3-Terminal 200mA Positive Voltage Regulator #### ❖ GENERAL DESCRIPTION The AX78H05 of positive voltage Regulator is inexpensive, easy-to-use devices suitable for a multitude of applications that require a regulated supply of up to 200mA. Like their higher power AX78H05, this regulator feature internal current limiting and thermal shutdown making them remarkably rugged. No external components are required with the AX78H05 device in many applications. The device offer a substantial performance advantage over the traditional zener diode-resistor combination, as output impedance and quiescent current are substantially reduced. #### *** FEATURES** - Output Voltage : 5V - Output current up to 200mA - No external components required - Internal thermal overload protection - Internal short-circuit current limiting - Output transistor safe-area compensation - Output voltage offered in 4% tolerance #### **❖ PIN ASSIGNMENT** The package of AX78H05 is SOT89-3L; the pin assignment is given by: #### ❖ ORDER/MARKING INFORMATION ### ❖ ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted) | Characteristics | Symbol | Rating | Unit | |--------------------------------|------------------|------------------|------| | DC Input Voltage | V_{IN} | 35 | V | | Power Dissipation | P_{D} | Internal Limited | W | | Operating Junction Temperature | TJ | -40 ~ +125 | °C | | Storage Temperature Range | T _{STG} | -65 ~ + 150 | °C | #### ❖ ELECTRICAL CHARACTERISTICS $(V_{IN} = 10V, I_{OUT} = 40mA, 0^{\circ}C \le T_{J} \le 125^{\circ}C, C_{IN} = 0.33uF, C_{OUT} = 0.1uF$; unless otherwise specified.) | Characteristics | Symbol | Conditions | | Min | Тур | Max | Units | |---|--|---|--|------|-------|------|-------| | | | T _J =25 °C | | 4.80 | 5 | 5.20 | | | Output voltage V _{OUT} 7.5V≤V _{IN} ≤20V,
5mA≤I _{OUT} ≤100mA | | 4.75 | 5 | 5.25 | V | | | | Line Regulation | REGline | T _J =25 °C | $7.5V \le V_{\text{IN}} \le 20V$ $I_{\text{OUT}} = 100\text{mA}$ | - | 50 | 150 | | | Load Regulation | REGload | T _J =25 °C | 5mA≤I _{OUT} ≤100mA | - | 20 | 60 | mV | | | | | 5mA≤l _{OUT} ≤40mA | - | 10 | 30 | | | Quiescent Current | lq | I _{OUT} =0, T _J = 25 °C | | - | 3 | 6 | | | Quiescent Current Change | ۸۱۵ | $7.5V \le V_{IN} \le 20V$ | | - | 1 | 1.5 | mΑ | | | Δlq | 5mA≤ I _{OUT} ≤40mA | | - | - | 0.1 | | | Output Noise Voltage | Vn | 10 Hz \leq f \leq 100 KHz, T_J = 25 °C | | - | 40 | - | μV | | Ripple Rejection Ratio | P _{SRR} | f=120Hz, 7.5V≤ V _{IN} ≤20V | | 41 | 49 | - | dB | | Voltage Drop | Vdrop | I _{OUT} = 100mA, Tj=25°C | | - | 2 | - | V | | Peak Output Current | lo peak | T _J = 25°C | | - | 0.27 | - | Α | | Temperature Coefficient of Output Voltage | ΔV _{OUT} /
ΔT _J | I_{OUT} = 5mA, 0°C \leq T _J \leq 125°C | | - | -0.65 | - | mV/°C | Note1: Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible and thermal effects must be taken into account separately. Note2: This specification applies only for DC power dissipation permitted by absolute maximum ratings. #### APPLICATION CIRCUIT #### ❖ APPLICATION INFORMATION #### **Design Considerations** The AX78H05 of fixed voltage regulator is designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition. Internal Short Circuit protection limits the maximum current the circuit will pass. In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. The input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33uF or larger tantalum, Mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended. FIGURE 1 - Current Regulator The AX78H05 regulator can also be used as a current source when connected as above. In order to minimize dissipation the AX78H05 is chosen in this application. Resistor R determines the current as follows: $$lo = \frac{5.0V}{R} + l_B$$ I_{IB}=3.8mA over lined and load changes For example, a 200mA current source would require R to be a 25 Ω . 5W resistor and the output voltage compliance would be the input voltage less 7.5V. ## *** PACKAGE OUTLINES** | Symbol | Dimensions in Millimeters | | | Dimensions in Inches | | | | |--------|---------------------------|---------|------|----------------------|-----------|-------|--| | | Min. | Nom. | Max. | Min. | Nom. | Max. | | | Α | 1.40 | 1.50 | 1.60 | 0.055 | 0.059 | 0.063 | | | b | 0.36 | 0.42 | 0.48 | 0.014 | 0.017 | 0.019 | | | b1 | 0.44 | 0.50 | 0.56 | 0.017 | 0.02 | 0.022 | | | С | 0.35 | 0.40 | 0.44 | 0.014 | 0.016 | 0.017 | | | D | 4.40 | 4.50 | 4.60 | 0.173 | 0.177 | 0.181 | | | D1 | 1.35 | 1.59 | 1.83 | 0.053 | 0.063 | 0.072 | | | е | | 3.0 BSC | | | 0.118 BSC | | | | e1 | | 1.5 BSC | | | 0.059 BSC | | | | Е | 2.29 | 2.45 | 2.60 | 0.09 | 0.097 | 0.102 | | | HE | 3.94 | 4.10 | 4.25 | 0.155 | 0.161 | 0.167 | | | L | 0.80 | 1.00 | 1.20 | 0.031 | 0.04 | 0.047 | | JEDEC outline: TO-243 AB