bit received is put in MSB
			position of SPIRBR.
			Note that in SPI slave mode, it is always the MSB bit of each 8-bit data being transmitted
			or received first.
			SPI Enable.
4	SPIEN	R/W	1: SPI controller is enabled.
			0: SPI controller is disabled.
			When in SPI master mode, Automatically generate Slave Select signals (SS0, SS1, SS2).
			1: The slave select signal is generated automatically. This means that when setting
			GO_BSY bit of SPIMCR to start the transfer, the slave select signal that is indicated
_		D /III	in SPISSR is asserted by the SPI controller automatically and is de-asserted after the
5	ASS	R/W	transfer is finished.
			0: SS0/1/2 signals are asserted and de-asserted by writing and clearing bits in SPISSR
			register. When this bit is setting to 0, the SSP of SPICR will not effect, and the
			SS0/1/2 signals is controlled directly by SPISSR register. This bit is only available in
			SPI master mode.
	Mag	D /III	Master/Slave mode Select.
6	MSS	R/W	1: The SPI controller is set to operate in SPI mater mode.
			0: The SPI controller is set to operate in SPI slave mode.
_	GGOT	D /II/	Slave Select pins (SS0, SS1, SS2) Output Enable.
7	SSOE	R/W	1: Enable driving slave select signals.
			0: Put slave select signals to tri-state.

SPI Master Command Register (SPIMCR, 0x09)

Bit	7	6	5	4	3	2	1	0
Name	GO_BSY	LL	LCSR	CHAR LEN				
Reset Value	0	0	0			0 011	1	

Bit	Name	Access	Description
4:0	CHAR_LEN	R/W	When in SPI master mode, this field specifies how many bits in SPIRBR and SPITBR are transmitted on each transfer. Up to 32 bits can be transmitted. For example, the value of "0_0111" indicates 8 bits to be transferred.
5	LCSR	R/W	When in SPI master mode, setting '1' to suppress the last SCLK in the current transfer (used in some SPI EEPROM case).
6	LL	R/W	 Long Length. 1: The desired transfer data length in one transfer is more than the value of CHAR_LEN. Setting '1' to keep the SS0/1/2 pins asserted after the transfer. This can be used in the case where more than 32 bits of data need to be transferred in one transfer. 0: The desired transfer data length is equal to CHAR_LEN. Setting '0' makes SS0/1/2 pins de-asserted automatically after the transfer.
7	GO_BSY	W1/R	Writing 1 to this bit starts the transfer. This bit remains set during the transfer and is automatically cleared after the transfer finished. Writing 0 to this bit has no effect. This bit is only valid in SPI master mode.

SPI Baud Rate Register (SPIBRR, 0x0A)

Bit	7	6	5	4	3	2	1	0
Name		Divider						
Reset Value		0xFF						

Bit	Name	Access	Description
7:0	Divider	R/W	The value in this field determines the frequency divider of the operating system clock to generate the serial clock SCLK output. The desired frequency is obtained according to the following equation: SCLK Frequency = $\frac{\text{Operating System Clock Frequency}}{(\text{Divider+1})*2}$

SPI Slave Select Register (SPISSR, 0x0B)

Bit	7	6	5	2 1 0				
Name		Reserved SS						
Reset Value			11111		111			

Bit	Name	Access	Description
2:0	SS	R/W	When in SPI master mode, this is used to select the desired slave device to communicate to. For example, set $SS = 110$ to activate the SS0 pin. When in SPI slave mode, this chip always uses SS0 for the SPI slave controller and it is always active-low.
7:3	Reserved	-	

SPI Interrupt Status Register (SPIISR, 0x0C)

Bit	7	6	5	4	3	2	1	0
Name	Reserved			SRCF	Reserved			STCF
Reset Value	000			0		000		0

Bit	Name	Access	Description
0	STCF	CR	 SPI Transceiver Complete Flag in SPI master mode. 1: This flag is asserted after the requested transfer (via setting GO_BUSY bit in SPIMCR) is completed. 0: The SPI bus is idle or the transfer is in progress.
3:1	Reserved	-	
4	SRCF	CR	 SPI Receive Complete Flag in SPI slave mode. 1: This flag is asserted every time when the SPISB contain valid data received from the external SPI master after one transfer. Note that in Table 52, all the received instructions, except for the RSR and RDR, will cause this bit to be set after transfer completed. 0: The SPI bus is idle or the transfer is in progress.
7:5	Reserved	-	· · ·

SPI Interrupt Enable Register (SPIIER, 0x0D)

Bit	7	6	5	4	3	2	1	0
Name	Reserved			SRCFIE		Reserved		
Reset Value		000		0		000		0

Bit	Name	Access	Description
0	STCFIE	R/W	SPI Transmit Complete Flag Interrupt Enable.1: Enable interrupt on INT4 whenever STCF flag (SPIISR.0) is asserted.0: Disable interrupt.
3:1	Reserved	-	
4	SRCFIE	R/W	SPI Receive Complete Flag Interrupt Enable.1: Enable interrupt on INT4 whenever SRCF flag (SPIISR.4) is asserted.0: Disable interrupt.
7:5	Reserved	-	

SPI Slave Command Register (SPISCR, 0x0E)

Bit	7	6	5	4	3	2	1	0
Name		Reserved						RDY
Reset Value		000_0000						1

Bit	Name	Access	Description
0	RDY	W1/R	During initialization, software shall set this bit to '1' to indicate to the external SPI master that this chip is ready to receive any commands. This bit will be reflected in the RSR instruction as listed in Table 52. This is only valid in SPI slave mode. When external SPI master needs to read data from this chip, software first prepares the data in SPISB register and then set this bit '1' to indicate to the external SPI master that the data is ready to be retrieved by the external SPI master. When external SPI master needs to write data to this chip, it initiates the SPI bus access and then checks for completion indication from this chip. Software of AX11001/AX11005 shall retrieve the data from SPISB register and then sets this bit '1' to indicate that the requested write operation has been completed by this chip.
7:1	Reserved	-	

SPI Slave Buffer (SPISB, 0x10)

Bit	7	6	5	4	3	2	1	0		
	·				SB0					
-					SB1					
					SB2					
					SB3					
					SB4					
					SB5					
					SB6					
Name					SB7					
Ivalle		SB8								
					SB9					
				S	B10					
				S	B11					
				S	B12					
				S	B13					
				S	B14					
				S	B15					
Reset Value			0x0000_00	00000_0000_0	000_0000_	0000_0000_	0000			

Bit	Name	Access	Description
			Slave Buffer. This is only valid in SPI slave mode. When in SPI slave mode, this holds the data received from the external SPI master. The
7:0	SB0		SB0 holds the first 8-bits received, and SB1 holds the second 8-bits received, and so on.
 127:120	 SB15		Note that the transfer of each 8-bit serial data is always MSB first. When external SPI master issues the read command, software can put requested read data in SPISB here. Again SB0 holds the first 8-bits transmitted data, and SB1 holds the second 8-bits
			transmitted data, and so on.

