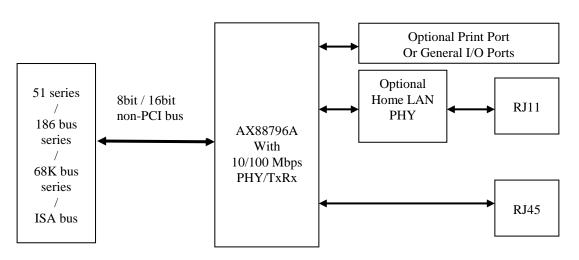


10/100BASE 3-in-1 Local CPU Bus Fast Ethernet Controller with Embedded SRAM

Document No.: AX88796A/V1.16/06/25/13

Features

- Highly integrated with embedded 10/100Mbps MAC, PHY and Transceiver
- Embedded 8K * 16 bit SRAM
- Compliant with IEEE 802.3/802.3u 100BASE-TX specification
- NE2000 register level compatible instruction
- Single chip local CPU bus 10/100Mbps Fast Ethernet MAC Controller
- Support both 8 bit and 16 bit local CPU interfaces include MCS-51 series, 80186 series, MC68K series CPU and ISA bus
- Support both 10Mbps and 100Mbps data rate
- Support both full-duplex or half-duplex operation
- Provides an extra MII port for supporting other media. For example, Home LAN application


- Support EEPROM interface to store MAC address
- External and internal loop-back capability
- Support Standard Print Port for printer server application
- Support up to 3/1 General Purpose In/Out pins
- 128-pin LQFP low profile package
- 0.25 Micron low power CMOS process. 25MHz Operation, Pure 3.3V operation with 5V I/O tolerance.
- RoHS compliant package *IEEE is a registered trademark of the Institute of Electrical and Electronic Engineers, Inc. *All other trademarks and registered trademark are the property of their respective holders.

Product description

The AX88796A Fast Ethernet Controller is a high performance and highly integrated local CPU bus Ethernet Controller with embedded 10/100Mbps PHY/Transceiver and 8K*16 bit SRAM. The AX88796A supports both 8 bit and 16 bit local CPU interfaces include MCS-51 series, 80186 series, and MC68K series CPU and ISA bus. The AX88796A implements both 10Mbps and 100Mbps Ethernet function based on IEEE802.3 / IEEE802.3u LAN standard. The AX88796A also provides an extra IEEE802.3u compliant media-independent interface (MII) to support other media applications. Using MII interface, Home LAN PHY type media can be supported.

As well as, the chip also provides optional Standard Print Port (parallel port interface), can be used for printer server device or treat as simple general I/O port.

System Block Diagram

1

Copyright © 2006-2013 ASIX Electronics Corporation. All rights reserved.

DISCLAIMER

No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express written permission of ASIX. ASIX may make changes to the product specifications and descriptions in this document at any time, without notice.

ASIX provides this document "as is" without warranty of any kind, either expressed or implied, including without limitation warranties of merchantability, fitness for a particular purpose, and non-infringement.

Designers must not rely on the absence or characteristics of any features or registers marked "reserved", "undefined" or "NC". ASIX reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Always contact ASIX to get the latest document before starting a design of ASIX products.

TRADEMARKS

ASIX, the ASIX logo are registered trademarks of ASIX Electronics Corporation. All other trademarks are the property of their respective owners.

Table of Contents

1.0 INTRO	DUCTION	6
1.1 Genei	RAL DESCRIPTION:	6
	796A Block Diagram:	
1.3 Pin C	ONNECTION DIAGRAM	7
1.3.1	Pin Connection Diagram	7
1.3.2	Pin Connection Diagram with SPP Port Option	8
1.3.3	Pin Connection Diagram for ISA Bus Mode	9
1.3.4	Pin Connection Diagram for 80x86 Mode	
1.3.5	Pin Connection Diagram for MC68K Mode	
1.3.6	Pin Connection Diagram for MCS-51 Mode	12
2.0 SIGNAL	DESCRIPTION	13
2.1 LOCA	CPU BUS INTERFACE SIGNALS GROUP	
2.2 10/100	MBPS TWISTED-PAIR INTERFACE PINS GROUP	14
2.3 BUILT	IN PHY LED INDICATOR PINS GROUP	14
2.4 EEPR	OM SIGNALS GROUP	15
	TERFACE SIGNALS GROUP (OPTIONAL)	
2.6 Stani	OARD PRINTER PORT (SPP) INTERFACE PINS GROUP (OPTIONAL)	16
	RAL PURPOSE I/O PINS GROUP	
	LLANEOUS PINS GROUP	
2.9 GPIO	MII CONFIGURATION SETUP SIGNALS CROSS REFERENCE TABLE	
3.0 MEMO	RY AND I/O MAPPING	19
3.1 EEPR	OM MEMORY MAPPING	19
	APPING	
	I MEMORY MAPPING	
4.0 BASIC	OPERATION	
	ver Filtering	
	nicast Address Match Filter ulticast Address Match Filter	
	unicast Address Match Filter roadcast Address Match Filter	
	ggregate Address Filter with Receive Configuration Setup	
	R MANAGEMENT OPERATION	
4.2 DUFFE 4.2.1	Packet Reception	
4.2.1	Packet Transmission	
4.2.2	Filling Packet to Transmit Buffer (Host fill data to memory)	
4.2.4	Removing Packets from the Ring (Host read data from memory)	
4.2.5	Other Useful Operations	
	TERS OPERATION	
	CORE REGISTERS	
	Command Register (CR) Offset 00H (Read/Write)	
	terrupt Status Register (ISR) Offset 07H (Read/Write)	
	terrupt mask register (IMR) Offset 0FH (Write)	
	ata Configuration Register (DCR) Offset 0EH (Write)	
	ransmit Configuration Register (TCR) Offset 0DH (Write) ransmit Status Register (TSR) Offset 04H (Read)	
	eceive Configuration (RCR) Offset 0CH (Write)	
	eceive Status Register (RSR) Offset OCH (Read)	
	ter-frame gap (IFG) Offset 16H (Read/Write)	
	Inter-frame gap (IFG) Offset 10II (Read write) Inter-frame gap Segment 1(IFGS1) Offset 12H (Read/Write)	
	Inter-frame gap Segment 1(IFGS1) Offset 13H (Read/Write)	
	MII/EEPROM Management Register (MEMR) Offset 14H (Read/Write)	
	Fest Register (TR) Offset 15H (Write)	
	Test Register (TR) Offset 15H (Read)	

