

Low-pin-count

USB 2.0 to 10/100M Fast Ethernet Controller

Features

- Single chip USB 2.0 to 10/100M Fast Ethernet controller AX88772A
- Single chip USB 2.0 to MII, single chip MII to Ethernet and USB Bridging controller in Dual-PHY mode (US Patent Pending) – AX88172A

USB Device Interface

- Integrates on-chip USB 2.0 transceiver and SIE compliant to USB Spec 1.1 and 2.0
- Supports USB Full and High Speed modes with Bus-Power or Self-Power capability
- Supports 4 or 6 programmable endpoints on USB interface
- High performance packet transfer rate over USB bus using proprietary burst transfer mechanism (US Patent Approval)
- Supports USB to Ethernet bridging or vice versa in hardware

Fast Ethernet Controller

- Integrates 10/100Mbps Fast Ethernet MAC/PHY
- IEEE 802.3 10BASE-T/100BASE-TX compatible
- Supports twisted pair crossover detection and auto-correction (HP Auto-MDIX)
- Embedded 16KB SRAM for RX packet buffering and 8KB SRAM for TX packet buffering
- Supports both Full-duplex with flow control and Half-duplex with backpressure operation
- Supports 2 VLAN ID filtering, received VLAN Tag (4 bytes) can be stripped off or preserved
- MAC/PHY loop-back diagnostic capability

Support Wake-on-LAN Function

Supports Suspend Mode and Remote Wakeup via Link-up, Magic packet, MS wakeup frame and external pin

Document No: AX88x72A/V1.08/12/13/11

Optional PHY power down during Suspend Mode

Versatile External Media Interface

- Optional MII interface in MAC mode allows AX88172A to work with external 100BASE-FX Ethernet PHY or HomePNA PHY
- Optional Reverse-MII or Reverse-RMII interface in PHY mode allows AX88172A to work with external HomePlug PHY or glueless MAC-to-MAC connections
- Optional Reverse-MII interface in Dual-PHY mode allows AX88172A to act as an Ethernet PHY or USB 2.0 PHY for external MAC device that needs Ethernet and USB in system application
- Supports 256/512 bytes (93c56/93c66) of serial EEPROM (for storing USB Descriptors)
- Supports automatic loading of Ethernet ID, USB Descriptors and Adapter Configuration from EEPROM after power-on initialization
- Provides optional serial interface, I2C, SPI and UART
- Integrates on-chip voltage regulator and only requires a single 3.3V power supply
- 12MHz and 25Mhz clock input from either crystal or oscillator source
- Integrates on-chip power-on reset circuit
- Small form factor with 64-pin LQFP (AX88772A) or 80-pin TQFP (AX88172A) RoHS compliant package
- Operating temperature range: 0°C to 70°C.

*IEEE is a registered trademark of the Institute of Electrical and Electronic Engineers, Inc.

*All other trademarks and registered trademark are the property of their respective holders.

Product Description

The AX88772A/AX88172A Low-pin-count USB 2.0 to 10/100M Fast Ethernet controller is a high performance and highly integrated ASIC which enables low cost, small form factor, and simple plug-and-play Fast Ethernet network connection capability for desktops, notebook PC's, Ultra-Mobile PC's, docking stations, game consoles, digital-home appliances, and any embedded system using a standard USB port.

The AX88772A/AX88172A features a USB interface to communicate with a USB Host Controller and is compliant with USB specification V1.1 and V2.0. The AX88772A/AX88172A implements 10/100Mbps Ethernet LAN function based on IEEE802.3, and IEEE802.3u standards with 24KB of embedded SRAM for packet buffering. The AX88772A/AX88172A integrates an on-chip 10/100Mbps Ethernet PHY to simplify system design.

The AX88172A provides an optional External Media Interface (EMI) for external PHY or external MAC for different application purposes. The EMI can be a media-independent interface (MII) for implementing 100BASE-FX Ethernet or HomePNA functions. The EMI can also be a Reverse-MII or Reverse Reduced-MII (Reverse-RMII) for glueless MAC-to-MAC connections to any MCU with Ethernet MAC MII or RMII interface. In addition, the EMI can be configured to Dual-PHY mode allowing AX88172A to act as an Ethernet PHY or USB 2.0 PHY for external MAC device that needs Ethernet and USB interfaces in their system applications. The optional serial interface such as I2C, SPI, and UART are provided as a control channel from the USB Host Controller to communicate with the external MCU chip.

4F, NO.8, Hsin Ann Rd., Hsinchu Science Park, Hsin-Chu City, Taiwan, R.O.C. 300 TEL: 886-3-579-9500 FAX: 886-3-579-9558

Released Date: 12/13/2011

Target Applications

PC/Internet

Consumer Electronics

Figure 1 : Target Applications

Typical System Block Diagrams

Hosted by USB to operate with internal Ethernet PHY only

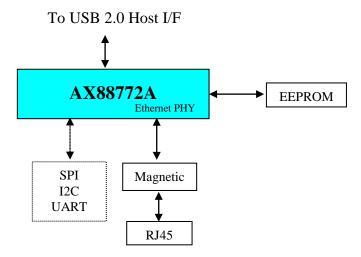


Figure 2 : USB 2.0 to LAN Adaptor (MAC mode)

• Hosted by USB to operate with either internal Ethernet PHY or EMI (in MAC mode)

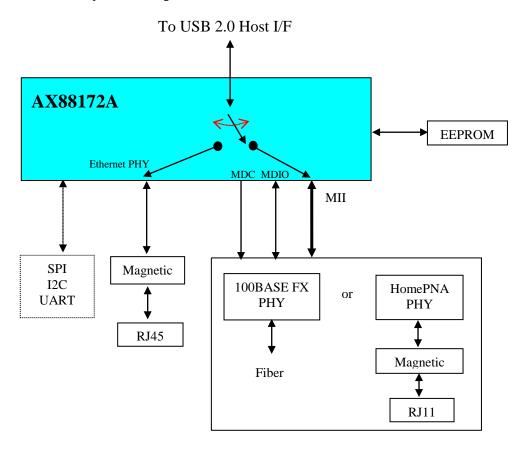


Figure 3 : USB 2.0 to Fast Ethernet and 100BASE-FX Fiber/HomePNA Combo (MAC mode)

 Hosted by USB to operate with either internal Ethernet PHY (in MAC mode) or EMI (in PHY mode)

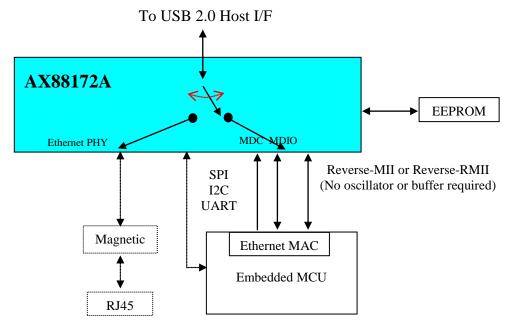


Figure 4 : Bridging Embedded MCU to USB 2.0 Host Interface (PHY mode)

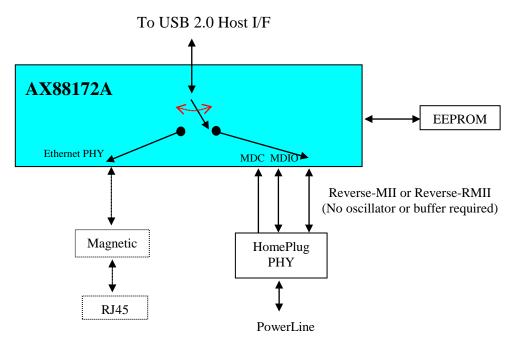


Figure 5 : USB 2.0 to HomePlug Adaptor (PHY mode)

• Hosted by EMI to operate with either internal Ethernet PHY or USB PHY (in Dual-PHY mode)

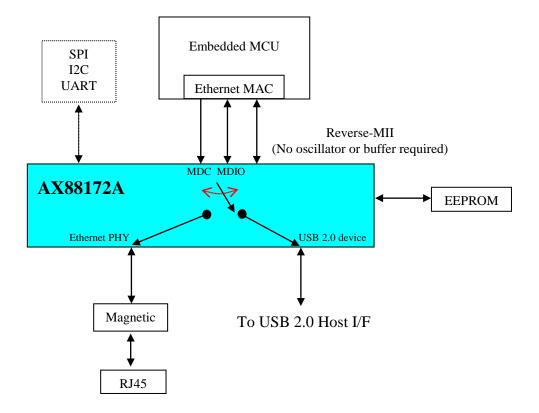
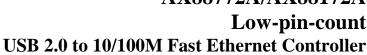


Figure 6 : Bridging Embedded MCU to either Ethernet PHY or USB 2.0 Interface

AX88772A/AX88172A Low-pin-count USB 2.0 to 10/100M Fast Ethernet Controller

Copyright © 2006-2011 ASIX Electronics Corporation. All rights reserved.

DISCLAIMER


No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express written permission of ASIX. ASIX may make changes to the product specifications and descriptions in this document at any time, without notice.

ASIX provides this document "as is" without warranty of any kind, either expressed or implied, including without limitation warranties of merchantability, fitness for a particular purpose, and non-infringement.

Designers must not rely on the absence or characteristics of any features or registers marked "reserved", "undefined" or "NC". ASIX reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Always contact ASIX to get the latest document before starting a design of ASIX products.

TRADEMARKS

ASIX, the ASIX logo are registered trademarks of ASIX Electronics Corporation. All other trademarks are the property of their respective owners.

Table of Contents

1.0	INTRODUCTION	12
1.1	GENERAL DESCRIPTION	12
1.2	BLOCK DIAGRAM	
1.3	PINOUT DIAGRAM	
2.0	SIGNAL DESCRIPTION	17
2.1	AX88772A 64-PIN PINOUT DESCRIPTION	17
2.2	AX88172A 80-PIN PINOUT DESCRIPTION	
2.3	HARDWARE SETTING FOR OPERATION MODE AND MULTI-FUNCTION PINS	
3.0	FUNCTION DESCRIPTION	24
3.1	USB Core and Interface	24
3.2	10/100M ETHERNET PHY	24
3.3	MAC CORE	24
3.4	OPERATION MODE	25
3.5	STATION MANAGEMENT (STA)	29
3.6	Memory Arbiter	
3.7	USB TO ETHERNET BRIDGE	31
3.8	Serial EEPROM Loader	
3.9	GENERAL PURPOSE I/O	
3.10		
3.11		
3.12		
3.13	3 VOLTAGE REGULATOR	34
4.0	SERIAL EEPROM MEMORY MAP	35
4.1	DETAILED DESCRIPTION	36
5.0	USB CONFIGURATION STRUCTURE	39
5.1	USB Configuration	39
5.2	USB Interface	
5.3	USB ENDPOINTS	
6.0	USB COMMANDS	40
6.1	USB Standard Commands	40
6.2	USB VENDOR COMMANDS	41
6	.2.1 Detailed Register Description	
	6.2.1.1 Rx/Tx SRAM Read Register (02h, read only)	42
	6.2.1.2 Rx/Tx SRAM Write Register (03h, write only)	
	6.2.1.3 Software Station Management Control Register (06h, write only)	43
	6.2.1.4 PHY Read Register (07h, read only)	43
	6.2.1.5 PHY Write Register (08h, write only)	43
	6.2.1.6 Station Management Status Register (09h, read only)	
	6.2.1.7 Hardware Station Management Control Register (0Ah, write only)	44
	6.2.1.8 SROM Read Register (0Bh, read only)	
	6.2.1.9 SROM Write Register (0Ch, write only)	
	6.2.1.10 Write SROM Enable (0Dh, write only)	
	6.2.1.11 Write SROM Disable (0Eh, write only)	
	6.2.1.12 Rx Control Register (0Fh, read only and 10h, write only)	
	6.2.1.13 IPG/IPG1/IPG2 Control Register (11h, read only and 12h, write only)	
	6.2.1.14 Node ID Register (13h, read only and 14h, write only)	
	6.2.1.15 Multicast Filter Array (15h, read only and 16h, write only)	
	6.2.1.16 Test Register (17h, write only)	
	6.2.1.17 Ethernet / HomePNA PHY Address Register (19h, read only)	
	6.2.1.18 Medium Status Register (1Ah, read only) and Medium Mode Register (1Bh, write only)	49

Low-pin-count

6.2	.1.19 Monitor Mode Status Register (1Ch, read only)	50
	.1.20 Monitor Mode Register (1Dh, write only)	
6.2	.1.21 GPIO Status Register (1Eh, read only)	
6.2	.1.22 GPIO Register (1Fh, write only)	
6.2	.1.23 Software Reset Register (20h, write only)	54
6.2	.1.24 Software Interface Selection Status Register (21h, read only) and Software Inte	erface Selection
Re	gister (22h, write only)	
6.2	.1.25 Wake-up Frame Array Register (23h, read only and 24h, write only)	
	.1.26 Jam Limit Count Register (25h, read only and 26h write only)	
6.2	.1.27 VLAN Control Register (27h, read only) and (28h, write only)	
6.2.2	Command Block Wrapper for Serial Interface	
	.2.1 UART controller	
	.2.2 I2C controller	
	.2.3 SPI controller	
6.3	NTERRUPT ENDPOINT	78
7.0 EM	IBEDDED ETHERNET PHY REGISTER DESCRIPTION	79
	PHY REGISTER DETAILED DESCRIPTION	
7.1.1	Basic Mode Control Register (BMCR)	
7.1.1	Basic Mode Status Register (BMSR)	
7.1.2	PHY Identifier Register 1	
7.1.3	PHY Identifier Register 2	
7.1.5	Auto Negotiation Advertisement Register (ANAR)	
7.1.6	Auto Negotiation Link Partner Ability Register (ANLPAR)	
7.1.7	Auto Negotiation Expansion Register (ANER)	
8.0 ST	ATION MANAGEMENT REGISTERS IN PHY/DUAL-PHY MODE	84
8.1 l	PHY/DUAL-PHY MODE DETAILED REGISTER DESCRIPTION	85
8.1.1	PHY Mode Basic Mode Control Register (PM_BMCR)	85
8.1.2	PHY Mode Basic Mode Status Register (PM_BMSR)	86
8.1.3	PHY Mode PHY Identifier Register 1	87
8.1.4	PHY Mode PHY Identifier Register 2	87
8.1.5	PHY Mode Auto Negotiation Advertisement Register (PM_ANAR)	
8.1.6	PHY Mode Auto Negotiation Link Partner Ability Register (PM_ANLPAR)	
8.1.7	PHY Mode Auto Negotiation Expansion Register (PM_ANER)	
8.1.8	PHY Mode Control Register (PM_Control)	89
9.0 EL	ECTRICAL SPECIFICATIONS	90
	OC CHARACTERISTICS	
9.1.1	Absolute Maximum Ratings	
9.1.2 9.1.3	Recommended Operating ConditionLeakage Current and Capacitance	
9.1.3 9.1.4	DC Characteristics of 3.3V I/O Pins	
9.1.4 9.1.5	DC Characteristics of 3.3V with 5V Tolerance I/O Pins	
9.1.5	DC Characteristics of Voltage Regulator	
	Power Consumption	
	Power-up Sequence	
	AC TIMING CHARACTERISTICS	
9.4.1	Clock Timing	
9.4.2	Reset Timing	
9.4.3	Serial EEPROM Timing	
9.4.4	MII Timing	
9.4.5	Station Management Timing	
9.4.6	Reverse-MII Timing	
9.4.7	Reverse-RMII Timing	101
9.4.8	I2C Interface Timing	102
9.4.9	SPI Interface Timing	
9.4.10	0 10/100M Ethernet PHY Interface Timing	

Low-pin-count

9.4	4.11 USB Transceiver Interface Timing	
10.0	PACKAGE INFORMATION	108
10.1	AX88772A 64-PIN LQFP PACKAGE	108
	AX88172A 80-PIN TQFP PACKAGE	
11.0	ORDERING INFORMATION	110
12.0	REVISION HISTORY	111
APPEN	NDIX A. DEFAULT WAKE-ON-LAN (WOL) READY MODE	113
A DDEN	NDIV B ETHEDNET DUV DAWED AND DESET CONTDAI	116

Low-pin-count USB 2.0 to 10/100M Fast Ethernet Controller

List of Figures

FIGURE 1	: Target Applications	2
FIGURE 2	: USB 2.0 TO LAN ADAPTOR (MAC MODE)	3
FIGURE 3	: USB 2.0 TO FAST ETHERNET AND 100BASE-FX FIBER/HOMEPNA COMBO (MAC MODE)	3
FIGURE 4	: BRIDGING EMBEDDED MCU TO USB 2.0 HOST INTERFACE (PHY MODE)	4
FIGURE 5	: USB 2.0 TO HOMEPLUG ADAPTOR (PHY MODE)	4
FIGURE 6	: BRIDGING EMBEDDED MCU TO EITHER ETHERNET PHY OR USB 2.0 INTERFACE	5
FIGURE 7	: AX88772A/AX88172A BLOCK DIAGRAM	
FIGURE 8	: AX88772A PINOUT DIAGRAM (MAC MODE WITHOUT MII)	13
FIGURE 9	: AX88172A PINOUT DIAGRAM (MAC MODE WITH MII)	
FIGURE 10	: AX88172A PINOUT DIAGRAM (PHY/DUAL-PHY MODE WITH REVERSE-MII)	15
FIGURE 11	: AX88172A PINOUT DIAGRAM (PHY MODE WITH REVERSE-RMII)	16
FIGURE 12	: INTERNAL DATA PATH DIAGRAM OF 10/100M ETHERNET PHY AND MII INTERFACE	24
FIGURE 13	: AX88172A MII INTERFACE TO EXTERNAL ETHERNET/100BASE-FX/HOMEPNA PHY	26
FIGURE 14	: AX88172A REVERSE-MII INTERFACE TO EXTERNAL MAC DEVICE	
FIGURE 15	: AX88172A REVERSE-RMII INTERFACE TO EXTERNAL MAC DEVICE (REFCLK_O IS N.C.)	28
FIGURE 16	: AX88172A REVERSE-RMII INTERFACE TO EXTERNAL MAC DEVICE (REFCLK_O SUPPLIES TO B	HTO
REF_0	CLK)	28
FIGURE 17	: INTERNAL CONTROL MUX OF STATION MANAGEMENT INTERFACE IN MAC MODE	29
FIGURE 18	: INTERNAL CONTROL MUX OF STATION MANAGEMENT INTERFACE IN PHY MODE	30
FIGURE 19	: INTERNAL CONTROL MUX OF STATION MANAGEMENT INTERFACE IN DUAL-PHY MODE	30
FIGURE 20	: ONE EXTERNAL 1M OHM RESISTOR ON 25MHZ CRYSTAL OSCILLATOR IS NECESSARY	33
FIGURE 21	: WATER LEVEL SETTING FOR FLOW CONTROL	38
FIGURE 22	: Multicast Filter Example	
FIGURE 23	: MULTICAST FILTER ARRAY HASHING ALGORITHM	47
FIGURE 24	: MULTICAST FILTER ARRAY BIT MAPPING	
FIGURE 25	: RESET AND POWER-DOWN CONTROL INTERNAL ETHERNET PHY	
FIGURE 26	: 802.1q VLAN Packet Format	
FIGURE 27	: Command/Data/Status Flow	
FIGURE 28	: Transmitting Data to an I2C Slave Device	
FIGURE 29	: I2C Read Data	
FIGURE 30	: SPI TIMING MODE DIAGRAM	
FIGURE 31	: STATION MANAGEMENT FRAME FOR PHY/DUAL-PHY MODE WITH REVERSE-MII/RMII	
FIGURE 32	: ETHERNET PHY OSCILLATOR/PLL BLOCK DIAGRAM	116
FIGURE 33	: ETHERNET PHY POWER-UP & RESET TIMING DIAGRAM	117

AX88772A/AX88172A Low-pin-count

USB 2.0 to 10/100M Fast Ethernet Controller

List of Tables

TABLE 1	: AX88772A 64-PIN PINOUT DESCRIPTION	17
TABLE 2	: AX88172A 80-PIN PINOUT DESCRIPTION	19
TABLE 3	: AX88x72A PHY_ID DEFINITION SOURCE	26
TABLE 4	: THE EXTERNAL 25MHZ AND 12MHZ CRYSTAL UNITS SPECIFICATIONS	32
TABLE 5	: SERIAL EEPROM MEMORY MAP	35
TABLE 6	: USB STANDARD COMMAND REGISTER MAP	40
TABLE 7	: USB VENDOR COMMAND REGISTER MAP	41
TABLE 8	: REMOTE WAKEUP TRUTH TABLE	51
TABLE 9	: REMOTE WAKEUP BY LINK UP FOR ALL MODES	52
TABLE 10	: INTERFACE SELECTION TRUTH TABLE	55
TABLE 11	: WAKE-UP FRAME ARRAY REGISTER (WUD3~0) STRUCTURE DEFINITION	56
TABLE 12	: VID1, VID2 SETTING TO FILTER RECEIVED PACKET	58
TABLE 13	: UART CONTROLLER REGISTER MAP	
TABLE 14	: I2C CONTROLLER REGISTER MAP	
TABLE 15	: SPI CONTROLLER REGISTER MAP	
TABLE 16	: Embedded Ethernet PHY Register Map	79
TABLE 17	: STATION MANAGEMENT REGISTER MAP IN PHY/DUAL-PHY MODE WITH REVERSE-MII/RMII	84
TARLE 18	· POWER CONSUMPTION	94

1.0 Introduction

1.1 General Description

The AX88772A/AX88172A Low-pin-count USB 2.0 to 10/100M Fast Ethernet controller is a high performance and highly integrated ASIC which enables low cost, small form factor, and simple plug-and-play Fast Ethernet network connection capability for desktops, notebook PC's, Ultra-Mobile PC's, docking stations, game consoles, digital-home appliances, and any embedded system using a standard USB port.

The AX88772A/AX88172A features a USB interface to communicate with a USB Host Controller and is compliant with USB specification V1.1 and V2.0. The AX88772A/AX88172A implements a 10/100Mbps Ethernet LAN function based on IEEE802.3, and IEEE802.3u standards with 24KB of embedded SRAM for packet buffering. The AX88772A/AX88172A integrates an on-chip 10/100Mbps Ethernet PHY to simplify system design.

The AX88172A provides an optional External Media Interface (EMI) for external PHY or external MAC for different application purposes. The EMI can be a media-independent interface (MII) for implementing 100BASE-FX Ethernet or HomePNA functions. The EMI can also be a Reverse-MII or Reverse Reduced-MII (Reverse-RMII) for glueless MAC-to-MAC connections to any MCU with Ethernet MAC MII or RMII interface. In addition, the EMI can be configured to Dual-PHY mode allowing AX88172A to act as an Ethernet PHY or USB 2.0 PHY for external MAC device that needs Ethernet and USB interfaces in their system applications. The optional serial interface such as I2C, SPI, and UART are provided as a control channel from the USB Host Controller to communicate with the external MCU chip.

The AX88772A/AX88172A needs 12MHz clock for USB operation and 25Mhz clock for Fast Ethernet operation. The AX88772A is housed in the 64-pin LQFP and the AX88172A is housed in the 80-pin TQFP RoHS compliant package.

1.2 Block Diagram

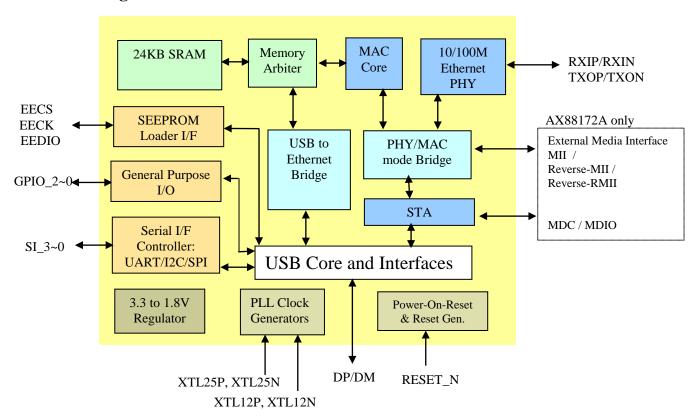


Figure 7 : AX88772A/AX88172A Block Diagram

1.3 Pinout Diagram

• AX88772A in 64-pin LQFP package

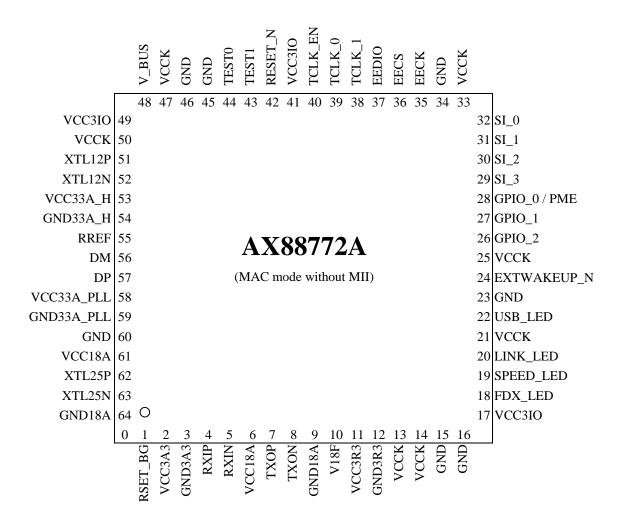


Figure 8 : AX88772A Pinout Diagram (MAC mode without MII)

• AX88172A in 80-pin TQFP package - MAC mode with MII

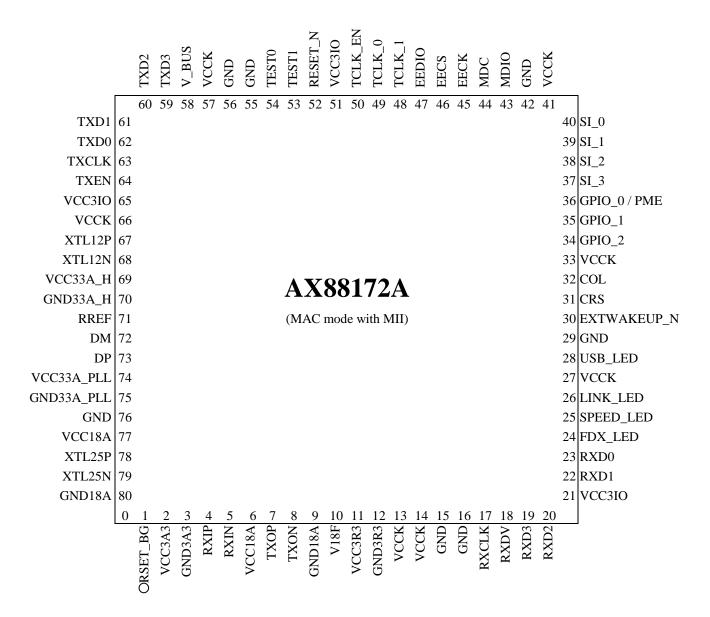


Figure 9 : AX88172A Pinout Diagram (MAC mode with MII)

• AX88172A in 80-pin TQFP package – PHY/Dual-PHY mode with Reverse-MII

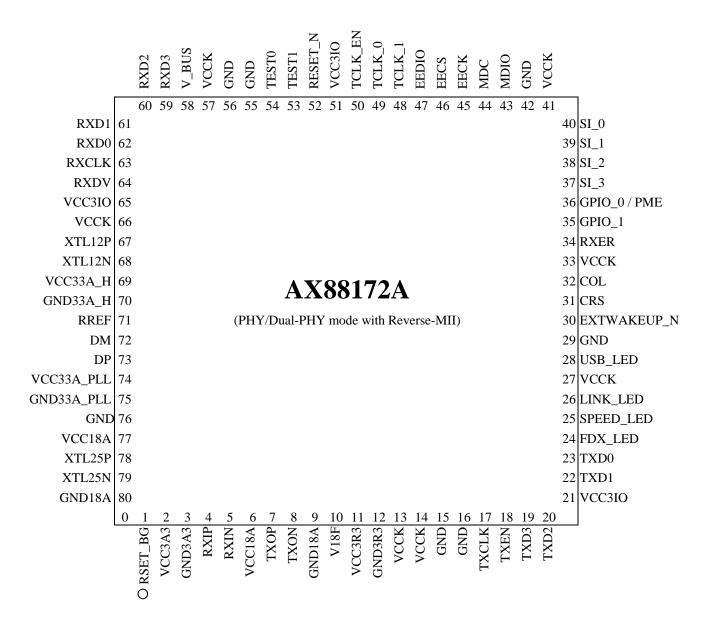


Figure 10: AX88172A Pinout Diagram (PHY/Dual-PHY mode with Reverse-MII)

AX88172A in 80-pin TQFP package - PHY mode with Reverse-RMII

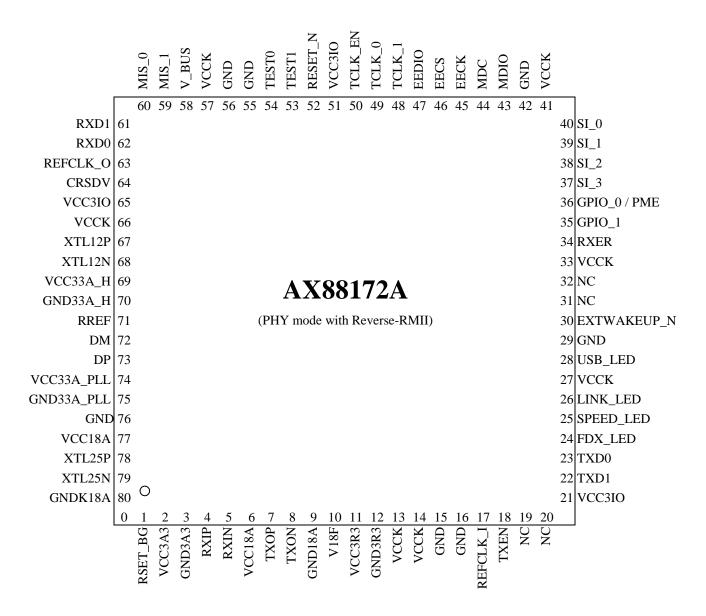


Figure 11: AX88172A Pinout Diagram (PHY mode with Reverse-RMII)

2.0 Signal Description

The following abbreviations apply to the following pin description table.