Example Programming Procedure in SPI Master Mode

Example 1: Configure to SPI Mode 0, SPI frequency is 1.6MHz, and enable interrupt mode. Write 2 bytes of data = 0x0500 to slave device.

- 1. Write 0xFE to SPISSR register.
- 2. Write 0x1D to SPIBRR register.
- 3. Write 0x01 to SPIIER register.
- 4. Write 0xF0 to SPICR register.
- 5. Write 0x00, 0x05, 0x00, and 0x00 to SPITBR.
- 6. Write 0x8F to SPICMR register.
- 7. Wait interrupt.
- 8. Read SPIISR register to clear STCF.
- 9. Read SPIRBR register if needed.

Example 2: Read 1 byte of data from slave device.

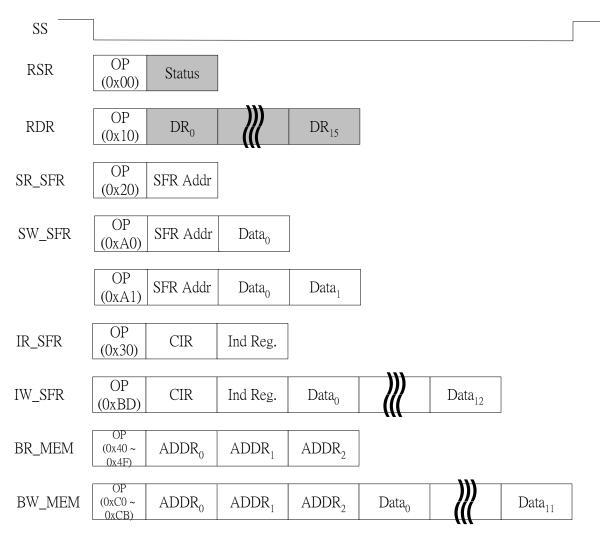
- 1. Write 0xFE to SPISSR register.
- 2. Write 0x1D to SPIBRR register.
- 3. Write 0x01 to SPIIER register.
- 4. Write 0xF0 to SPICR register.
- 5. Write 0x87 to SPICMR register.
- 6. Wait interrupt.
- 7. Read SPIISR register to clear STCF.
- 8. Read SPIRBR register.

4.20.2 SPI Slave Mode Function Description

The SPI slave controller of this chip provides 8 different commands for the external SPI master controller to access it. These commands are shown in Table 52 and the command frame format is shown in Figure 107. Note that the serial data is always the MSB bit of each 8-bit data being transmitted or received first.

The external SPI master may use these commands to read or write the SFR registers or xDATA memory of this chip. The SPI slave controller hardware shall parse the Op-Code byte and user should follow the definition here, all other bytes in the transfer are parsed by AX11001/AX11005 software. Therefore, these commands are allowed to make certain changes to meet user's applications.

Command Name	Op-Code	Operation Description
		Read Status Register.
RSR	0000_0000 (0x00)	When external SPI master needs to send some data to this chip, the returned status of 0x01 indicates that this chip is ready to receive new data. To avoid the internal 16-bytes FIFO overflow, the external SPI master shall check this status before sending next data to this chip. Returning 0x00 indicates the internal FIFO is still being used and this chip is not ready.
		When external SPI master needs to receive some data from this chip, returning 0x01 indicates that the requested data is ready in SPISB and the external SPI master can issue RDR command to receive the requested data. Returning 0x00 indicates the data is not ready.
	0001 0000	Read Data Register.
RDR	(0x10)	This is the data port for the external SPI master to receive the requested read data after it has issued SR_SFR, IR_SFR, and BR_MEM commands.
		Single Write SFR register.
SW_SFR	1010_0xxx (0xA0~0xA7)	This command requests to write various bytes of data to the specified SFR register in this chip with the given data. The xxx indicates the number of bytes to be written to the target registers. For example, $xxx = 000$ for 1 byte, and $xxx = 111$ for 8 bytes.
		After sending this command, to avoid internal 16-byte FIFO being overflowed, the external SPI master should use RSR command to learn that this chip has finished processing the command before it can send next command.
		Single Read SFR register.
SR_SFR	0010_0xxx (0x20~0x27)	This command requests to read various bytes of data from the specified SFR register in this chip. The xxx indicates the number of bytes to be read from the target registers. For example, $xxx = 000$ for 1 byte, and $xxx = 111$ for 8 bytes.
		After sending this command, the external SPI master should use RSR command to learn that the requested data is available and then use RDR command to receive the data.
		Indirect Write SFR register.
	1011_xxxx	This command requests to indirectly write various bytes of data through the specified command index register in SFR to the given indirect register in this chip. The xxxx indicates the number of bytes to be written to target indirect register. For example, xxxx = 0000 for 1 byte, and xxxx = 1111 for 16 bytes.
IW_SFR	(0xB0~0xBF)	After sending this command, to avoid internal 16-byte FIFO being overflowed, the external SPI master should use RSR command to learn that this chip has finished processing the command before it can send next command.
		Typical indirect access registers uses following SFR register-pair to access through: DCIR/DDR, MCIR/MDR, EPCR/EPDR, TCIR/TDR, I2CCIR/I2CDR, OWCIR/OWDR, etc.


AX11001/AX11005 Single Chip Microcontroller with TCP/IP and 10/100M Fast Ethernet MAC/PHY