5.1.15 General Purpose Input Register (GPI) Offset 17H (Read)	41
5.1.16 GPO and Control (GPOC) Offset 17H (Write)	
5.1.17 SPP Data Port Register (SPP_DPR) Offset 18H (Read/Write)	
5.1.18 SPP Status Port Register (SPP_SPR) Offset 19H (Read)	
5.1.19 SPP Command Port Register (SPP_CPR) Offset 1AH (Read/Write)	
5.2 THE EMBEDDED PHY REGISTERS	
5.2.1 MR0 – Control Register Bit Descriptions	
5.2.2 MR1 – Status Register Bit Descriptions	
5.2.3 MR2, MR3 – Identification Registers (1 and 2) Bit Descriptions	
5.2.4 MR4 – Autonegotiation Advertisement Registers Bit Descriptions	
5.2.5 MR5 – Autonegotiation Link Partner Ability (Base Page) Register Bit Descriptions	
5.2.6 MR5 – Autonegotiation Link Partner (LP) Ability Register (Next Page) Bit Descriptions	
5.2.7 MR6 – Autonegotiation Expansion Register Bit Descriptions	
6.0 CPU I/O READ AND WRITE FUNCTIONS	47
6.1 ISA BUS TYPE ACCESS FUNCTIONS.	
6.2 80186 CPU BUS TYPE ACCESS FUNCTIONS.	
6.3 MC68K CPU BUS TYPE ACCESS FUNCTIONS.	
6.4 MCS-51 CPU BUS TYPE ACCESS FUNCTIONS.	
6.5 CPU ACCESS MII STATION MANAGEMENT FUNCTIONS.	
7.0 ELECTRICAL SPECIFICATION AND TIMINGS	50
7.1 Absolute Maximum Ratings	50
7.2 GENERAL OPERATION CONDITIONS	
7.3 DC CHARACTERISTICS	
7.4 A.C. TIMING CHARACTERISTICS	
7.4.1 XTAL / CLOCK	
7.4.2 Reset Timing	
7.4.3 ISA Bus Access Timing	
7.4.4 80186 Type I/O Access Timing	
7.4.5 68K Type I/O Access Timing	
7.4.6 8051 Bus Access Timing	
7.4.7 MII Timing	
8.0 PACKAGE INFORMATION	61
9.0 ORDERING INFORMATION	62
APPENDIX A: APPLICATION NOTE	63
A.1 USING CRYSTAL 25MHz	63
A.2 USING OSCILLATOR 25MHz	
APPENDIX B: POWER CONSUMPTION REFERENCE DATA	64
APPENDIX C: NOTICE OF AX88796A	65
REVISION HISTORY	

List of Figures

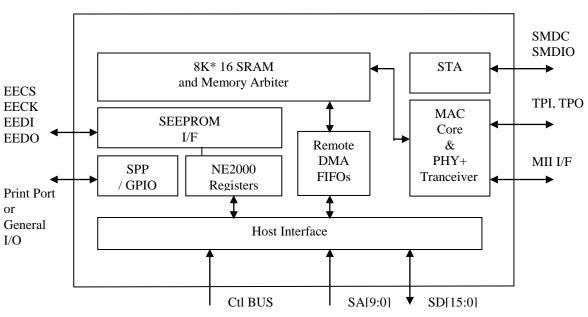
FIG - 1	AX88/96A BLOCK DIAGRAM	6
FIG - 2	PIN CONNECTION DIAGRAM	7
Fig - 3	PIN CONNECTION DIAGRAM WITH SPP PORT OPTION	8
FIG - 4	PIN CONNECTION DIAGRAM FOR ISA BUS MODE	9
FIG - 5	PIN CONNECTION DIAGRAM FOR 80x86 MODE	10
Fig - 6	PIN CONNECTION DIAGRAM FOR MC68K MODE	11
Fig - 7	PIN CONNECTION DIAGRAM FOR MCS-51 MODE	12
FIG - 8	RECEIVE BUFFER RING	24
FIG - 9	RECEIVE BUFFER RING AT INITIALIZATION	25

List of Tables

LOCAL CPU BUS INTERFACE SIGNALS GROUP	
10/100MBPS TWISTED-PAIR INTERFACES PINS GROUP	
BUILT-IN PHY LED INDICATOR PINS GROUP	
GENERAL PURPOSES I/O PINS GROUP	
PROM MAP 00H ~ 1FH	
MII MANAGEMENT FRAMES- FIELD DESCRIPTION	
	Local CPU bus interface signals group 10/100Mbps Twisted-Pair Interfaces pins group Built-in PHY LED indicator pins group EEPROM bus interface signals group Standard Printer Port Interface pins group General Purposes I/O pins group Miscellaneous pins group GPIO/MII Configuration Setup Table EEPROM data format example Local Memory Mapping PROM Map 00H ~ 1FH PROM Map 0400H ~ 040FH Page 0 of MAC Core Registers Mapping Page 1 of MAC Core Registers Mapping Page 1 of MAC Core Registers Mapping The Embedded PHY Registers. MII Management Frame Format MII Management Frame Format MII Management Frames- field Description

1.0 Introduction

1.1 General Description:


The AX88796A provides industrial standard NE2000 registers level compatible instruction set. Various drivers are easy acquired, maintenance and usage. No much additional effort to be paid. Software is easily port to various embedded systems with no pain and tears

The AX88796A Fast Ethernet Controller is a high performance and highly integrated local CPU bus Ethernet Controller with embedded 10/100Mbps PHY/Transceiver and 8K*16 bit SRAM. The AX88796A supports both 8 bit and 16 bit local CPU interfaces include MCS-51 series, 80186 series, and MC68K series CPU and ISA bus. The AX88796A implements both 10Mbps and 100Mbps Ethernet function based on IEEE802.3 / IEEE802.3u LAN standard. The AX88796A also provides an extra IEEE802.3u compliant media-independent interface (MII) to support other media applications. Using MII interface, Home LAN PHY type media can be supported.

As well as, the chip also provides optional Standard Print Port (parallel port interface), can be used for printer server device or treat as simple general I/O port. The chip also support up to 3/1 additional General Purpose In/Out pins

The main difference between AX88796A and AX88796 are listed at notice of AX88796A.

AX88796A use 128-pin LQFP low profile package, 25MHz operation, and single 3.3V operation with 5V I/O tolerance.

1.2 AX88796A Block Diagram:

Fig - 1 AX88796A Block Diagram

1.3 Pin Connection Diagram

1.3.1 Pin Connection Diagram

The AX88796A is housed in the 128-pin plastic light quad flat pack. Below figure shows the AX88796A pin connection diagram.