I18	Input, 1.8V	AO	Analog Output
13	Input, 3.3V	AB	Analog Bi-directional I/O
I 5	Input, 3.3V with 5V tolerant	\mathbf{PU}	Internal Pull Up (75K)
O3	Output, 3.3V	PD	Internal Pull Down (75K)
O5	Output, 3.3V with 5V tolerant	P	Power Pin
B5	Bi-directional I/O, 3.3V with 5V	S	Schmitt Trigger
	tolerant	T	Tri-stateable

AI Analog Input

Note: Every output or bi-directional I/O pin is 8mA driving strength.

2.1 AX88772A 64-pin Pinout Description

Table 1 : AX88772A 64-pin Pinout Description

Table 1 . AX88772A 04-pin I mout Description							
Pin Name	Type	Pin No	Pin Description				
	USB Interface						
DP	AB	57	USB 2.0 data positive pin.				
DM	AB	56	USB 2.0 data negative pin.				
VBUS	I5/PD/S	48	VBUS pin input. Please connect to USB bus power.				
XTL12P	I3	51	12Mhz ±0.005% crystal or oscillator clock input. This clock is needed for				
			USB PHY transceiver to operate.				
XTL12N	O3	52	12Mhz crystal or oscillator clock output.				
RREF	AI	55	For USB PHY's internal biasing. Please connect to analog GND through a				
			resistor (12.1Kohm ±1%).				
			Serial EEPROM Interface				
EECK	B5/PD/	35	EEPROM Clock. EECK is an output clock to EEPROM to provide timing				
	T		reference for the transfer of EECS, and EEDIO signals. EECK only drive				
			high / low when access EEPROM otherwise keep at tri-state and internal				
			pull-down.				
EECS	B5/PD/	36	EEPROM Chip Select. EECS is asserted high synchronously with respect to				
	T		rising edge of EECK as chip select signal. EECS only drive high / low when				
			access EEPROM otherwise keep at tri-state and internal pull-down.				
EEDIO	B5/PU/	37	EEPROM Data In. EEDIO is the serial output data to EEPROM's data input				
	T		pin and is synchronous with respect to the rising edge of EECK. EEDIO only				
			drive high / low when access EEPROM otherwise keep at tri-state and				
			internal pull-up.				
		1	Ethernet PHY Interface				
XTL25P	I18	62	$25 \text{Mhz} \pm 0.005\%$ crystal or oscillator clock input. This clock is needed for				
			the embedded 10/100M Ethernet PHY to operate.				
XTL25N	O18	63	25Mhz crystal or oscillator clock output.				
RXIP	AB	4	Receive data input positive pin for both 10BASE-T and 100BASE-TX.				
RXIN	AB	5	Receive data input negative pin for both 10BASE-T and 100BASE-TX.				
TXOP	AB	7	Transmit data output positive pin for both 10BASE-T and 100 BASE-TX				
TXON	AB	8	Transmit data output negative pin for both 10BASE-T and 100 BASE-TX				
RSET_BG	AO	1	For Ethernet PHY's internal biasing. Please connect to GND through a				
			12.1Kohm ±1% resistor.				
LINK_LED	O5	20	Link status LED indicator. This pin drives low continuously when the				
			Ethernet link is up and drives low and high in turn (blinking) when Ethernet				
			PHY is in receiving or transmitting state.				

Low-pin-count

FDX_LED	O5	18		blex and collision detected LED indicator. This pin drives low when
				rnet PHY is in full-duplex mode and drives high when in half duplex
				When in half duplex mode and the Ethernet PHY detects collision, it
SPEED_LED	O5	19		lriven low (or blinking). speed LED indicator. This pin drives low when the Ethernet PHY is
SPEED_LED	U3	19		ASE-TX mode and drives high when in 10BASE-T mode.
			III TOOD.	Misc. Pins
RESET_N	I5/PU/S	42	Chin res	set input. Active low. This is the external reset source used to reset
KESET_IV	13/1 0/5	72		b. This input feeds to the internal power-on reset circuitry, which
				s the main reset source of this chip. After completing reset, EEPROM
				be loaded automatically.
EXTWAKEUP_N	I5/PU/S	24		wakeup trigger from external pin. EXTWAKEUP_N should be
				low for more than 2 cycles of 12MHz clock to be effective.
GPIO_2	B5/PD	26		Purpose Input/ Output Pin 2.
GPIO_1	B5/PD	27	General	Purpose Input/ Output Pin 1. This pin is default as input pin after
1			power-o	n reset. This pin is also for Default WOL Ready Mode setting
				efer to section 2.3 Settings.
GPIO_0/PME	B5/PD	28		Purpose Input/ Output Pin 0 or PME (Power Management Event)
				is default as input pin after power-on reset. GPIO_0 also can be
				as PME output to indicate wake up event detected. Please refer to
				2.3 Settings.
SI_3	B5/PU	29		RX or SPI_MISO. This is a multi-function pin determined by
				M Flag [1] setting. Please refer to section 2.3 Settings.
SI_2	B5/PU	30		TX or SPI_MOSI. This is a multi-function pin determined by
GY 4	D # (D) X	2.1		M Flag [1] setting. Please refer to section 2.3 Settings.
SI_1	B5/PU	31		A or SPI_SS. This is a multi-function pin determined by EEPRON
ar o	D.C./DIX	22		setting. Please refer to section 2.3 Settings.
SI_0	B5/PU	32		LK or SPI_SCLK. This is a multi-function pin determined by
USB_LED	O5	22		M Flag [1] setting. Please refer to section 2.3 Settings. eed indicator: When USB bus is in Full speed, this pin drives high
USB_LED	03	22		busly. When USB bus is in High speed, this pin drives low
				ously. This pin drives high and low in turn (blinking) to indicate TX
				nsfer going on whenever the host controller sends bulk out data
			transfer.	
TEST0	I5/S	44	Test pin	. For normal operation, user should connect to ground.
TEST1	I5/S	43		For normal operation, user should connect to ground.
TCLK_EN	I5/PD/S	40		. For normal operation, user should keep this pin NC.
TCLK_0	I5/PD	39	Test pin.	. For normal operation, user should keep this pin NC.
TCLK_1	I5/PD	38		. For normal operation, user should keep this pin NC.
			C	On-chip Regulator Pins
VCC3R3	P	11	3.3V Po	wer supply to on-chip 3.3V to 1.8V voltage regulator.
GND3R3	P	12	Ground	pin of on-chip 3.3V to 1.8V voltage regulator.
V18F	P	10	1.8V vo	ltage output of on-chip 3.3V to 1.8V voltage regulator.
				ower and Ground Pins
VCCK	P	13, 14	, 21, 25,	Digital Core Power. 1.8V.
		33, 4	17, 50	
VCC3IO	P		11, 49	Digital I/O Power. 3.3V.
GND	P	-	, 23, 34,	Digital Ground.
			16, 60	
VCC33A_H	P	53		Analog Power for USB transceiver. 3.3V.
GND33A_H	P	54		Analog Ground for USB transceiver.
VCC33A_PLL	P	58		Analog Power for USB PLL. 3.3V.
	P	59		Analog Ground for USB PLL.
GND33A_PLL		2		
VCC3A3	P			Analog Power for Ethernet PHY bandgap. 3.3V.
VCC3A3 GND3A3	P		3	Analog Ground for Ethernet PHY.
VCC3A3				

2.2 AX88172A 80-pin Pinout Description

Table 2 : AX88172A 80-pin Pinout Description

Pin Name	Type	Pin No	Pin Description
			USB Interface
DP	AB	73	USB 2.0 data positive pin.
DM	AB	72	USB 2.0 data negative pin.
VBUS	I5/PD/S	58	VBUS pin input. Please connect to USB bus power.
XTL12P	I3	67	12Mhz ±0.003% crystal or oscillator clock input. This clock is needed for
			USB PHY transceiver to operate.
XTL12N	O3	68	12Mhz crystal or oscillator clock output.
RREF	AI	71	For USB PHY's internal biasing. Please connect to analog GND through a
			resistor (12.1Kohm ±1%).
			Serial EEPROM Interface
EECK	B5/PD/	45	EEPROM Clock. EECK is an output clock to EEPROM to provide timing
	T		reference for the transfer of EECS, and EEDIO signals. EECK only drive
			high / low when access EEPROM otherwise keep at tri-state and internal
			pull-down.
EECS	B5/PD/	46	EEPROM Chip Select. EECS is asserted high synchronously with respect
	T		to rising edge of EECK as chip select signal. EECS only drive high / low
			when access EEPROM otherwise keep at tri-state and internal pull-down.
EEDIO	B5/PU/	47	EEPROM Data In. EEDIO is the serial output data to EEPROM's data
	T		input pin and is synchronous with respect to the rising edge of EECK.
			EEDIO only drive high / low when access EEPROM otherwise keep at
			tri-state and internal pull-up.
TITTE OF D	710		Ethernet PHY Interface
XTL25P	I18	78	$25 \text{Mhz} \pm 0.005\%$ crystal or oscillator clock input. This clock is needed for
			the embedded 10/100M Ethernet PHY to operate.
XTL25N	O18	79	25Mhz crystal or oscillator clock output.
RXIP	AB	4	Receive data input positive pin for both 10BASE-T and 100BASE-TX.
RXIN	AB	5	Receive data input negative pin for both 10BASE-T and 100BASE-TX.
TXOP	AB	7	Transmit data output positive pin for both 10BASE-T and 100 BASE-TX
TXON	AB	8	Transmit data output negative pin for both 10BASE-T and 100 BASE-TX
RSET_BG	AO	1	For Ethernet PHY's internal biasing. Please connect to GND through a
			12.1Kohm ±1% resistor.
LINK_LED	O5	26	Link status LED indicator. This pin drives low continuously when the
			Ethernet link is up and drives low and high in turn (blinking) when Ethernet
	0.7		PHY is in receiving or transmitting state.
FDX_LED	O5	24	Full Duplex and collision detected LED indicator. This pin drives low
			when the Ethernet PHY is in full-duplex mode and drives high when in half
			duplex mode. When in half duplex mode and the Ethernet PHY detects
CDEED LED	0.5	2.5	collision, it will be driven low (or blinking).
SPEED_LED	O5	25	Ethernet speed LED indicator. This pin drives low when the Ethernet PHY
			is in 100BASE-TX mode and drives high when in 10BASE-T mode.
DECET N	IE/DII/G	50	Misc. Pins
RESET_N	I5/PU/S	52	Chip Reset Input. RESET_N pin is active low. When asserted, it puts the
			entire chip into reset state immediately. After completing reset, EEPROM
EXTWAREID N	IE/DII/C	20	data will be loaded automatically.
EXTWAKEUP_N	I5/PU/S	30	Remote-wakeup trigger from external pin. EXTWAKEUP_N should be
CDIO 1/DVED	D 5 /DD	24	asserted low for more than 2 cycles of 12MHz clock to be effective.
GPIO_2 / RXER	B5/PD	34	General Purpose Input/ Output Pin 2. This pin is GPIO_2 in MAC mode,
			but it will be redefined as RXER (receive error) or GPIO_2 depending on
			EEPROM Flag [3] (4.1.2) in PHY/Dual-PHY mode.

Low-pin-count

GPIO_1	B5/PD	35	Genera	al Purpose Input/ Output Pin 1. This pin is default as input pin after
				on reset. This pin is also for Default WOL Ready Mode setting;
				refer to section 2.3 Settings.
GPIO_0 / PME	B5/PD	36		al Purpose Input/ Output Pin 0 or PME (Power Management Event).
_ , , , , , , , , , , , , , , , , , , ,				in is default as input pin after power-on reset. GPIO_0 also can be
				d as PME output to indicate wake up event detected. Please refer to
				2.3 Settings.
SI_3	B5/PU	37		_RX or SPI_MISO. This is a multi-function pin determined by
			EEPRO	OM Flag [1] setting. Please refer to section 2.3 Settings.
SI_2	B5/PU	38	UART	_TX or SPI_MOSI. This is a multi-function pin determined by
				OM Flag [1] setting. Please refer to section 2.3 Settings.
SI_1	B5/PU	39		DA or SPI_SS. This is a multi-function pin determined by EEPROM
] setting. Please refer to section 2.3 Settings.
SI_0	B5/PU	40		CLK or SPI_SCLK. This is a multi-function pin determined by
				OM Flag [1] setting. Please refer to section 2.3 Settings.
USB_LED	O5	28		peed indicator: When USB bus is in Full speed, this pin drives high
				lously. When USB bus is in High speed, this pin drives low
				lously. This pin drives high and low in turn (blinking) to indicate TX
				ansfer going on whenever the host controller sends bulk out data
			transfe	
TEST0	I5/S	54		n. For normal operation, user should connect to ground.
TEST1	I5/S	53		n. For normal operation, user should connect to ground.
TCLK_EN	I5/PD/S	50		n. For normal operation, user should keep this pin NC.
TCLK_0	I5/PD	49		n. For normal operation, user should keep this pin NC.
TCLK_1	I5/PD	48		n. For normal operation, user should keep this pin NC.
	-			n-chip Regulator Pins
VCC3R3	P	11		ower supply to on-chip 3.3V-to-1.8V voltage regulator.
GND3R3	P	12		d pin of on-chip 3.3V-to-1.8V voltage regulator.
V18F	P	10		oltage output of on-chip 3.3V-to-1.8V voltage regulator.
	T _			ower and Ground Pins
VCCK	P			Pigital Core Power. 1.8V.
MCCOLO	D	41, 57,		2. 2. 11/O.D.
VCC3IO	P	21, 51,		Digital I/O Power. 3.3V.
GND	P			Pigital Ground.
VCC22A II	D	55, 56,		relea Denne for USD torresion 2.2V
VCC33A_H	P P	69		analog Power for USB transceiver. 3.3V.
GND33A_H		70		analog Ground for USB transceiver.
VCC33A_PLL	P			analog Power for USB PLL. 3.3V.
GND33A_PLL	P	75		analog Ground for USB PLL.
VCC3A3	P P	2		analog Power for Ethernet PHY bandgap. 3.3V.
GND3A3		3		analog Ground for Ethernet PHY.
VCC18A	P	6, 77		analog Power for Ethernet PHY and 25Mhz crystal oscillator. 1.8V.
GND18A	P	9, 80	A	analog Ground for Ethernet PHY and 25Mhz crystal oscillator.

	External Media Interface: MAC Mode with MII Interface					
RXCLK	XCLK I5/PD 17 Receive Clock. RXCLK is received from PHY to provide timing referen					
			for the transfer of RXD [3:0] and RXDV signals on receive direction of			
			MII interface.			
RXDV	I5/PD	18	Receive Data Valid. RXDV is asserted high when valid data is present on			
			RXD [3:0]. It is driven synchronously with respect to RXCLK by PHY.			
RXD [3:0]	I5/PD	19, 20,	Receive Data. RXD [3:0] is driven synchronously with respect to RXCLK			
		22, 23	by PHY.			
CRS	I5/PD	31	Carrier Sense. CRS is asserted high asynchronously by the PHY when			
			either transmit or receive medium is non-idle.			
COL	I5/PD	32	Collision. COL is driven high by PHY when the collision is detected.			

Low-pin-count

TXCLK	I5/PD	63	Transmit Clock. TXCLK is received from PHY to provide timing reference	
			for the transfer of TXD [3:0] and TXEN signals on transmit direction of	
			MII interface.	
TXEN	O3	64	Transmit Enable. TXEN is asserted high to indicate a valid TXD [3:0]. It is	
			transitioned synchronously with respect to the rising edge of TXCLK.	
TXD [3:0]	O3	59, 60,	Transmit Data. TXD [3:0] is transitioned synchronously with respect to the	
		61, 62	rising edge of TXCLK. Note TXD [3:2] are also used as Chip Operation	
			Mode selection pins; please refer to section 2.3 Settings.	
MDC	O3/PD	44	Station management clock output to PHY. All data transferred on MDIO	
			are synchronized to the rising edge of this clock. The frequency of MDC is	
			1.5MHz.	
MDIO	B5/PU	43	Station management data input/output. Serial data input/output transferred	
			from/to the PHYs. The transfer protocol conforms to the IEEE 802.3u MII	
			spec.	

	External M	edia Inter	face: PHY/Dual-PHY Mode with Reverse-MII Interface
TXCLK	O3/T	17	Transmit Clock. This clock is provided to supply to the TX_CLK of
			externally connected Ethernet MAC device with MII. This pin is tri-stated
			in isolate mode.
TXEN	I5/PD	18	Transmit enable. TXEN is asserted high to indicate a valid TXD [3:0]. It
			should be driven synchronously with respect to the rising edge of TXCLK
			by the externally connected Ethernet MAC device with MII.
TXD [3:0]	I5/PD	19, 20,	Transmit Data. TXD [3:0] should be driven synchronously with respect to
		22, 23	the rising edge of TXCLK by the externally connected Ethernet MAC
			device with MII.
CRS	O3/PD/T	31	Carrier Sense. CRS is asserted high by AX88172A when RXDV is asserted
			high in Reverse-MII mode. This pin is tri-stated in isolate mode.
COL	O3/PD/T	32	Collision. COL is always driven low because AX88172A is operating in
			100M/full-duplex mode internally in Reverse-MII mode. This pin is
			tri-stated in isolate mode.
RXER	O3/PD/T	34	Receive Error. RXER is always driven low by AX88172A in Reverse-MII
			mode. This pin is tri-stated in isolate mode.
RXCLK	O3/T	63	Receive clock. This clock is provided to supply to the RX_CLK of
			externally connected Ethernet MAC device with MII. This pin is tri-stated
			in isolate mode.
RXDV	O3/T	64	Receive Data Valid. RXDV is asserted high when valid data is present on
			RXD [3:0]. It is transitioned synchronously with respect to RXCLK from
			AX88172A to the externally connected Ethernet MAC device with MII.
			This pin is tri-stated in isolate mode.
RXD [3:0]	O3/T	59, 60,	Receive Data. RXD [3:0] is transitioned synchronously with respect to
		61, 62	RXCLK from AX88172A to the externally connected Ethernet MAC
			device with MII. Note that RXD [3:2] are also used as Chip Operation
			Mode selection pins. Please refer to section 2.3 Settings. These pins are
			tri-stated in isolate mode.
MDC	I5/PD	44	Station Management clock input from the externally connected Ethernet
			MAC device. All data transferred on MDIO are synchronized to the rising
			edge of this clock.
MDIO	B5/PU	43	Station Management Data. Serial data input/output transferred from/to the
			externally connected MAC device. The transfer protocol should conform
			to the IEEE 802.3u MII spec.

External Media Interface: PHY Mode with Reverse-RMII Interface							
REFCLK_I I5 17 50Mhz +/-50ppm Reference clock input for RMII receive, transmit and							
control signals. If externally connected Ethernet MAC device with RM							
can't provide 50Mhz Reference clock to AX88172A, then user can con-							
this pin to REFCLK_O and use REFCLK_O to supply clock to the		this pin to REFCLK_O and use REFCLK_O to supply clock to the					
	externally connected Ethernet MAC device at the same time.						

Low-pin-count

TXEN	I5/PD	18	Transmit Enable from the externally connected Ethernet MAC device with
			RMII.
TXD [1:0]	I5/PD	22, 23	Transmit Data from the externally connected Ethernet MAC device with
			RMII.
NC	I5/PD	19, 20	NC
NC	O3/PD	31, 32	NC
RXER	O3/PD/T	34	Receive Error. RXER is always driven low by AX88172A in
			Reverse-RMII mode. This pin is tri-stated in isolate mode.
MIS_1	I5/PD	59	External Media Interface Select 1. This is used as Chip Operation Mode
			selection pin; please refer to section 2.3 Settings.
MIS_0	I5/PD	60	External Media Interface Select 0. This is used as Chip Operation Mode
			selection pin; please refer to section 2.3 Settings.
REFCLK_O	O3	63	50Mhz Reference clock output. If the externally connected Ethernet MAC
			device can't supply 50Mhz reference clock, this clock can be used to
			supply to the REF_CLK of externally connected Ethernet MAC device
			with RMII and the REFCLK_I of this chip.
CRSDV	O3/T	64	Carrier Sense and Receive Data Valid to the externally connected Ethernet
			MAC device with RMII. This pin is tri-stated in isolate mode.
RXD [1:0]	O3/T	61, 62	Receive Data to the externally connected Ethernet MAC device with RMII.
			These pins are tri-stated in isolate mode.
MDC	I5/PD	44	Station Management clock input from the externally connected Ethernet
			MAC device. All data transferred on MDIO are synchronized to the rising
			edge of this clock.
MDIO	B5/PU	43	Station Management Data. Serial data input/output transferred from/to the
			externally connected MAC device. The transfer protocol should conform
			to the IEEE 802.3u MII spec.

2.3 Hardware Setting For Operation Mode And Multi-Function Pins

The following hardware settings define the desired function or interface modes of operation for some multi-function pins. The logic level shown on setting pin below is loaded from the chip I/O pins during power on reset based on the setting the pin's pulled-up (as logic '1') or pulled-down (as logic '0') resister on the schematic.

• Chip Operation Mode setting (applicable to AX88172A only):

Pin# 59, Pin #60	Opera	ation Modes	Remarks		
00 (default, Note 1)	MAC mode	Internal PHY	When SSEN = 0 in Software Interface Selection register		
01		External MII	(6.2.1.24), the Chip Operation Mode is determined by		
10	Dual-PHY mode	Reverse-MII	Pin# 59 and Pin #60 value of AX88172A package		
11		Reserved	pinout, which is called hardware setting (see Note 2).		

Note 1: The Pin# 59 and Pin# 60 settings are only applicable to the AX88172A. The AX88772A always defaults to MAC mode with internal PHY.

Note 2: The SSEN bit defaults to 0 after power on reset, meaning that the hardware setting is used to determine Chip Operation Mode during power on reset. Alternatively, after the AX88172A software driver writes SSEN to 1 during initialization, the Chip Operation Mode can be configured by the Software Interface Selection register vendor command (6.2.1.24).

• EECK pin: Force USB to Full Speed mode:

EECK	Description
0	Normal operation (default).
1	Force USB to Full Speed mode. External pull-up resistor must be 4.7Kohm.

 GPIO_1 pin: Determines whether this chip will go to Default WOL Ready Mode after power on reset. The WOL stands for Wake-On-LAN.

GPIO_1	Description
1	Enable Default WOL Ready Mode. Notice that the external pulled-up resistor must be 4.7Kohm.
	For more details, please refer to APPENDIX A. Default Wake-On-LAN (WOL) Ready Mode.
0	Normal operation mode (default, see Note 3).

Note 3: This is the default with internal pulled-down resistor and doesn't need an external one.

• EEPROM Flag [12]: Defines the multi-function pin GPIO 0 / PME

GPIO_0 is a general purpose I/O normally controlled by vendor commands. Users can change this pin to operate as a PME (Power Management Event) for remote wake up purpose. Please refer to 4.1.2 Flag of bit 12 (PME_PIN).

EEPROM Flag [1]: Defines the function of SI_[3:0] pins to be either SPI or I2C/UART

	EEPROM Flag [1]	Description				
1	SI_[3:0] pins are used as SPI	Pin Name	Function Pin Type in Master/Slave Mod			
	function pin	SI_0	SPI_SCLK	Output / Input		
		SI_1	SPI_SS	Output / Input		
		SI_2	SPI_MOSI Output / Input			
		SI_3	SPI_MISO	Input / Output		
0	SI_[3:0] pins are used as	SI_0		I2C_SCL		
	I2C/UART function pin	SI_1		I2C_SDA		
	(default)	SI_2		UART_TX		
		SI_3	UART_RX			

3.0 Function Description

3.1 USB Core and Interface

The USB core and interface contains a USB 2.0 transceiver, serial interface engine (SIE), USB bus protocol handshaking block, USB standard command, vendor command registers, logic for supporting bulk transfer, and an interrupt transfer, etc. The USB interface is used to communicate with a USB host controller and is compliant with USB specification V1.1 and V2.0.

3.2 10/100M Ethernet PHY

The 10/100M Fast Ethernet PHY is compliant with IEEE 802.3 and IEEE 802.3u standards. It contains an on-chip crystal oscillator, PLL-based clock multiplier, and a digital phase-locked loop for data/timing recovery. It provides over-sampling mixed-signal transmit drivers compliant with 10/100BASE-TX transmit wave shaping / slew rate control requirements. It has a robust mixed-signal loop adaptive equalizer for receiving signal recovery. It contains a baseline wander corrective block to compensate data dependent offset due to AC coupling transformers. It supports auto-negotiation and auto-MDIX functions.

3.3 MAC Core

The MAC core supports 802.3 and 802.3u MAC sub-layer functions, such as basic MAC frame receive and transmit, CRC checking and generation, filtering, forwarding, flow-control in full-duplex mode, and collision-detection and handling in half-duplex mode, etc. It provides a media-independent interface (MII) for implementing Fast Ethernet and HomePNA functions.

The MAC core interfaces to external MII, Reverse-MII, Reverse-RMII interface I/O pins and MII interface of the embedded 10/100M Ethernet PHY. The selection among the interfaces is done via setting Pin# 59 and Pin #60 of AX88172A package pinout during power on reset (see 2.3) or using the USB vendor command, Software Interface Selection register (see 6.2.1.24). Figure 10 shows the data path diagram of 10/100M Ethernet PHY and MII, Reverse-MII, Reverse-RMII interface to MAC core.

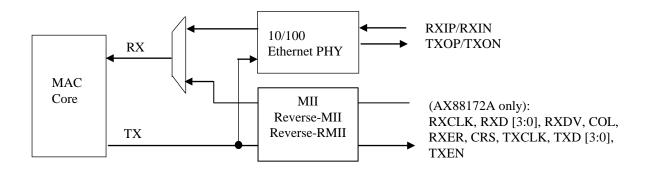


Figure 12: Internal Data path Diagram of 10/100M Ethernet PHY and MII Interface

AX88772A/AX88172A Low-pin-count USB 2.0 to 10/100M Fast Ethernet Controller

3.4 Operation Mode

For simple USB 2.0 to Ethernet applications, user can use the AX88772A, which operates with internal Ethernet PHY.

For more complex applications that require the use of the External Media Interface (MII, Reverse-MII or Reverse-RMII), users should choose the AX88172A. In this case, AX88172A supports following three operation modes: (Ref. 2.3 Hardware Setting For Operation Mode And Multi-Function Pins)

- 1. MAC mode
- 2. PHY mode
- 3. Dual-PHY mode

Below provides a detailed description for the three operation modes:

- In MAC mode, the AX88172A Ethernet block is configured as an Ethernet MAC. From a system application standpoint, AX88172A can be used as a USB 2.0 to LAN Adaptor (see Figure 2) or a USB 2.0 to Fast Ethernet and 100BASE-FX Fiber/HomePNA Combo (see Figure 3).
 - In MAC mode, the AX88172A internal datapath can work with internal Ethernet PHY or MII interface by selecting between the two via the USB vendor command, Software Interface Selection Register (SSEN). Please refer to Table 10 for the external MII interface selection table. Note that the PHY_ID for the internal Ethernet PHY and external one are defined in Table 3.
- In PHY mode, the AX88172A Ethernet block is configured as an Ethernet PHY interface. In this case, an external microcontroller with Ethernet MAC can interface with AX88172A as if it were to interface with an Ethernet PHY chip, and AX88172A can act as a USB to Reverse-MII/RMII bridge chip for the microcontroller to provide USB 2.0 device interface for some system applications (see Figure 4).
 - In PHY mode, the AX88172A internal datapath can work with the internal Ethernet PHY or the external Reverse-MII or Reverse-RMII interface by selecting between the two via the USB vendor command, Software Interface Selection Register (SSEN). Please refer to Table 10 for external Reverse-MII or Reverse-RMII interface selection table. Note that the PHY ID for the internal Ethernet PHY and external one are defined in Table 3.
- In Dual-PHY mode, the AX88172A Ethernet block is configured as a dual Ethernet PHY-like interface. In this case, an external micro controller with Ethernet MAC can interface with the AX88172A as if it were interfacing with two Ethernet PHY chips. The "Dual-PHY Mode" name comes from allowing the external Ethernet MAC to use AX88172A's internal Ethernet PHY as a regular Ethernet PHY chip for one mode or use AX88172A's internal USB to MII bridging engine as an Reverse-MII to USB 2.0 bridge chip for another mode.

This Dual-PHY mode provides the external Ethernet MAC device with a cost effective Ethernet PHY and USB 2.0 (PHY) device interface in a single chip for the system applications that need both an Ethernet port and a USB 2.0 port (see Figure 6) through the same Reverse-MII interface and two sets of Station Management registers (as described in section 7 and section 8).

In Dual-PHY mode, the external Ethernet MAC device can work with internal Ethernet PHY or internal USB to MII bridging engine by selecting between the two via PHY Mode Control Register (PM_Control). Please refer to Table 10 for the external Reverse-MII interface selection table. Note that the PHY_ID for the internal Ethernet PHY and internal USB to MII bridging engine are defined in Table 3.

STA PHY_ID	MAC mode	PHY mode	Dual-PHY mode	
Embedded Ethernet PHY	10h	10h	{Secondary PHY_ID [4:1], 1}	
PHY_ID [4:0]				
External Media Interface	{Secondary PHY_ID [4:0]}	{Secondary PHY_ID [4:1], 0}	{Secondary PHY_ID [4:1], 0}	
PHY_ID [4:0]			(For internal USB to MII	
			bridging engine)	

Note: The value of Secondary PHY_ID [4:0] is defined in EEPROM memory map 4.1.6

Table 3 : AX88x72A PHY_ID Definition Source

Figure 13~16 shows some example connection diagrams for MII, Reverse-MII, Reverse-RMII interface of AX88172A.