		Indirect Read SFR register.
IR SFR	0011 xxxx	This command requests to indirectly read various bytes of data through the specified command index register in SFR from the given indirect register in this chip. The xxxx indicates the number of bytes to be read from the target indirect register. For example, $xxxx = 0000$ for 1 byte, and $xxxx = 1111$ for 16 bytes.
(0x30~0x)	(0x30~0x3F)	After sending this command, the external SPI master should use RSR command to learn that the requested data is available and then use RDR command to receive the data.
		Typical indirect access registers uses following SFR register-pair to access through: DCIR/DDR, MCIR/MDR, EPCR/EPDR, TCIR/TDR, I2CCIR/I2CDR, OWCIR/OWDR, etc.
		Burst Write data to xDATA memory of this chip.
		This command requests to write the specified address of xDATA memory in this chip with the specified number of bytes and the given data. The {ADDR2, ADDR1, ADDR0} represents the real address of xDATA memory. The xxxx indicates the number of bytes to be written, starting with the specified address. For example, xxxx = 0000 for 1 byte, and xxxx = 1011 for 12 bytes. The Data0 is written to the {ADDR2, ADDR1, ADDR0}, and the Data1 is written to the {ADDR2, ADDR1, ADDR0}+1, and so on.
BW_MEM	1100_xxxx (0xC0~0xCB)	Note that the fields of ADDR0, ADDR1, ADDR2, Data0, DataN, etc. in BW_MEM command are reference format and can allow making changes as long as the AX11001/AX11005 software and external SPI master both agree on the format definition. Only that the xxxx in the Op-Code field should match the actual number of bytes being transferred.
		After sending this command, to avoid internal 16-byte FIFO being overflowed, the external SPI master should use RSR command to learn that this chip has finished processing the command before it can send next command.
		Burst Read Memory.
BR MEM	0100_xxxx	This command requests to read the specified address of xDATA memory in this chip with the specified number of bytes. The {ADDR2, ADDR1, ADDR0} represents the real address of xDATA memory. The xxxx indicates the number of bytes to be read, starting with the specified address. For example, $xxxx = 0000$ for 1 byte, and $xxxx = 1011$ for 12 bytes.
	(0x40~0x4F)	Note that the fields of ADDR0, ADDR1, ADDR2, etc. in BR_MEM command are reference format and can allow making changes as long as the AX11001/AX11005 software and external SPI master both agree on the format definition. Only that the xxxx in the Op-Code field should match the actual number of bytes being transferred.
		After sending this command, the external SPI master should use RSR command to learn that the requested data is available and then use RDR command to receive the data.

Table 52: Command Instruction in SPI Slave Mode

AX11001/AX11005 Single Chip Microcontroller with TCP/IP and 10/100M Fast Ethernet MAC/PHY

Note: DR_N : Data Register

CIR : Command Index Register

Ind Reg. : Indirect Register

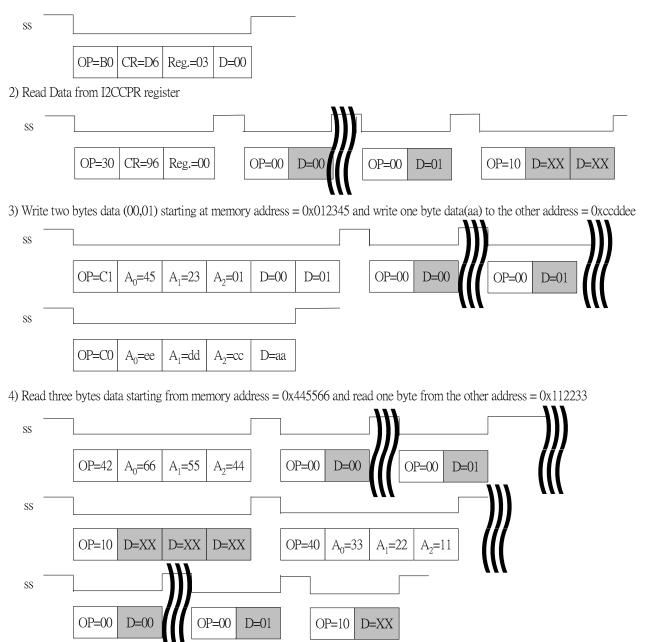

Master Slave

Figure 107: Command Frame Format in SPI Slave Mode

Example Command Frames in SPI Slave Mode

1) Write 0x00 to OWIER register

5.0 Electrical Specifications

5.1 DC Characteristics

5.1.1 Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
VCC18,	Output voltage of on-chip voltage regulator or digital core power supply	- 0.3 to 2.16	V
VCCK			
VCC3R,	Power supply of on-chip voltage regulator or 3.3V I/O	- 0.3 to 4.0	V
VCCIO			
VCC18A	Analog power supply for oscillator, PLL, etc.	- 0.3 to 2.16	V
VCC3A	Analog power supply for bandgap	- 0.3 to 3.8	V
V _{IN18}	Input voltage of 1.8V I/O	- 0.3 to 2.16	V
V _{IN3}	Input voltage of 3.3V I/O	- 0.3 to 4.0	V
	Input voltage of 3.3V I/O with 5V tolerant	- 0.3 to 5.8	V
T _{STG}	Storage temperature	- 40 to 150	°C
I _{IN}	DC input current	20	mA
I _{OUT}	Output short circuit current	20	mA

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted in the recommended operating condition section of this datasheet. Exposure to absolute maximum rating condition for extended periods may affect device reliability.

5.1.2 Recommended Operating Condition

Symbol	Parameter	Min	Тур	Max	Unit
VCC3R	Power supply of on-chip voltage regulator	3.0	3.3	3.6	V
VCCIO	Power supply of 3.3V I/O	3.0	3.3	3.6	V
VCC3A	Analog power supply for bandgap	3.0	3.3	3.6	V
VCC18	Output voltage of on-chip voltage regulator	1.62	1.8	1.98	V
VCCK	Digital core power supply	1.62	1.8	1.98	V
VCC18A	Analog power supply for oscillator, PLL, etc.	1.62	1.8	1.98	V
V _{IN18}	Input voltage of 1.8 V I/O	0	1.8	1.98	V
V _{IN3}	Input voltage of 3.3 V I/O	0	3.3	3.6	V
	Input voltage of 3.3 V I/O with 5 V tolerance	0	3.3	5.25	V
T _i	AX11001 LF and AX11005 LF operating	0	25	125	°C
5	junction temperature				
	AX11001 LI and AX11005 LI operating junction	-40	25	125	°C
	temperature				
Ta	AX11001 LF and AX11005 LF operating	0	-	70	°C
	ambient temperature				
	AX11001 LI and AX11005 LI operating ambient	-40	-	85	°C
	temperature				

5.1.3 Leakage Current and Capacitance

Symbol	Parameter	Condition	Min	Тур	Max	Unit
I _{IN}	Input current	No pull-up or pull-down	-10	±1	10	μA
I _{OZ}	Tri-state leakage current		-10	±1	10	μA
C _{IN}	Input capacitance		-	2.2	-	pF
C _{OUT}	Output capacitance		-	2.2	-	pF
C _{BID}	Bi-directional buffer capacitance		-	2.2	-	pF

Note: The capacitance listed above does not include pad capacitance and package capacitance. One can estimate pin capacitance by adding a pad capacitance of about 0.5pF and the package capacitance.