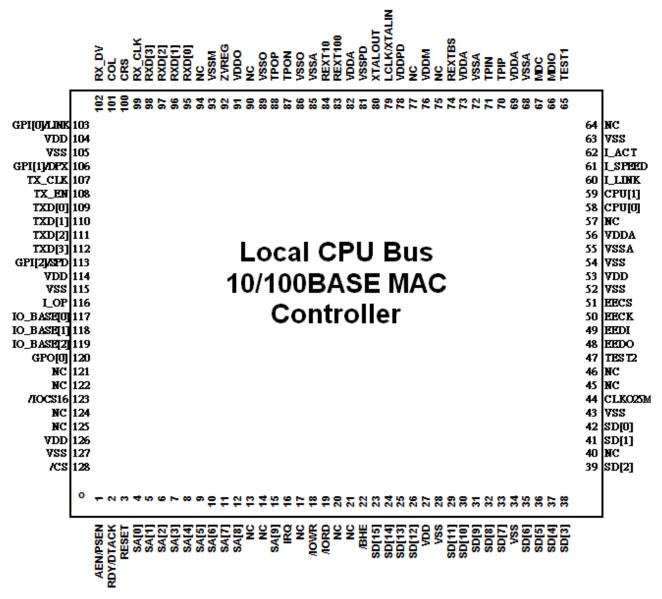


Fig - 2 Pin Connection Diagram

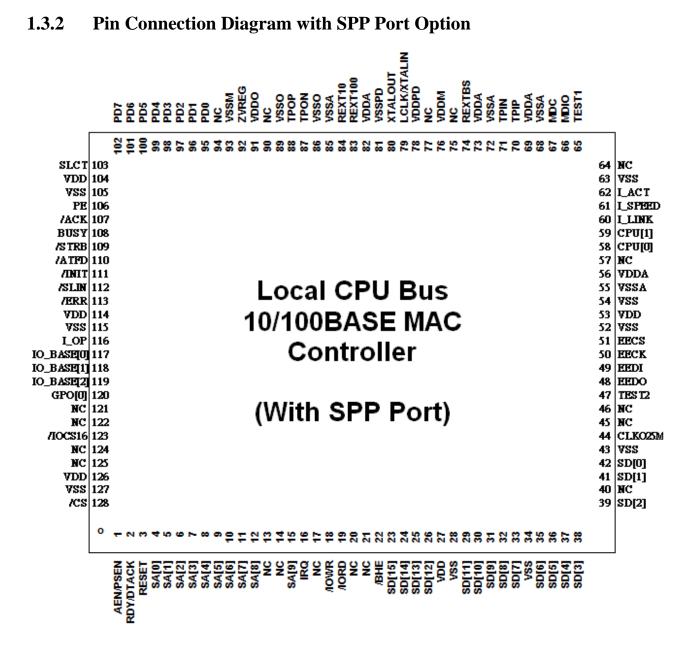


Fig - 3 Pin Connection Diagram with SPP Port Option

1.3.3 Pin Connection Diagram for ISA Bus Mode

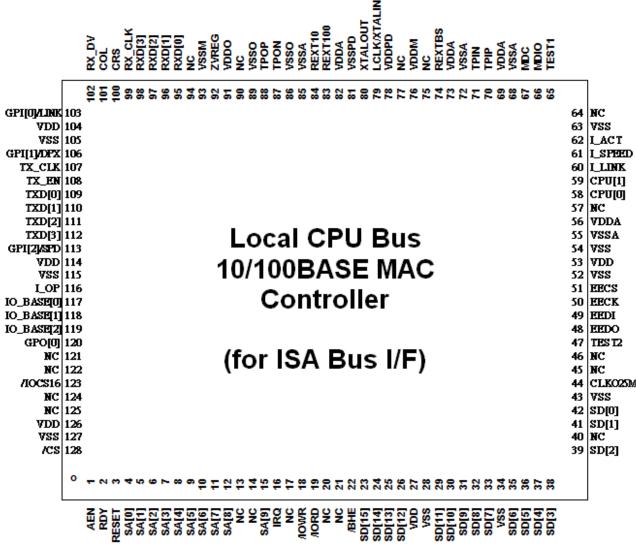


Fig - 4 Pin Connection Diagram for ISA Bus Mode

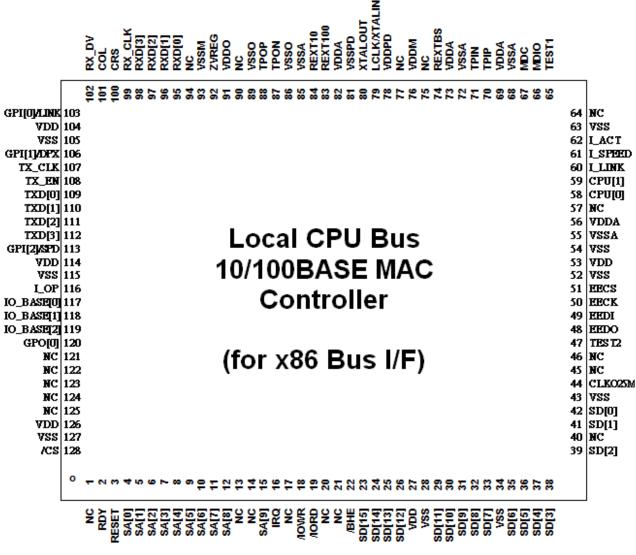


Fig - 5 Pin Connection Diagram for 80x86 Mode

1.3.5 Pin Connection Diagram for MC68K Mode

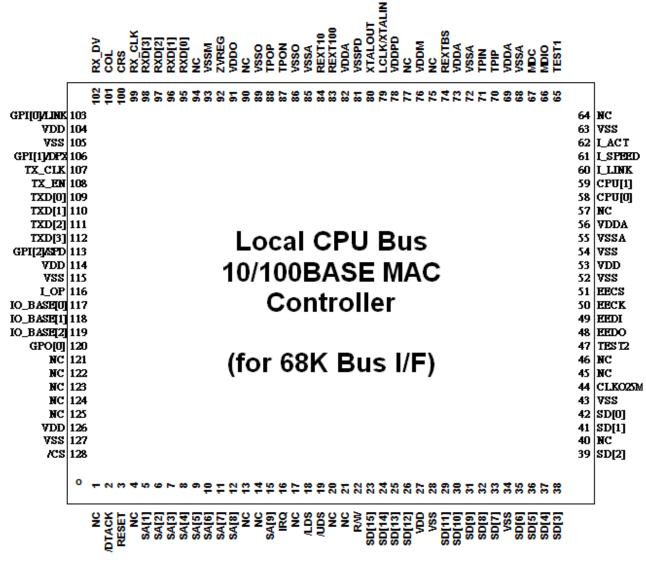


Fig - 6 Pin Connection Diagram for MC68K Mode

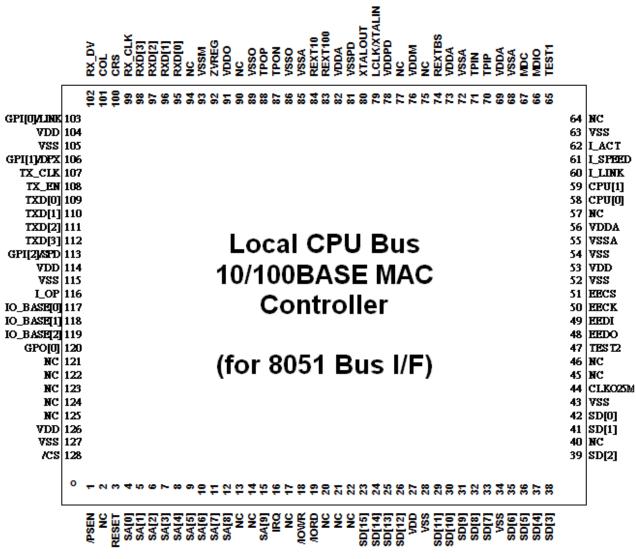


Fig - 7 Pin Connection Diagram for MCS-51 Mode

2.0 Signal Description

The following terms describe the AX88796A pin-out: All pin names with the "/" suffix are asserted low. The following abbreviations are used in following Tables.