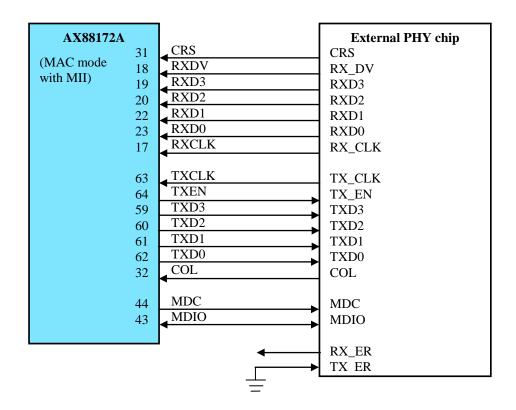


Figure 13: AX88172A MII Interface to External Ethernet/100BASE-FX/HomePNA PHY

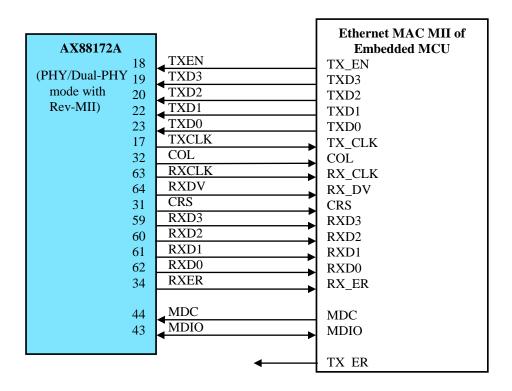


Figure 14 : AX88172A Reverse-MII Interface to External MAC Device

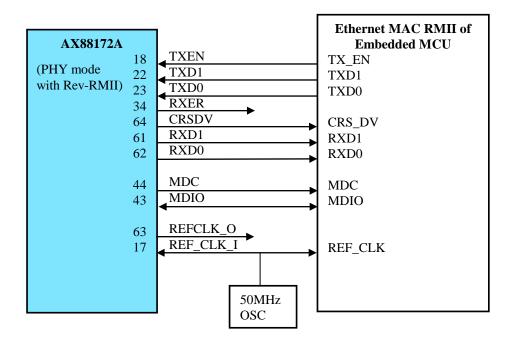


Figure 15: AX88172A Reverse-RMII Interface to External MAC Device (REFCLK_O is N.C.)

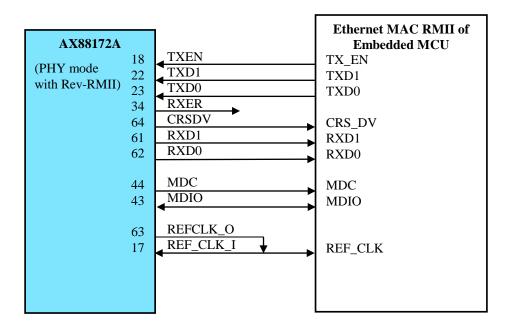


Figure 16: AX88172A Reverse-RMII Interface to External MAC Device (REFCLK_O supplies to both REF_CLK)

3.5 Station Management (STA)

The Station Management interface provides a simple, two-wire, serial interface to connect to a managed PHY device for the purpose of controlling the PHY and gathering status from the PHY. The Station Management interface allows communicating with multiple PHY devices at the same time by identifying the managed PHY with 5-bit, unique PHY_ID. The PHY ID of the embedded 10/100M Ethernet PHY is being pre-assigned to "1_0000".

The Figure 17 shows the internal control MUX of the Station Management interface when doing read in MAC operation mode, the "mdin" signal will be driven from the embedded 10/100M Ethernet PHY only if PHY ID matches with "1_0000", otherwise, it will always be driven from the external MDIO pin of the ASIC.

The Station Management unit also reports the basic PHY status when operating in PHY mode acting as a PHY role (see Figure 18) or in Dual-PHY mode (see Figure 19). For detailed register description, please refer to the Station Management Registers in PHY/Dual-PHYmode (8.0).

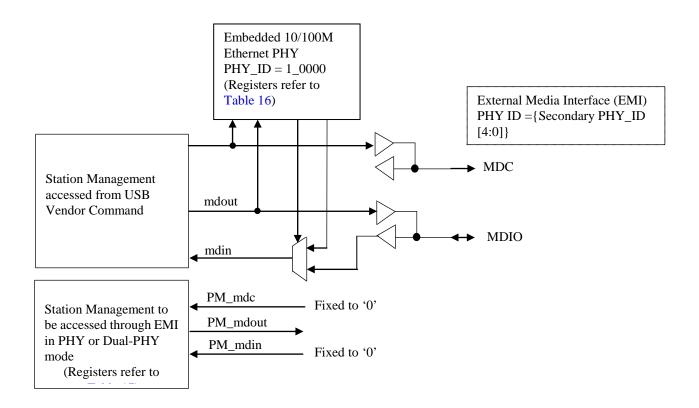


Figure 17: Internal Control MUX of Station Management Interface in MAC mode

USB 2.0 to 10/100M Fast Ethernet Controller

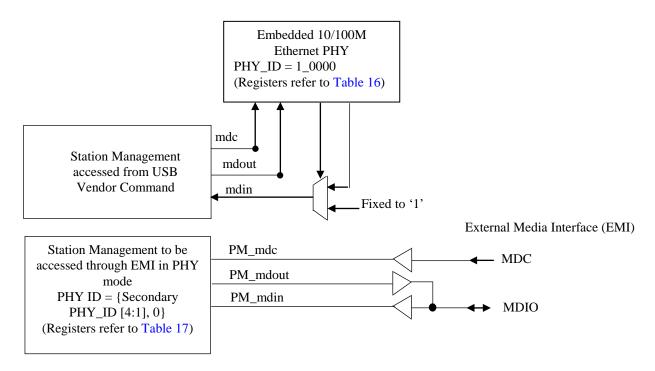
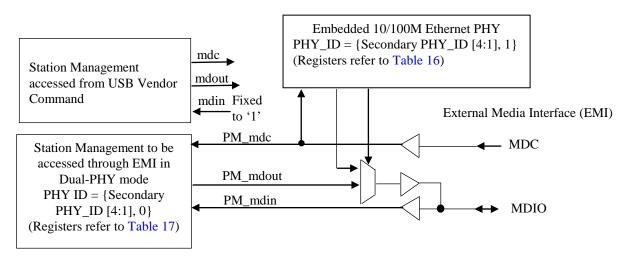



Figure 18: Internal Control MUX of Station Management Interface in PHY mode

Note: In Dual-PHY mode, the external Ethernet MAC device will see two sets of Station Management Registers available for access. The USB vendor command will be prohibited from accessing the embedded Ethernet PHY register.

Figure 19: Internal Control MUX of Station Management Interface in Dual-PHY mode

AX88772A/AX88172A Low-pin-count

USB 2.0 to 10/100M Fast Ethernet Controller

3.6 Memory Arbiter

ASIX

The memory arbiter block is responsible for storing received MAC frames into on-chip SRAM (packet buffer) and then forwarding it to the USB bus upon request from the USB host via Bulk In transfer. It also monitors the packet buffer usage in full-duplex mode for triggering PAUSE frame (or in half-duplex mode to activate Backpressure jam signal) transmission out on TX direction. The memory arbiter block is also responsible for storing MAC frames received from the USB host via Bulk Out transfer and scheduling transmission out towards Ethernet network.

3.7 USB to Ethernet Bridge

The USB to Ethernet bridge block is responsible for converting Ethernet MAC frame into USB packets or vice-versa. This block supports proprietary burst transfer mechanism (US Patent Approval) to offload software burden and to offer very high packet transfer throughput over USB bus.

3.8 Serial EEPROM Loader

The serial EEPROM loader is responsible for reading configuration data automatically from the external serial EEPROM after power-on reset. If the content of EEPROM offset 0x00 (first word) is 0x0000 or 0xFFFF, the Serial EEPROM Loader will not auto-load the EEPROM. In that case, the chip internal default value will be used to configure the chip operation setting and to respond to USB commands, etc.

3.9 General Purpose I/O

There are 3 general-purpose I/O pins named GPIO_0/1/2 provided by this ASIC.

3.10 Serial Interface Controller

There are 3 serial interfaces provided by the AX88772A/172A: UART, I2C, and SPI. The UART/I2C and SPI share the same pins. Please refer to section 2.3 EEPROM Flag [1] setting.

The UART function uses 2 wires, UART_TX and UART_RX, for interfacing with an external RS-232 transceiver. To simplify the serial interface (just 2 wires), there is no hardware flow control signal (like CTS, RTS, DSR, DTR, etc) supported. The main features of UART are listed below:

- The UART can support up to 19200 bps full duplex in USB High Speed mode. Note: 38400/57600 bps only for TXD.
- The UART has a 24-byte deep transmit FIFO and a 16-byte deep receive FIFO.
- Fully programmable serial interface
 - Even, odd, no parity bit generation and detection
 - ♦ 5, 6, 7, 8 data bit
 - ◆ 1, 1.5, 2 stop bit generation

The I2C controller supports Standard-mode (100K bps) and Fast-mode (400K bps), but not High-speed mode (3.4M bps) of standard I2C bus specs. With 2 wires: I2C_SCL, I2C_SDA, the I2C controller consists of an I2C master controller to support communication to external I2C devices (as Slaves), and an I2C slave controller to support communication to external micro-controller with I2C master.

The Serial Peripheral Interface (SPI) controller provides a full-duplex, synchronous serial communication interface (4 wires: SPI_SCLK, SPI_SS, SPI_MOSI, SPI_MISO) to flexibly work with numerous peripheral devices or microcontroller with SPI. The SPI controller consists of a SPI master controller with a slave select pin, SPI_SS to connect to a SPI device, and a SPI slave controller to support communication with external microcontroller with SPI master.

ASIX

AX88772A/AX88172A Low-pin-count

USB 2.0 to 10/100M Fast Ethernet Controller

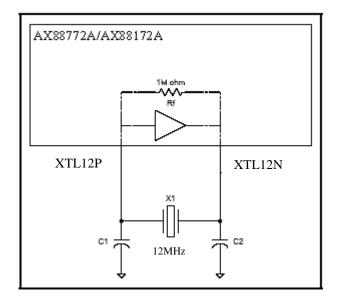
By using the command structure defined in the Command Block Wrapper for Serial Interface (6.2.2), which is based on Endpoint 4 (Bulk In type) and Endpoint 5 (Bulk Out type), the serial data can be transmitted from USB Host Controller to Serial Interface block to generate UART-TX, I2C/SPI Master mode write access, and I2C/SPI Slave mode read access on I2C/SPI bus timing. When receiving data from UART_RX, I2C/SPI Master mode read access and I2C/SPI Slave mode write access from Serial Interface block, the received data can be returned to the USB Host Controller via the Command Block Wrapper structure as well.

3.11 Clock Generation

The AX88772A/AX88172A integrates two internal oscillator circuits for 25Mhz and 12Mhz, respectively, which allow the chip to operate cost effectively with just external 25Mhz and 12Mhz crystals. There are also three PLL circuits integrated in the chip to generate precise clocks.

The external 12Mhz crystal or oscillator, via pins XTL12P/XTL12N, provides the reference clock to one of the internal PLL circuit to generate clocks for the embedded USB PHY operation and also a 60Mhz clock source for the internal USB SIE interface.

The other 25Mhz crystal or oscillator, via pins XTL25P/XTL25N, provides the reference clock to the other two internal PLL circuit to generate a free-run 100Mhz clock source for the PHY/Dual-PHY mode of AX88172A and a 125Mhz clock source for the embedded Ethernet PHY use.


The AX88172A can provide RXCLK and TXCLK (25Mhz output) in Reverse-MII mode or REFCLK_O (50Mhz output) in Reverse-RMII mode. These output clocks are derived from the internal 100Mhz PLL circuit.

The external 25Mhz and 12Mhz Crystal Units spec are listed in below table. For more details on crystal timing, please refer to 9.4.1 Clock Timing and AX88x72A Demo board schematic reference.

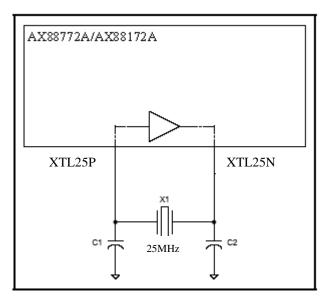

Parameter	Symbol	Typical Value		
Nominal Frequency	Fo	12.000000MHz	25.000000MHz	
Oscillation Mode		Fundamental		
Frequency Tolerance(@25℃)		±30ppm		
Operation Temperature Range		0°C ~ +70°C		
Aging		±3ppm/year		

Table 4 : The external 25Mhz and 12Mhz Crystal Units specifications

The left side figure shows one possible implementation of the oscillator on AX88772A/AX88172A device. The feedback resistor Rf has been integrated into the 12MHz oscillator pad internal to AX88772A/AX88172A. This resistor is used to provide DC bias to a CMOS inverter for inversion amplifier operation. 1M Ohms is selected for its optimal bias. Notice that: it is not necessary to add feedback resistor on external circuit.

Conversely, for the 25MHz oscillator, its feedback resistor Rf isn't integrated into the 25MHz oscillator, so it is necessary to add feedback resistor on external

To implement the external circuits of 12/25MHz crystal please refer to below. One external 1Mohm resistor on 25MHz crystal oscillator is required.

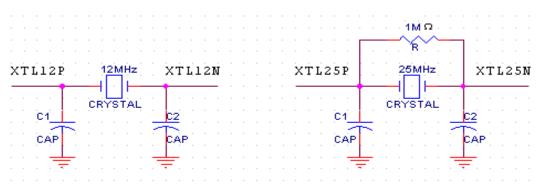


Figure 20 : One external 1M ohm resistor on 25MHz crystal oscillator is necessary

AX88772A/AX88172A Low-pin-count USB 2.0 to 10/100M Fast Ethernet Controller

3.12 Reset Generation

The AX88772A/AX88172A integrates an internal power-on-reset circuit, which can simplify the external reset circuitry on PCB design. The power-on-reset circuit generates a reset pulse to reset system logic after 1.8V core power ramping up to 1.2V (typical threshold). The external hardware reset input pin, RESET_N, is fed directly to the input of the power-on-reset circuit and can also be used as additional hardware reset source to reset the system logic. For more details on RESET_N timing, please refer to 9.4.2 Reset Timing.

3.13 Voltage Regulator

The AX88772A/AX88172A contains an internal 3.3V to 1.8V low-dropout-voltage and low-standby-current voltage regulator. The internal regulator provides up to 240mA of driving current for the 1.8V core/analog power of the chip to satisfy the worst-case power consumption scenario. Also, for the purpose of lowering power consumption before USB configuration, the internal regulator can operate in standby mode to consume less current when the required driving current is less than 30mA. For more details on voltage regulator DC characteristic, please refer to 9.1.6 DC Characteristics of Voltage Regulator.

4.0 Serial EEPROM Memory Map

EEPROM OFFSET	HIGH BYTE	LOW BYTE		
00H	0x5A	0x15		
01H		Flag		
02H	Length of High-Speed Device Descriptor (byte	s) EEPROM Offset of High-Speed Device Descriptor		
03H	Length of High-Speed Configuration Descripto (bytes)	r EEPROM Offset of High-Speed Configuration Descriptor		
04H	Node ID 1	Node ID 0		
05H	Node ID 3	Node ID 2		
06H	Node ID 5	Node ID 4		
07H	Language ID High Byte	Language ID Low Byte		
08H	Length of Manufacture String (bytes)	EEPROM Offset of Manufacture String		
09H	Length of Product String (bytes)	EEPROM Offset of Product String		
0AH	Length of Serial Number String (bytes)	EEPROM Offset of Serial Number String		
0BH	Length of Configuration String (bytes)	EEPROM Offset of Configuration String		
0CH	Length of Interface 0 String (bytes)	EEPROM Offset of Interface 0 String		
0DH	Length of Interface 1/0 String (bytes)	EEPROM Offset of Interface 1/0 String		
0EH	Length of Interface 1/1 String (bytes)	EEPROM Offset of Interface 1/1 String		
0FH	EtherPhyMode PHY Register Offset 1 for Interrupt Endpoint	100 PHY Register Offset 2 for Interrupt Endpoint		
10H	Max Packet Size High Byte	Max Packet Size Low Byte		
11H	Secondary PHY_Type [7:5] and PHY_ID [4:0	Primary PHY_Type [7:5] and PHY_ID [4:0]		
12H	Pause Frame Free Buffers High Water Mark	Pause Frame Free Buffers Low Water Mark		
13H	Length of Full-Speed Device Descriptor (bytes	EEPROM Offset of Full-Speed Device Descriptor		
14H	Length of Full-Speed Configuration Descriptor (bytes)	r EEPROM Offset of Full-Speed Configuration Descriptor		

Note: To store the endpoint 4,5 descriptors for Serial Interface, 93C66 (512-byte) is recommended.

Table 5 : Serial EEPROM Memory Map

Low-pin-count

USB 2.0 to 10/100M Fast Ethernet Controller

4.1 Detailed Description

The following sections provide detailed descriptions for some of the fields in serial EEPROM memory map. For other fields not covered here, please refer to the **AX88x72A EEPROM User Guide** for more details.

4.1.1 Word Count for Preload (00h)

The number of words to be preloaded by the EEPROM loader = 15h.

4.1.2 Flag (01h)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
PME_IND	PME_TYP	PME_POL	PME_PIN	PHY_ISO	Reserved	TDPE	CEM
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TACE	RDCE	SCPR	CBW_EN	GPIO2_PM	RWU	SPI_en	SP

- SP: Self-Power (for USB standard command Get Status)
 - 1: Self power. (Note: The Dual-PHY mode is only allowed to operate under this self power condition.)
- 0: Bus power (default).
- SPI en: SPI enable
 - 1: SPI enable. Enable SI_0 ~ SI_3 pins as SPI function.
- 0: UART & I2C enable. Enable SI_0 ~ SI_3 pins as UART and I2C function (default).

RWU: Remote Wakeup support.

- 1: Indicate that this device supports Remote Wakeup (default).
- 0: Not support.

GPIO2_PM: GPIO_2 function in PHY/Dual-PHY mode

- 1: RXER (default).
- 0: GPIO_2.
- CBW_EN: Enable the two bulk-type endpoints for CBW
 - 1: Enable (default).
- 0: Disable.
- SCPR: Software Control PHY Reset.
- 1: IPRL bit in Vendor command Software Reset Register (20h) resets the embedded Ethernet PHY (default).
- 0: The USB_Reset on USB bus resets the embedded Ethernet PHY.
- RDCE: RX Drop CRC Enable.
 - 1: CRC byte is dropped on received MAC frame forwarding to host (default).
- 0: CRC byte is not dropped.
- TACE: TX Append CRC Enable.
 - 1: CRC byte is generated and appended by the ASIC for every transmitted MAC frame (default).
- 0: CRC byte is not appended.
- CEM: Capture Effective Mode.
 - 1: Capture effective mode enable (default).
- 0: Disabled.
- TDPE: Test Debug Port Enable.
 - 1: Enable test debug port for chip debug purpose.
- 0: Disable test debug port and the chip operate in normal function mode (default).
- PHY_ISO: Set MII bus to isolate mode when operating in PHY mode.
- 1: Set MII bus to isolate mode (default). AX88172A can be in isolate mode when operating in PHY mode with Reverse-MII/RMII. Following output pins are tri-stated in isolate mode.
 - In Reverse-MII mode: RXD [3:0], CRS, RXDV, RXCLK, RXER, COL and TXCLK.
 - In Reverse-RMII mode: RXD [1:0] and CRSDV, RXER, except for REFCLK_O.
- 0: Set MII bus to non-isolate mode.

PME PIN: PME / GPIO 0

1: Set GPIO_0 pin as PME (default).

0: GPIO_0 pin is controlled by vendor command.

PME_POL: PME pin active Polarity.

1: PME active high.

0: PME active low (default).

PME_TYP: PME I/O Type.

1: PME output is a Push-Pull driver.

0: PME output to function as an open-drain buffer (default).

PME_IND: PME indication.

1: An 1.363ms pulse active when detecting wake-up event.

0: A static signal active when detecting wake-up event (default).

4.1.3 Node ID (04~06h)

The Node ID 0 to 5 bytes represent the MAC address of the device, for example, if MAC address = 01-23-45-67-89-ABh, then Node ID 0 = 01, Node ID 1 = 23, Node ID 2 = 45, Node ID 3 = 67, Node ID 4 = 89, and Node ID 5 = AB.

Default values: Node ID $\{0,1,2,3,4,5\} = 0 \times 000 \text{E} \text{C} 687 \text{-} 7201$.

4.1.4 PHY Register Offset for Interrupt Endpoint (0Fh)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		
EtherPhyMode			PHY Register Offset 1						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
100			PHY Register Offset 2						

PHY Register Offset 1: Fill in PHY's Register Offset of Primary PHY here. Upon each Interrupt Endpoint issued, its register value will be reported in byte# 5 and 6 of Interrupt Endpoint packet (default = 00101) PHY Register Offset 2: Fill in PHY's Register Offset of Primary PHY here. Upon each Interrupt Endpoint issued, its register value will be reported in byte# 7 and 8 of Interrupt Endpoint packet (default = 11100)

EtherPhyMode: as below table (default = 000),

EtherPhyMode [2:0]	Function
000	Auto-negotiation enable with all capabilities
001	Auto-negotiation with 100BASE-TX FDX / HDX ability
010	Auto-negotiation with 10BASE-TX FDX / HDX ability
011	Reserved
100	Manual selection of 100BASE-TX FDX
101	Manual selection of 100BASE-TX HDX
110	Manual selection of 10BASE-T FDX
111	Manual selection of 10BASE-T HDX

Note:

- 1. EtherPhyMode is used to set the operation mode of embedded Ethernet PHY directly. For normal operation mode, set them to 000.
- 2. This value is latched into embedded Ethernet PHY right after it leaves reset. After that, software driver can still make change Ethernet PHY link ability through vendor command PHY Write Register to access embedded Ethernet PHY register.

4.1.5 Max Packet Size High/Low Byte (10h)

Fill the maximum RX/TX MAC frame size supported by this ASIC. The number must be even number in terms of bytes and should be less than or equal to 2500 bytes (default = 0600h).

4.1.6 Primary/Secondary PHY_Type and PHY_ID (11h)

The 3 bits PHY_Type field for both Primary and Secondary PHY is defined as follows,

000: 10/100M Ethernet PHY or 1M HomePNA PHY.

111: non-supported PHY. For example, the High Byte value of "E0h" means that secondary PHY is not supported. Default values: Primary {PHY_Type, PHY_ID} = 10h. Secondary {PHY_Type, PHY_ID} = E0h. Note that the PHY_ID of the embedded 10/100M Ethernet PHY is being assigned to "10h".

Secondary PHY_ID always defines The PHY_ID of External Media Interface (EMI) and Secondary PHY_TYPE is not used in that case. Please refer to Table 3 for more information.

4.1.7 Pause Frame Free Buffers High Water and Low Water Mark (12H)

When operating in full-duplex mode, correct setting of this field is very important and can affect the overall packet receive throughput performance a great deal. The High Water Mark is the threshold to trigger sending Pause frame and the Low Water Mark is the threshold to stop sending Pause frame. Note that each free buffer count here represents 128 bytes of packet storage space in SRAM.

These setting values are also used in half-duplex mode to activate Backpressure to send /stop jam signal.

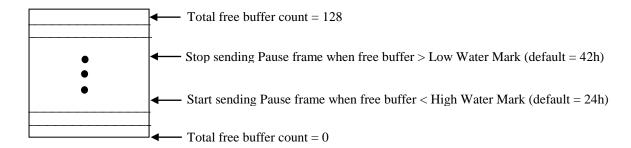


Figure 21: Water level setting for flow control

4.1.8 Power-Up Steps

After power-on reset, AX88772A/AX88172A will automatically perform the following steps to the Ethernet PHYs via MDC/MDIO lines (only take effect when Chip Operation Mode is in MAC mode with external PHY on MII interface).

- 1. Write to PHY_ID of 00h with PHY register offset 00h to power down all PHYs attached to station management interface.
- 2. Write to Primary PHY ID with PHY register offset 00h to power down Primary PHY.
- 3. Write to Secondary PHY_ID with PHY register offset 00h to power down Secondary PHY.

Notice that enabling Default WOL Ready Mode (see 2.3 GPIO_1 Settings) will disable above power-up step (to prevent external Ethernet PHY on MII interface from entering power-down mode, if external PHY is used).

5.0 USB Configuration Structure

5.1 USB Configuration

The AX88772A/AX88172A supports 1 Configuration only.

5.2 USB Interface

The AX88772A/AX88172A supports 1 interface.

5.3 USB Endpoints

The AX88772A/AX88172A supports following 4 or 6 endpoints:

- Endpoint 0: Control endpoint. It is used for configuring the device. Please refer to USB Standard Commands (6.1) and USB Vendor Commands (6.2), etc.
- Endpoint 1: Interrupt endpoint. It is used for reporting status. Please refer to Interrupt Endpoint (6.3).
- Endpoint 2: Bulk In endpoint. It is used for receiving Ethernet Packet.
- Endpoint 3: Bulk Out endpoint. It is used for transmitting Ethernet Packet.
- Endpoint 4: Optional Bulk In endpoint. It is used for receiving CBW frame. Please refer to Command Block Wrapper for Serial Interface (6.2.2).
- Endpoint 5: Optional Bulk Out endpoint. It is used for transmitting CBW frame. Please refer to Command Block Wrapper for Serial Interface (6.2.2).

Note that CBW_EN bit in EEPROM Flag [4] (4.1.2) is used to enable Endpoint 4 and Endpoint 5.

6.0 USB Commands

There are three command groups for Endpoint 0 (Control Endpoint) in AX88772A/AX88172A:

- The USB standard commands
- The USB vendor commands
- The USB Communication Class commands

6.1 USB Standard Commands

- The Language ID is 0x0904 for English
- PPLL means buffer length
- CC means configuration number
- I I means Interface number
- AA means Device Address

Setup Command	Data Bytes	Access Type	Description
8006_00 01 00 00 LLPP	PPLL bytes in Data stage	Read	Get Device Descriptor
8006_0002 0000_LLPP	PPLL bytes in Data stage	Read	Get Configuration Descriptor
8006_0003_0000_LLPP	PPLL bytes in Data stage	Read	Get Supported Language ID
8006_0103_0904_LLPP	PPLL bytes in Data stage	Read	Get Manufacture String
8006_0203_0904_LLPP	PPLL bytes in Data stage	Read	Get Product String
8006_0303_0904_LLPP	PPLL bytes in Data stage	Read	Get Serial Number String
8006_0403_0904_LLPP	PPLL bytes in Data stage	Read	Get Configuration String
8006_0503_0904_LLPP	PPLL bytes in Data stage	Read	Get Interface 0 String
8006_0603_0904_LLPP	PPLL bytes in Data stage	Read	Get Interface 1/0 String
8006_0703_0904_LLPP	PPLL bytes in Data stage	Read	Get Interface 1/1 String
8008_0000_0000_0100	1 bytes in Data stage	Read	Get Configuration
0009_CC00_0000_0000	No data in Data stage	Write	Set Configuration
810A_0000 _I I00_0100	1 bytes in Data stage	Read	Get Interface
010B_AS00_0000_0000	No data in Data stage	Write	Set Interface
0005_AA00_0000_0000	No data in Data stage	Write	Set Address

Table 6 : USB Standard Command Register Map

6.2 USB Vendor Commands

- AA, CC: The index of register or the content of register.
- BB, DD: The content of register

No	Setup Command	Data Bytes	Access Type	Description
1	C002 AA0B 0C00 0800	8 bytes in Data stage	Read	Rx/Tx SRAM Read Register
2	4003 AA0B 0C00 0800	8 bytes in Data stage	Write	Rx/Tx SRAM Write Register
3		No data in Data stage		
3	<u>4006_0000_0000_0000</u>	No data in Data stage	Write	Software Station Management Control Register
4	C007_ AA00_CC00_0200	2 bytes in Data stage	Read	PHY Read Register
5	4008 _AA00_CC00_0200	2 bytes in Data stage	Write	PHY Write Register
6		, ,		
	<u>C009 0000 0000 0100</u>	1 bytes in Data stage	Read	Station Management Status Register
7	400A_0000_0000_0000	No data in Data stage	Write	Hardware Station Management Control
0	C00B	21	D 1	Register
8	C00B_AA00_0000_0200	2 bytes in Data stage	Read	SROM Read Register
9	400C_AA00_CCDD_0000	No data in Data stage	Write	SROM Write Register
	400D 0000 0000 0000	No data in Data stage	Write	SROM Write Enable Register
	400E_0000_0000_0000	No data in Data stage	Write	SROM Write Disable Register
12	C00F 0000 0000 0200	2 bytes in Data stage	Read	Rx Control Register
	4010 AABB 0000 0000	No data in Data stage	Write	Rx Control Register
14	C011_0000_0000_0300	3 bytes in Data stage	Read	IPG/IPG1/IPG2 Register
15	4012 AABB CC00 0000	No data in Data stage	Write	IPG/IPG1/IPG2 Register
16	C013 0000 0000 0600	6 bytes in Data stage	Read	Node ID Register
	4014_0000_0000_0600	6 bytes in Data stage	Write	Node ID Register
18	C015_0000_0000_0800	8 bytes, MAO~MA7, in	Read	Multicast Filter Array Register
4.0		Data stage		
19	4016_0000_0000_0800	8 bytes, MAO~MA7, in	Write	Multicast Filter Array Register
20	1015	Data stage	***	
	4017_AA00_0000_0000	No data in Data stage	Write	Test Register
21	<u>C019 0000 0000 0200</u>	2 bytes in Data stage	Read	Ethernet/HomePNA PHY Address Register
22	C01A 0000 0000 0200	2 bytes in Data stage	Read	Medium Status Register
23	401B AABB 0000 0000	No data in Data stage	Write	Medium Mode Register
24	C01C_0000_0000_0100	1 bytes in Data stage	Read	Monitor Mode Status Register
25	401D AA00 0000 0000	No data in Data stage	Write	Monitor Mode Register
26	C01E_0000_0000_0100	1 bytes in Data stage	Read	GPIOs Status Register
27	401F AA00 0000 0000	No data in Data stage	Write	GPIOs Register
28	4020 AA00 0000 0000	No data in Data stage	Write	Software Reset Register
29	<u>C021 0000 0000 0100</u>	1 bytes in Data stage	Read	Software Interface Selection Status Register
30	4022 AA00 0000 0000	No data in Data stage	Write	Software Interface Selection Register
31	C023 AA00 0000 0400	4 bytes, Wake Up	Read	Wake-up Frame Array Register
		Register in Data stage		, , , , , , , , , , , , , , , , , , ,
32	4024 AA00 0000 0400	4 bytes, Wake Up	Write	Wake-up Frame Array Register
		Register in Data stage		
33	C025 0000 0000 0100	1 bytes in Data stage	Read	Jam Limit Count Register
	4026_AA00_0000_0000	No data in Data stage	Write	Jam Limit Count Register
35	C027 0000 0000 0400	4 bytes in Data stage	Read	VLAN Control Register
	4028 AABB CCDD 0000	No data in Data stage	Write	VLAN Control Register

Table 7 : USB Vendor Command Register Map

6.2.1 Detailed Register Description

6.2.1.1 Rx/Tx SRAM Read Register (02h, read only)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit3 Bit2 Bit1 Bit0							
	AA [7:0]											
	Rese	erved			B [3:0] C [3:0]							
	()h		C [3:0] Data stage Data stage								
	DD [7:0] in Data stage											
			EE [7:0] in	Data stage								
			FF [7:0] in	Data stage								
			GG [7:0] in	n Data stage								
			HH [7:0] in	n Data stage								
	II [7:0] in Data stage											
	JJ [7:0] in Data stage											
			KK [7:0] in	KK [7:0] in Data stage								

{B [3:0], AA [7:0]}: The read address of RX or TX SRAM.