5.1.4 DC Characteristics of 3.3V I/O Pins

Symbol	Parameter	Condition	Min	Тур	Max	Unit
VCCIO	Power supply of 3.3V I/O	3.3V I/O	3.0	3.3	3.6	V
Tj	Junction temperature		-40	25	125	°C
Vil	Input low voltage		-	-	0.8	V
Vih	Input high voltage	LVTTL	2.0	-	-	V
Vt	Switching threshold			1.5		V
Vt-	Schmitt trigger negative going threshold voltage	LVTTL	0.8	1.1	-	V
Vt+	Schmitt trigger positive going threshold voltage		-	1.6	2.0	V
Vol	Output low voltage	$Iol = 4 \sim 8mA$	-	-	0.4	V
Voh	Output high voltage	$Ioh = -4 \sim -8mA$	2.4	-	-	V
Rpu	Input pull-up resistance	Vin = 0	40	75	190	KΩ
Rpd	Input pull-down resistance	Vin = VCCIO	40	75	190	KΩ
	Input leakage current	Vin = VCCIO or 0	-10	±1	10	μA
Iin	Input leakage current with pull-up resistance	Vin = 0	-15	45	-85	μA
	Input leakage current with pull-down resistance	Vin = VCCIO	15	45	85	$\mu \mathbf{A}$
Ioz	Tri-state output leakage current		-10	±1	10	μA

5.1.5 DC Characteristics of 3.3V with 5V Tolerant I/O Pins

Symbol	Parameter	Condition	Min	Тур	Max	Unit
VCCIO	Power supply of 3.3V I/O	3.3V I/O	3.0	3.3	3.6	V
Tj	Junction temperature		-40	25	125	°C
Vil	Input low voltage		-	-	0.8	V
Vih	Input high voltage	LVTTL	2.0	-	-	V
Vt	Switching threshold			1.5		V
Vt-	Schmitt trigger negative going threshold voltage	LVTTL	0.8	1.1	-	V
Vt+	Schmitt trigger positive going threshold voltage		-	1.6	2.0	V
Vol	Output low voltage	$Iol = 4 \sim 8mA$	-	-	0.4	V
Voh	Output high voltage	$Ioh = -4 \sim -8mA$	2.4	-	-	V
Rpu	Input pull-up resistance	Vin = 0	40	75	190	KΩ
Rpd	Input pull-down resistance	Vin = VCCIO	40	75	190	KΩ
	Input leakage current	Vin = 5.5V or 0	-	±5	-	μA
Iin	Input leakage current with pull-up resistance	Vin = 0	-15	-45	-85	μA

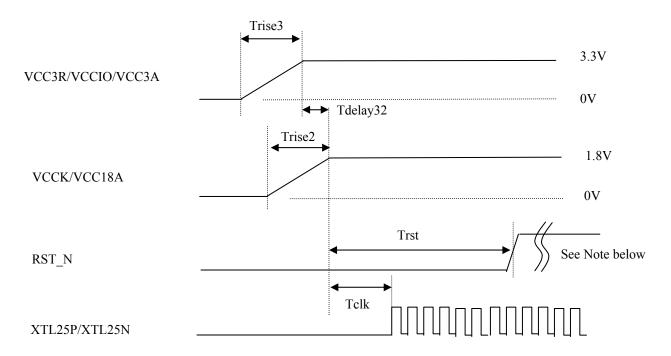
AX11001/AX11005 Single Chip Microcontroller with TCP/IP and 10/100M Fast Ethernet MAC/PHY

	Input	leakage	current	with	pull-down	Vin = VCCIO	15	45	85	μA
	resista	nce								
Ioz	Tri-sta	te output l	eakage cur	rent		Vin = 5.5V or 0	-	±10	-	μA

5.1.6 DC Characteristics of Voltage Regulator

Symbol	Description	Condition	Min	Тур	Max	Unit
VCC3R	Power supply of on-chip voltage regulator		3.0	3.3	3.6	V
Tj	Operating junction temperature		-40	25	125	°C
Iload	Driving current	Normal operation, RSM bit = 0 (SFR register PCON.3)	-	-	240	mA
	Driving current	Standby mode enabled, RSM bit = 1 (PCON.3)	-	-	30	mA
VCC18	Output voltage of on-chip voltage regulator	VCC3R = 3.3V	1.71	1.8	1.89	V
Vdrop	Dropout voltage	\triangle VCC18 = -1%, Iload = 10mA	-	0.1	0.2	V
$\frac{\triangle \text{VCC18}}{(\triangle \text{VCC3R x VCC18})}$	Line regulation	VCC3R = 3.3V, Iload = 50mA	-	0.2	0.4	%/V
$\frac{\triangle \text{VCC18}}{(\triangle \text{Iload x VCC18})}$	Load regulation	$VCC3R = 3.3V, 1mA \leq Iload \leq 240mA$	-	0.02	0.05	%/mA
<u> </u>	Temperature coefficient	$VCC3R = 3.3V,-40^{\circ}C \leq Tj \leq 125^{\circ}C$	-	+/-0.2	+/-0.5	mV/ °C
Iq_25℃	Quiescent current at 25 °C	VCC3R = 3.3V, RSM bit = 1 (PCON.3)	-	70	100	μΑ
		VCC3R = 3.3V, RSM bit = 0 (SFR register PCON.3)	-	100	125	μA
Iq_125℃	Quiescent current at 125 °C	(PCON.3)	-	85	115	μA
		VCC3R = 3.3V, RSM bit = 0 (SFR register PCON.3)	-	125	170	μA
Cout	Output external capacitor		0.1	1	-	μ F
ESR	Allowable effective series resistance of external capacitor		-	0.5	1	Ω

AX11001/AX11005 Single Chip Microcontroller with TCP/IP and 10/100M Fast Ethernet MAC/PHY