Ι	Input	PU	Internal Pull Up 100K ohm
0	Output	PD	Internal Pull Down 90K ohm
I/O	Input/Output	Р	Power Pin
TRI	TRI-state output		

2.1 Local CPU Bus Interface Signals Group

SIGNAL	ТҮРЕ	PIN NO.	DESCRIPTION
SA[9:1],	Ι	15,	System Address : Signals SA[9:0] are address bus input lines, which
SA[0] or NC		12 - 4	lower I/O spaces on chip. When Motorola CPU type is selected, SA
			[0] is useless.
/BHE	I/PU	22	Bus High Enable or Upper Data Strobe: Bus High Enable is active low
or			signal in some 16-bit application mode, which enable high bus
R/W			(SD[15:8]) active. When Motorola CPU type is selected, the pin is
			active high for read operation, low for write operation.
SD[15:0]	I/O/PD	23 - 26,	System Data Bus: Signals SD[15:0] constitute the bi-directional data
		29 – 33,	bus.
		35 – 39,	
		41 - 42	
IRQ	0	16	Interrupt Request: When ISA BUS or 80186 CPU modes is select.
			IRQ is asserted high to indicate the host system that the chip requires
			host software service. When MC68K or MCS-51 CPU mode is select.
			/IRQ is asserted low to indicate the host system that the chip requires
	TRUCK		host software service.
RDY/DTACK	TRI/PU	2	Ready: This signal is set low to insert wait states during Remote DMA
			transfer.
			/Dtack: When Motorola CPU type is selected, the pin is active low
/00	I/PU	128	inform CPU that data is accepted.
/CS	I/PU	128	Chip Select
/IORD	I/PU	19	When the /CS signal is asserted, the chip is selected. I/O Read: The host asserts /IORD to read data from AX88796A I/O
	I/PU	19	space. The signal also name as Upper Data Strobe (/UDS) for 68K
or /UDS			application mode.
/IOWR	I/PU	18	I/O Write: The host asserts /IOWR to write data into AX88796A I/O
or	I/FU	10	space. The signal also names as Lower Data Strobe (/LDS) for 68K
/LDS			application mode.
/IOCS16	TRI/PU	123	I/O is 16 Bit Port: The /IOCS16 is asserted when the address at the
100510	110/10	125	range corresponds to an I/O address to which the chip responds, and
			the I/O port addressed is capable of 16-bit access.
AEN	I/PD	1	Address Enable: The signal is asserted when the address bus is
or		-	available for DMA cycle. When negated (low), AX88796A an I/O
/PSEN			slave device may respond to addresses and I/O command.
			PSEN: This signal is active low for 8051 program access. For I/O
			device, AX88796A, this signal is active high to access the chip. This
			signal is for 8051 bus application only.

TAB - 1 Local CPU bus interface signals group

2.2 10/100Mbps Twisted-Pair Interface Pins Group

SIGNAL	TYPE	PIN NO.	DESCRIPTION
TPIP	Ι	70	Received Data. Positive differential received 125M baud MLT3 or 10M baud Manchester data from magnetic.
TPIN	I	71	Received Data. Negative differential received 125M baud MLT3 or 10M baud Manchester data from magnetic.
ТРОР	0	88	Transmit Data. Positive differential transmit 125M baud MLT3 or 10M baud Manchester data to magnetic.
TPON	0	87	Transmit Data. Negative differential transmit 125M baud MLT3 or 10M baud Manchester data to magnetic.
REXT10	0	84	No connection
REXT100	I/PD	83	Keep this pin floating or pull down
REXTBS	Ι	74	External Bias Resistor. Band Gap Reference for the Receive Channel. Connect this signal to a 24.9k-ohm +/- 1 percent resistor to ground.

TAB - 2 10/100Mbps Twisted-Pair Interfaces pins group

2.3 Built-in PHY LED Indicator Pins Group

SIGNAL	ТҮРЕ	PIN NO.	DESCRIPTION
I_ACT	0	62	Active Status: When I_OP is logic 1. If there is activity, transmit or
or			receive, on the line occurred, the output will be blinking.
I_FULL/COL			Full-Duplex/Collision Status. When I_OP is logic 0. If this signal is
			low, it indicates full-duplex link established, and if it is high, then the
			link is in half-duplex mode. When in half-duplex and collision
			occurrence, the output will be blinking. (Current sink capacity is 8mA)
I_SPEED	0	61	Speed Status: If this signal is low, it indicates 100Mbps, and if it is high,
			then the speed is 10Mbps. (Current sink capacity is 8mA)
			This pin will be hold on previous state when loss link.
I_LINK	0	60	Link Status: When I_OP is logic 1. If this signal is low, it indicates link,
or			and if it is high, then the link is fail.
I_LK/ACT			Link Status/Active: When I_OP is logic 0. If this signal is low, it
			indicates link, and if it is high, then the link is fail. When in link status
			and line activity occurrence, the output will be blinking. (Current sink
			capacity is 8mA)

TAB - 3 Built-in PHY LED indicator pins group

2.4 EEPROM Signals Group

SIGNAL	TYPE	PIN NO.	DESCRIPTION
EECS	0	51	EEPROM Chip Select: EEPROM chip select signal.
EECK	O/PD	50	EEPROM Clock: Signal connected to EEPROM clock pin.
EEDI	0	49	EEPROM Data In: Signal connected to EEPROM data input pin.
EEDO	I/PU	48	EEPROM Data Out: Signal connected to EEPROM data output pin.