C [0]: RAM selection.

0: indicates to read from RX SRAM.

1: indicates to read from TX SRAM.

C [3:1]: Reserved.

{DD [7:0], EE [7:0], FF [7:0], GG [7:0], HH [7:0], II [7:0], JJ [7:0], KK [7:0]}: The 64-bits of data presented in Data stage are the data to be written to RX or TX SRAM.

6.2.1.2 Rx/Tx SRAM Write Register (03h, write only)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
			AA	[7:0]					
	Rese	erved			В[3:0]			
	Rese	erved		C [3:0]					
	DD [7:0] in Data stage								
			EE [7:0] ir	Data stage					
			FF [7:0] in	Data stage					
			GG [7:0] ii	n Data stage					
			HH [7:0] in	n Data stage					
	II [7:0] in Data stage								
	JJ [7:0] in Data stage								
			KK [7:0] ii	n Data stage					

{B [3:0], AA [7:0]}: The write address of RX or TX SRAM.

C [0]: RAM selection.

0: indicates to write to RX SRAM.

1: indicates to write to TX SRAM.

C [3:1]: Reserved.

{DD [7:0], EE [7:0], FF [7:0], GG [7:0], HH [7:0], II [7:0], JJ [7:0], KK [7:0]}: The 64-bits of data presented in Data stage are the data to be written to RX or TX SRAM.

6.2.1.3 Software Station Management Control Register (06h, write only)

When software needs to access to Ethernet PHY's internal registers, it needs to first issue this command to request the ownership of Station Management Interface. Reading Station Management Status Register can check the ownership status of the interface.

6.2.1.4 PHY Read Register (07h, read only)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
AA [7:0]									
00h									
	CC [7:0]								

AA [4:0]: The PHY ID value.

CC [4:0]: The register address of Ethernet PHY's internal register.

AA [7:5]: Reserved CC [7:5]: Reserved

6.2.1.5 PHY Write Register (08h, write only)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
AA [7:0]										
	00h									
	CC [7:0]									

AA [4:0]: The PHY ID value.

CC [4:0]: The register address of Ethernet PHY's internal register.

AA [7:5]: Reserved CC [7:5]: Reserved

6.2.1.6 Station Management Status Register (09h, read only)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PM_mode		Chip_Code			Reserved		Host_EN

Host_EN: Host access Enable. Software can read this register to determine the current ownership of Station Management Interface.

- 1: Software is allowed to access Ethernet PHY's internal registers via PHY Read Register or PHY Write Registers.
- 0: ASIC's hardware owns the Station Management Interface and software's access is ignored.

Chip_Code: Chip version code for software driver.

3'b000: Chip is AX88772

3'b001: Chip is AX88772A/AX88172A PM_mode: PHY/Dual-PHY or MAC mode

1: PHY/Dual-PHY mode

0: MAC mode

6.2.1.7 Hardware Station Management Control Register (0Ah, write only)

When software is done accessing Station Management Interface, it needs to issue this command to release the ownership of the Interface back to ASIC's hardware. After issuing this command, subsequent PHY Read Register or PHY Write Register from software will be ignored. Notice that Software should issue this command every time after it finishes accessing the Station Management Interface to release the ownership back to hardware to allow periodic Interrupt Endpoint to be able to access the Ethernet PHY's registers via the Station Management Interface.

6.2.1.8 SROM Read Register (0Bh, read only)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
			AA	[7:0]			

AA [7:0]: The read address of Serial EEROM.

6.2.1.9 SROM Write Register (0Ch, write only)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
AA [7:0]									
	00h								
	CC [7:0]								
			DD	[7:0]					

AA [7:0]: The write address of Serial EEROM.

{DD [7:0], CC [7:0]}: The write data value of Serial EEROM

6.2.1.10 Write SROM Enable (0Dh, write only)

User issues this command to enable write permission to Serial EEPROM from SROM Write Register.

6.2.1.11 Write SROM Disable (0Eh, write only)

User issues this command to disable write permission to Serial EEPROM from SROM Write Register.

USB 2.0 to 10/100M Fast Ethernet Controller

6.2.1.12 Rx Control Register (0Fh, read only and 10h, write only)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SO	Reserved	AP	AM	AB	0	AMALL	PRO
0			LPBK	Reserved		MFB [1:0]	

 $AA[7:0] = \{SO, Reserved, AP, AM, AB, 0, AMALL, PRO\}$

BB [7:0] = {0, LPBK, Reserved [3:2], MFB [1:0]}

PRO: PACKET_TYPE_PROMISCUOUS.

- 1: All frames received by the ASIC are forwarded up toward the host.
- 0: Disabled (default).

AMALL: PACKET_TYPE_ALL_MULTICAST.

- 1: All multicast frames received by the ASIC are forwarded up toward the host, not just the frames whose scrambling result of DA matching with multicast address list provided in Multicast Filter Array Register.
- 0: Disabled. This only allows multicast frames whose scrambling result of DA field matching with multicast address list provided in Multicast Filter Array Register to be forwarded up toward the host (default).

Bit 2: Please always write 0 to this bit.

AB: PACKET_TYPE_BROADCAST.

- 1: All broadcast frames received by the ASIC are forwarded up toward the host (default).
- 0: Disabled.

AM: PACKET_TYPE_MULTICAST.

- 1: All multicast frames whose scrambling result of DA matching with multicast address list are forwarded up to the host (default).
- 0: Disabled.
- AP: Accept Physical Address from Multicast Filter Array.
 - 1: Allow unicast packets to be forwarded up toward host if the lookup of scrambling result of DA is found within multicast address list.
 - 0: Disabled, that is, unicast packets filtering are done without regarding multicast address list (default).

SO: Start Operation.

- 1: Ethernet MAC start operating.
- 0: Ethernet MAC stop operating (default).

MFB [1:0]: Maximum Frame Burst transfer on USB bus.

00: 2048 Bytes

01: 4096 Bytes

10: 8192 Bytes

11: 16384 Bytes (default).

LPBK: MAC loop back for diagnostic.

1: Enable MAC loopback.

0: Disable MAC loopback (default).

Bit [15:13]: Please always write 0 to these bits.

Following is the truth table about unicast packet filtering condition.

DA Matching Node ID Register?	PRO bit	Broadcast or Multicast Packet?	Unicast Packet Filtered by Ethernet MAC?
No	0	No	Yes
No	1	No	No
Yes (see Note below)	0	No	No

Note: DA Matching Node ID Register including following two cases:

- 1. Destination Address field of incoming packets matches with Node ID Register.
- 2. When AP (bit 5) is set to 1 and the scrambling result of DA is found within multicast address list.

Following is a truth table about broadcast packet filtering condition.

PRO bit	AB bit	Broadcast Packet?	Broadcast Packet Filtered by Ethernet MAC?
0	1	Yes	No
0	0	Yes	Yes
1	0/1	Yes	No

6.2.1.13 IPG/IPG1/IPG2 Control Register (11h, read only and 12h, write only)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
IPG [7:0]										
	IPG1 [7:0]									
	IPG2 [7:0]									

AA [6:0] = IPG [6:0].

BB [6:0] = IPG1 [6:0].

CC [6:0] = IPG2 [6:0].

IPG [6:0]: Inter Packet Gap for back-to-back transfer on TX direction in MII mode (default = 15h).

IPG1 [6:0]: IPG part1 value (default = 0Ch).

IPG2 [6:0]: IPG part1 value + part2 value (default = 12h).

AA [7]: Reserved.

BB [7]: Reserved.

CC [7]: Reserved.

6.2.1.14 Node ID Register (13h, read only and 14h, write only)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
AA [7:0]											
	BB [7:0]										
	CC [7:0]										
	DD [7:0]										
	EE [7:0]										
	FF [7:0]										

AA [7:0] = Node ID 0.

BB [7:0] = Node ID 1.

CC [7:0] = Node ID 2.

DD [7:0] = Node ID 3.

EE [7:0] = Node ID 4.

FF [7:0] = Node ID 5.

 $\{FF\ [7:0],\ EE\ [7:0],\ DD\ [7:0],\ CC\ [7:0],\ BB\ [7:0],\ AA\ [7:0]\} = Ethernet\ MAC\ address\ [47:0]\ of\ AX88772A/AX88172A.$

6.2.1.15 Multicast Filter Array (15h, read only and 16h, write only)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
MA 0 [7:0]											
MA 1 [7:0]											
			MA 2	2 [7:0]							
			MA 3	3 [7:0]							
			MA 4	1 [7:0]							
			MA 5	5 [7:0]							
	MA 6 [7:0]										
	MA 7 [7:0]										

{MA7 [7:0], MA6 [7:0], MA5 [7:0], MA4 [7:0], MA3 [7:0], MA2 [7:0], MA1 [7:0], MA0 [7:0]} = the multicast address bit map for multicast frame filtering block. For example, see below Figure 22.

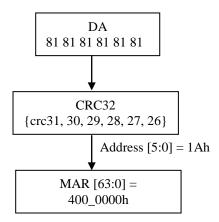


Figure 22 : Multicast Filter Example

As shown in below figure, the Multicast Filter Array (MFA) provides filtering of multicast addresses hashed through the CRC logic. All Destination Address field are fed through the 32 bits CRC generation logic. As the last bit of the Destination Address field enters the CRC, the 6 most significant bits of the CRC generator are latched. These 6 bits are then decoded by a 1 to 64 decoder to index a unique filter bit (FB0-63) in the Multicast Filter Array. If the filter bit selected is set, the multicast packet is accepted. The system designer should use a program to determine which filter bits to set in the multicast registers. All multicast filter bits that correspond to Multicast Filter Array Registers accepted by the node are then set to one. To accept all multicast packets all of the registers are set to all ones. Note that received Pause Frames are always filtered by Ethernet MAC regardless of MFA setting.

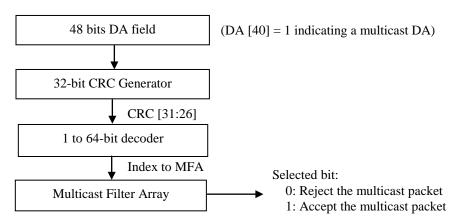


Figure 23: Multicast Filter Array Hashing Algorithm

USB 2.0 to 10/100M Fast Ethernet Controller

Example: If the accepted multicast packet's destination address Y is found to hash to the value 32 (0x20), then FB32 in MA4 should be initialized to "1". This will allow the Ethernet MAC to accept any multicast packet with the destination address Y. Although the hashing algorithm does not guarantee perfect filtering of multicast address, it will perfectly filter up to 64 logical address filters if these addresses are chosen to map into unique locations in the multicast filter. Note: The LSB bit of received packet's first byte being "1" signifies a Multicast Address.

	D7	D6	D5	D4	D3	D2	D1	D0
MA0	FB7	FB6	FB5	FB4	FB3	FB2	FB1	FB0
MA1	FB15	FB14	FB13	FB12	FB11	FB10	FB9	FB8
MA2	FB23	FB22	FB21	FB20	FB19	FB18	FB17	FB16
MA3	FB31	FB30	FB29	FB28	FB27	FB26	FB25	FB24
MA4	FB39	FB38	FB37	FB36	FB35	FB34	FB33	FB32
MA5	FB47	FB46	FB45	FB44	FB43	FB42	FB41	FB40
MA6	FB55	FB54	FB53	FB52	FB51	FB50	FB49	FB48
MA7	FB63	FB62	FB61	FB60	FB59	FB58	FB57	FB56

Figure 24 : Multicast Filter Array Bit Mapping

Following is the truth table about multicast packet filtering condition.

PRO bit	AMALL bit	AM bit	Pass Hashing Algorithm?	Multicast Packet Filtered by Ethernet MAC?
0	0	0	0	Yes
0	0	0	1	Yes
0	0	1	0	Yes
0	0	1	1	No
0	1	0/1	0/1	No
1	0/1	0/1	0/1	No

Note: Passing Hashing Algorithm means that the selected bit in MFA of CRC-32 result is set to "1".

6.2.1.16 Test Register (17h, write only)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
			MM [7:6]				LDRND

LDRND: To load Random number into MAC's exponential back-off timer, the user writes a "1" to enable the ASIC to load a small random number into MAC's back-off timer to shorten the back-off duration in each retry after collision. This register is used for test purpose. Default value = 0.

MM [7:6]: Reserved.

6.2.1.17 Ethernet / HomePNA PHY Address Register (19h, read only)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Se	cPhyType [2	2:0]		SecPhyID [4:0]					
Pı	riPhyType [2	:0]		P	riPhyID [4:0)]			

SecPhyType, SecPhyID: The Secondary PHY address loaded from serial EEPROM's offset address 10h. PriPhyType, PriPhyID: The Primarily PHY address loaded from serial EEPROM's offset address E0h.

USB 2.0 to 10/100M Fast Ethernet Controller

6.2.1.18 Medium Status Register (1Ah, read only) and Medium Mode Register (1Bh, write only)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PF	0	TFC	RFC	0	1	FD	0
Reserved			SM	SBP	Reserved	PS	RE

 $AA [7:0] = \{PF, 0, TFC, RFC, 0,1, FD, 0\}.$

BB [7:0] = {Reserved, SM, SBP, Reserved, PS, RE}.

Bit 0: Please always write 0 to this bit.

FD: Full Duplex mode

1: Full Duplex mode (default).

0: Half Duplex mode.

Bit 2: Please always write 1 to this bit.

Bit 3: Please always write 0 to this bit.

RFC: RX Flow Control enable.

1: Enable receiving of pause frame on RX direction during full duplex mode (default).

0: Disabled.

TFC: TX Flow Control enable.

1: Enable transmitting pause frame on TX direction during full duplex mode (default).

0: Disabled.

Bit 6: Please always write 0 to this bit.

PF: Check only "length/type" field for Pause Frame.

1: Enable. Pause frames are identified only based on L/T filed.

0: Disabled. Pause frames are identified based on both DA and L/T fields (default).

RE: Receive Enable.

1: Enable RX path of the ASIC.

0: Disabled (default).

PS: Port Speed in MII mode

1: 100 Mbps (default).

0: 10 Mbps.

SBP: Stop Backpressure.

1: When TFC bit = 1, setting this bit enables backpressure on TX direction "continuously" during RX buffer full condition in half duplex mode.

0: When TFC bit = 1, setting this bit enable backpressure on TX direction "intermittently" during RX buffer full condition in half duplex mode (default).

SM: Super Mac support.

1: Enable Super Mac to shorten exponential back-off time during transmission retrying.

0: Disabled (default).

AX88772A/AX88172A

Low-pin-count

USB 2.0 to 10/100M Fast Ethernet Controller

6.2.1.19 Monitor Mode Status Register (1Ch, read only)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PME_IND	PME_TYPE	PME_POL	US	RWWF	RWMP	RWLU	MOM

MOM: Monitor Mode

- 1: Enabled. All received packets will be checked on DA and CRC but not buffered into memory.
- 0: Disabled (default).

RWLU: Remote Wakeup trigger by Ethernet Link-up.

- 1: Enabled (default).
- 0: Disabled.

RWMP: Remote Wakeup trigger by Magic Packet.

- 1: Enabled (default).
- 0: Disabled.

RWWF: Remote Wakeup trigger by Wake Up Frame.

- 1: Enabled.
- 0: Disabled (default).

US: USB Speed.

- 1: High speed mode.
- 0: Full speed mode.

PME_POL: PME Polarity.

- 1: PME active high.
- 0: PME active Low (default).

PME_TYP: PME I/O Type.

- 1: PME output is a Push-Pull driver.
- 0: PME output to function as an open-drain buffer.

PME_IND: PME indication.

- 1: A 1.363ms pulse active when detect wake-up event.
- 0: A static signal active when detect wake-up event (default).

AX88772A/AX88172A

Low-pin-count

USB 2.0 to 10/100M Fast Ethernet Controller

6.2.1.20 Monitor Mode Register (1Dh, write only)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	Rese	erved		RWWF	RWMP	RWLU	MOM

MOM: Monitor Mode.

1: Enable. All received packets will be checked on DA and CRC but not buffered into memory.

0: Disable (default).

RWLU: Remote Wakeup trigger by Ethernet Link-up.

1: Enable (default).

0: Disable.

RWMP: Remote Wakeup trigger by Magic Packet.

1: Enable (default).

0: Disable.

RWWF: Remote Wakeup trigger by Wake Up Frame.

1: Enable

0: Disable (default).

Below describes some Remote Wakeup settings, wakeup events, and expected behavior of AX88772A/AX88172A.

After AX88772A/AX88172A enters into suspend mode, either the USB host or AX88772A/AX88172A itself can awake it up and resume back to the original operation mode before it entered suspend. Following truth table shows the chip setting, wakeup event, and device response supported by this ASIC. Note that "X" stands for don't-care.

Waken			Setting						Wa	keup Even	t		Device
Up by	RWU bit	Set_Feature	RWWF	RWMP	RWLU	GPIO_1	Host	Receiving	Receiving	Linkup	Linkup	EXTWAKEU	wakes up
	of Flag	standard				(*)	sends	a Wakeup	a Magic	detected	detected	P_N pin	
	byte in	command					resume	Frame	Packet	On	On		
	EEPROM						signal			Primary	Secondary		
										PHY	PHY		
USB	X	X	X	X	X	0	$J \rightarrow K$						Yes
Host													
Device	0	0	X	X	X	0		X	X	X	X	X	No
Device	1	1	1	0	0	0		Yes					Yes
Device	1	1	0	1	0	0			Yes				Yes
Device	1	1	0	0	1	0				Yes **			Yes **
Device	1	1	0	0	1	0					Yes **		Yes **
Device	1	1	X	X	X	0		·		•		Low-pulse	Yes
Device	X	0	0	0	0	1		·	Yes	•	Yes ***	Low-pulse	Yes

^{*:} About Default WOL Ready Mode, please refer to section 2.3 GPIO_1 Settings.

Table 8 : Remote Wakeup Truth Table

^{**:} Please refer to below Table 9.

^{***:} It only works in PHY mode and Dual-PHY mode for AX88172A. Please refer to below Table 9.

AX88772A/AX88172A Low-pin-count USB 2.0 to 10/100M Fast Ethernet Controller

SSEN	(Pin#59,	ASEL	PSEL	Internal	SS[1:0]	Ethernet Interface	RWLU =	1
	Pin#60) setting			PHY link status		selection result	Primary Link Up event (Note	Secondary Link Up event (Note 1)
0	00	X	X	X	XX	Internal PHY	BMSR [2] = 0->1(Note 2)	N/A
0	01	X	X	X	XX	MII	BMSR [2] = 0 -> 1	External PHY BMSR [2] = 0 -> 1
0	10	X	X	X	XX	Reverse-MII (Dual-PHY mode)	N/A	MDINF [8] = 1-> 0
0	11	X	X	X	XX	Reserved		
1	X	0	0	X	00	Invalid	N/A	N/A
1	X	0	0	X	01	MII	BMSR [2] = 0-> 1	External PHY BMSR [2] = 0 -> 1
1	X	0	0	X	10	Reverse-MII (PHY mode)	BMSR $[2] = 0 -> 1$	MDINF [8] = 1-> 0
1	X	0	0	X	11	Reverse-RMII (PHY mode)		
1	X	0	1	X	XX	Internal PHY	BMSR $[2] = 0 -> 1$	(Note 3)
1	X	1	X	Link OFF	00	Invalid	N/A	N/A
1	X	1	X	Link OFF	01	MII	BMSR [2] = 0-> 1	External PHY BMSR [2] = 0 -> 1
1	X	1	X	Link OFF	10	Reverse-MII (PHY mode)	BMSR $[2] = 0 -> 1$	MDINF [8] = 1-> 0
1	X	1	X	Link OFF	11	Reverse-RMII (PHY mode)		
1	X	1	X	Link ON	XX	Internal PHY	BMSR $[2] = 0 -> 1$	(Note 3)

Note 1: Refer to 6.3 Interrupt Endpoint: PPLS, SPLS.

Note 2: Please refer to 7.1.2 Basic Mode Status Register (BMSR).

Note 3: SS[1:0]='01' :External PHY BMSR [2] =0->1, SS[1:0]='1X': MDINF [8] = 1-> 0

Table 9 : Remote Wakeup by Link Up for all modes

6.2.1.21 GPIO Status Register (1Eh, read only)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0b	GPI_2	GPO_2_EN	GPI_1	GPO_1_EN	GPI_0	GPO_0_EN

GPO_0_EN: Current level of pin GPIO_0's output enable.

GPI_0: Input level on GPIO_0 pin when GPIO_0 is as an input pin.

GPO_1_EN: Current level of pin GPIO_1's output enable.

GPI_1: Input level on GPIO_1 pin when GPIO_1 is as an input pin.

GPO 2 EN: Current level of pin GPIO 2's output enable.

GPI_2: Input level on GPIO_2 pin when GPIO_2 is as an input pin.

6.2.1.22 GPIO Register (1Fh, write only)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RSE	Reserved	GPO_2	GPO2EN	GPO_1	GPO1EN	GPO_0	GPO0EN

GPO0EN: Pin GPIO_0 Output Enable.

1: Output is enabled (meaning GPIO_0 is used as an output pin).

0: Output is tri-stated (meaning GPIO_0 is used as an input pin) (default).

GPO_0: Pin GPIO_0 Output Value.

GPO1EN: Pin GPIO_1 Output Enable.

1: Output is enabled (meaning GPIO_1 is used as an output pin).

0: Output is tri-stated (meaning GPIO_1 is used as an input pin) (default).

GPO_1: Pin GPIO_1 Output Value.

0: (default).

GPO2EN: Pin GPIO_2 Output Enable.

1: Output is enabled (meaning GPIO_2 is used as an output pin).

0: Output is tri-stated (meaning GPIO_2 is used as an input pin) (default).

GPO_2: Pin GPIO_2 Output Value.

0: (default).

RSE: Reload Serial EEPROM.

1: Enable.

0: Disabled (default)

USB 2.0 to 10/100M Fast Ethernet Controller

6.2.1.23 Software Reset Register (20h, write only)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Reserved	IPPD	IPRL	BZ	Reserved	BZ_TYP	RT	RR

RR: Clear frame length error for Bulk In.

1: set high to clear state.

0: set low to exit clear state (default).

RT: Clear frame length error for Bulk Out.

1: set high to enter clear state.

0: set low to exit clear state (default).

BZ_TYP: The type of BZ bit. Define BZ bit whether it can auto-clear itself.

1: Disable that BZ auto-clears itself when it force hardware return a Zero-length packet (default).

0: Auto-clears BZ when it force hardware return a Zero-length packet.

BZ: Force Bulk In to return a Zero-length packet.

1: Software can force Bulk In to return a zero-length USB packet.

0: Normal operation mode (default).

IPRL: Internal PHY Reset control. When SCPR bit = 1(EEPROM flag, bit5), this bit acts as reset signal of internal Ethernet PHY. AX88772A/AX88172A software driver can write it to control the internal Ethernet PHY except in Dual-PHY mode. Please refer to below Figure 25.

1: Internal Ethernet PHY is in operating state.

0: Internal Ethernet PHY in reset state (default).

IPPD: Internal Ethernet PHY Power Down control. AX88772A/AX88172A software driver can write it to control the internal Ethernet PHY except in Dual-PHY mode. Please refer to below Figure 25.

1: Internal Ethernet PHY is in power down mode (default).

0: Internal Ethernet PHY is in operating mode.

Note: Please refer to APPENDIX B. Ethernet PHY Power and Reset Control for more information about AX88772A/AX88172A Ethernet PHY Power and Reset control operations.

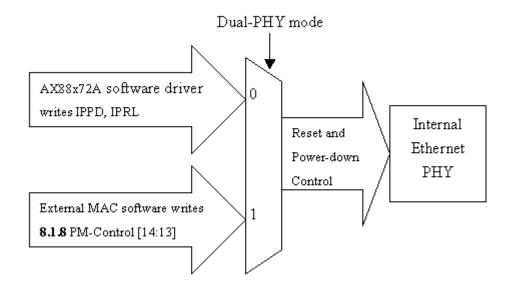


Figure 25: Reset and Power-down control Internal Ethernet PHY

6.2.1.24 Software Interface Selection Status Register (21h, read only) and Software Interface Selection Register (22h, write only)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	Reserved		SSEN	SS [[1:0]	ASEL	PSEL

PSEL: PHY Select, when ASEL = 0 (manually select the PHY to operate)

1: Select embedded 10/100M Ethernet PHY (default).

0: Select external one from SS [1:0].

ASEL: Auto Select or Manual Select

- 1: Automatic selection is based on link status of embedded 10/100M Ethernet PHY. If the embedded PHY is in link-off state and SSEN = 1, the operation mode is determined by SS [1:0].
- 0: Manual selection between the internal 10/100M Ethernet PHY and the external one (default).

SS [1:0]: Software Setting.

Write to define the operation mode of External Media Interface

00: (invalid)

01: MII interface (default)

10: Reverse-MII

11: Reverse-RMII

Read the current data path selection of Ethernet block or operation mode of External Media Interface.

00: Selected embedded Ethernet PHY

01: Selected MII interface

10: Selected Reverse-MII

11: Selected Reverse-RMII

SSEN: Software Setting Enable.

- 1: Software setting is active and the Chip Operation mode is determined by below Table 10.
- 0: Software setting is inactive and the Chip Operation mode is determined by Pin# 59 and Pin #60 of AX88172A package pinout (default).

SSEN	(Pin # 59, Pin#60) setting	ASEL	PSEL	Internal PHY link status	SS [1:0]	Ethernet Interface selection result
0	00	X	X	X	XX	Internal PHY
0	01	X	X	X	XX	MII
0	10	X	X	X	XX	Reverse-MII (Dual-PHY mode)
0	11	X	X	X	XX	Reserved
1	X	0	0	X	00	Invalid
1	X	0	0	X	01	MII
1	X	0	0	X	10	Reverse-MII (PHY mode)
1	X	0	0	X	11	Reverse-RMII (PHY mode)
1	X	0	1	X	XX	Internal PHY
1	X	1	X	Link OFF	00	Invalid
1	X	1	X	Link OFF	01	MII
1	X	1	X	Link OFF	10	Reverse-MII (PHY mode)
1	X	1	X	Link OFF	11	Reverse-RMII (PHY mode)
1	X	1	X	Link ON	XX	Internal PHY

Table 10 : Interface Selection Truth Table

6.2.1.25 Wake-up Frame Array Register (23h, read only and 24h, write only)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
			WUD	0 [7:0]					
	WUD1 [7:0]								
	WUD2 [7:0]								
	WUD3 [7:0]								

AA: The index (from 0 to 8) of Wake-Up Frame Array Register as shown in left-hand side of below table. {WUD3 [7:0], WUD2 [7:0], WUD1 [7:0], WUD0 [7:0]} = 32-bits wide register as defined in below table.

AA	Byte3 (WUD3)	Byte	e2 (WUD2)	Byte1 ((WUD1)	Byte0 ((WUD0)		
0		Byte Mask 0							
1				Byte Mask	1				
2				Byte Mask	2				
3				Byte Mask	3				
4	Wakeup I	Frame 1	CRC		Wakeup Fr	ame 0 CRC			
5	Wakeup I	Frame 3	CRC		Wakeup Fr	ame 2 CRC			
6	Offset 3	(Offset 2	Offset 1 Offset 0			set 0		
7	Last Byte 3	Byte 3 Last Byte 2			Byte 1	Last l	Byte 0		
8	Reserved.		Cascade	Command 3	Command 2	Command 1	Command 0		
	(Always zero	0)	Command						

Table 11 : Wake-up Frame Array Register (WUD3~0) Structure Definition

There are four independent sets of wakeup frame filter supported through the above Byte Mask 0~3. Each wakeup frame filter set consists of Byte Mask, Wakeup Frame CRC, Offset, Last Byte and Command registers. Also, if a more complex pattern of Wakeup Frame is needed, user can choose to cascade two filter sets into one (or up to four filter sets into one) through Cascade Command register and define a longer pattern for Wakeup Frame matching. Below is detailed register definition.

Byte Mask 0~3: Each set has 32 bits.

The byte mask defines which bytes in the incoming frame will be examined to determine whether or not this is a wake-up frame.

Wakeup Frame 0~3 CRC: Each has 16 bits.

Based on desired wakeup frame patterns, software should calculate CRC-16 and set it here. The value is used to compare with the CRC-16 calculated on the incoming frame on the bytes defined by Byte Mask 0~3. When matched and the Last Byte 0~3 is also matched, then the frame is considered as a valid wakeup frame.

CRC-16 Polynomials =
$$X^16 + X^15 + X^2 + 1$$
.

If wakeup frame filters are cascaded, the Wakeup Frame CRC must be cumulatively calculated. The last CRC value is used for verification.

Offset 0~3: Each has 8 bits.

This defines the offset of the first byte in the incoming frame from which the CRC-16 is calculated for the wakeup frame recognition. Each offset value represents two bytes in the frame. For example: The offset value of 0 is the first byte of the incoming frame's destination address. The offset value of 1 is the 3rd byte of the incoming frame, etc.