5.2 Power Consumption

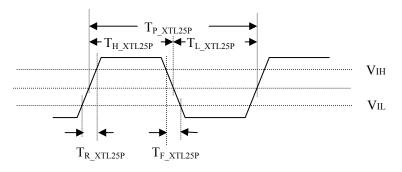
Symbol	Description	System Clock	Condition	Min	Тур	Max	Unit
I3.3V	Total current of 3.3V	25 Mhz	CPU full speed, Ethernet 10Mbps full duplex	-	168.2	-	mA
	power supply including		CPU full speed, Ethernet 100Mbps full duplex	-	176.8	-	mA
	VCCIO, VCC3A, and		CPU in PMM, Ethernet 10Mbps full duplex (Ethernet PHY	-	134.8	-	mA
	VCC3R.		not powered down)				
	Nata VCC2D includes		CPU in PMM, Ethernet 100Mbps full duplex (Ethernet PHY	-	145.2	-	mA
	Note VCC3R includes VCC18, VCCK, and		not powered down)				
	VCC18A.		CPU in PMM, Ethernet PHY powered down	-	22.4	-	mA
	VCCION.		CPU in STOP, Ethernet 10M full duplex mode (Ethernet	-	134.2	-	mA
			PHY not powered down and OSC/PLL still running)				
			CPU in STOP, Ethernet 100M full duplex mode (Ethernet	-	143.3	-	mA
			PHY not powered down and OSC/PLL still running)				
			CPU in STOP, Ethernet PHY powered down (OSC/PLL still	-	22.4	-	mA
			running)				
			CPU in STOP, OSC/PLL stopped (TOFFOP of I2C	-	0.2	-	mA
			EEPROM offset $0x01 = 1$)				
		50 Mhz	CPU full speed, Ethernet 10Mbps full duplex	-	188.5	-	mA
			CPU full speed, Ethernet 100Mbps full duplex	-	196.9	-	mA
			CPU in PMM, Ethernet 10Mbps full duplex (Ethernet PHY	-	135.2	-	mA
			not powered down)				
			CPU in PMM, Ethernet 100Mbps full duplex (Ethernet PHY	-	145.6	-	mA
			not powered down)				
			CPU in PMM, Ethernet PHY powered down	-	22.8	-	mA
			CPU in STOP, Ethernet 10M full duplex mode (Ethernet	-	134.3	-	mA
			PHY not powered down and OSC/PLL still running)				
			CPU in STOP, Ethernet 100M full duplex mode (Ethernet	-	144.6	-	mA
			PHY not powered down and OSC/PLL still running)				
			CPU in STOP, Ethernet PHY powered down (OSC/PLL still	-	22.6	-	mA
			running)				
			CPU in STOP, OSC/PLL stopped (TOFFOP of I2C EEPROM offset 0x01 = 1)	-	0.3	-	mA
		100	CPU full speed, Ethernet 10Mbps full duplex	-	228	-	mA
		Mhz	CPU full speed, Ethernet 100Mbps full duplex	-	236	-	mA
			CPU in PMM, Ethernet 10Mbps full duplex (Ethernet PHY	_	135.6	_	mA
			not powered down)	-	135.0	-	1112 1
			CPU in PMM, Ethernet 100Mbps full duplex (Ethernet PHY	-	146.5	-	mA
			not powered down)		140.5		
			CPU in PMM, Ethernet PHY powered down	-	23.5	-	mA
			CPU in STOP, Ethernet 10M full duplex mode (Ethernet	-	134.3		mA
			PHY not powered down and OSC/PLL still running)		154.5		
			CPU in STOP, Ethernet 100M full duplex mode (Ethernet	-	144.5	-	mA
			PHY not powered down and OSC/PLL still running)		111.0		
			CPU in STOP, Ethernet PHY powered down (OSC/PLL still	-	22.9	-	mA
			running)		,		
			CPU in STOP, OSC/PLL stopped (TOFFOP of I2C	-	0.3	-	mA
			EEPROM offset $0x01 = 1$)				
θJC	Thermal resistance of		80-pin LQFP package	-	7.1	-	°C/
	junction to case						W
Өја	Thermal resistance of		80-pin LQFP package, still air	-	45.5	-	°C/
0 5/1	junction to ambient		or han add h have a hour and				W

5.3 Power-up Sequence

At power-up, AX11001/AX11005 requires the VCC3R/VCCIO/VCC3A power supply to rise to nominal operating voltage within Trise3 and the VCCK/VCC18A power supply to rise to nominal operating voltage within Trise2.

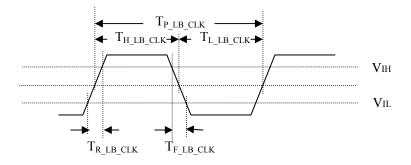
Symbol	Parameter	Condition	Min	Тур	Max	Unit
T _{rise3}	3.3V power supply rise time	From 0V to 3.3V	1	-	10	ms
T _{rise2}	1.8V power supply rise time	From 0V to 1.8V	-	-	10	ms
T _{delay32}	3.3V rise to 1.8V rise time delay		-5	-	5	ms
Telk	25Mhz crystal oscillator start-up	From VCC18A = $1.8V$ to first clock	-	1	-	ms
	time	transition of XTL25P or XTL25N				
Trst	RST_N low level interval	From VCCK = 1.8V to RST_N going	4	-	-	ms
		high				

Note: After RST_N input pin is negated during power-on, the internal I2C boot loader may start loading I2C EEPROM automatically, upon enabled. User should avoid generating 2nd reset pulse to RST_N pin of AX11001/AX11005 because it will cause the I2C boot loader to be reset again during the process of loading I2C EEPROM configuration parameter. This may cause the I2C EEPROM itself to remain in the "read state", which it may not respond to AX11001/AX11005's later I2C commands properly, because the I2C EEPROM normally does not have reset pin to reset it while the AX11001/AX11005 is being reset again and restarting a new I2C command.


Figure 108: Power-up Sequence Timing Diagram and Table

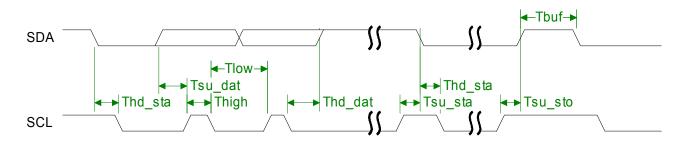
5.4 AC Timing Characteristics

5.4.1 Clock Timing


<u>XTL25P</u>

Symbol	Parameter	Condition	Min	Тур	Max	Unit
	XTL25P reference frequency		25-0.005%	25	25+0.005%	Mhz
	XTL25P clock duty cycle		40	50	60	%
T _{P XTL25P}	XTL25P clock cycle time		-	40	-	ns
T _{H XTL25P}	XTL25P clock high time		-	20	-	ns
T _{L XTL25P}	XTL25P clock low time		-	20	-	ns
T _{R XTL25P}	XTL25P rise time	$V_{IL}(max)$ to $V_{IH}(min)$	-	-	1.0	ns
T _{F XTL25P}	XTL25P fall time	$V_{IH}(min)$ to $V_{IL}(max)$	-	-	1.0	ns

LB_CLK



Symbol	Parameter	Condition	Min	Тур	Max	Unit
T _{P LB CLK}	LB_CLK clock cycle time		10	-	40	ns
T _{H LB CLK}	LB_CLK clock high time		5	-	20	ns
T _{L LB CLK}	LB_CLK clock low time		5	-	20	ns
T _{R LB CLK}	LB_CLK rise time	V_{IL} (max) to V_{IH} (min)	-	-	1.0	ns
T _{F LB CLK}	LB_CLK fall time	V_{IH} (min) to V_{IL} (max)	-	-	1.0	ns

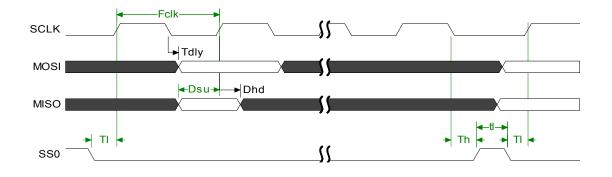
Figure 110: LB_CLK Clock Timing Diagram and Table