TAB - 4 EEPROM bus interface signals group

2.5 MII Interface Signals Group (Optional)

SIGNAL	TYPE	PIN NO.	DESCRIPTION
RXD[3:0]	I/PU	98 – 95	Receive Data: RXD[3:0] is driven by the PHY synchronously with respect to RX_CLK.
CRS	I/PD	100	Carrier Sense: Asynchronous signal CRS is asserted by the PHY when either transmit or receive medium is non-idle.
RX_DV	I/PD	102	Receive Data Valid: RX_DV is driven by the PHY synchronously with respect to RX_CLK. Asserted high when valid data is present on RXD [3:0].
RX_CLK	I/PU	99	Receive Clock: RX_CLK is a continuous clock that provides the timing reference for the transfer of the RX_DV, RXD[3:0] and RX_ER signals from the PHY to the MII port of the repeater.
COL	I/PD	101	Collision: this signal is driven by PHY when collision is detected.
TX_EN	0	108	Transmit Enable: TX_EN is transition synchronously with respect to the rising edge of TX_CLK. TX_EN indicates that the port is presenting nibbles on TXD [3:0] for transmission.
TXD[3:0]	0	112 – 109	Transmit Data: TXD[3:0] is transition synchronously with respect to the rising edge of TX_CLK. For each TX_CLK period in which TX_EN is asserted, TXD[3:0] are accepted for transmission by the PHY.
TX_CLK	I/PU	107	Transmit Clock: TX_CLK is a continuous clock from PHY. It provides the timing reference for the transfer of the TX_EN and TXD[3:0] signals from the MII port to the PHY.
MDC	O/PU	67	Station Management Data Clock: The timing reference for MDIO. All data transfers on MDIO are synchronized to the rising edge of this clock. The signal output reflects MDC register value. About MDC register, please refer to MII/EEPROM Management register bit 0. MDC clock frequency is a 2.5MHz maximum accourding to IEEE 802.3u MII specification. Acturely, many PHYs are designed to accept higher frequency than 2.5MHz.
MDIO	I/O/PU	66	Station Management Data Input/Output: Serial data input/output transfers from/to the PHYs. The transfer protocol has to meet the IEEE 802.3u MII specification. For more information, please refer to section 6.5 CPU Access MII Station Management functions.

TAB - 5 MII interface signals group

2.6 Standard Printer Port (SPP) Interface Pins Group (Optional)

SIGNAL	TYPE	PIN NO.	DESCRIPTION
PD[7:5]	I/O/PD	102 - 100	Parallel Data: The bi-directional parallel data bus is used to transfer
PD[4:0]	I/O/PU	99 – 95	information between CPU and peripherals. Default serve as input,
			using /DOE bit of register offset x1Ah to set the direction.
BUSY	I/PU	108	Busy: This is a status input from the printer, high indicating that the
			printer is not ready to receive new data.
/ACK	I/PU	107	Acknowledge: A low active input from the printer indicating that it has
			received the data and is ready to accept new data.
PE	I/PU	106	Paper Empty: A status input from the printer, high indicating that the
			printer is out of paper.
SLCT	I/PU	103	Slect: This high active input from the printer indicating that it has
			power on.
/ERR	I/PU	113	Error: A low active input from the printer indicating that there is an
			error condition at the printer.
/SLCTIN	0	112	Slect In: This active low output selects the printer.
/INIT	0	111	Init: This signal is used to initiate the printer when low.
/ATFD	0	110	Auto Feed: This output goes low to cause the printer to automatically
			feed one line after each line is printed.
/STRB	0	109	Strobe: A low active pulse on this output is used to strobe the print data
			into the printer.

TAB - 6 Standard Printer Port Interface pins group

2.7 General Purpose I/O Pins Group

Signal Name	Туре	Pin No.	Description
GPI[2]/SPD	I/PU	113	Read register offset 17h bit 6 value reflects this input value.
GPI[1]/DPX	I/PU	106	When MII port is selected. Read register offset 17h bit 5 value reflects this input value.
			When SPP port is selected. The pin is defined as PE.
GPI[0]/LINK	I/PU	103	When MII port is selected. Read register offset 17h bit 4 value reflects this input value. When SPP port is selected. The pin is defined as SLCT.
GPO[0]	0	120	Default "1". The pin reflects write register offset 17h bit 0 inverted value.

TAB - 7 General Purposes I/O pins group

2.8 Miscellaneous Pins Group

SIGNAL	TYPE	PIN NO.		DES	CRIPTION	
LCLK/XTALIN	Ι	79	CMOS Local C	lock: A 25M	Ihz clock, +/-	100 PPM, 40%-60%
			duty cycle. The s	signal not sup	ports 5 Volts to	olerance.
			Crystal Oscillato	or Input: A 2	25Mhz crystal,	+/- 30 PPM can be
			connected across	S XTALIN an	d XTALOUT.	
XTALOUT	0	80	Crystal Oscillato	or Output: A	25Mhz crystal,	+/- 30 PPM can be
			connected acros	s XTALIN a	and XTALOU	Γ. If a single-ended
			external clock (L	CLK) is conr	ected to XTAL	IN, the crystal output
			pin should be lef			
CLKO25M	0	44	Clock Output: T	his clock is so	ource from LCL	.K/XTALIN.
RESET	I/PU	3	Reset:			
						6A into reset mode
			immediately. Du	ring the fall	ing edge the A	X88796A loads the
			power on setting	data.		
CPU[1:0]	I/PU	59, 58	CPU type selection	on:		
			CPU[1] CPU	[0]	CPU T	YPE
			0	0	ISA BU	JS
			0	1	80186	
			1	0	MC68F	
			1	1	MCS-5	51 (805X)
IO_BASE[2:1]	I/PU	119, 118,	I/O Base Addres			
IO_BASE[0]	I/PD	117	IO_BASE[2] IO	_BASE[1] IC	D_BASE[0]	IO_BASE
			0	0	0	300h
			0	0	1	320h
			0	1	0	340h
			0	1	1	360h
			1	0	0	380h
			1	0	1	3A0h
			1	1	0	200h(default)
			1	1	1	220h
I_OP	I/PU	116	LED Indicator C			
					ED and I_FUL	L/COL LED display
			mode			
				NK, I_SPEE	D and I_ACT	LED display mode.
	1.000	17 67	(Default)			
TEST[2:1]	I/PD	47, 65	Test Pins: Active	-	1	1
						se only. Must be pull
ZUDEC.			down or keep no			
ZVREG	0	92				for 10Base-T and
						o the center tap of the
NC	NT/A	12 14 17 20 21	transmit side of t			
NC	N/A	13, 14, 17, 20, 21,	No Connection:	for manufact	aring test only.	
		45, 46, 57, 64, 75,				
		77, 90, 94, 122,				
VDD	D	124, 125	D C 1	2 20 00		
VDD	Р	27, 53, 104	Power Supply: +	5.5 V DC.		
		53, 104,				
VSS	Р	<u>114, 126</u> 28, 34,	Power Supply: +		ound Dower	
cav	r		r ower Suppry: +	UV DC OF GI	oullu rower.	
		43, 52, 54, 63,				
	σ	105,115,127	Dowon Sumply for	n Analaa Cir	with 12 2V DC	
VDDA	Р	56, 69, 73, 82	Power Supply fo	n Analog Cir	cuit: +3.5 V DC	
		73, 82	L			G 1 D
IVCC A	D	55 (0	Dormon Commission	" Amal C'	$a_{1} + a_{1} + a_{2} + a_{2$	
VSSA	Р	55, 68, 72, 85,	Power Supply fo	r Analog Cire	cuit: +0V DC of	r Ground Power.

VDDM	Р	76	Powers the analog block around the transmit/receive area. This
			should be connected to VDDA: +3.3V DC.
VSSM	Р	93	Powers the analog block around the transmit/receive area. This
			should be connected to VSSA: +0V DC or Ground Power.
VDDPD	Р	78	The Phase Detector (or PLL) power. This should be isolated with
			other power: +3.3V DC.
VSSPD	Р	81	The Phase Detector (or PLL) power. This should be isolated with
			other power: +0V DC or Ground.
VDDO	Р	91	Power Supply for Transceiver Output Driver: +3.3V DC.
VSSO	Р	86, 89	Power Supply for Transceiver Output Driver: +0V DC or Ground.