Last Byte 0~3: Each has 8 bits.

This 1-byte pattern is used to compare the last masked byte in the incoming frame. The last masked byte is the byte of the last bit mask being 1 in Byte Mask 0~3. A valid wakeup frame shall have match condition on both Wakeup Frame 0~3 CRC and Last Byte 0~3. If wake-up frame filters are cascaded, the Last Byte for the last cascaded wake-up frame filter is used to verify correctness.

AX88772A/AX88172A

Low-pin-count

USB 2.0 to 10/100M Fast Ethernet Controller

Command 0~3: Each has 4 bits.

ASIX

Bit 0: Individual Byte Mask enable for Byte Mask 0~3.

- 1: Enable.
- 0: Disable.

Bit 1: Destination address (DA) match enable.

- 1: The DA field of received packet will be compared with the MAC address of AX88772A/AX88172A. When receiving frame with DA matching Node ID register and the wakeup frame filter is also matched, then the packet is considered as valid wakeup frame.
- 0: When receiving frame with any DA value and the wakeup frame filter is matched, then the packet is considered as valid wakeup frame.

Bit 2: Multicast address match enable.

- 1: The DA field of received packet will be examined if it is a multicast frame and compared with the Multicast Filter Array (see 6.2.1.15). When receiving frame is a multicast frame, meets Multicast Filter Array, and also matches the wakeup frame filter, the packet is considered as valid wakeup frame.
- 0: When receiving frame with any DA value matches the wakeup frame filter, the packet is considered as valid wakeup frame.

Bit 3: Reserved.

Cascade Command: the Bit 16~18 of Wake-up Frame Array Register 8.

Bit16:

- 1: Byte Mask 1 and Byte Mask 0 are cascaded to become one wake-up frame filter that allows defining up to 64 masked bytes.
- 0: Byte Mask 1 and Byte Mask 0 are two independent wake-up frame filters for up to 32 masked bytes each. Bit17:
 - 1: Byte Mask 2 and Byte Mask 1 are cascaded to become one wake-up frame filter that allows defining up to 64 masked bytes.
- 0: Byte Mask 2 and Byte Mask 1 are two independent wake-up frame filters for up to 32 masked bytes each. Bit18:
 - 1: Byte Mask 3 and Byte Mask 2 are cascaded to become one wake-up frame filter that allows defining up to 64 masked bytes.
 - 0: Byte Mask 3 and Byte Mask 2 are two independent wake-up frame filters for up to 32 masked bytes each.
- Note: (1) If both Bit16 and Bit 17 set '1', Byte Mask 2 and Byte Mask 1 and Byte Mask 0 are cascaded to become one wake-up frame filter that allows defining up to 96 masked bytes.
 - (2) If both Bit17 and Bit 18 set '1', Byte Mask 3 and Byte Mask 2 and Byte Mask 1 are cascaded to become one wake-up frame filter that allows defining up to 96 masked bytes.
 - (3) If Bit18 ~ Bit 16 set '1', Byte Mask 3 ~Byte Mask 0 are cascaded to become one wake-up frame filter that allows defining up to 128 masked bytes maximum.

6.2.1.26 Jam Limit Count Register (25h, read only and 26h write only)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	0			Jam_L	imit [5:0]		

Jam_Limit[5:0]: This is used for flow-control in half-duplex mode, which is based on force collision mechanisms to backpressure transmitting network node. During the force collision backpressure process, the Ethernet MAC will continue counting total collision count. When it has reached the Jam_Limit setting, the Ethernet MAC will stop backpressure to avoid Ethernet HUB from being partitioned (default = 3Fh) due to excessive collision on network link. Bit 7,6: Please always write 0 to these bits.

USB 2.0 to 10/100M Fast Ethernet Controller

6.2.1.27 VLAN Control Register (27h, read only) and (28h, write only)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
	VID1 [7:0]								
Rese	erved	VSO	VFE	VID1 [11:8]					
			VID2	02 [7:0]					
	Rese	erved			VID2	[11:8]			

 $AA[7:0] = {VID1[7:0]}.$

BB [7:0] = {Reserved, VSO, VFE, VID1 [11:8]}.

 $CC[7:0] = {VID2[7:0]}.$

 $DD [7:0] = \{Reserved, VID2 [11:8]\}.$

VID1 [11:0]: First VLAN ID for filter.

VFE: VLAN filter enable

1: Enable VLAN filter. The VLAN ID field (12 bits) received 802.1q tagged packets, as in the Figure 26 below, which will be used to compare with VID1 and VID2 setting. If it matches either VID1 or VID2, or its value is equal to all zeros, the received 802.1q tagged packets will be forwarded to the USB Host. Meanwhile, the VSO bit determines whether the VLAN Tag bytes (4 bytes) are stripped off or not during forwarding to the USB Host. Also, if the incoming packets contain no VLAN Tag bytes, they will be forwarded to the USB Host by default. If there is no match between the received 802.1q tagged packets and VID1 and VID2, the packets will be discarded. Please see below Table 12.

Received packet	Untagged	Tagg	ed
VID1, VID2		VID=Zero	VID= Not zero
Zero	Forwarded	Forwarded	Discarded
Not zero	Forwarded	Forwarded	Match: Forwarded No Match: Discarded

Table 12 : VID1, VID2 setting to filter received packet

0: Disable VLAN filter. The received packets with or without 802.1q Tag bytes will always be forwarded to the USB Host (default).

VSO: VLAN Strip off

- 1: Strip off VLAN Tag (4 bytes) from the incoming packet.
- 0: Preserve VLAN Tag in the incoming packet (default).

VID2 [11:0]: Second VLAN ID for filter. Note that VID1 and VID2 function as two independent VLAN ID filters.

Note that to send the packet with VLANID Tag bytes, the software should append VLAN Tag bytes in the transmitted packets.

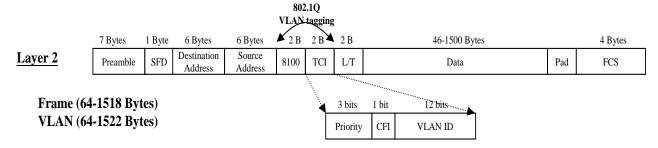


Figure 26: 802.1q VLAN Packet Format

6.2.2 Command Block Wrapper for Serial Interface

The CBW (Command Block Wrapper) structure based on endpoint 4 (Bulk In type) and endpoint 5 (Bulk Out type) is used to access to the three interfaces -UART/I2C/SPI. Its construction is described as below:

Serial I/O Command Block Wrapper (CBW): A frame containing a command block and associated information. Serial I/O Command Status Wrapper (CSW): A frame containing the status of a command block. Data-Out: Transmitted data from Host to Device whose data length is up to 16 bytes as maximum CBW data limit. Data-In: Received data from Device to Host whose data length is up to 16 bytes as maximum CBW data limit.

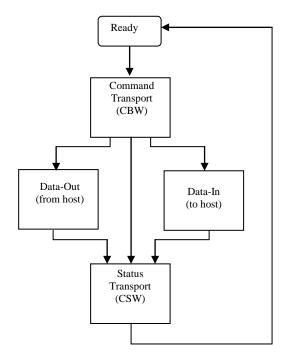


Figure 27 : Command/Data/Status Flow

AX88772A/AX88172A Low-pin-count

USB 2.0 to 10/100M Fast Ethernet Controller

Command Block Wrapper

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Byte0				CBWSign	ature [15:0]			
Byte1								
Byte2		CBWReg/	Addr [3:0]		00)	CBWDevic	eCode [1:0]
Byte3	CBWRst	0	CBWZero	CBWDir		CBWTa	ıg [3:0]	

CBWSignature [15:0] = {Byte1, Byte0} = 0x5547. This Signature helps to identify this data packet as a CBW.

CBWDeviceCode [1:0]: Serial interface device select.

00: Select to access I2C module 01: Select to access UART module 10: Select to access SPI module

Others: Reserved

CBWRegAddr [3:0]: Select which register of the serial interface device to be accessed (CBWDeviceCode).

For UART register map, please refer to UART controller (6.2.2.1).

For I2C register map: I2C controller (6.2.2.2). For SPI register s: SPI controller (6.2.2.3).

CBWTag [3:0]: A Command Block Tag sent by the host. The device shall echo the contents of this field back to the host in the CSWTag field of the associated CSW. The CSWTag positively associates a CSW with the corresponding CBW.

CBWDir: CBW Direction

1: Data-In from the device to the host.0: Data-Out from host to the device,

CBWZero: CBW Zero data. It is indicates this transfer without data phase (Data-In, Data_Out).

CBWRst: CBW Reset CBWDeviceCode device.

Command Status Wrapper

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Byte0		CSWSignature [15:0]						
Byte1								
Byte2		CSWRegAddr [3:0] 00 CSWDeviceCode [1						Code [1:0]
Byte3	0	0	CSWStat	us [1:0]		CSWTa	g [3:0]	

CSWSignature [15:0] = {Byte1, Byte0} = 0x4755. This Signature helps to identify this data packet as a CSW.

CBWDeviceCode [1:0]: Echo Serial interface device selected.

CSWTag [3:0]: Echo CBWTag.

CSWRegAddr [3:0]: Echo CBWRegAddr.

CSWStatus [1:0]: Report the success or failure of the command.

00: Command Passed ("good status")

01: Command Failed10: Phase ErrorOthers: Reserved

6.2.2.1 UART controller

The AX88772A/AX88172A provides a simple UART function with 2 wires, UART_TX and UART_RX, for interfacing with an external RS-232 transceiver. To simplify the serial interface (just 2 wires), there is no hardware flow control signal (like CTS, RTS, DSR, DTR, etc) supported. The main features of UART are listed below:

- The UART can support up to 19200 bps full duplex in USB High Speed mode. Note: 38400/57600 bps only for TXD.
- The UART has a 24-byte deep transmit FIFO and a 16-byte deep receive FIFO.
- Fully programmable serial interface
 - Even, odd, no parity bit generation and detection
 - ◆ 5, 6, 7, 8 data bit
 - ◆ 1, 1.5, 2 stop bit generation

CBWRegAddr	Register Description
0	6.2.2.1.1 UART Configure Register (read and write)
1	6.2.2.1.2 UART Status Register (read only)
2	6.2.2.1.3 UART Receiver Buffer (FIFO) Register (read only)
3	6.2.2.1.4 UART Transmitter Holder (FIFO) Register (write only)

Table 13 : UART Controller Register Map

6.2.2.1.1 UART Configure Register (CBWRegAddr = 0, read and write)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1 Bit0	
			DLLF	R [7:0]			
			DLHI	R [7:0]			
0	BCB	SPB	EPS	PE	NSB	N	BPC
I	Reserved (00	0)	WER	MSI	RLSI	THRI	RDI
F	FITL Reserved (000) TFR RFR FIFOE						
	Reserved (0x00)						

Divisor Suggestion = {DLHR [7:0], DLLR [7:0]}

	System Clock = 30Mhz							
Baud Rate	Divisor Suggestion	Real Baud	Bias %					
57600	0x0008	57692	0.16%					
38400	0x000C	38461	0.16%					
19200	0x0018	19230	0.16%					
9600	0x0030	9615	0.16%					
7200	0x0040	7211	0.16%					
4800	0x0060	4807	0.15%					
3600	0x0080	3605	0.13%					

Low-pin-count

USB 2.0 to 10/100M Fast Ethernet Controller

Line Control Register LCR [7:0] = {0, BCB, SPB, EPS, PE, NSB, NBPC}

NBPC: The number of bits per character in each transmitted or received serial character.

11: 8 bits.

10: 7 bits

01: 6 bits

00: 5 bits

NSB: Specify the number of generated stop bits. Note that the receiver always checks the first stop bit only.

- 1: 1.5 stop bits when 5-bit character length selected and 2 bits otherwise
- 0: 1 stop bit

PE: Parity Enable

- 1: Parity bit is generated on each outgoing character and is checked on each incoming one.
- 0: No parity

EPS: Even Parity select

- 1: Even number of '1' is transmitted in each word.
- 0: Odd number of '1' is transmitted and checked in each word (data and parity combined). In other words, if the data has an even number of '1' in it, then the parity bit is '1'.

SPB: Stick Parity bit

- 1: If bits 3 and 4 are logic '1', the parity bit is transmitted and checked as logic '0'. If bit 3 is '1' and bit 4 is '0' then the parity bit is transmitted and checked as '1'.
- 0: Stick Parity disabled

BCB: Break Control bit

- 1: the serial out is forced into logic '0' (break state).
- 0: break is disabled

$IER [4:0] = \{WER, MSI, RLSI, THRI, RDI\}$

RDI: Received Data available interrupt

- 1: Enable
- 0: Disable
- THRI: Transmitter Holding Register empty interrupt
 - 1: Enable
 - 0: Disable
- RLSI: Receiver Line Status Interrupt
 - 1: Enable
 - 0: Disable
- MSI: Modem Status Interrupt
 - 1: Enable
 - 0: Disable

WER: Wakeup Enable Register

- 1: Enable. Whenever UART_RX become active (from high to low)
- 0: Disable

FIFO Control Register FCR [7:0] = {FITL, 000, TFR, RFR, FIFOE}

FIFOE: This UART only supports FIFO mode, so always write 1 to this bit.

RFR: Writing '1' to this bit clears the Receiver FIFO and resets its logic. But it doesn't clear the shift register, i.e. receiving of the current character continues.

TFR: Writing '1' to this bit clears the Transmitter FIFO and resets its logic. The shift register is not cleared, i.e. transmitting of the current character continues

FITL: FIFO Trigger level: Define the Receiver FIFO interrupt level

00: 1 byte

01: 8 bytes

10: Reserved

11: Reserved

Low-pin-count USB 2.0 to 10/100M Fast Ethernet Controller

6.2.2.1.2 UART Status Register (CBWRegAddr = 1, read only)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1 Bit0	
	Reserve	d (Zero)		IIR3	IIR2	IIR1	IIR0
FERR	TEMT	THRE	BI	FE	PE	OE	DR
			Reserve	ed (Zero)			
			Reserve	ed (Zero)			
			Reserve	ed (Zero)			
Reserved (Zero)							

Interrupt Identification Register IIR [3:0]: Please see below table for more description.

IIR3	IIR2	IIR1	IIR0	Priority	Interrupt Type	Interrupt Source	Interrupt Reset Control
0	0	0	1	-	None	None	-
0	1	1	0	1 st			Reading the Line Status Register
0	1	0	0	2 nd	Receiver Data available	FIFO trigger level reached	FIFO drops below trigger level
1	1	0	0	2 nd		There's at least 1 character in the FIFO but no character has been input to the FIFO or read from it for the last 4 Char times	_
0	0	1	0	3 rd		1 0	Writing to the Transmitter Holding Register or reading IIR
0	0	0	0	4 th	Modem Status		Reading the Modem status register

Line Status Register LSR [7:0]: {FERR, TEMT, THRE, BI, FE, PE, OE, DR}

- DR: Data Ready (DR) indicator.
 - 1: At least one character has been received and is in the FIFO.
 - 0: No characters in the FIFO
- OE: Overrun Error (OE) indicator
 - 1: If the FIFO is full and another character has been received in the receiver shift register. If another character is starting to arrive, it will overwrite the data in the shift register but the FIFO will remain intact. The bit is cleared upon reading from the register. Generates Receiver Line Status interrupt.
 - 0: No overrun state
- PE: Parity Error (PE) indicator
 - 1: The character that is currently at the top of the FIFO has been received with parity error. The bit is cleared upon reading from the register. Generates Receiver Line Status interrupt.
 - 0: No parity error in the current character
- FE: Framing Error (FE) indicator
 - 1: The received character at the top of the FIFO did not have a valid stop bit. Of course, generally, it might be that all the following data is corrupt. The bit is cleared upon reading from the register. Generates Receiver Line Status interrupt.
 - 0: No framing error in the current character
- BI: Break Interrupt (BI) indicator
 - 1: A break condition has been reached in the current character. The break occurs when the line is held in logic 0 for a time of one character (start bit + data + parity + stop bit). In that case, one zero character enters the FIFO and the UART waits for a valid start bit to receive next character. The bit is cleared upon reading from the register. Generates Receiver Line Status interrupt.
 - 0: No break condition in the current character

AX88772A/AX88172A Low-pin-count USB 2.0 to 10/100M Fast Ethernet Controller

THRE: Transmit FIFO is empty.

- 1: The transmitter FIFO is empty. Generates Transmitter Holding Register Empty interrupt. The bit is cleared when data is being been written to the transmitter FIFO.
- 0: Otherwise

TEMT: Transmitter Empty indicator.

- 1: Both the transmitter FIFO and transmitter shift register are empty. The bit is cleared when data is being been written to the transmitter FIFO.
- 0: Otherwise

FERR:

- 1: At least one parity error, framing error or break indications have been received and are inside the FIFO. The bit is cleared upon reading from the register
- 0: Otherwise

6.2.2.1.3 UART Receiver Buffer (FIFO) Register (CBWRegAddr = 2, read only)

It can be read continuously up to 16 bytes of maximum CBW data length. Note: There are 16 bytes of receive buffer FIFO.

6.2.2.1.4 UART Transmitter Holder (FIFO) Register (CBWRegAddr = 3, write only)

It can be written continuously up to 16 bytes of maximum CBW data length. Note: There are 24 bytes of transmit buffer FIFO.

Low-pin-count USB 2.0 to 10/100M Fast Ethernet Controller

6.2.2.2 I2C controller

The I2C controller of AX88172A/AX88772A supports Standard-mode (100K bps) and Fast-mode (400K bps), but not High-speed mode (3.4M bps) of the standard I2C bus specs. With 2 wires, I2C_SCL and I2C_SDA, the I2C controller consists of an I2C master controller supporting communication to external I2C devices as slaves, and an I2C slave controller supporting communication to external micro-controller with I2C master.

The I2C master controller is compatible with the I2C bus protocol. It provides three registers to fully control and monitor I2C bus transactions, and it has separate receive and transmit registers to hold data for transactions between the chip and the external I2C devices. The I2C master controller also provides arbitration for multi-master operation scenarios and reports the arbitration status. The I2C clock frequency is software programmable.

The I2C slave controller allows an external micro-controller with I2C master to communicate with this chip. It provides an I2C device ID register to allow flexible assignment with any I2C device address for either 7-bit or 10-bit address mode, and can automatically filter I2C bus transactions not belonging to this chip in hardware.

CBWRegAddr	Register description
0	6.2.2.2.1 I2C Control Register (read and write)
1	6.2.2.2.2 I2C Status Register (read only)
2	6.2.2.2.3 I2C Configure Register (write only)

Table 14 : I2C Controller Register Map

6.2.2.2.1 I2C Control Register (CBWRegAddr = 0, read and write)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MSS	SIE	0	0	TE	SD	I2CEN	MIE
			PR	ER0 [7:0]			
			PR	ER1 [7:0]			
			SI	DA0 [7:0]			
	0 SDA1 [1:0]						
	Reserved (Zero)						

PRER0 [7:0] = Pre-scale the SCL clock line. Only used in I2C master mode.

PRER1 [7:0] = Pre-scale the SCL clock line. Only used in I2C master mode.

The max value of {PRER1, PRER0} is 0x000F when in I2C Fast mode. (Around 400KHz)

The max value of {PRER1, PRER0} is 0x003C when in I2C Standard mode. (Around 100KHz)

SDA0 [7:0]: Slave Device Address

SDA1 [1:0]: Slave Device Address

This {SDA1, SDA0} is the I2C device address of this ASIC operating in slave mode. If the device is configured as 7-bits address mode then only bit [6:0] are valid. The 6th bit is MSB. If the device is configured as 10-bits address mode then bit [9:0] are valid. The 9th bit is MSB.

I2CCTR [7:0] = {MSS, SIE, 2'b0, TE, SD, EN, MIE}.

MIE: Master mode Interrupt Enable. This bit is only used in I2C master mode.

- 1: Master mode Interrupt Enable
- 0: Master mode Interrupt Disable

I2CEN: I2C Enable

- 1: I2C Enable
- 0: I2C Disable

SD: I2C speed in slave mode. This bit is only used in I2C slave mode.

- 1: I2C operating in Standard mode.
- 0: I2C operating in Fast mode.

TE: Ten address Enable. This bit is only available in slave mode.

- 1: 10 bit address enable.
- 0: 7 bit address enable.

SIE: Slave mode Interrupt Enable. This bit only used in I2C slave mode.

- 1: Slave mode Interrupt Enable.
- 0: Slave mode Interrupt Disable.

MSS: Master / Slave mode select.

- 1: Set I2C is operating as master mode.
- 0: Set I2C is operating as slave mode.

6.2.2.2.2 I2C Status Register (CBWRegAddr = 1, read only)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
			I2CT1	R [7:0]			
			I2CR	R [7:0]			
			I2CC	R [7:0]			
			I2CMS	SR [7:0]			
			I2CSS	R [7:0]			
			Reserve	ed (Zero)			

I2CTR [7:0]: I2C Transmit Register to I²C bus in either master or slave mode.

I2CRR [7:0]: Last byte received from I²C bus in either master or slave mode.

I2CCR [7:0]: I2C Command Register.

I2CMSR [7:0] = {ACK, BUSY, AL, Reserved, Reserved, TIP, Reserved}: I2C Master Status Register.

TIP: Transfer in progress.

- 1: when transferring data is in progress
- 0: when transfer is completed

AL (CR): Arbitration Lost.

- 1: This bit is set when the I2C master lose arbitration during multi-master scenario. Arbitration is lost when a STOP signal is detected, but not requested or the master drives SDA high, but SDA is low.
- 0: No arbitration lost.

BUSY: I2C bus is Busy.

- 1: after the START signal is detected on I2C bus
- 0: after the STOP signal is detected on the I2C bus

ACK (CR): This flag represents the Acknowledgement received from I2C slave after a transfer. This bit is only meaningful after the TIP bit changes from '1' to '0' for a transfer.

- 1: NACK is received from the slave
- 0: ACK is received from the slave

I2CSSR [7:0] = {ERR, STOP, START, RE-START, RD, WR, NACK, STC}: I2C Slave Status Register.

STC (CR): Slave Transfer Complete.

Reading '1' indicates that the external I2C master has just completed one transfer on I2C bus

NACK (CR): NACK condition.

Reading '1' indicates that the external I2C master returns a NACK condition during current transfer.

WR: Write command.

Reading '1' indicates that the external I2C master needs to transmit data to this ASIC. The data is held in I2CRR register.

RD: Read command.

Reading '1' indicates that the external I2C master needs to receive data from this ASIC. After knowing this, the SW shall put the requested data in I2CTR register.

RE-START (CR): ReSTART condition detected.

Reading '1' indicates that the ReSTART condition is detected on the I2C bus.

START (CR): START condition detected.

Reading '1' indicates that the SART condition is detected on the I2C bus.

STOP (CR): STOP condition detected.

Reading '1' indicates that the STOP condition is detected on the I2C bus

ERR (CR): Error.

Reading '1' indicates that the I2C slave controller of this ASIC detected an error on SCL and aborted the current transfer.

USB 2.0 to 10/100M Fast Ethernet Controller

6.2.2.2.3 I2C Configure Register (CBWRegAddr = 2, write only)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
STA	STO	RD	WR	MG	0	SG	RLS
			I2CTR	[7:0]			
			Reserved	d (Zero)			
			Reserved	d (Zero)			
			Reserved	d (Zero)			
			Reserved	l (Zero)			

I2CTR [7:0]: I2C Transmit Register to I²C bus in either master or slave mode.

I2CTR [0]: In the case of a data transfer, this bit represents the data's LSB. In the case of a slave address transfer, this bit represents the R/W bit.

1: reading from slave

0: writing to slave

I2CTR [7:1]: Next byte to transmit on I²C bus in either master or slave mode.

I2CCR [7:0] = {STA, STO, RD, WR, MG, 1'b0, SG, RLS}: I2C Command Register.

RLS: Release.

Writing 1 to release SCLK, when controller reading data in last bit of last byte, setting this bit to 1 can release SCLK. This bit is only valid in I2C master mode.

SG: Slave Go.

Writing 1 to this bit starts the transfer in slave mode. This bit remains set during the transfer and is automatically cleared after the transfer finished. This bit is only available in slave mode.

MG: Master Go.

Writing 1 to this bit starts the transfer in master mode. This bit remains set during the transfer and is automatically cleared after the transfer finished. This bit is only available in master mode.

WR:

When in I2C master mode, setting '1' to request to send the data in I2CTR to the slave.

RD:

When in I2C master mode, setting '1' to request to receive data from slave. The received data is stored in I2CRR. Setting RD bit and STO bit at the same time will cause the transfer to end with a NACK condition to the addressed slave. Setting RD bit without setting STO bit will cause the transfer to end with an ACK condition to the addressed slave.

STO:

When in I2C master mode, setting '1' to request to generate the STOP condition on I2C bus.

STA:

When in I2C master mode, setting '1' to request to generate the START or ReSTART condition on I2C bus.

Example Programming Procedure in I2C Master Mode

Example 1: Write 1 byte of data = 0xAC to an external slave device with slave address = 0x51 (101_0001).

- 1. Write 0xA2 (slave address) to I2CTR. Set STA, WR, and MG bits to I2CCR.
- 2. Read TIP and ACK bits from I2CMSR until both read as '0' (polling mode or wait for interrupt in interrupt mode).
- 3. Write 0xAC to I2CTR. Set STO, WR, and MG bits to I2CCR.
- 4. Read TIP and ACK bits from I2CMSR until both read as '0'.

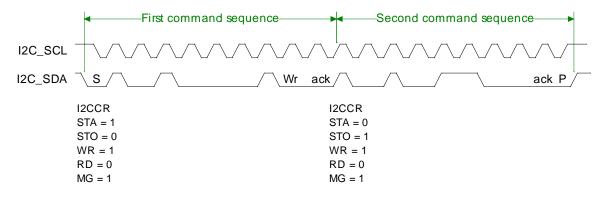


Figure 28: Transmitting Data to an I2C Slave Device

Example 2: Read a byte of data from location 0x20 of an I2C memory device with slave address = 0x4E ($100_{-}1110$)

- 1. Write 0x9C (slave address) to I2CTR. Set STA, WR, and MG bits to I2CCR. Read TIP and ACK bits from I2CMSR until both read as '0'.
- 2. Write 0x20 to I2CTR. Set WR and MG bits to I2CCR. Read TIP and ACK bits from I2CMSR until both read as '0'.
- 3. Write 0x9D (slave address) to I2CTR. Set STA, WR, and MG bits to I2CCR. Read TIP and ACK bits from I2CMSR until both read as '0'.
- 4. Set RD, STO and MG bits to I2CCR. Read TIP and IF bits from I2CMSR until both read as '0'.

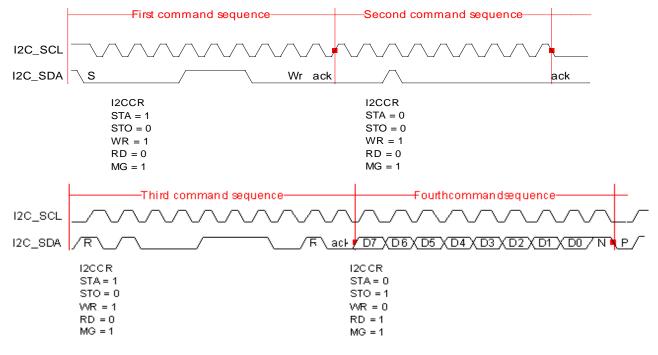


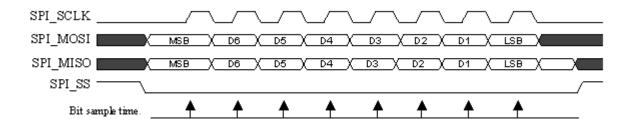
Figure 29: I2C Read Data

AX88772A/AX88172A Low-pin-count USB 2.0 to 10/100M Fast Ethernet Controller

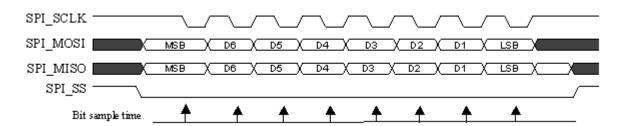
6.2.2.3 SPI controller

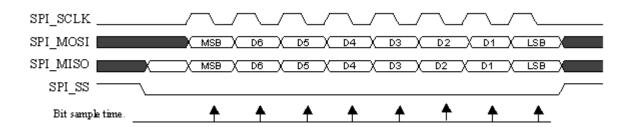
The Serial Peripheral Interface (SPI) controller of AX88172A/AX88772A provides a full-duplex, synchronous serial communication interface (4 wires, SPI_SCLK, SPI_SS, SPI_MOSI and SPI_MISO) to flexibly work with numerous peripheral devices or microcontrollers with SPI. The SPI controller consists of a SPI master controller with a slave select pin, SPI_SS to connect to a SPI device, and a SPI slave controller to support communication with an external microcontroller with SPI master.

To work with most SPI devices, the SPI master controller supports 4 types of interface timing modes: Mode 0, Mode 1, Mode 2, and Mode 3. Please see Figure 30 for the timing diagram of these timing modes. It supports variable length of transfer word up to 32 bits per software command or even extended length of transfer word for a long burst transfer by keeping slave select pins active. It supports either MSB or LSB first data transfer, and the operating SPI clock, called SPI_SCLK, is programmable by software and can be run up to about 5 MHz.


The SPI slave controller allows an external microcontroller with a SPI master to communicate with this chip. It supports 2 types of interface timing modes: Mode 0 and Mode 3. In slave mode, only MSB first data transfer is supported. The SPI slave controller supports 3 flexible command instructions (6.2.2.3.6 Instruction Set in SPI Slave Mode) for the external microcontroller to access the resource of the ASIC. It contains a 16-bytes FIFO to hold receive/transmit data on SPI interface and the SPI clock can be run up to 2 MHz.