5.4.2 I2C Interface Timing

Symbol	Parameter	Min	Тур	Max	Unit
Fclk	SCL clock frequency	-	100, 400	-	KHz
Thd sta	Hold time of (repeated) START condition. After this period,	-	2	-	Tprsc ¹
Ina_sta	the first clock pulse is generated.				
Thigh	High period of the SCL clock	-	2	-	Tprsc
Tlow	Low period of the SCL clock	-	3	-	Tprsc
Tsu_sta	Setup time for a repeated START condition	-	2	-	Tprsc
Tsu_dat	Data Setup time	-	1	-	Tprsc
Thd_dat	Data hold time	-	2	-	Tprsc
Tsu_sto	Setup time for STOP condition.	-	2	-	Tprsc
Tbuf	Bus free time between a STOP and START condition	-	4	-	Tprsc

Table 53: I2C Master Controller Timing Table

Symbol	Parameter	Min	Тур	Max	Unit
Fclk	SCL clock frequency	-	-	380	KHz
The ato	Hold time of (repeated) START condition. After this period,	3	-	-	Tsys clk ²
Thd_sta	the first clock pulse is generated.				· _
Thigh	High period of the SCL clock in Standard mode	4	-	-	μs
Tingn	High period of the SCL clock in Fast mode	0.6	-	-	μs
Tlow	Low period of the SCL clock	0.4	-	-	μs
Tsu_sta	Setup time for a repeated START condition	1	-	-	Tsys_clk
Tsu_dat	Data Setup time	3	-	-	Tsys_clk
Thd_dat	Data hold time	0.4	-	-	μs
Tsu_sto	Setup time for STOP condition	3	-	-	Tsys_clk
Tbuf	Bus free time between a STOP and START condition	1.3	-	-	μs


Table 54: I2C Slave Controller Timing Table

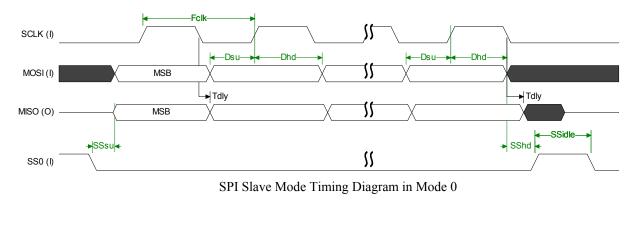
² Tsys_clk = 10/20/40ns for 100/50/25Mhz operating system clock.

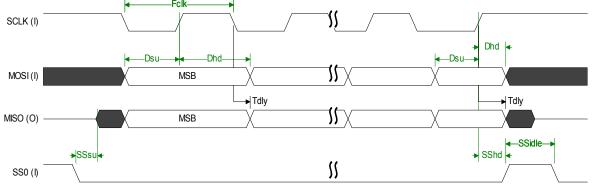
¹ Tprsc = 1/Fprsc, where Fprsc = Operating system clock frequency / (PRER + 1) and the PRER is I2C Clock Prescale Register.

5.4.3 SPI Interface Timing

Note: Above diagram only shows setup and hold time relationship of SPI pins in Mode 0. For other 3 modes, they are quite similar except that the clock polarity is reversed.

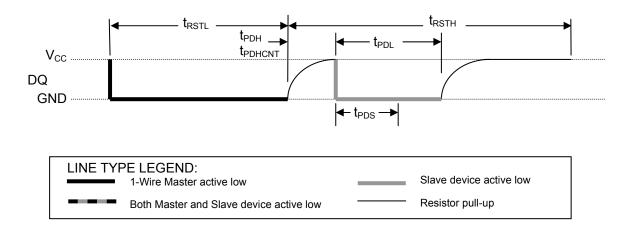
Symbol	Description	Min	Тур	Max	Unit
Fclk	SCLK clock frequency.	-	Fsys_clk (SPIBRR+1)*2	-	MHz ³
Tl	Setup time of SS[2:0] to the first SCLK edge.	-	0.5	-	Tclk ⁴
Th	Hold time of SS[2:0], after the last SCLK edge.	-	0.5	-	Tclk
tl	Minimum idle time between transfers (minimum SS[2:0] high time).	-	0.5	-	Telk
Tdly	MOSI data valid time, after SCLK edge.	-	-	1	Tsys_clk ⁵
Dsu	MISO data setup time before SCLK edge.	5.5	-	-	ns
Dhd	MISO data hold time after SCLK edge.	6	-	-	ns
	Internal time base period.	-	0.5	-	Tclk


Figure 111: SPI Master Controller Timing Diagram and Table


³ Fsys_clk is the operating system clock frequency, 25Mhz, 50Mhz, or 100Mhz. The SPIBRR is SPI Baud Rate Register and its minimum setting value is 0x01 and setting to 0x00 is invalid.

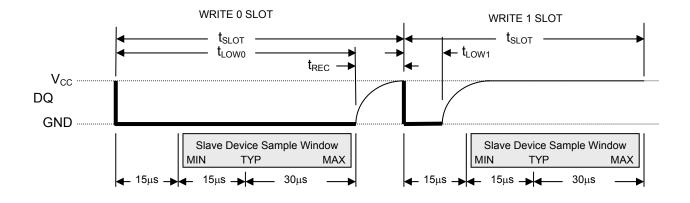
⁴ Tclk = 1/Fclk.

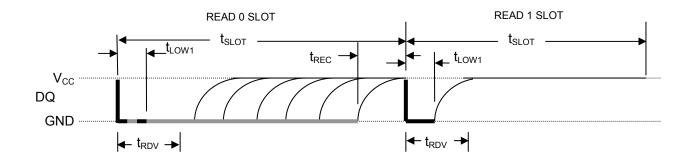
⁵ Tsys_clk = 10/20/40ns for 100/50/25Mhz operating system clock.