TAB - 8 miscellaneous pins group

2.9 GPIO/MII configuration setup signals cross reference table

Signal Name	Share with	Description
/SPP_SET	MDC	Standard Printer Port Selection:
		/SPP_SET = 0: Standard Printer Port or GPIO is selected
		/SPP_SET = 1: MII port is selected (default)

TAB - 9 GPIO/MII Configuration Setup Table

3.0 Memory and I/O Mapping

There are three memories or I/O mapping used in AX88796A.

- 1. EEPROM Memory Mapping
- 2. I/O Mapping
- 3. Local Memory Mapping

3.1 EEPROM Memory Mapping

The AX88796A supports 16-bit mode 93C56/93C66 serial EEPROM. User can access EEPROM data via I/O address offset 14H MII/EEPROM Management Register. The EEPROM data will be loaded to internal memory (0H to 1FH and 400H to 41FH) automatically when hardware reset. It is similar NE2000 PROM store Ethernet address.

NE2000 driver will read the I/O mode field (offset 1CH and 1EH) of PROM contents to decide the I/O mode (8-bit mode or 16-bit mode). The I/O mode will be 16-bit mode if the value is 57H, 8-bit mode if 42H. AX88796A also supports user defined PROM 1CH and 1EH value by EEDO pin if no programmed EEPROM on board. User can pull-down 10K-ohm at EEDO pin to set 57H to the offset 1CH and 1EH of PROM. It will be 42H if no connection at EEDO pin.

An exam	ple as below,		Auto load 5 words (including address 0H self) from EEPROM	
Addr	D15	D0	and store to PROM area.	
0H	00	05H		
1H	00H	0000 0n00	→ The word_1 bit[2] "n " will eff	ect PROM
2H	32H	10H	address 1CH, 1EH value when s	software
3H	76H	54H	n = 0: PROM address 1CH, 1E	EU will be
4H	BAH	98H	forced to 57H	
TAB - 10	EEPROM data for	nat example	n = 1 : PROM address 1CH, 1E forced to 42H	EH will be

The word_2 to word_4 will map to PROM of 6 bytes Ethernet address.

Start bit	OP code	Address	Data
1	XX	A7 ~ A0	D15 ~ D0
	(Ref. EEPROM datasheet)		

AX88796A auto load timing format

3.2 I/O Mapping

SYSTEM I/O OFFSET	FUNCTION
0000H ~ 001FH	MAC CORE REGISTER

TAB - 11 I/O Address Mapping

3.3 SRAM Memory Mapping

OFFSET	FUNCTION
0000H ~ 001FH	LOAD FROM EEPROM (NE2000 PROM)
0020H ~ 03FFH	RESERVED
0400H ~ 040FH	LOAD FROM EEPROM
0410H ~ 3FFFH	RESERVED
4000H ~ 7FFFH	NE2000 COMPATABLE MODE
	8K X 16 SRAM BUFFER
8000H ~ FFFFH	RESERVED

TAB - 12 Local Memory Mapping

	D15	D0
1EH	57H / 42H	57H / 42H
1CH	57H / 42H	57H / 42H
1AH ~ 10H	00H	00H
0AH	BAH	BAH (E'NET ADDRESS 5)
08H	98H	98H (E'NET ADDRESS 4)
06H	76H	76H (E'NET ADDRESS 3)
04H	54H	54H (E'NET ADDRESS 2)
02H	32H	32H (E'NET ADDRESS 1)
00H	10H	10H (E'NET ADDRESS 0)

TAB - 13 PROM Map 00H ~ 1FH

	D15	D0
040EH	57H	57H
0406H ~ 040DH	00H	00H
0404H	BAH (E'NET ADDRESS 5)	98H (E'NET ADDRESS 4)
0402H	76H (E'NET ADDRESS 3)	54H (E'NET ADDRESS 2)
0400H	32H (E'NET ADDRESS 1)	10H (E'NET ADDRESS 0)

TAB - 14 PROM Map 0400H ~ 040FH

4.0 Basic Operation

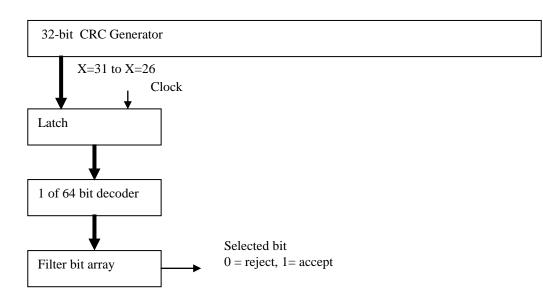
4.1 Receiver Filtering

The address filtering logic compares the Destination Address Field (first 6 bytes of the received packet) to the Physical address registers stored in the Address Register Array. If any one of the six bytes does not match the pre-programmed physical address, the Protocol Control Logic rejects the packet. This is for unicast address filtering. All multicast destination addresses are filtered using a hashing algorithm. (See following description.) If the multicast address indexes a bit that has been set in the filter bit array of the Multicast Address Register Array the packet is accepted, otherwise the Protocol Control Logic rejects it. Each destination address is also checked for all 1's, which is the reserved broadcast address.

4.1.1 Unicast Address Match Filter

The physical address registers are used to compare the destination address of incoming packets for rejecting or accepting packets. Comparisons are performed on a byte wide basis. The bit assignment shown below relates the sequence in PAR0-PAR5 to the bit sequence of the received packet.

_	D7	D6	D5	D4	D3	D2	D1	D0
PAR0	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0
PAR1	DA15	DA14	DA13	DA12	DA11	DA10	DA9	DA8
PAR2	DA23	DA22	DA21	DA20	DA19	DA18	DA17	DA16
PAR3	DA31	DA30	DA29	DA28	DA27	DA26	DA25	DA24
PAR4	DA39	DA38	DA37	DA36	DA35	DA34	DA33	DA32
PAR5	DA47	DA46	DA45	DA44	DA43	DA42	DA41	DA40


Note: The bit sequence of the received packet is DA0, DA1, ... DA7, DA8

4.1.2 Multicast Address Match Filter

The Multicast Address Registers provide filtering of multicast addresses hashed by the CRC logic. All destination addresses are fed through the 32 bits CRC generation logic and as the last bit of the destination address enters the CRC, the 6 most significant bits of the CRC generator are latched. These 6 bits are then decoded by a 1 of 64 decode to index a unique filter bit (FB0-63) in the Multicast Address Registers. If the filter bit selected is set, the multicast packet is accepted. The system designer would use a program to determine which filter bits to set in the multicast registers. All multicast filter bits that correspond to Multicast Address Registers accepted by the node are then set to one. To accept all multicast packets all of the registers are set to all ones.