CBWRegAddr	Register description
0	6.2.2.3.1 SPI Control Registers (read / write)
1	6.2.2.3.2 SPI Interrupt Status Register (read only)
2	6.2.2.3.3 SPI master Tx Buffer Register (write only)
3	6.2.2.3.4 SPI master Rx Buffer Register (read only)
4	6.2.2.3.5 SPI slave Tx/Rx Buffer Register (read / write)
	6.2.2.3.6 Instruction set in SPI slave mode


Table 15 : SPI Controller Register Map


Mode 0: CPHA (SPICR.1) = 0, CPOL (SPICR.2) = 0, LSB (SPICR.3) = 0, SPIMCR [CHAR_LEN] = 00111.

Mode 1: CPHA (SPICR.1) = 0, CPOL (SPICR.2) = 1, LSB (SPICR.3) = 0, SPIMCR [CHAR_LEN] = 00111.

Mode 2: CPHA (SPICR.1) = 1, CPOL (SPICR.2) = 0, LSB (SPICR.3) = 0, SPIMCR [CHAR_LEN] = 00111.

Mode 3: CPHA (SPICR.1) = 1, CPOL (SPICR.2) = 1, LSB (SPICR.3) = 0, SPIMCR [CHAR_LEN] = 00111.

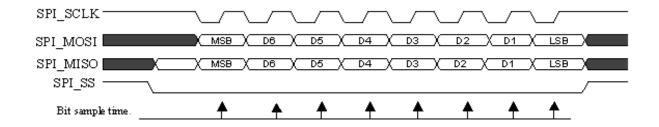


Figure 30 : SPI Timing mode Diagram

6.2.2.3.1 SPI Control Registers (CBWRegAddr = 0, read / write)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	SSOE	MSS	ASS	SPIEN	LSB	CPOL	CPHA	SSP
Byte 1		Divider						
Byte 2		Reserved						
Byte 3	Reserved			SRCFIE Reserved				STCFIE
Byte 4	Reserved							RDY

Byte 0: SPICR

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Name	SSOE	MSS	ASS	SPIEN	LSB	CPOL	CPHA	SSP
Reset Value	0	0	0	0	0	0	0	0

Bit	Name	Access	Description
210	1 (62220	110000	Slave Select pin (SPI_SS) active Polarity. This bit is only valid in SPI master mode.
	722		1: The slave select signal is active-high.
0	SSP	R/W	0: The slave select signal is active-low.
			Note that in SPI slave mode, the Slave Select pin is always active-low.
			SPI Clock Phase Bit. This bit is used to control the SPI_SCLK pin of serial clock phase vs.
	CDII	D MI	serial data. This bit is valid in both slave and master mode.
1	CPHA	R/W	1: The first SPI_SCLK edge is issued at the beginning of the 8-cycle transfer operation.
			0: The first SPI_SCLK edge is issued one-half cycle into the 8-cycle transfer operation.
			SPI Clock Polarity Bit.
2	CPOL	R/W	1: Active-low clock selected.
			0: Active-high clock selected.
			When in SPI master mode, this bit indicates that the LSB bit is transmitted/received first.
			1: The LSB of SPITBR is sent first on the line, and the first bit received from the line will
3	LSB	B R/W	be put in the LSB position in the SPIRBR register.
3	LSB		0: The MSB of SPITBR is transmitted first and the first bit received is put in MSB
			position of SPIRBR.
			Note that in slave mode, the MSB bit of each 8-bit data is always transmitted/received first.
			SPI Enable
4	SPIEN	R/W	1: SPI controller is enabled.
			0: SPI controller is disabled.
			When in SPI master mode, automatically generates Slave Select signal.
			1: The slave select signal is generated automatically. This means that setting GO_BSY
			bit of SPIMCR starts the transfer, and the slave select signal indicated in SPISSR is
			asserted by the SPI controller automatically and is deasserted after the transfer is
5	ASS	R/W	finished.
			0: The slave select signal is asserted and de-asserted by writing and clearing the SS bit in
			SPISSR register. This field is only available in master mode. When this bit is set to 0,
			the SSP will not effect, and the slave select signal is directly controlled by SPISSR
			register.
			Master/Slave mode Select
6	MSS	R/W	1: The SPI controller is configured as a SPI mater.
			0: The SPI controller is configured as a SPI slave.
			Slave Select pin (SPI_SS) Output Enable
7	SSOE	R/W	1: Enable driving slave select signal.
			0: Put slave select signal to tri-state.

AX88772A/AX88172A

Low-pin-count

USB 2.0 to 10/100M Fast Ethernet Controller

Byte 1:SPIBRR

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Name		Divider						
Reset Value		0xFF						

Bit	Name	Access	Description
7:0	Divider	R/W	The value in this field is the frequency divider of the system clock to generate the serial clock on the output SPI_SCLK. The desired frequency is obtained according to the following equation: System Clock = 30Mhz $SPI_SCLK = \frac{\text{System clock}}{(\text{Divider}+1)*2}$

Byte 2:SPISSR

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Name		Reserved						
Reset Value	0x00							

Bit	Name	Access	Description
0	SS	R/W	When in SPI master mode, this is used to select the desired slave device to communicate to. For example, SS = '1' to activate the SPI_SS. When in SPI slave mode, this is only used to select SPI_SS with active low.

Byte 3:SPIIER

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Name		Reserved		SRCFIE		Reserved		STCFIE
Reset Value		000		0		000		0

Bit	Name	Access	Description
0	STCFIE	R/W	SPI Transmit Complete Flag Interrupt Enable. 1: Enable interrupt whenever STCF flag (SPI Interrupt Status Register) is asserted. 0: Disable interrupt.
3:1	Reserved	-	
4	SRCFIE	R/W	SPI Receive Complete Flag Interrupt Enable. 1: Enable interrupt whenever SRCF flag (SPI Interrupt Status Register) is asserted. 0: Disable interrupt.
7:5	Reserved	-	•

AX88772A/AX88172A

Low-pin-count

USB 2.0 to 10/100M Fast Ethernet Controller

Byte 4:SPISCR

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Name		Reserved						RDY
Reset Value	000_0000						1	

Bit	Name	Access	Description
0	RDY	W1/R	During initialization, software shall set this bit to '1' to indicate to the external SPI master that this ASIC is ready to receive any commands. When external SPI master needs to read data from this ASIC, software sets '1' to indicate to the external SPI master that this ASIC has put the requested read data in SPISB and it is ready to be retrieved by the external SPI master. When external SPI master needs to write data to this ASIC, software shall retrieve the data from SPISB register and then sets '1' to indicate that the requested write operation has been completed by this ASIC.
7:1	Reserved	-	

6.2.2.3.2 SPI Interrupt Status Register (CBWRegAddr = 1, read only)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0		Reserved		SRCF		Reserved		STCF
Reset Value	000		0		000		0	

Bit	Name	Access	Description
0	STCF	CR	SPI Transceiver Complete Flag in SPI master mode. 1: This flag is asserted after the requested transfer (via setting GO_BSY bit in SPIMCR) is completed. 0: The SPI bus is idle or the transfer is in progress.
3:1	Reserved	-	
4	SRCF	CR	SPI Receive Complete Flag in SPI slave mode. 1: This flag is asserted every time when the SPISB contain valid data received from the external SPI master after one transfer. 0: The SPI bus is idle or the transfer is in progress.
7:5	Reserved	-	

6.2.2.3.3 SPI master Tx Buffer Register (CBWRegAddr = 2, write only)

Byte 0	GO_BSY	LL	LCSR	CHAR_LEN			
Byte 1			Tx Buffer0				
Byte 2				Tx Buffer1			
Byte 3		Tx Buffer2					
Byte 4		Tx Buffer3					

Byte 0: SPIMCR (read / write)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Name	GO_BSY	LL	LCSR			CHAR_LEN	7	
Reset Value	0	0	0	0_0111				

Bit	Name	Access	Description
4:0	CHAR_LEN	R/W	When in SPI master mode, this field specifies how many bits in SPIRBR and SPITBR are transmitted on each transfer. Up to 32 bits can be transmitted. For example, the value of "0_0111" indicates 8 bits to be transferred.
5	LCSR	R/W	When in SPI master mode, setting '1' to suppress the last SCLK in the current transfer (used in some SPI EEPROM case).
6	LL	R/W	Long Length 1: The desired transfer data length in one transfer is more than the value of CHAR_LEN. Setting '1' to keep the SPI_SS pin asserted after the transfer. This is used in the case where more than 32 bits of data need to be transferred in one transfer 0: The desired transfer data length is equal to CHAR_LEN. Setting '0' makes SPI_SS pin de-asserted automatically after the transfer.
7	GO_BSY	W1/R	Writing 1 to this bit starts the transfer. This bit remains set during the transfer and is automatically cleared after the transfer finished. Writing 0 to this bit has no effect and only available in master.

Byte 1~Byte 4: SPITBR [31:0]={Tx Buffer3, Tx Buffer2, Tx Buffer1, Tx Buffer0} (write only)

When in SPI master mode, the SPITBR registers hold the data to be transmitted in the next transfer. Valid bits depend on the CHAR_LEN bits of SPIMCR. For example, if CHAR_LEN is less or equal to 0_0111, the values of Tx Buffer3 ~ Tx Buffer1are undefined. If CHAR_LEN is less than 0_1111, the values of Tx Buffer3/Tx Buffer2 are undefined, and so on.

6.2.2.3.4 SPI master Rx Buffer Register (CBWRegAddr = 3, read only)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0		Rx Buffer0						
Byte 1		Rx Buffer1						
Byte 2		Rx Buffer2						
Byte 3		Rx Buffer3						

SPIRBR [31:0]={Rx Buffer3, Rx Buffer2, Rx Buffer1, Rx Buffer0}

When in SPI master mode, the SPIRBR registers hold the value of received data of the last executed transfer. Valid bits depend on the CHAR_LEN bits of SPIMCR. For example, if CHAR_LEN is less or equal to 0_0111, the values of Rx Buffer3 ~ Rx Buffer1 are undefined. If CHAR_LEN is less than 0_1111, the values of Rx Buffer3/Rx Buffer2 are undefined, and so on.

6.2.2.3.5 SPI slave Tx/Rx Buffer Register (CBWRegAddr = 4, read / write)

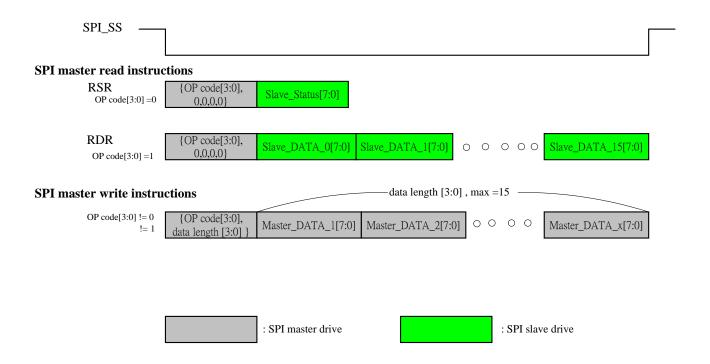
Byte 0	SBuffer0
Byte 1	SBuffer1
Byte 2	SBuffer2
Byte 3	SBuffer3
Byte 4	SBuffer4
Byte 5	SBuffer5
Byte 6	SBuffer6
Byte 7	SBuffer7
Byte 8	SBuffer8
Byte 9	SBuffer9
Byte 10	SBuffer10
Byte 11	SBuffer11
Byte 12	SBuffer12
Byte 13	SBuffer13
Byte 14	SBuffer14
Byte 15	SBuffer15
2500 10	10 = 0.233333

SPISB [127:0]={SBuffer15, SBuffer14, SBuffer13, SBuffer12,, SBuffer3, SBuffer2, SBuffer1, SBuffer0} When in SPI slave mode, this holds the data received from the external SPI master. The SBuffer0 holds the first 8-bits received, and SBuffer1 holds the second 8-bits received, and so on. Note that the transfer of each 8-bit serial data is always MSB first. When external SPI Master issues the read command, software can put requested read data in SPISB here. Again SBuffer0 holds the first 8-bits transmitted data, and SBuffer1 holds the second 8-bit transmitted data, and so on.

Example Programming Procedure in SPI Master Mode

Example 1: Configure to SPI Mode 0, SPI frequency is 1.67MHz, and enable interrupt mode. Write 2 bytes of data = 0x0500 to slave device.

- 1. Write 0x01 to SPISSR register.
- 2. Write 0x08 to SPIBRR register.
- 3. Write 0x01 to SPIIER register.
- 4. Write 0xF0 to SPICR register.
- 5. Write 0x00, 0x05, 0x00, and 0x00 to SPITBR.
- 6. Write 0x8F to SPIMCR register.
- 7. Wait interrupt. (From Interrupt Endpoint (6.3) with SPII='1')
- 8. Read SPIISR register to clear STCF.
- 9. Read SPIRBR register if needed.


Example 2: Read 1 byte of data from slave device.

- 1. Write 0x01 to SPISSR register.
- 2. Write 0x08 to SPIBRR register.
- 3. Write 0x01 to SPIIER register.
- 4. Write 0xF0 to SPICR register.
- 5. Write 0x87 to SPIMCR register.
- 6. Wait interrupt. (From **Interrupt Endpoint** (6.3) with SPII='1')
- 7. Read SPIISR register to clear STCF.
- 8. Read SPIRBR register.

6.2.2.3.6 Instruction Set in SPI Slave Mode

Instruction set in slave mode

When AX88772A/AX88172A plays as a SPI slave, the external SPI master must obey the following rules to execute SPI read/write transfer from/to AX88772A/AX88172A.

SPI write:

- 1. Before sending next "SPI master write instructions", external SPI master must send "RSR instruction of SPI master read instructions" repeatedly until it sees the Slave_Status value = 0x01.
- External SPI master then sends "SPI master write instructions". AX88772A/AX88172A SPI slave module will
 decode the OP-code and buffer the subsequent Master_DATA bytes until AX88772A/AX88172A software driver
 read them.

Note: If needed, users can always define additional OP-code in the software (as software-defined instruction) by using the first Master_DATA byte according to the format of SPI master write instruction.

SPI read:

- 1. External SPI master first sends "SPI master write instructions" including a software-defined instruction in the first Master_DATA byte to inform AX88772A/AX88172A software driver to prepare data for read.
- 2. When enabled, the AX88772A/172A software driver should receive an SPI interrupt indicating SPISB has data from external SPI master. AX88772A/172A software driver then reads and decodes data in SPISB.
- 3. After the AX88772A/AX88172A software writes the requested data to SPI slave data buffer (SPISB), and updates RSR register, the external SPI master will know that the slave data is ready by sending (polling) "RSR instruction".
- 4. After Slave_Status value changes from 0x00 into 0x01, the SPI master can send the RDR instruction to fetch out the data stored in the AX88772A/AX88172A's SPI slave buffer.

USB 2.0 to 10/100M Fast Ethernet Controller

6.3 Interrupt Endpoint

The Interrupt Endpoint contains 8 bytes of data and its frame format is defined as: A100_BBCC_DDEE_FFGG.

Where BB byte in byte 3:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Reserved	SPII	UARTI	I2CI	MDINF [8]	FLE	SPLS	PPLS

PPLS: Primary PHY Link State. The link status of internal PHY in MAC/PHY mode

- 1: Link is up.
- 0: Link is down.

SPLS: Secondary PHY Link State. It is the link status of EMI. In MII of MAC mode, it is the link status of external PHY. In PHY/Dual-PHY mode, the link status equals the inverse value of MDINF [8] in PM_Control register.

- 1: Link is up
- 0: Link is down.

FLE: Bulk Out Ethernet Frame Length Error.

- 1: Proprietary Length field has parity error during Bulk Out transaction.
- 0: Proprietary Length field has no parity error during Bulk Out transaction.

MDINF [8]: Media Information bit [8] (default value = 1).

This bit is the same as the PHY mode register, PM_Control (10h), bit [8] value written by external Ethernet MAC device when AX88172A operates in PHY/Dual-PHY mode. User can use PM_Control register bit [8] to send some message to AX88172A software driver through Interrupt Endpoint. The typical usage is to indicate to the AX88172A software driver that the external Ethernet MAC has finished initialization and is ready to send and receive packets with AX88172A, by writing '0' to PM_Control bit [8].

I2CI: I2C module with interrupt indication.

- 1: I2C has pending interrupt.
- 0: I2C has no pending interrupt.

UARTI: I2C module with interrupt indication.

- 1: UART has pending interrupt.
- 0: UART has no pending interrupt.

SPII: SPI module with interrupt indication.

- 1: SPI has pending interrupt.
- 0: SPI has no pending interrupt.

Where CC byte in byte 4:

Ī	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ĺ				MDIN	F [7:0]			

MDINF [7:0]: Media Information bit [7:0] (default = 00h).

This byte is the same as the PHY mode register, PM_Control (10h), bit [7:0] value written by external Ethernet MAC device when AX88172A operates in PHY/Dual-PHY mode. User can use PM_Control register bit [7:0] to send some messages to AX88172A software driver through Interrupt Endpoint.

DDEE byte in byte 5 and 6: Primary PHY's register value, whose offset is given in High byte of EEPROMoffset 0Fh. FFGG byte in byte 7 and 8: Primary PHY's register value, whose offset is given in Low byte of EEPROMoffset 0Fh.

7.0 Embedded Ethernet PHY Register Description

In MAC mode (operating with or without internal Ethernet PHY), the embedded Ethernet PHY registers can always be accessed indirectly through the USB vendor commands, PHY Read Register and PHY Write Register.

In PHY mode, the embedded Ethernet PHY registers can still be accessed indirectly through the USB vendor commands.

In Dual-PHY mode, the external Ethernet MAC device can access the embedded Ethernet PHY registers through MDC/MDIO pins. However, the USB vendor command indirect access to the embedded Ethernet PHY register is prohibited.

Address	Register Name	Description
00h	BMCR	Basic mode control register, basic register.
01h	BMSR	Basic mode status register, basic register.
02h	PHYIDR1	PHY identifier register 1, extended register.
03h	PHYIDR2	PHY identifier register 2, extended register.
04h	ANAR	Auto negotiation advertisement register, extended register.
05h	ANLPAR	Auto negotiation link partner ability register, extended register.
06h	ANER	Auto negotiation expansion register, extended register.
07h	Reserved	Reserved and currently not supported.
08h-0Fh	IEEE reserved	IEEE 802.3u reserved.

Table 16: Embedded Ethernet PHY Register Map

7.1 PHY Register Detailed Description

The following abbreviations apply to following sections for detailed register description.

Reset value:

1: Bit set to logic one

0: Bit set to logic zero

X: No set value

Pin#: Value latched from pin # at reset time

Access type:

RO: Read only RW: Read or write

Attribute:

SC: Self-clearing

PS: Value is permanently set

LL: Latch low LH: Latch high

7.1.1 Basic Mode Control Register (BMCR)

Address 00h

Bit	Bit Name	Default	Description
15	Reset	0, RW / SC	Reset:
			1: Software reset
			0: Normal operation
14	Loopback	0, RW	Loopback:
			1: Loopback enabled
			0: Normal operation
13	Speed selection	1, RW	Speed selection:
			1: 100 Mb/s
			0: 10 Mb/s
12	Auto-negotiation	1, RW	Auto-negotiation enable:
	enable		1: Auto-negotiation enabled. Bits 8 and 13 of this register are ignored when
			this bit is set.
			0: Auto-negotiation disabled. Bits 8 and 13 of this register determine the
			link speed and mode.
11	Power down	0, RW	Power down:
			1: Power down
			0: Normal operation
10	Isolate	(PHYAD =	Isolate:
		00000), RW	1: Isolate
			0: Normal operation
9	Restart	0, RW / SC	Restart auto-negotiation:
	auto-negotiation		1: Restart auto-negotiation
			0: Normal operation
8	Duplex mode	1, RW	Duplex mode:
			1: Full duplex operation
			0: Normal operation
7	Collision test	0, RW	Collision test:
			1: Collision test enabled
			0: Normal operation
6:0	Reserved	X, RO	Reserved:
			Write as 0, read as "don't care".

7.1.2 Basic Mode Status Register (BMSR)

Address 01h

Bit	Bit Name	Default	Description
15	100BASE-T4	0, RO / PS	100BASE-T4 capable:
			0: This PHY is not able to perform in 100BASE-T4 mode.
14	100BASE-TX full	1, RO / PS	100BASE-TX full-duplex capable:
	duplex		1: This PHY is able to perform in 100BASE-TX full-duplex mode.
13	100BASE-TX half	1, RO / PS	100BASE-TX half-duplex capable:
	duplex		1: This PHY is able to perform in 100BASE-TX half-duplex mode.
12	10BASE-T full	1, RO / PS	10BASE-T full-duplex capable:
	duplex		1: This PHY is able to perform in 10BASE-T full-duplex mode.
11	10BASE-T half	1, RO / PS	10BASE-T half-duplex capable:
	duplex		1: This PHY is able to perform in 10BASE-T half-duplex mode.
10:7	Reserved	0, RO	Reserved. Write as 0, read as "don't care".
6	MF preamble	0, RO / PS	Management frame preamble suppression:
	suppression		0: This PHY will not accept management frames with preamble suppressed.
5	Auto-negotiation	0, RO	Auto-negotiation completion:
	complete		1: Auto-negotiation process completed
			0: Auto-negotiation process not completed
4	Remote fault (Not	0, RO / LH	Remote fault:
	supported)		1: Remote fault condition detected (cleared on read or by a chip reset)
			0: No remote fault condition detected
3	Auto-negotiation	1, RO / PS	Auto configuration ability:
	ability		1: This PHY is able to perform auto-negotiation.
2	Link status	0, RO / LL	Link status:
			1: Valid link established (100Mb/s or 10Mb/s operation)
			0: Link not established
1	Jabber detect	0, RO / LH	Jabber detection:
			1: Jabber condition detected
			0: No Jabber condition detected
0	Extended capability	1, RO / PS	Extended capability:
			1: Extended register capable
			0: Basic register capable only

7.1.3 PHY Identifier Register 1

Address 02h

Bit	Bit Name	Default	Description
15:0	OUI_MSB	0x003B, RO / PS	OUI most significant bits:
			Bits 3 to 18 of the OUI are mapped to bits 15 to 0 of this register
			respectively. The most significant two bits of the OUI are ignored.

7.1.4 PHY Identifier Register 2

Address 03h

Bit	Bit Name	Default	Description
15:10	OUI_LSB	00_0110, RO / PS	OUI least significant bits:
			Bits 19 to 24 of the OUI are mapped to bits 15 to 10 of this register
			respectively.
9:4	VNDR_MDL	00_0110, RO / PS	Vendor model number.
3:0	MDL_REV	0001, RO / PS	Model revision number.

7.1.5 Auto Negotiation Advertisement Register (ANAR)

Address 04h

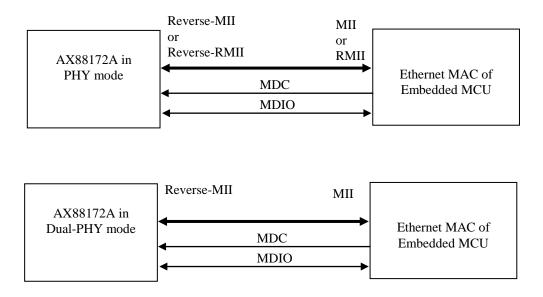
Bit	Bit Name	Default	Description		
15	NP	0, RO / PS	Next page indication:		
13	111	0, KO / F3	0: No next page available. The PHY does not support the next page function.		
14	ACK	0, RO	Acknowledgement:		
14	ACK	o, Ko	1: Link partner ability data reception acknowledged		
			0: Not acknowledged		
13	RF	0, RW	Remote fault:		
13	KI	U, KW	1: Fault condition detected and advertised		
			0: No fault detected		
12:11	Reserved	X, RW	Reserved. Write as 0, read as "don't care".		
10	Pause	0, RW	Pause:		
10	rause	U, KW	1: Pause operation enabled for full-duplex links		
			0: Pause operation not enabled		
9	T4	0, RO/PS	100BASE-T4 support:		
9	14	0, KO/F3	0: 100BASE-T4 support. 0: 100BASE-T4 not supported		
8	TX_FD	1, RW	100BASE-TX full-duplex support:		
0	IA_ID	1, KW	1: 100BASE-TX full-duplex supported by this device		
			0: 100BASE-TX full-duplex supported by this device		
7	TX_HD	1, RW	100BASE-TX half-duplex support:		
,	IA_IID	1, KW	1: 100BASE-TX half-duplex supported by this device		
			0: 100BASE-TX half-duplex not supported by this device		
6	10_FD	1, RW	10BASE-17 han-duplex not supported by this device		
U	10_1.0	1, 1, 1, 1,	1: 10BASE-T full-duplex supported by this PHY		
			0: 10BASE-T full-duplex supported by this PHY		
5	10 HD	1, RW	10BASE-T half-duplex support:		
3	10_110	1, 1, 1, 1,	1: 10BASE-T half-duplex supported by this PHY		
			0: 10BASE-T half-duplex supported by this PHY		
4:0	Selector	0 0001, RW	Protocol selection bits:		
4.0	Sciector	0_0001, KW	These bits contain the binary encoded protocol selector supported by this PHY. [0]		
			0001] indicates that this PHY supports IEEE 802.3u CSMA/CD.		
	1		10001] marcares mar uns i ii i supports iede 002.3a Csivity/CD.		

7.1.6 Auto Negotiation Link Partner Ability Register (ANLPAR)

Address 05h

Bit	Bit Name	Default	Description	
15	NP	0, RO	Next page indication:	
			1: Link partner next page enabled	
			0: Link partner not next page enabled	
14	ACK	0, RO	Acknowledgement:	
			1: Link partner ability for reception of data word acknowledged	
			0: Not acknowledged	
13	RF	0, RO	Remote fault:	
			1: Remote fault indicated by link partner	
			0: No remote fault indicated by link partner	
12:11	Reserved	X, RO	Reserved. Write as 0, read as "don't care".	
10	Pause	0, RO	Pause:	
			1: Pause operation supported by link partner	
			0: Pause operation not supported by link partner	
9	T4	0, RO	100BASE-T4 support:	
			1: 100BASE-T4 supported by link partner	
			0: 100BASE-T4 not supported by link partner	
8	TX_FD	0, RO	100BASE-TX full-duplex support:	
			1: 100BASE-TX full-duplex supported by link partner	
			0: 100BASE-TX full-duplex not supported by link partner	
7	TX_HD	0, RO	100BASE-TX half-duplex support:	
			1: 100BASE-TX half-duplex supported by link partner	
			0: 100BASE-TX half-duplex not supported by link partner	
6	10_FD	0, RO	10BASE-T full-duplex support:	
			1: 10BASE-T full-duplex supported by link partner	
		1	0: 10BASE-T full-duplex not supported by link partner	
5	10_HD	0, RO	10BASE-T half-duplex support:	
			1: 10BASE-T half-duplex supported by link partner	
1.0			0: 10BASE-T half-duplex not supported by link partner	
4:0	Selector	0_000, RO	Protocol selection bits:	
			Link partner's binary encoded protocol selector.	

7.1.7 Auto Negotiation Expansion Register (ANER)


Address 06h

Address		D - C14	D		
Bit	Bit Name	Default	Description		
15:5	Reserved	0, RO	Reserved. Write as 0, read as "don't care".		
4	PDF	0, RO / LH	Parallel detection fault:		
			1: Fault detected via the parallel detection function		
			0: No fault detected		
3	LP_NP_AB	0, RO	Link partner next page enable:		
			1: Link partner next page enabled		
			0: Link partner not next page enabled		
2	NP_AB	0, RO / PS	PHY next page enable:		
			0: PHY not next page enabled		
1	Page_RX	0, RO / LH	New page reception:		
			1: New page received		
			0: New page not received		
0	LP_AN_AB	0, RO	Link partner auto-negotiation enable:		
			1: Auto-negotiation supported by link partner		

8.0 Station Management Registers in PHY/Dual-PHY Mode

There are 8 registers in the station management interface of the AX88172A for the external Ethernet MAC device to access when AX88172A operates in PHY mode or Dual-PHY mode. The access protocol and timing format is the same as the standard management frame structure defined in the IEEE 802.3u MII spec. Therefore, the station management interface of AX88172A also needs a unique PHY ID to be able to receive management frame. In this case, the 5-bit PHY_ID of AX88172A station management interface is defined in the EEPROM offset 11h (4.0 Secondary PHY_ID [4:0]) and (Table 3 PHY_ID define table).

		Management frame fields							
	PRE	ST	OP	PHY_ID	REGAD	TA	DATA	IDLE	
READ	11	01	10	AAAAA	RRRRR	Z0	DDDDDDDDDDDDDD	Z	
WRITE	11	01	01	AAAAA	RRRRR	10	DDDDDDDDDDDDDD	Z	

Figure 31: Station Management Frame for PHY/Dual-PHY Mode with Reverse-MII/RMII

Address	Register Name	Description
00h	PM_BMCR	(8.1.1) Basic mode control register, basic register.
01h	PM_BMSR	(8.1.2) Basic mode status register, basic register.
02h	PM_PHYIDR1	(8.1.3) PHY identifier register 1, extended register.
03h	PM_PHYIDR2	(8.1.4) PHY identifier register 2, extended register.
04h	PM_ANAR	(8.1.5) Auto negotiation advertisement register, extended register.
05h	PM_ANLPAR	(8.1.6) Auto negotiation link partner ability register, extended register.
06h	PM_ANER	(8.1.7) Auto negotiation expansion register, extended register.
10h	PM_Control	(8.1.8) A customized STA register.