SPI Slave Mode Timing Diagram in Mode 3

Symbol	Description	Min	Тур	Max	Unit
	SCLK clock frequency at 100Mhz system clock.	-	-	6	MHz
Fclk	SCLK clock frequency at 50Mhz system clock.	-	-	3	MHz
	SCLK clock frequency at 25Mhz system clock.	-	-	1.5	MHz
Tdly	MISO data valid time after SCLK edge.	-	-	2 + (12ns)	Tsys_clk
Dsu	MOSI data setup time before SCLK edge.	3	-	-	ns
Dhd	MOSI data hold time after SCLK edge.	2 + (2ns)	-	-	Tsys_clk
SSsu	SS0 setup time before SCLK edge.	8	-	-	ns
SShd	SS0 hold time after SCLK edge.	2 + (2ns)	-	-	Tsys_clk
SSidle	SS0 negation to next SS0 active time	2			Tsys_clk

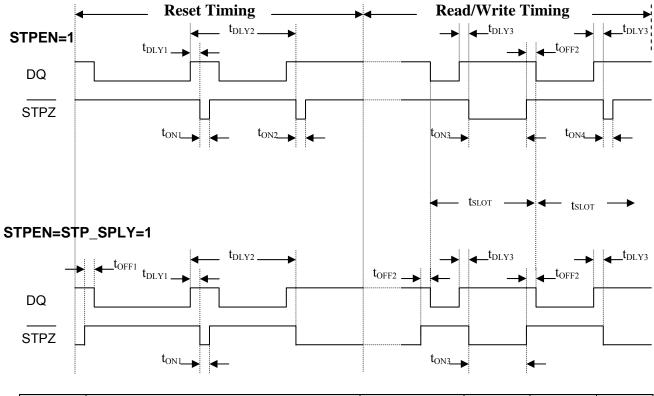
Figure 112: SPI Slave Controller Timing Diagram and Table


5.4.4 1-Wire Interface Timing



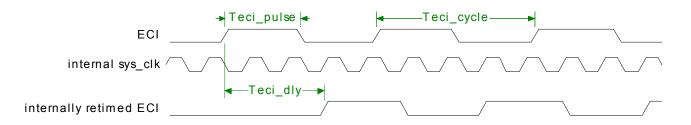
Symbol	Parameter	Conditions	Min	Max	Units
t	Reset Time Low	Standard	500.8	626	μs
t _{RSTL}		Overdrive	50.4	63	μs
t	Reset Time High	Standard	508.8	636	μs
t _{RSTH}		Overdrive	59.2	74	μs
+	Presence Detect High	Standard	15	60	μs
t _{PDH}		Overdrive	2	6	μs
+	Presence Detect Low	Standard	60	240	μs
t _{PDL}		Overdrive	6	24	μs
	Presence Detect Sample	Standard	24	31	μs
t _{PDS}		Standard – Long Line Mode	30.4	38	μs
		Overdrive	2.4	4	μs

Figure 113: 1-Wire Reset Pulse and Presence Pulse Timing Diagram and Table



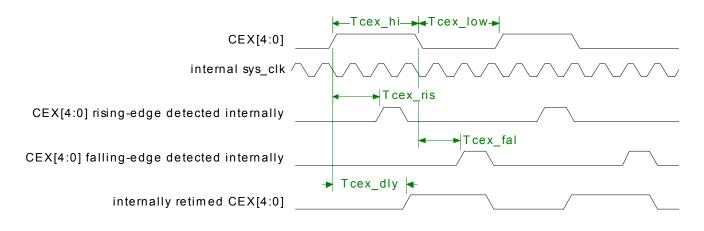
Symbol	Parameter	Conditions	Min	Max	Units
+	Time Slot	Standard	68.8	86	μs
t _{SLOT}		Overdrive	12	15	μs
+	Write 0 Low Time	Standard	62.4	78	μs
t_{LOW0}		Overdrive	8	12	μs
	Write 1 Low Time	Standard	4.8	6	μs
t _{LOW1}		Standard – Long Line Mode	7.2	9	μs
		Overdrive	0.8	1	μs
	Read Data Value	Standard	12	15	μs
t _{RDV}		Standard – Long Line Mode	20	25	μs
		Overdrive	1.6	2	μs
	Recovery Time	Standard	5.5	8	μs
t _{REC}		Standard – Long Line Mode	11.2	14	μs
		Overdrive	4	5	μs
	Time base Period		0.96	1	μs

Figure 114: 1-Wire Write and Read Time Slot Timing Diagram and Table



Symbol	Description	Conditions	Min	Max	Units
t _{OFF1}	Turn Off Time for 1-Wire Reset	Standard	1.6	2	μs
		Overdrive	1.6	2	μs
t _{DLY1}	Delay Time for Presence Detect	Standard	0.8	1	μs
		Overdrive	0.8	1	μs
t _{ON1}	Active Time for Presence Detect	Standard	6.4	8	μs
		Overdrive	0.8	1	μs
t _{DLY2}	Delay Time for Presence Detect Recovery	Standard	399.2	499	μs
		Overdrive	31.2	39	μs
t _{ON2}	Active Time for Presence Detect Recovery	Standard	8	10	⊧µs
		Overdrive	8	10	μs
t _{DLY3}	Delay Time for Write1/Write0 Recovery	Standard	0.8	1	μs
		Overdrive	0.8	1	μs
t _{ON3}	Active Time for Write 1 Recovery	Standard	51.2	78	μs
		Overdrive	7.2	9	μs
t _{OFF2}	Turn Off Time for Write1/Write0	Standard	0.8	1	μs
		Overdrive	0.8	4.8	μs
t _{ON4}	Active Time for Write 0 Recovery	Standard	4	12	μs
		Overdrive	0.8	1	μs

Figure 115: 1-Wire STPZ Reset and Read Write Timing Diagram and Table



5.4.5 Programmable Counter Array Interface Timing

Symbol	Description	Min	Тур	Max	Units
Teci_cycle	ECI cycle time	> 2	-	-	Tsys_clk ⁶
Teci_pulse	ECI pulse width	> 1	-	-	Tsys_clk
Teci_dly	ECI internally retimed delay	2	-	3	Tsys_clk

Figure 116: ECI Timing Diagram and Table

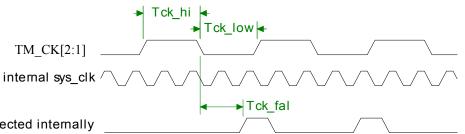
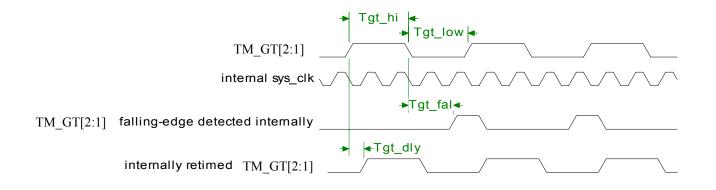

Symbol	Description	Min	Тур	Max	Units
Tcex_hi	CEX[4:0] (as input) high pulse width	1.5	-	-	Tsys_clk
Tcex_low	CEX[4:0] (as input) low pulse width	1.5	-	-	Tsys_clk
Tcex_ris	CEX[4:0] (as input) rising-edge internal detection time	1~2	-	2~3	Tsys_clk
Tcex_fal	CEX[4:0] (as input) falling-edge internal detection time	1~2	-	2~3	Tsys_clk
Tcex_dly	CEX[4:0] (as input) internally retimed delay	2	-	3	Tsys_clk

Figure 117: CEX[4:0] Timing Diagram and Table

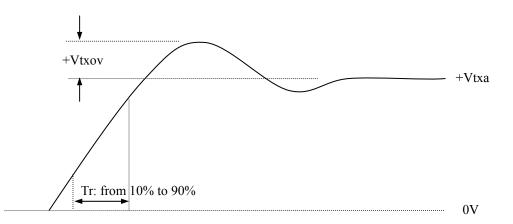
⁶ Tsys_clk = 10/20/40ns for 100/50/25Mhz operating system clock.