	D7	D6	D5	D4	D3	D2	D1	D0
MAR0	FB7	FB6	FB5	FB4	FB3	FB2	FB1	FB0
MAR1	FB15	FB14	FB13	FB12	FB11	FB10	FB9	FB8
MAR2	FB23	FB22	FB21	FB20	FB19	FB18	FB17	FB16
MAR3	FB31	FB30	FB29	FB28	FB27	FB26	FB25	FB24
MAR4	FB39	FB38	FB37	FB36	FB35	FB34	FB33	FB32
MAR5	FB47	FB46	FB45	FB44	FB43	FB42	FB41	FB40
MAR6	FB55	FB54	FB53	FB52	FB51	FB50	FB49	FB48
MAR7	FB63	FB62	FB61	FB60	FB59	FB58	FB57	FB56

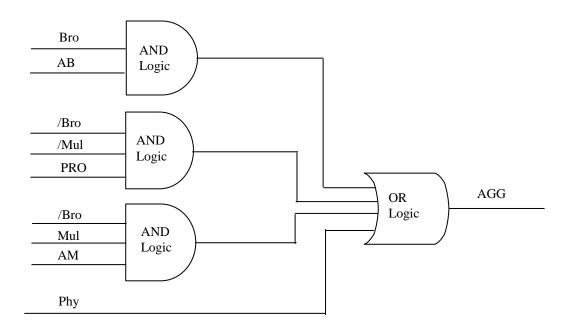
If address Y is found to hash to the value 32 (20H), then FB32 in MAR2 should be initialized to ``1''. This will cause the AX88796A to accept any multicast packet with the address Y.

Although the hashing algorithm does not guarantee perfect filtering of multicast address, it will perfectly filter up to 64 logical address filters if these addresses are chosen to map into unique locations in the multicast filter.

Note: The first bit of received packet sequence is 1's stands by Multicast Address.

4.1.3 Broadcast Address Match Filter

4.1.4 Aggregate Address Filter with Receive Configuration Setup


The final address filter decision depends on the destination address types, identified by the above 3 address match filters, and the setup of parameters of Receive Configuration Register.

Definitions of address match filter result are as following:

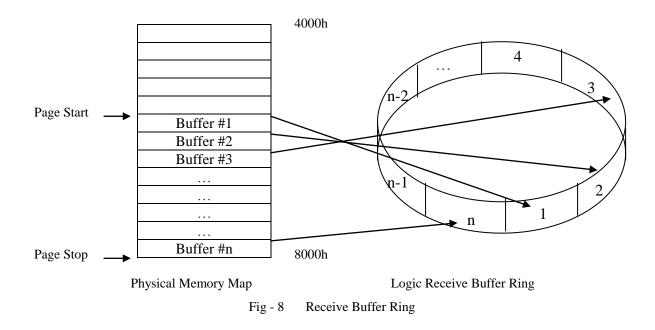
Signal	Value	Description
Phy	=1	Unicast Address Match
	=0	Unicast Address not Match
Mul	=1	Multicast Address Match
	=0	Multicast Address not Match
Bro	=1	Broadcast Address Match
	=0	Broadcast Address not Match
AGG	=1	Aggregate Address Match
	=0	Aggregate Address not Match

The meaning of AB, AM and PRO signals, please refer to "Receive Configuration Register"

Aggregate Address Filter function will be:

4.2 Buffer Management Operation

There are four buffer memory access types used in AX88796A.


- 1. Packet Reception (Write data to memory from MAC)
- 2. Packet Transmission (Read data from memory to MAC)
- 3. Filling Packets to Transmit Buffer (Host fill data to memory)
- 4. Removing Packets from the Receive Buffer Ring (Host read data from memory)

The type 1 and 2 operations act as Local DMA. Type 1 does Local DMA write operation and type 2 does Local DMA read operation. The type 3 and 4 operations act as Remote DMA. Type 3 does Remote DMA write operation and type 4 does Remote DMA read operation.

4.2.1 Packet Reception

The Local DMA receives channel uses a Buffer Ring Structure comprised of a series of contiguous fixed length 256 byte (128 word) buffers for storage of received packets. The location of the Receive Buffer Ring is programmed in two registers, a Page Start and a Page Stop Register. Ethernet packets consist of minimum packet size (64 bytes) to maximum packet size (1522 bytes), the 256 byte buffer length provides a good compromise between short packets and longer packets to most efficiently use memory. In addition these buffers provide memory resources for storage of back-to-back packets in loaded networks. Buffer Management Logic in the AX88796A controls the assignment of buffers for storing packets, recovery of buffers when a packet is rejected, and recalculation of buffer pages that have been read by the host.

At initialization, a portion of the 16k byte (or 8k word) address space is reserved for the receiver buffer ring. Two eight bit registers, the Page Start Address Register (PSTART) and the Page Stop Address Register (PSTOP) define the physical boundaries of where the buffers reside. The AX88796A treats the list of buffers as a logical ring; whenever the DMA address reaches the Page Stop Address, the DMA is reset to the Page Start Address.

INITIALIZATION OF THE BUFFER RING

Two static registers and two working registers control the operation of the Buffer Ring. These are the Page Start Register, Page Stop Register (both described previously), the Current Page Register and the Boundary Pointer Register. The Current Page Register points to the first buffer used to store a packet and is used to restore the DMA for writing status to the Buffer Ring or for restoring the DMA address in the event of a Runt packet, a CRC, or Frame Alignment error. The Boundary Register points to the first packet in the Ring not yet read by the host. If the local DMA address ever reaches the Boundary, reception is aborted. The Boundary Pointer is also used to initialize the Remote DMA for removing a packet and is advanced when a packet is removed. A simple analogy to remember the function of these registers is that the Current Page Register acts as a Write Pointer and the Boundary Pointer acts as a Read Pointer.

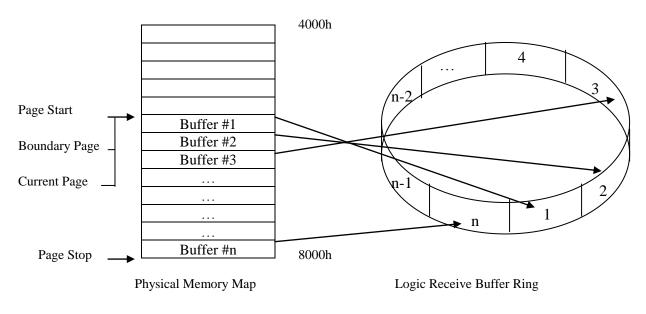


Fig - 9 Receive Buffer Ring At Initialization

BEGINNING OF RECEPTION

When the first packet begins arriving the AX88796A and begins storing the packet at the location pointed to by the Current Page Register. An offset of 4 bytes is reserved in this first buffer to allow room for storing receives status corresponding to this packet.