Table 17 : Station Management Register Map in PHY/Dual-PHY Mode with Reverse-MII/RMII

8.1 PHY/Dual-PHY Mode Detailed Register Description

8.1.1 PHY Mode Basic Mode Control Register (PM_BMCR)

Address 00h

Bit	Bit Name	Default	Description
15	Reset	0, RO	Reset:
			1: Software reset
			0: Normal operation, this bit is fixed to 0.
14	Loopback	0, RW	Loopback:
			1: Loopback enabled. The AX88172A will loopback data from TXD [3:0] input back
			to RXD [3:0] output in Reverse-MII mode, or loopback data from TXD [1:0] input
			back to RXD [1:0] in Reverse-RMII mode.
	~		0: Normal operation
13	Speed selection	1, RO	Speed selection:
			1: 100 Mb/s, this bit is fixed to 1.
10	A	1 DO	0: 10 Mb/s
12	Auto-negotiation	I, KO	Auto-negotiation enable:
	enable		1: Auto-negotiation enabled, this bit is fixed to 1.
11	Power down	0, RW	0: Auto-negotiation disabled. Power down:
11	Power down	U, KW	1: Power down. If in Reverse-MII mode, the RXDV (pin# 64), CRS, RXD [3:0] (pin#
			59~62, COL, RXER, RXCLK, TXCLK outputs will be kept low and no toggling. If
			in Reverse-RMII mode, the CRSDV, RXD 1:0] (pin# 61~62), RXER outputs will
			be kept low and no toggling. The REFCLK_O keeps 50MHz clock output.
			0: Normal operation
10	Isolate	PHY_ISO	Isolate: (default value is loaded from EEPROM Flag [11])
		, RW	1: Isolate. The below AX88172A outputs pin will become tri-state.
			If in Reverse-MII: RXD [3:0], RXDV, CRS, RXCLK, TXCLK, RXER, and COL.
			If in Reverse-RMII: RXD [1:0], CRSDV, and RXER, except for REFCLK_O.
			0: Normal operation
9	Restart	0, RO	Restart auto-negotiation:
	auto-negotiation		1: Restart auto-negotiation
			0: Normal operation, this bit is fixed to 0.
8	Duplex mode	1, RO	Duplex mode:
			1: Full duplex operation, this bit is fixed to 1.
			0: Normal operation.
7	Collision test	0, RO	Collision test:
			1: Collision test enabled
6.0	D 1	0. D.O.	0: Normal operation, this bit is fixed to 0.
6:0	Reserved	0, RO	Reserved. Write as 0, read as "don't care".

8.1.2 PHY Mode Basic Mode Status Register (PM_BMSR)

Address 01h

Bit	Bit Name	Default	Description		
15	100BASE-T4	0, RO	100BASE-T4 capable:		
			0: This PHY is not able to perform in 100BASE-T4 mode.		
14	100BASE-TX full	1, RO	100BASE-TX full-duplex capable:		
	duplex		1: This PHY is able to perform in 100BASE-TX full-duplex mode.		
13	100BASE-TX half	0, RO	100BASE-TX half-duplex capable:		
	duplex		0: This PHY is not able to perform in 100BASE-TX half-duplex mode.		
12	10BASE-T full	0, RO	10BASE-T full-duplex capable:		
	duplex		0: This PHY is not able to perform in 10BASE-T full-duplex mode.		
11	10BASE-T half	0, RO	10BASE-T half-duplex capable:		
	duplex		0: This PHY is not able to perform in 10BASE-T half-duplex mode.		
10:7	Reserved	0, RO	Reserved. Write as 0, read as "don't care".		
6	MF preamble	0, RO	Management frame preamble suppression:		
	suppression		0: This PHY will not accept management frames with preamble suppressed.		
5	Auto-negotiation	1, RO	Auto-negotiation completion:		
	complete		1: Auto-negotiation process completed		
			0: Auto-negotiation process not completed		
4	Remote fault (Not	0, RO	Remote fault:		
	supported)		1: Remote fault condition detected (cleared on read or by a chip reset)		
			0: No remote fault condition detected		
3	Auto-negotiation	1, RO	Auto configuration ability:		
	ability		1: This PHY is able to perform auto-negotiation.		
2	Link status	0, RO	Link status:		
			1: Valid link established (indicate that AX88172A software initialization is		
			finished and not in USB suspend mode)		
			0: Link not established (indicate that AX88172A software initialization is not		
			finished or in USB suspend mode)		
1	Jabber detect	0, RO			
			1: Jabber condition detected		
L			0: No Jabber condition detected		
0	Extended capability	1, RO	Extended capability:		
			1: Extended register capable		
			0: Basic register capable only		

8.1.3 PHY Mode PHY Identifier Register 1

Address 02h

Bit	Bit Name	Default	Description
15:0	OUI_MSB	0x003B, RO	OUI most significant bits:
			Bits 3 to 18 of the OUI are mapped to bits 15 to 0 of this register respectively.
			The most significant two bits of the OUI are ignored.

8.1.4 PHY Mode PHY Identifier Register 2

Address 03h

Bit	Bit Name	Default	Description
15:10	OUI_LSB	00_0110, RO	OUI least significant bits:
			Bits 19 to 24 of the OUI are mapped to bits 15 to 10 of this register respectively.
9:4	VNDR_MDL	00_0110, RO	Vendor model number.
3:0	MDL_REV	0001, RO	Model revision number.

8.1.5 PHY Mode Auto Negotiation Advertisement Register (PM_ANAR)

Address 04h

Addres	ddress 04h						
Bit	Bit Name	Default	Description				
15	NP	0, RO	Next page indication:				
			0: No next page available. The PHY does not support the next page function.				
14	ACK	0, RO	Acknowledgement:				
			1: Link partner ability data reception acknowledged				
			0: Not acknowledged				
13	RF	0, RO	Remote fault:				
			1: Fault condition detected and advertised				
			0: No fault detected				
12:11	Reserved	0, RO	Reserved. Write as 0, read as "don't care".				
10	Pause	1, RO	Pause:				
			1: Pause operation enabled for full-duplex links				
			0: Pause operation not enabled				
9	T4	0, RO	100BASE-T4 support:				
			0: 100BASE-T4 not supported				
8	TX_FD	1, RO	100BASE-TX full-duplex support:				
			1: 100BASE-TX full-duplex supported by this device				
			0: 100BASE-TX full-duplex not supported by this device				
7	TX_HD	0, RO	100BASE-TX half-duplex support:				
			1: 100BASE-TX half-duplex supported by this device				
			0: 100BASE-TX half-duplex not supported by this device				
6	10_FD	0, RO	10BASE-T full-duplex support:				
			1: 10BASE-T full-duplex supported by this PHY				
			0: 10BASE-T full-duplex not supported by this PHY				
5	10_HD	0, RO	10BASE-T half-duplex support:				
			1: 10BASE-T half-duplex supported by this PHY				
			0: 10BASE-T half-duplex not supported by this PHY				
4:0	Selector	0_0001,	Protocol selection bits:				
		RO	These bits contain the binary encoded protocol selector supported by this PHY. [0 0001]				
			indicates that this PHY supports IEEE 802.3u CSMA/CD.				

8.1.6 PHY Mode Auto Negotiation Link Partner Ability Register (PM_ANLPAR)

Address 05h

Bit	Bit Name	Default	Description
15	NP	0, RO	Next page indication:
			1: Link partner next page enabled
			0: Link partner not next page enabled
14	ACK	1, RO	Acknowledgement:
			1: Link partner ability for reception of data word acknowledged
			0: Not acknowledged
13	RF	0, RO	Remote fault:
			1: Remote fault indicated by link partner
			0: No remote fault indicated by link partner
12:11	Reserved	0, RO	Reserved. Write as 0, read as "don't care".
10	Pause	1, RO	Pause:
			1: Pause operation supported by link partner
			0: Pause operation not supported by link partner
9	T4	0, RO	100BASE-T4 support:
			1: 100BASE-T4 supported by link partner
			0: 100BASE-T4 not supported by link partner
8	TX_FD	1, RO	100BASE-TX full-duplex support:
			1: 100BASE-TX full-duplex supported by link partner
			0: 100BASE-TX full-duplex not supported by link partner
7	TX_HD	0, RO	100BASE-TX half-duplex support:
			1: 100BASE-TX half-duplex supported by link partner
			0: 100BASE-TX half-duplex not supported by link partner
6	10_FD	0, RO	10BASE-T full-duplex support:
			1: 10BASE-T full-duplex supported by link partner
			0: 10BASE-T full-duplex not supported by link partner
5	10_HD	0, RO	10BASE-T half-duplex support:
			1: 10BASE-T half-duplex supported by link partner
			0: 10BASE-T half-duplex not supported by link partner
4:0	Selector	0_0001,	Protocol selection bits:
		RO	Link partner's binary encoded protocol selector.

8.1.7 PHY Mode Auto Negotiation Expansion Register (PM_ANER)

Address 06h

Bit	Bit Name	Default	Description
15:5	Reserved	0, RO	Reserved. Write as 0, read as "don't care".
4	PDF	0, RO	Parallel detection fault:
			1: Fault detected via the parallel detection function
			0: No fault detected
3	LP_NP_AB	0, RO	Link partner next page enable:
			1: Link partner next page enabled
			0: Link partner not next page enabled
2	NP_AB	0, RO	PHY next page enable:
			0: PHY not next page enabled
1	Page_RX	1, RO	New page reception:
			1: New page received
			0: New page not received
0	LP_AN_AB	1, RO	Link partner auto-negotiation enable:
			1: Auto-negotiation supported by link partner

8.1.8 PHY Mode Control Register (PM_Control)

Address 10h

Bit	Bit Name	Default	Description
15	Path Select	0, RW	Path selection. This bit is only valid in Dual-PHY mode.
			1: Select Embedded Ethernet PHY as active data path.
			0: Select USB2.0 to Rev-MII bridging engine as active data path.
14	Reset embedded	0, RW	Reset embedded Ethernet PHY. This bit is only valid in Dual-PHY mode. Please refer to
	PHY		Figure 25.
			1: Embedded Ethernet PHY is in operating state.
			0: Embedded Ethernet PHY is in reset state. After writing '0', external Ethernet MAC
			software should write '1' to exit the reset state.
13	Power down	0, RW	Power down embedded Ethernet PHY. This bit is only valid in Dual-PHY mode. Please
	embedded PHY		refer to Figure 25.
			1: Embedded Ethernet PHY is in operating state.
			0: Embedded Ethernet PHY is in power-down state. After writing '0', external
			Ethernet MAC software should write '1' to exit the power-down state.
12	SSEN	0, RO	SSEN: Software Setting Enable.
			This bit is the same as SSEN bit in Software Interface Selection register (6.2.1.24).
	Reserved	0, RW	Reserved.
8	Media	1, RW	Media Information bit 8, MDINF [8].
	Information		This bit is reported to AX88172A software driver in MDINF [8] bit of Interrupt
			Endpoint as described in section 6.3.
			When AX88172A operates in PHY mode, the typical usage is to indicate to
			AX88172A software driver that the external Ethernet MAC has finished initialization
			and is ready to send and receive packets with AX88172A, by writing '0' to this bit. Also,
			any time when external Ethernet MAC can't be set online for any reasons, it can write '1' to this bit to inform AX88172A software driver.
			When AX88172A operates in Dual-PHY mode, the typical usage is to indicate to
			AX88172A software driver that the external Ethernet MAC has selected USB2.0 to
			Rev-MII bridging engine as active data path and has finished initialization and is ready
			to send and receive packets with AX88172A, by writing '0' to this bit. If external
			Ethernet MAC switches the active data path to embedded Ethernet PHY, it should write
			'1' to this bit to inform AX88172A software driver also.
			This bit can also function as a link-up remote wake event in PHY/Dual-PHY mode
			(Table 9). In other words, after AX88172A enters into suspend mode instructed by USB
			Host, the external Ethernet MAC can write this bit to have a '1' to '0' transition which
			will be used as link-up remote wakeup trigger event to awake AX88172A and the USB
			Host.
7:0	Media	0x00,	Media Information bit [7:0], MDINF [7:0].
	Information	RW	This 8 bits data is reported to AX88172A software driver in MDINF [7:0] bits of
			Interrupt Endpoint as described in section 6.3.
			When AX88172A operates in PHY/Dual-PHY mode, the external Ethernet MAC can
			define some command codes to send some messages to AX88172A software driver
			using this byte.

9.0 Electrical Specifications

9.1 DC Characteristics

9.1.1 Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
VCCK	Digital core power supply	- 0.3 to 2.16	V
VCC18A	Analog Power. 1.8V	- 0.3 to 2.16	V
VCC3IO	Power supply of 3.3V I/O	- 0.3 to 4	V
VCC3R3	Power supply of on-chip voltage regulator	- 0.3 to 4	V
VCC3A3	Analog Power 3.3V for Ethernet PHY bandgap	- 0.3 to 3.8	V
VCC33A_PLL	Analog Power 3.3V for USB PLL.	- 0.3 to 4	V
VCC33A_H	Analog Power 3.3V for USB TX and RX	- 0.3 to 4	V
$ m V_{IN18}$	Input voltage of 1.8V I/O	- 0.3 to 2.16	V
V_{IN3}	Input voltage of 3.3V I/O	- 0.3 to 4.0	V
	Input voltage of 3.3V I/O with 5V tolerant	- 0.3 to 5.8	V
T_{STG}	Storage temperature	- 40 to 150	$^{\circ}\mathbb{C}$
$I_{\rm IN}$	DC input current	20	mA
I_{OUT}	Output short circuit current	20	mA

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the optional sections of this datasheet. Exposure to absolute maximum rating condition for extended periods may affect device reliability.

9.1.2 Recommended Operating Condition

Symbol	Parameter	Min	Тур	Max	Unit
VCCK	Digital core power supply	1.62	1.8	1.98	V
VCC18A	Analog core power supply	1.62	1.8	1.98	V
VCC3R3	Power supply of on-chip voltage regulator	2.97	3.3	3.63	V
VCC3IO	Power supply of 3.3V I/O	2.97	3.3	3.63	V
VCC33A_H	Analog Power 3.3V for USB TX and RX	2.97	3.3	3.63	V
VCC33A_PLL	Analog Power 3.3V for USB PLL.	2.97	3.3	3.63	V
VCC3A3	Analog power supply for bandgap	2.97	3.3	3.63	V
$V_{\rm IN18}$	Input voltage of 1.8 V I/O	0	1.8	1.98	V
V_{IN3}	Input voltage of 3.3 V I/O	0	3.3	3.63	V
	Input voltage of 3.3 V I/O with 5V tolerance	0	3.3	5.25	V
$T_{\rm j}$	Commercial junction operating temperature	0	25	125	$^{\circ}$
T_a	Commercial operating temperature	0	-	70	$^{\circ}\mathbb{C}$

Thermal Characteristics

Symbol	Pai	rameter	Rating	Unit
θıc	Thermal resistance of junction to	LQFP 64(AX88772A)	13.1	°C/W
	case	TQFP 80(AX88172A)	27.5	°C/W
Ө	Thermal resistance of junction to	Still air,LQFP 64(AX88772A)	45.1	°C/W
	ambient	Still air,TQFP 80(AX88172A)	55.2	°C/W

9.1.3 Leakage Current and Capacitance

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I_{IN}	Input current	No pull-up or pull-down	-10	±1	10	μ A
I_{OZ}	Tri-state leakage current		-10	±1	10	μ A
C_{IN}	Input capacitance		-	2.2	-	pF
C _{OUT}	Output capacitance		-	2.2	-	pF
C_{BID}	Bi-directional buffer capacitance		-	2.2	-	pF

Note: The capacitance listed above does not include pad capacitance and package capacitance. One can estimate pin capacitance by adding a pad capacitance of about 0.5pF to the package capacitance.

9.1.4 DC Characteristics of 3.3V I/O Pins

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VCC3IO	Power supply of 3.3V I/O	3.3V I/O	2.97	3.3	3.63	V
Tj	Junction temperature		0	25	125	$^{\circ}\!\mathbb{C}$
Vil	Input low voltage	LVTTL	-	-	0.8	V
Vih	Input high voltage		2.0	-	ı	V
Vt	Switching threshold			1.5		V
Vt-	Schmitt trigger negative going threshold voltage	LVTTL	0.8	1.1	-	V
Vt+	Schmitt trigger positive going threshold voltage		-	1.6	2.0	V
Vol	Output low voltage	Iol = 8mA	-	-	0.4	V
Voh	Output high voltage	Ioh = -8mA	2.4	-	-	V
Rpu	Input pull-up resistance	$V_{in} = 0$	40	75	190	$K\Omega$
Rpd	Input pull-down resistance	Vin = VCC3IO	40	75	190	ΚΩ
Iin	Input leakage current	Vin = VCC3IO or 0	-10	±1	10	μ A
	Input leakage current with pull-up resistance	Vin = 0	-15	-45	-85	μΑ
	Input leakage current with pull-down resistance	Vin = VCC3IO	15	45	85	μΑ
I_{OZ}	Tri-state output leakage current		-10	±1	10	μ A

9.1.5 DC Characteristics of 3.3V with 5V Tolerance I/O Pins

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VCC3IO	Power supply of 3.3V I/O	3.3V I/O	2.97	3.3	3.63	V
Tj	Junction temperature		0	25	125	$^{\circ}\!\mathbb{C}$
Vil	Input low voltage	LVTTL	-	-	0.8	V
Vih	Input high voltage		2.0	-	1	V
Vt	Switching threshold			1.5		V
Vt-	Schmitt trigger negative going threshold voltage	LVTTL	0.8	1.1	-	V
Vt+	Schmitt trigger positive going threshold voltage		ı	1.6	2.0	V
Vol	Output low voltage	Iol = 8mA	ı	1	0.4	V
Voh	Output high voltage	Ioh = -8mA	2.4	-	1	V
Rpu	Input pull-up resistance	$V_{in} = 0$	40	75	190	$K\Omega$
Rpd	Input pull-down resistance	Vin = VCC3IO	40	75	190	ΚΩ
Iin	Input leakage current	Vin = 5.5V or 0		±5		μ A
	Input leakage current with pull-up resistance	Vin = 0	-15	-45	-85	μΑ
	Input leakage current with pull-down resistance	Vin = VCC3IO	15	45	85	μΑ
I_{OZ}	Tri-state output leakage current	$V_{in} = 5.5V \text{ or } 0$		±10		μ A

9.1.6 DC Characteristics of Voltage Regulator

Symbol	Description	Conditions	Min	Тур	Max	Unit
VCC3R3	Power supply of on-chip		3.0	3.3	3.6	V
	voltage regulator.					
Tj	Operating junction		0	25	125	$^{\circ}\!\mathbb{C}$
	temperature.					
Iload	Driving current.	Normal operation	-	-	240	mA
		Standby mode enabled	-	-	30	mA
V18F	Output voltage of on-chip voltage regulator.	VCC3R3 = 3.3V	1.71	1.8	1.89	V
Vdrop	Dropout voltage.	\triangle V18F = -1%, Iload = 10mA	_	0.1	0.2	V
_		VCC3R3 = 3.3V, Iload = 50mA		0.1	0.2	%/V
<u> </u>	Line regulation.	VCC3R3 = 3.3 V, fload = 30 flat	-	0.2	0.4	%0/ V
(△VCC3R3 x V18F)						
	Load regulation.	$VCC3R3 = 3.3V, 1mA \leq Iload$	-	0.02	0.05	%/mA
(△Iload x V18F)		$\leq 240 \text{mA}$				
	Temperature coefficient.	$VCC3R3 = 3.3V,-40^{\circ}C \leq Tj \leq$	-	+/-0.2	+/-0.5	
△Tj		125℃				$^{\circ}\!\mathbb{C}$
Iq_25°C	Quiescent current at 25 °C.	VCC3R3 = 3.3V	=	70	100	μ A
		VCC3R3 = 3.3V	-	100	125	$\mu \mathbf{A}$
Iq_125°C	Quiescent current at 125 °C.	VCC3R3 = 3.3V	-	85	115	μ A
		VCC3R3 = 3.3V	=	125	170	μ A
Cout	Output external capacitor.		0.1	1	-	μ F
ESR	Allowable effective series		-	0.5	1	Ω
	resistance of external					
	capacitor.					

9.2 Power Consumption

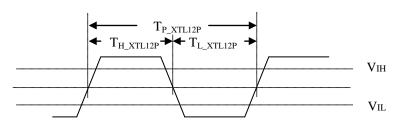

Symbol	Description	Conditions	Min	Тур	Max	Unit
Ivcck	Current Consumption of VCCK	Operating at Ethernet	-	47.5	-	mA
IVCC18A	Current Consumption of VCC18A	100Mbps full duplex	-	39.3	-	mA
Ivcc310	Current Consumption of VCC3IO	mode and USB High	-	16.6	-	mA
Ivcc33A	Current Consumption of VCC33A_H +	speed mode	-	35.4	-	mA
	VCC33A_PLL + VCC3A3					
Ivcck	Current Consumption of VCCK	Operating at Ethernet	-	44.3	-	mA
IVCC18A	Current Consumption of VCC18A	100Mbps full duplex	-	39.3	-	mA
Ivcc310	Current Consumption of VCC3IO	mode and USB Full	-	12.9	-	mA
Ivcc33A	Current Consumption of VCC33A_H +	speed mode	-	28.7	-	mA
	VCC33A_PLL + VCC3A3					
Ivcck	Current Consumption of VCCK	Operating at Ethernet	-	19.3	-	mA
IVCC18A	Current Consumption of VCC18A	10Mbps full duplex	-	6.3	-	mA
Ivcc310	Current Consumption of VCC3IO	mode and USB High	-	8.3	-	mA
Ivcc33A	Current Consumption of VCC33A_H +	speed mode	-	38.8	-	mA
	VCC33A_PLL + VCC3A3					
Ivcck	Current Consumption of VCCK	Operating at Ethernet	-	14.9	-	mA
Ivcc18A	Current Consumption of VCC18A	10Mbps full duplex	-	6.2	-	mA
Ivcc310	Current Consumption of VCC3IO	mode and USB Full	-	4.9	-	mA
Ivcc33A	Current Consumption of VCC33A_H +	speed mode	-	32.3	-	mA
	VCC33A_PLL + VCC3A3					
Ivcck	Current Consumption of VCCK	Suspend	-	2.0	-	μΑ
Ivcc18A	Current Consumption of VCC18A	(the embedded Ethernet	-	49.3	-	μΑ
Ivcc310	Current Consumption of VCC3IO	PHY is powered down)	-	0.7	-	mA
Ivcc33A	Current Consumption of VCC33A_H +		-	0.2	-	mA
	VCC33A_PLL + VCC3A3					
Ivcck	Current Consumption of VCCK	AX88172A in USB	-	19	-	mA
Ivcc18A	Current Consumption of VCC18A	Full speed, Rev-MII	-	3.4	-	mA
Ivcc3io	Current Consumption of VCC3IO	operation and internal PHY power save	-	8.5	-	mA
Ivcc33A	Current Consumption of VCC33A_H +	(BMCR[11] bit = 1)	-	30.9	-	mA
	VCC33A_PLL + VCC3A3					
Ivcck	Current Consumption of VCCK	AX88172A in USB	_	22	_	mA
IVCC18A	Current Consumption of VCC18A	High speed, Rev-MII	_	3.4	_	mA
Ivcc3io	Current Consumption of VCC3IO	operation and internal	_	11.5	_	mA
Ivcc33A	Current Consumption of VCC33A H +	PHY power save	_	36.9	_	mA
1,00001	VCC33A_PLL + VCC3A3	(BMCR[11] bit = 1)		00.5		1111 1
I _{DEVICE}	Power consumption of	1.8V			100	mA
	AX88772A/AX88172A chip only	3.3V			70	mA
		(Excluding VCC3R3)				
I _{SYSTEM}	Power consumption of AX88x72A demo	Total of 3.3V			220	mA
STOTEM	board	(Including VCC3R3				
		regulator supplies 1.8V to		1		
		VCCK and VCC18A)				

Table 18 : Power consumption

9.3 Power-up Sequence

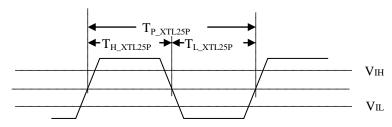
At power-up, the AX88772A/AX88172A requires the VCC3R3/VCC3IO/VCC3A3/VCC33A_H/ VCC33A_PLL power supply to rise to nominal operating voltage within Trise3 and the V18F/VCCK/VCC18A power supply to rise to nominal operating voltage within Trise2.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
T_{rise3}	3.3V power supply rise time	From 0V to 3.3V	1	-	10	ms
T_{rise2}	1.8V power supply rise time	From 0V to 1.8V	ı	-	10	ms
T _{delay32}	3.3V rise to 1.8V rise time delay		-5	-	5	ms



9.4 AC Timing Characteristics

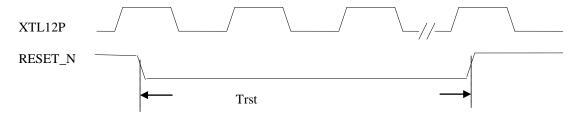
Notice that the following AC timing specifications for output pins are based on CL (Output load)=50pF.


9.4.1 Clock Timing

XTL12P

Symbol	Parameter	Condition	Min	Тур	Max	Unit
T _{P XTL12P}	XTL12P clock cycle time		ı	83.33	ı	ns
T _{H XTL12P}	XTL12P clock high time		-	41.6	-	ns
T _{L XTL12P}	XTL12P clock low time		-	41.6	-	ns

XTL25P



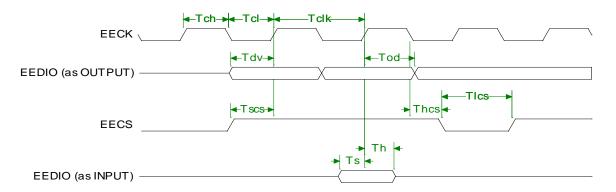
Symbol	Parameter	Condition	Min	Тур	Max	Unit
T _{P XTL25P}	XTL25P clock cycle time		-	40.0	-	ns
T _{H XTL25P}	XTL25P clock high time		-	20.0	-	ns
T _{L XTL25P}	XTL25P clock low time		-	20.0	-	ns

USB 2.0 to 10/100M Fast Ethernet Controller

9.4.2 Reset Timing

Device attach:

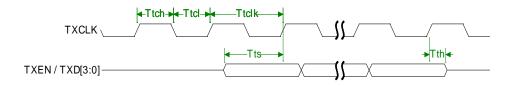
Symbol	Description	Min	Typ	Max	Unit
Trst	Reset pulse width after XTL12P is running	48000	-	120000	XTL12P clock cycle (*)

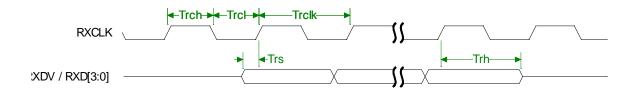

*Note: When the AX88772A/AX88172A working as a bus-powered device is attached to an upstream USB port, the above timing spec (Min=4ms, Max=10ms) of RESET_N should be met.

Device reset during normal operation:

Symbol	Description	Min	Тур	Max	Unit
Trst	Reset pulse width after XTL12P is running	60	-	1	XTL12P clock cycle (**)

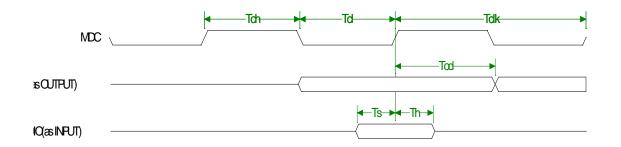
**Note: If the system applications require using hardware reset pin, RESET_N, to manually reset AX88772A/AX88172A during device initialization or normal operation after VBUS pin is asserted, the above timing spec (Min=5 μ s) of RESET_N should be met.


9.4.3 Serial EEPROM Timing


Symbol	Description	Min	Typ	Max	Unit
Tclk	EECK clock cycle time	-	5120	ı	ns
Tch	EECK clock high time	-	2560	ı	ns
Tcl	EECK clock low time	-	2560	-	ns
Tdv	EEDIO output valid to EECK rising edge time	2560	-	1	ns
Tod	EECK rising edge to EEDIO output delay time	2562	ı	ı	ns
Tscs	EECS output valid to EECK rising edge time	2560	ı	ı	ns
Thes	EECK falling edge to EECS invalid time	7680	-	-	ns
Tlcs	Minimum EECS low time	23039	ı	ı	ns
Ts	EEDIO input setup time	20	1	ı	ns
Th	EEDIO input hold time	0	-	-	ns

9.4.4 MII Timing

Symbol	Description	Min	Тур	Max	Unit
Ttclk	TXCLK clock cycle time *1	-	40.0	-	ns
Ttch	TXCLK clock high time *2	-	20.0	-	ns
Ttcl	TXCLK clock low time *2	-	20.0	-	ns
Tts	TXD [3:0], TXEN setup to rising TXCLK	15.0	-	-	ns
Tth	TXD [3:0], TXEN hold (delay time) from rising TXCLK	5.0	- 1	-	ns

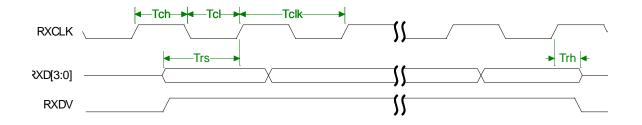

Symbol	Description	Min	Тур	Max	Unit
Trclk	RXCLK clock cycle time *1	-	40.0	-	ns
Trch	RXCLK clock high time *2	-	20.0	-	ns
Trcl	RXCLK clock low time *2	-	20.0	-	ns
Trs	RXD [3:0], RXDV setup to rising RXCLK	5.0	-	-	ns
Trh	RXD [3:0], RXDV hold from rising TXCLK	3.5	-	-	ns

^{*1:} For 10Mbps, the typical value of Ttclk and Trclk shall scale to 400ns.

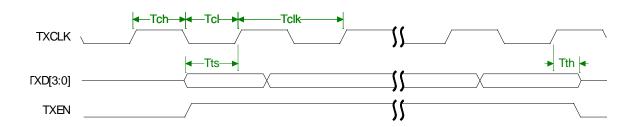
^{*2:} For 10Mbps, the typical value of Ttch, Ttcl, Trch, and Trcl shall scale to 200ns.