5.4.6 Timer 0/1/2 Interface Timing

TM_CK[2:1] falling-edge detected internally

Symbol	Description		Тур	Max	Units
Tck_hi	TM_CK[2:1] high pulse width	2	-	-	Tsys_clk
Tck_low	TM_CK[2:1] low pulse width	2	-	-	Tsys_clk
Tck_fal	TM_CK[2:1] falling-edge internal detection time	1~2	-	2	Tsys_clk

Figure 118: TM_CK[2:1] Timing Diagram and Table



Symbol	Description		Тур	Max	Units
Tgt_hi	TM_GT[2:1] high pulse width	2	-	-	Tsys_clk
Tgt_low	TM_GT[2:1] low pulse width	2	-	-	Tsys_clk
Tgt_fal	TM_GT[2:1] falling-edge internal detection time		-	2	Tsys_clk
Tgt_dly	TM_GT[2:1] internally retimed delay	0.5	-	1	Tsys_clk

Figure 119: TM_GT[2:1] Timing Diagram and Table

5.4.7 10/100M Ethernet PHY Interface Timing

Symbol	Description Condition		Min	Тур	Max	Units
	Peak-to-peak differential output voltage	10BASE-T mode	4.4	5	5.6	V
Vtxa *2	Peak-to-peak differential output voltage	100BASE-TX mode	1.9	2	2.1	V
Tr / Tf	Signal rise / fall time	100BASE-TX mode	3	4	5	ns
	1 5	100BASE-TX mode, scrambled idle signal	-	-	1.4	ns
Vtxov	Overshoot	100BASE-TX mode	-	-	5	%

Figure 120: 10/100M Ethernet PHY Transmitter Waveform and Spec

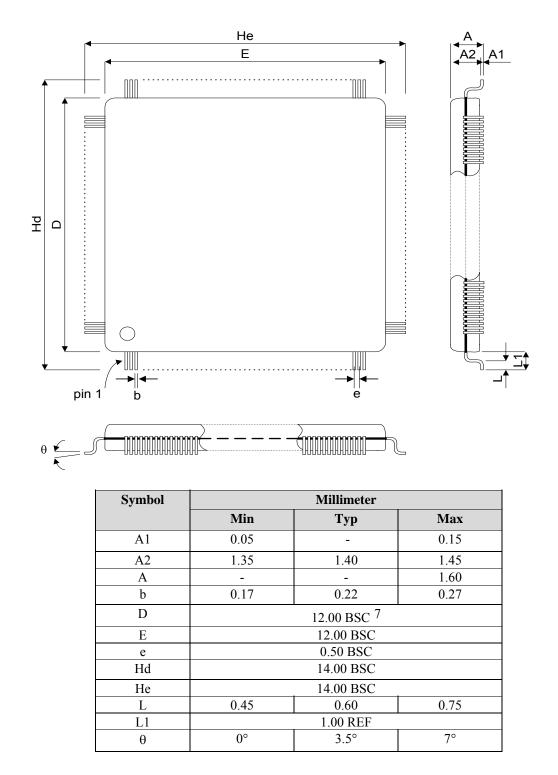

Symbol	Description	Condition	Min	Тур	Max	Units
	Receiver input impedance		10	-	-	KΩ
	Differential squelch voltage	10BASE-T mode	300	400	500	mV
	Common mode input voltage		2.97	3.3	3.63	V
	Maximum error-free cable length		100	-	-	meter

Table 55: 10/100M Ethernet PHY Receiver Spec

6.0 Package Information

80-pin LQFP Package

⁷ BSC stands for Basic Spacing between Centers. Please refer to JEDEC Standard 95, page 4.17 for details.

7.0 Ordering Information

Part Number	Description
AX11001 LF	128K bytes Flash memory, 80-pin LQFP lead Free package, commercial temperature range, 0 to 70 °C
AX11001 LI	128K bytes Flash memory, 80-pin LQFP lead free package, Industrial temperature range, -40 to 85 °C
AX11005 LF	512K bytes Flash memory, 80-pin LQFP lead Free package, commercial temperature range, 0 to 70°C
AX11005 LI	512K bytes Flash memory, 80-pin LQFP lead free package, Industrial temperature range, -40 to 85 °C

8.0 Revision History

Revision	Date	Comments
V1.0	2006/08/25	First release.
V1.1	2007/03/26	Added Tbuf and Tsu_sto value in section 5.4.2 I2C interface timing.
		Corrected Iol and Ioh value in section 5.1.4 and 5.1.5.
		Added new 80-pin TFBGA package information in section 1.3, 1.4, 6.0, 7.0.
		Added min value for T_{rise3} in section 5.3.
V1.2	2007/05/04	1. Corrected XTL25P pin type to O18 in section 1.4 Signal Description.
		2. Removed T2IF in Table 4 SFR Register Map.
V1.3	2007/12/20	1. Added Θ_{JC} and Θ_{JA} data in section 5.2.
		2. Added the device address (1010000b) information of the I2C Configuration EEPROM
		in section 3.1.
		3. Add the P2 register (offset 0xA0) in the Table 4.
V1.04	2008/06/06	1. Add the "US Patent Pending" string in the Features page.
V1.05	2008/07/30	1. Update the protocol support information in the Features page.
V1.06	2008/10/30	1. Updated the Trise3 timing information in Section 5.3.
		2. Added Figure 7 Low Speed PLC (Power Line Communication) to Ethernet Converter.
V1.07	2009/07/22	1. Removed AX11005 BF 80-pin TFBGA package related information in Features,
		Section 1.1, 1.3, 1.4, 5.2, 6, 7.
V1.08	2009/11/26	1. Updated the SPI related timing decription.
		2. Updated Table 9: On-chip Flash Memory Read Protection descption.
V1.09	2011/06/14	1. Added legal disclaimer description.

4F, No. 8, Hsin Ann Rd., HsinChu Science Park, HsinChu, Taiwan, R.O.C.

> TEL: 886-3-5799500 FAX: 886-3-5799558

Email: <u>support@asix.com.tw</u> Web: <u>http://www.asix.com.tw</u>