9.4.5 Station Management Timing

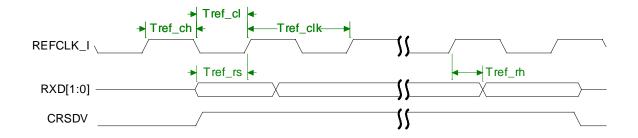
MAC mode with MII: MDC=Output

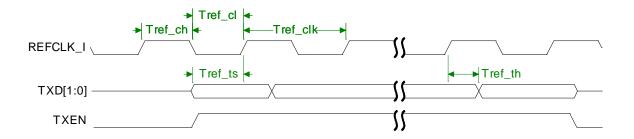

Symbol	Description	Min	Typ	Max	Unit
Tclk	MDC clock cycle time	-	640	-	ns
Tch	MDC clock high time	-	320	-	ns
Tcl	MDC clock low time	-	320	-	ns
Tod	MDC clock rising edge to MDIO output delay	0.5	-	-	Tclk
Ts	MDIO data input setup time	125	- 1	-	ns
Th	MDIO data input hold time	0	-	-	ns

PHY/Dual-PHY mode with Reverse-MII, PHY mode with Reverse-RMII: MDC=Input

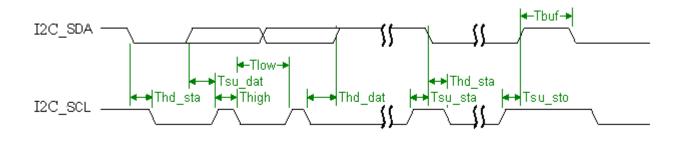

Symbol	Description	Min	Тур	Max	Unit
Tclk	MDC clock cycle time	-	320	ı	ns
Tch	MDC clock high time	-	160	-	ns
Tcl	MDC clock low time	-	160	-	ns
Tod	MDC clock rising edge to MDIO output delay	0	Ī	300	ns
Ts	MDIO data input setup time	10	- 1	-	ns
Th	MDIO data input hold time	10	-	-	ns

9.4.6 Reverse-MII Timing


Symbol	Description	Min	Тур	Max	Unit
Tclk	Clock cycle time	-	40.0	-	ns
Tch	Clock high time	-	20.0	-	ns
Tcl	Clock low time	-	20.0	-	ns
Trs	RXD [3:0], RXDV setup to rising RXCLK	15.0	ı	-	ns
Trh	RXD [3:0], RXDV hold (delay time) from rising RXCLK	20.0	-	-	ns


Symbol	Description	Min	Тур	Max	Unit
Tts	TXD [3:0], TXEN setup to rising TXCLK	10.0	ı	Ī	ns
Tth	TXD [3:0], TXEN hold from rising TXCLK	2.0	-	-	ns

9.4.7 Reverse-RMII Timing


Symbol	Description		Тур	Max	Unit
Tref_clk	Clock cycle time	-	20.0	-	ns
Tref_ch	Clock high time	-	10.0	-	ns
Tref_cl	Clock low time	-	10.0	-	ns
Tref_rs	RXD [1:0], CRSDV setup to rising REFCLK_I		-	-	ns
Tref_rh	h RXD [1:0], CRSDV hold (delay time) from rising		-	-	ns
	REFCLK_I				

Symbol	Symbol Description		Тур	Max	Unit
Tref_ts	TXD [1:0], TXEN setup to rising REFCLK_I	4.0	1	ı	ns
Tref_th	TXD [1:0], TXEN hold from rising REFCLK_I	2.0	-	-	ns

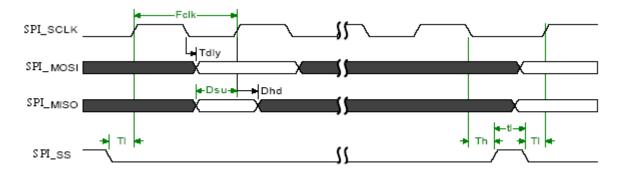
USB 2.0 to 10/100M Fast Ethernet Controller

9.4.8 I2C Interface Timing

I2C Master Controller Timing table:

Symbol	Parameter	Standard mode (Typ)	Fast mode (Typ)	Unit
Fclk	I2C_SCL clock frequency.	100	400	KHz
Thigh	High period of the I2C_SCL clock.	4.0	1.0	μs
Tlow	Low period of the I2C_SCL clock.	6.0	1.5	μs
Tsu_sta	Setup time for a repeated START (Sr) condition.	4.0	1.0	μs
Thd_sta	Hold time of (repeated) START (S) condition. After this period, the first clock pulse is generated	4.0	1.0	μs
Tsu_dat	Data Setup time.	2.0	0.5	μs
Thd_dat	Data Hold time.	4.0	1.0	μs
Tsu_sto	Data Setup time for STOP (P) condition.	4.0	1.0	μs
Tbuf	Bus free time between a STOP and START condition.	•	Note 1	

Note 1: It will be much greater than 22us because several factors can influence this parameter such as USB system utilization, the CBW structure, and High/Full speed, etc.


I2C Slave Controller Timing Table:

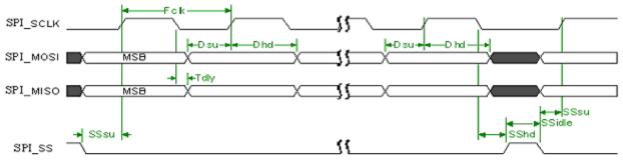
Symbol	Parameter		Тур	Max	Unit
Fclk	I2C_SCL clock frequency.	-	-	390	KHz
Thigh	High period of the I2C_SCL clock in Fast mode.	0.6	-	-	μs
	High period of the I2C_SCL clock in Standard mode.	4.0	1	-	μs
Tlow	Low period of the I2C_SCL clock.	0.4	ı	-	μs
Tsu_sta	Setup time for a repeated START (Sr) condition.	1	-	-	Tsys_clk
					(Note 2)
Thd_sta	Hold time of (repeated) START (S) condition. After	3	-	-	Tsys_clk
	this period, the first clock pulse is generated				
Tsu_dat	Data Setup time.	3	-	-	Tsys_clk
Thd_dat	Data Hold time.	0.4	-	-	μs
Tsu_sto	Data Setup time for STOP (P) condition.	1	-	-	Tsys_clk
Tbuf	Bus free time between a STOP and START condition.	-	-	-	

Note 2: Tsys_clk =33.33ns for 30MHz operating system clock.

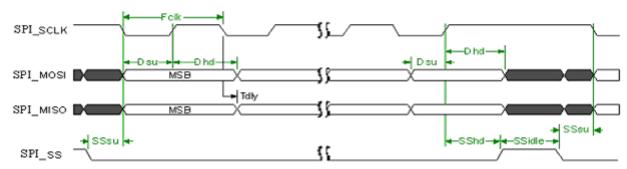
9.4.9 SPI Interface Timing

Note: Above diagram only shows setup and hold time relationship of SPI pins in Mode 0. For the remaining 3 modes, clock polarity is reversed.

SPI Master Controller Timing Table:


Symbol	Description	Min	Тур	Max	Unit
Fclk	SPI_SCLK clock frequency.	-	Fsys_clk/	5	MHz
			(SPIBRR+1)*2		(Note 3)
TD1	C CODY CG 1 C CDY CGY V. 1		0.5		TD 11
Tl	Setup time of SPI_SS to the first SPI_SCLK edge.	-	0.5	-	Tclk
					(Note 3)
Th	Hold time of SPI_SS after the last SPI_SCLK edge.	-	0.5	-	Tclk
Tdly	SPI_MOSI data valid time after SPI_SCLK edge.	-	-	1	Tsys_clk
					(Note 4)
Dsu	SPI_MISO data setup time before SPI_SCLK edge.	2	-	-	Tsys_clk
Dhd	SPI_MISO data hold time after SPI_SCLK edge.	4	-	-	Tsys_clk
tl	Minimum idle time between transfers (minimum	Note 5			
	SPI_SS high time).				
	Internal time base period.	_	0.5	-	Tclk

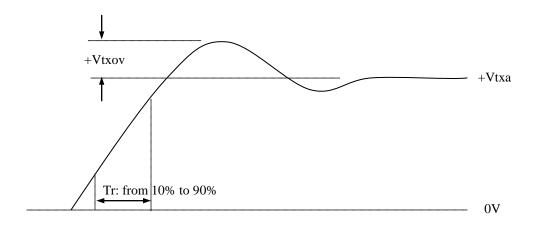
Note 3: Fsys_clk is the operating system clock frequency 30Mhz. The SPIBRR is SPI Baud Rate Register. Tclk = 1/Fclk.


Note 4: Tsys_clk =1/Fsys_clk =33.33 ns.

Note 5: It will be much greater than 22us because several factors can influence this parameter, such as USB system utilization, the CBW structure, and High/Full speed ,etc.

USB 2.0 to 10/100M Fast Ethernet Controller

SPI Slave Mode Timing Diagram in Mode 0


SPI Slave Mode Timing Diagram in Mode 3

SPI Slave Controller Timing Table:

DI I DIU	of the controlled tuning tunic.							
Symbol	Description		Тур	Max	Unit			
Fclk	SPI_SCLK clock frequency.	-	-	2	MHz			
Tdly	SPI_MISO data valid time after SPI_SCLK edge.	-	-	3	Tsys_clk			
Dsu	SPI_MOSI data setup time before SPI_SCLK edge.	1	-	-	Tsys_clk			
Dhd	SPI_MOSI data hold time after SPI_SCLK edge.	3	-	-	Tsys_clk			
SSsu	SPI_SS setup time before SPI_SCLK edge.	2	-	-	Tsys_clk			
SShd	SPI_SS hold time after SPI_SCLK edge.	4	-	-	Tsys_clk			
SSidle	SPI_SS negation to next SPI_SS active time	2	-	-	Tsys_clk			

9.4.10 10/100M Ethernet PHY Interface Timing

10/100M Ethernet PHY Transmitter Waveform and Spec:

Symbol	Description	Condition	Min	Тур	Max	Units
	Peak-to-peak differential output voltage	10BASE-T mode	4.4	5	5.6	V
Vtxa *2	Peak-to-peak differential output voltage	100BASE-TX mode	1.9	2	2.1	V
Tr / Tf	Signal rise / fall time	100BASE-TX mode	3	4	5	ns
	Output jitter 100BASE-TX mode, scrambled idle		-	-	1.4	ns
		signal				
Vtxov	Overshoot	100BASE-TX mode	-	-	5	%

10/100M Ethernet PHY Receiver Spec:

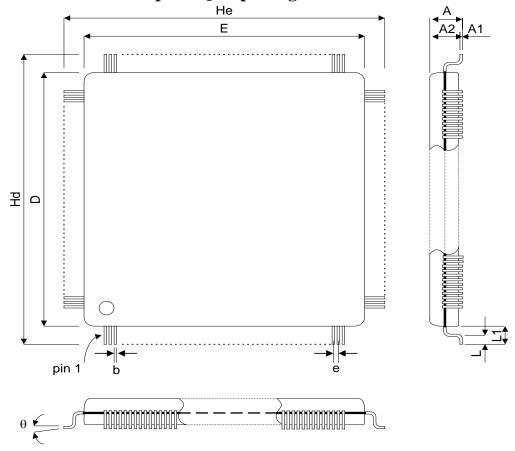
Symbol	Description	Condition	Min	Тур	Max	Units
	Receiver input impedance		10	-	-	$\mathbf{K}\Omega$
	Differential squelch voltage	10BASE-T mode	300	400	500	mV
	Common mode input voltage		2.97	3.3	3.63	V
	Maximum error-free cable length		100	-	1	meter

9.4.11 USB Transceiver Interface Timing

VCC33A_H/ VCC33A_PLL= 3.0 ~ 3.6 V.

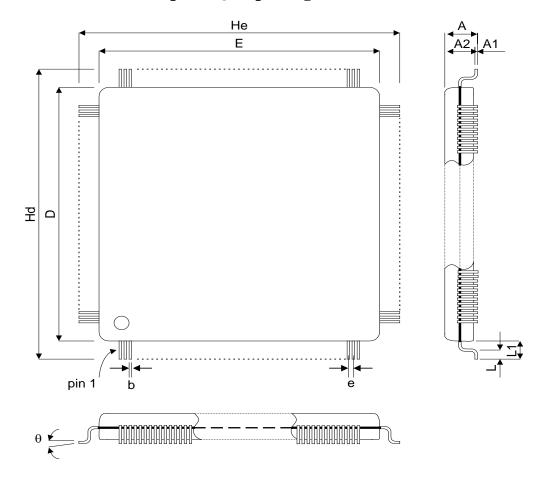
Static Characteristic for Analog I/O Pins (DP/DM):

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
USB 2.0 Transceiver (HS)									
		Differential Receiver)	1		ı				
V_{HSDIFF}	High-speed differential input	$ V_{I(DP)} - V_{I(DM)} $	300	-	-	mV			
	sensitivity	Measured at the connection as							
		an application circuit.							
VHSCM	High-speed data signaling common mode voltage range	-	-50	ı	500	mV			
V_{HSSQ}	High-speed squelch detection	Squelch detected	-	-	100	mV			
	threshold	No squelch detected	200	-	-	mV			
V _{HSDSC}	High-speed disconnection	Disconnection detected	625	-	-	mV			
	detection threshold	Disconnection not detected	-	-	525	mV			
		Output levels	l						
V _{HSOI}	High-speed idle level output voltage(Differential)	-	-10	-	10	mV			
V _{HSOL}	High-speed low level output voltage(Differential)	-	-10	П	10	mV			
V _{HSOH}	High-speed high level output voltage(Differential)	-	360	400	440	mV			
VCHIRPJ	Chirp-J output voltage (Differential)	-	700	-	1100	mV			
VCHIRPK	Chirp-K output voltage (Differential)	-	-900	-	-500	mV			
	7	esistance							
Zhsterm	Differential impedance	-	76.5	90	103.5	Ω			
	USB 1.1 Tr	ansceiver (FS)							
	Input Levels (Differential Receiver)							
V_{DI}	Differential input sensitivity	$ V_{I(DP)} - V_{I(DM)} $	0.2	-	-	V			
V _{CM}	Differential common mode voltage	-	0.8	-	2.5	V			
	. •	Single-ended Receiver)	l						
V _{SE}	Single ended receiver threshold	-	0.8	-	2.0	V			
		Output levels	1						
Vol	Low-level output voltage	-	0	-	0.3	V			
Voh	High-level output voltage	-	2.8	-	3.6	V			
		Termination							
Rpu	Pull-up resistor during idle	Equivalent resistance used for the internal chip	1.05	1.5	1.95	kΩ			


Dynamic Characteristic for Analog I/O Pins (DP/DM):

Symbol	Parameter	Conditions	Min	Тур	Max	Unit				
High-Speed Mode										
Driver Characteristic										
thsr	High-speed differential rise time	-	500	ı	-	ps				
thsf	High-speed differential fall time	-	500	-	-	ps				
Zhsdrv	Driver output impedance	Equivalent resistance used for the internal chip	40.5	45	49.5	Ω				
		Clock Timings								
Thsdrat	High-speed Data Rate	-	479.76	-	480.24	Mbps				
		Full-Speed Mode								
		Driver Characteristic								
tfr	Rise time	CL=50pF; 10 to 90% of	4	=	20	ns				
		Voh - Vol								
tff	Fall time	CL=50pF; 90 to 10% of	4	-	20	ns				
		Voh - Vol								
t frma	Differential rise/fall time	Excluding the first transition in	90	=	110	%				
	matching (tfr / tff)	the idle mode								
Vcrs	Output signal crossover voltage	Excluding the first transition in	1.3	-	2.0	V				
, chs		the idle mode								
Clock Timings										
Tfdraths	Full-speed Data Rate	-	11.994	=	12.006	Mbps				
For more items, please refer to USB 2.0 spec.on USB-IF website (http://www.usb.org/developers/docs).										

10.0 Package Information


10.1 AX88772A 64-pin LQFP package

Symbol	Millimeter					
	Min	Тур	Max			
A1	0.05	-	0.15			
A2	1.35	1.40	1.45			
A	-	-	1.60			
b	0.13	0.18	0.23			
D		7.00				
Е		7.00				
e	-	0.40	-			
Hd		9.00				
Не		9.00				
L	0.45	0.60	0.75			
L1	-	1.00 REF	-			
θ	0°	3.5°	7°			

10.2 AX88172A 80-pin TQFP package

Symbol	Millimeter			
	Min	Тур	Max	
A1	0.05	-	0.15	
A2	0.95	1.00	1.05	
A	-	-	1.20	
b	0.13	0.16	0.23	
D		10.00		
Е		10.00		
e	-	0.4 BSC	-	
Hd		12.00		
Не		12.00		
L	0.45	0.60	0.75	
L1	-	1.00 REF	-	
θ	0°	3.5°	7°	

11.0 Ordering Information

Part Number	Description	
AX88772ALF	AX88772A: Product Name (64 pin).	
	L: LQFP Package.	
	F: Lead Free.	
AX88172ATF	AX88172A: Product Name (80 pin).	
	T: TQFP Package.	
	F: Lead Free.	

12.0 Revision History

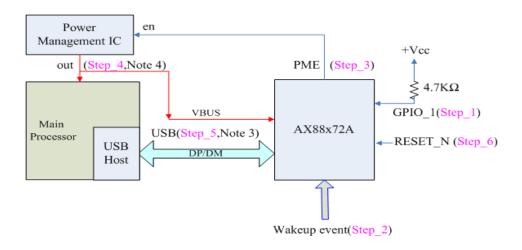
Revision	Date	Comment		
V0.1	2006/01/05	Initial Release.		
V0.2	2007/01/04	Added serial interface description and Package outline.		
V0.3	2007/01/11	Preliminary Release.		
V0.4	2007/02/01	Added some detailed description in section 3.		
V0.5	2007/04/09		*	ated description in feature
V 0.5	2007/01/09	and section 3 & 8.	mode support and rer	ated description in reature
			rget Applications and	l Typical System Block
		Diagrams	aget rippireumons unit	Japan System Bloom
			P and XTL25N pin def	finition in section 2.
				ions were changed from
			icon to UT2 silicon rev	
		AX88172A Pin #	Pin Name in UT1	Pin Name in UT2
		(80-pin LQFP)	(PHY mode with	(PHY mode with
			Rev-MII)	Rev-MII)
		17	NC	TXCLK
		31	NC	CRS
		32	NC	COL
		34	GPIO2	RXER
		63	REV_MII_CLK	RXCLK
V0.6	2007/07/24	1. Changed pin type	of GPIO pins to PD (S	See section 2.1, 2.2).
		2. Simplified the o	operation of Default	WOL Ready Mode (See
		section 2.3 GPIO	_1 pin).	
		3. Added Figure 20	for 12Mhz and 25Mhz	external crystal circuit.
		4. Modified the valu	e of resistors to GND o	f RREF& RSET_BG (See
		section 2.1, 2.2)		
V0.7	2007/08/14		A. Default WOL Read	
V1.0	2007/11/21	1. Update the power	r consumption informat	tion and add I _{DEVICE} and
		I _{SYSTEM} in Section		
		2. Move the Thermal Characteristics information from Section 9.2 to		
			-	haracteristics information.
		3. Update the Tj junction operating temperature information in		
			.4, 9.1.5 and 9.1.6.	g 0.42
			Timing information in	
V1.1	2007/12/24	1. Update some information in Section 3.11.		
774.0	2000/02/25		ormation in Section 9.1	
V1.2	2008/03/25			ower and Reset Control".
7/1.2	2000/04/01		criptions in Section 6.2	
V1.3	2008/04/01		escriptions from "PHY	
		9.4.5.	mode" in Figure 10, S	ection 2.2, 6.2.1.6 and
V1.04	2008/06/09		Patent Approval" string	re
V 1.04	2000/00/07	 Modify the "US Patent Approval" strings. Correct some typo errors in Section 9.2. 		
I		17. COHECLSOME IVO		
1		• 1		Section 2.1.
V1.05	2008/10/21	3. Modify the XTL1	12P pin description in S	
V1.05	2008/10/21	3. Modify the XTL1 1. Modified some de	12P pin description in Section 9	0.4.4, 9.4.6 and 9.4.7.
V1.05	2008/10/21	3. Modify the XTL1 1. Modified some do 2. Updated the Trise	12P pin description in Section 9 escriptions in Section 9 e3 timing information i	9.4.4, 9.4.6 and 9.4.7. In Section 9.3.
V1.05	2008/10/21	3. Modify the XTL1 1. Modified some do 2. Updated the Trise 3. Updated the T2 ti	12P pin description in Section 9 escriptions in Section 9 e3 timing information i time of Figure 33 in Ap	9.4.4, 9.4.6 and 9.4.7. In Section 9.3. pendix B.
		3. Modify the XTL1 1. Modified some do 2. Updated the Triso 3. Updated the T2 ti 1. Modified more do	12P pin description in Section 9 escriptions in Section 9 e3 timing information i time of Figure 33 in Ap	9.4.4, 9.4.6 and 9.4.7. In Section 9.3. In Section 9.3. In Section 9.4.2.

AX88772A/AX88172A

Low-pin-count

USB 2.0 to 10/100M Fast Ethernet Controller

Revision	Date	Comment
V1.08	2011/12/13	1. Added copyright legal header information.
		2. Adjusted some sub-titles format in Section 6.2.1.
		3. Added the cross-link in Table 7 "USB Vendor Command Register
		Map".
		4. Updated some information in Section 9.4.4, 9.4.6.


APPENDIX A. Default Wake-On-LAN (WOL) Ready Mode

This Default WOL Ready Mode application is different from normal operation where AX88772A/AX88172A Suspend/Resume state usually has to be configured by software driver during normal system operation (see Table 8). This application applies to a system that needs to use a predefined remote wakeup event to turn on the power supply of the system processor and its peripheral circuits without having any system software running in the beginning. This is quite useful when a system has been powered down already and a user needs to power on the system from a remote location.

The AX88772A/AX88172A can be configured to support Default WOL Ready Mode, where no system driver is required to configure its WOL related settings after power on reset. A system design usually partitions its power supply into two or more groups and the AX88772A/AX88172A is supplied with an independent power separated from the system processor. The power supply of AX88772A/AX88172A is usually available as soon as power plug is connected. The power supply of system processor remains off initially when power plug is connected and is controlled by AX88772A/AX88172A's PME pin, which can be activated whenever AX88772A/AX88172A detects a predefined wakeup event such as valid Magic Packet reception, Secondary PHY link-up, or the EXTWAKEUP_N pin trigger (see Table 8). To conserve power consumption, initially the USB host controller communicating with AX88772A/AX88172A can also be unpowered as the system processor.

The PME pin of AX88772A/AX88172A can control the power management IC to power up the system processor along with the USB host controller, which will perform USB transactions with AX88772A/AX88172A after both have been initialized. The pin polarity of PME is configured as high active when enabling Default WOL Ready Mode (see following **A.1** Note 2). Note that the AX88772A/AX88172A must be in self-power (via setting EEPROM Flag [0]) mode for this function.

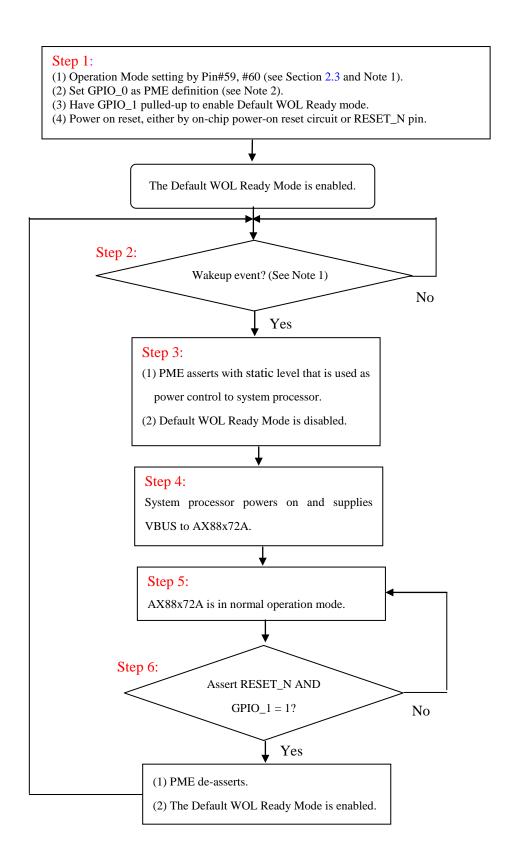
A.1 Procedure to Enable Default WOL Ready Mode

To enable Default WOL Ready Mode, a user needs to configure GPIO_0 pin definition as PME (via setting EEPROM Flag [12]) and have GPIO_1 pulled-up with a 4.7Kohm resistor. After power on reset, AX88772A/AX88172A will disable most functions including USB transceiver (see Note 3) but enable Magic Packet detector logic and internal Ethernet PHY and its auto-negotiation function to be ready to receive Magic Packet. In PHY/Dual-PHY mode for AX88172A, Secondary PHY link-up can be a wakeup event (see Note 1).

AX88772A/AX88172A Low-pin-count

USB 2.0 to 10/100M Fast Ethernet Controller

When a valid Magic Packet is received, AX88772A/ AX88172A will assert the PME pin to indicate to system processor the wakeup event. The PME pin, when being configured as static level output signal (via setting EEPROM Flag [15], see Note 2), can be used to control the power management IC to enable system power supply. After asserting the PME pin, AX88772A/ AX88172A will also exit from the Default WOL Ready Mode and revert back to normal operation mode to start normal USB device detection, handshaking, and enumeration.


The PME pin, when being configured as static level output signal, maintains its signal level until RESET_N is asserted again. If asserting RESET_N to AX88772A/172A with GPIO_1 pulled-up, the Default WOL Ready Mode will be re-entered. Otherwise (GPIO_1 being pulled-down), the normal operation mode (non-Default WOL Ready Mode) will be entered and the normal USB device detection, handshaking and enumeration process should take place right after RESET_N negation.

Note that this mode is supported in all Operation Modes defined by pin# 59 and pin#60 of the AX88172A package pinout for AX88172A but only is supported in MAC mode with internal PHY for AX88772A (2.3 Note 1).

- Note 1: For complete truth table of wakeup events supported, please refer to Table 8 on the "GPIO_1 = 1" setting.
- Note 2: Please refer to 4.1.2 Flag. The bit [15:12] of Flag (PME_IND, PME_TYP, PME_POL, PME_PIN) = 0111.
- Note 3: When the Default WOL Ready Mode is enabled, the DP/DM pins of AX88772A/AX88172A will be in tri-state.
- Note 4: It is recommended that VBUS pin be connected to system power group directly. This way the VBUS will become logic high when power management IC enables the system power supply.

A.2 Flow Chart of Default WOL Ready Mode

APPENDIX B. Ethernet PHY Power and Reset Control

This section indicates some information about AX88772A/AX88172A Ethernet PHY Power and Reset control.

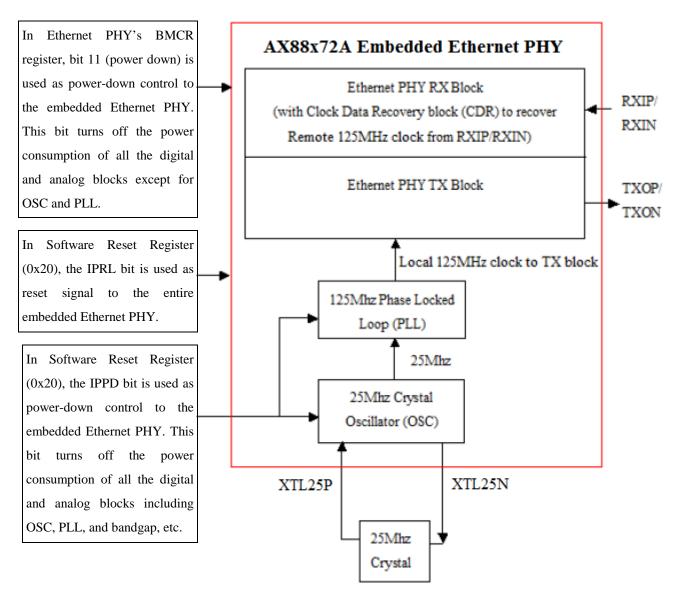
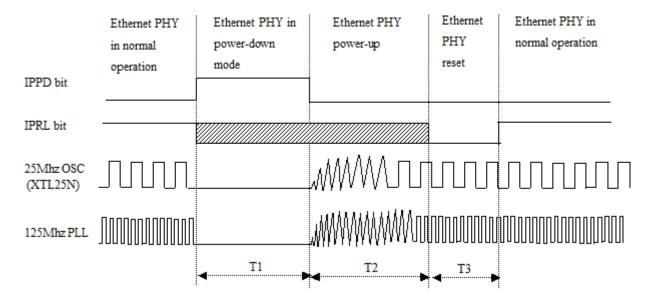



Figure 32: Ethernet PHY Oscillator/PLL Block Diagram

USB 2.0 to 10/100M Fast Ethernet Controller

The following power-up and reset signal timing issued to the Ethernet PHY of AX88772A/AX88172A must be met in order to initialize the Ethernet PHY properly and reliably every time after it has been put into power-down mode previously.

Symbol	Description	Min	Тур	Max
T1	Ethernet PHY in power-down mode where the internal 25Mhz OSC, 125Mhz	500ns	-	-
	PLL and analog bandgap of AX88772 A/AX88172A are completely turned off			
	for max. power saving. This is the lowest power consumption mode of the			
	Ethernet PHY.			
	Note: Alternatively, user can use the Ethernet PHY's BMCR register bit 11,			
	"power down", to set the Ethernet PHY into power-down mode. When the			
	BMCR bit 11 power-down is used, the 25Mhz OSC and 125Mhz PLL will			
	remain toggled but the analog bandgap will be turned off. The power			
	consumption of BMCR bit 11 power-down mode is about 15mA more than the			
	Software Reset Register (0x20) IPPD bit power-down mode.			
T2	From Ethernet PHY power-up to 25Mhz OSC and 125Mhz PLL stable time.	160ms	-	-
	Note: If the IPRL is low during T2, it should be kept at low for more than T2			
	time so that the Ethernet PHY can be reset properly right after the power-up. In			
	other words, the successful and reliable reset to the Ethernet PHY can only be			
	accomplished with a stable running 25Mhz OSC and 125Mhz PLL clocks.			
Т3	Mandatory Ethernet PHY reset time after it has just been powered up from the	500ns	-	-
	previous power-down mode (after >T2 time). Also, software can issue reset to			
	the Ethernet PHY during its non-power-down mode, but the minimum reset			
	duration defined here must be met.			

Figure 33: Ethernet PHY Power-up & Reset Timing Diagram

4F, No.8, Hsin Ann Rd., Hsinchu Science Park, Hsinchu, Taiwan, R.O.C.

TEL: +886-3-5799500 FAX: +886-3-5799558

Email: support@asix.com.tw
Web: http://www.asix.com.tw