LINKING RECEIVE BUFFER PAGES

If the length of the packet exhausts the first 256 bytes buffer, the DMA performs a forward link to the next buffer to store the remainder of the packet. For a maximal length packet the buffer logic will link six buffers to store the entire packet. Buffers cannot be skipped when linking; a packet will always be stored in contiguous buffers. Before the next buffer can be linked, the Buffer Management Logic performs two comparisons. The first comparison tests for equality between the DMA address of the next buffer and the contents of the Page Stop Register. If the buffer address equals the Page Stop Register, the buffer management logic will restore the DMA to the first buffer in the Receive Buffer Ring value programmed in the Page Start Address Register. The second comparison test for equality between the DMA address of the next buffer address and the contents of the Boundary Pointer Register. If the two values are equal the reception is aborted. The Boundary Pointer Register can be used to protect against overwriting any area in the receive buffer ring that has not yet been read. When linking buffers, buffer management will never cross this pointer, effectively avoiding any overwrites. If the buffer address does not match either the Boundary Pointer or Page Stop Address, the link to

the next buffer is performed.

LINKING BUFFERS

Before the DMA can enter the next contiguous 256 bytes buffer, the address is checked for equality to PSTOP and to the Boundary Pointer. If neither is reached, the DMA is allowed to use the next buffer.

BUFFER RING OVERFLOW

If the Buffer Ring has been filled and the DMA reaches the Boundary Pointer Address, reception of the incoming packet will be aborted by the AX88796A. Thus, the packets previously received and still contained in the Ring will not be destroyed. In a heavily loaded network environment the local DMA may be disabled, preventing the AX88796A from buffering packets from the network. To guarantee this will not happen, a software reset must be issued during all Receive Buffer Ring over flows (indicated by the OVW bit in the Interrupt Status Register). The following procedure is required to recover from a Receiver Buffer Ring Overflow. If this routine is not adhered to, the AX88796A may act in an unpredictable manner. It should also be noted that it is not permissible to service an overflow interrupt by continuing to empty packets from the receive buffer without implementing the prescribed overflow routine.

Note: It is necessary to define a variable in the driver, which will be called "Resend".

- 1. Read and stores the value of the TXP bit in the AX88796A's Command Register.
- 2. Issue the STOP command to the AX88796A. This is accomplished be setting the STP bit in the AX88796A's Command Register. Writing 21H to the Command Register will stop the AX88796A.
- 3. Wait for at least 1.5 ms. Since the AX88796A will complete any transmission or reception that is in progress, it is necessary to time out for the maximum possible duration of an Ethernet transmission or reception. By waiting 1.5 ms this is achieved with some guard band added. Previously, it was recommended that the RST bit of the Interrupt Status Register be polled to insure that the pending transmission or reception is completed. This bit is not a reliable indicator and subsequently should be ignored.
- 4. Clear the AX88796A's Remote Byte Count registers (RBCR0 and RBCR1).
- 5. Read the stored value of the TXP bit from step 1, above. If this value is a 0, set the ``Resend'' variable to a 0 and jump to step 6. If this value is a 1, read the AX88796A's Interrupt Status Register. If either the Packet Transmitted bit (PTX) or Transmit Error bit (TXE) is set to a 1, set the ``Resend'' variable to a 0 and jump to step 6. If neither of these bits is set, place a 1 in the ``Resend'' variable and jump to step 6. If neither of these bits is set, place a 1 in the ``Resend'' variable and jump to step 6. This step determines if there was a transmission in progress when the stop command was issued in step 2. If there was a transmission in progress, the AX88796A's ISR is read to determine whether or not the packet was recognized by the AX88796A. If neither the PTX nor TXE bit was set, then the packet will essentially be lost and retransmitted only after a time-out takes place in the upper level software. By determining that the packet was lost at the driver level, a transmit command can be reissued to the AX88796A once the overflow routine is completed (as in step 11). Also, it is possible for the AX88796A to defer indefinitely, when it is stopped on a busy network. Step 5 also alleviates this problem. Step 5 is essential and should not be omitted from the overflow routine, in order for the AX88796A to operate correctly.
- 6. Place the AX88796A in mode 1 loopback. This can be accomplished by setting bits D2 and D1, of the Transmit Configuration Register to ``0,1''.
- 7. Issue the START command to the AX88796A. This can be accomplished by writing 22H to the Command Register. This is necessary to activate the AX88796A's Remote DMA channel.
- 8. Remove one or more packets from the receive buffering.
- 9. Reset the overwrite warning (OVW, overflow) bit in the Interrupt Status Register.
- 10.Take the AX88796A out of loopback. Writing the Transmit Configuration Register with the value it contains during normal operation does this. (Bits D2 and D1 should both be programmed to 0.)
- 11.If the ``Resend'' variable is set to a 1, reset the ``Resend'' variable and reissue the transmit command. Writing a value of 26H to the Command Register does this. If the ``Resend'' variable is 0, nothing needs to

be done.

END OF PACKET OPERATIONS

At the end of the packet the AX88796A determines whether the received packet is to be accepted or rejected. It either branch to a routine to store the Buffer Header or to another routine that recovers the buffers used to store the packet.

SUCCESSFUL RECEPTION

If the packet is successfully received as shown, the DMA is restored to the first buffer used to store the packet (pointed to by the Current Page Register). The DMA then stores the Receive Status, a Pointer to where the next packet will be stored and the number of received bytes. Note that the remaining bytes in the last buffer are discarded and reception of the next packet begins on the next empty 256 byte buffer boundary. The Current Page Register is then initialized to the next available buffer in the Buffer Ring. (The location of the next buffer had been previously calculated and temporarily stored in an internal scratchpad register.)

BUFFER RECOVERY FOR REJECTED PACKETS

If the packet is a runt packet or contains CRC or Frame Alignment errors, it is rejected. The buffer management logic resets the DMA back to the first buffer page used to store the packet (pointed to by CPR), recovering all buffers that had been used to store the rejected packet. This operation will not be performed if the AX88796A is programmed to accept either runt packets or packets with CRC or Frame Alignment errors. The received CRC is always stored in buffer memory after the last byte of received data for the packet.

Error Recovery

If the packet is rejected as shown, the DMA is restored by the AX88796A by reprogramming the DMA starting address pointed to by the Current Page Register.

4.2.2 Packet Transmission

The Local DMA Read is also used during transmission of a packet. Three registers control the DMA transfer during transmission, a Transmit Page Start Address Register (TPSR) and the Transmit Byte Count Registers (TBCR0, 1). When the AX88796A receives a command to transmit the packet pointed to by these registers, buffer memory data will be moved into the FIFO as required during transmission. The AX88796A Controller will generate and append the preamble, synch and CRC fields.

TRANSMIT PACKET ASSEMBLY

The AX88796A requires a contiguous assembled packet with the format shown. The transmit byte count includes the Destination Address, Source Address, Length Field and Data. It does not include preamble and CRC. When transmitting data smaller than 46 bytes, the packet must be padded to a minimum size of 64 bytes. The programmer is responsible for adding and stripping pad bytes. The packets are placed in the buffer RAM by the system. System programs the AX88796A Core's Remote DMA to move the data from the data port to the RAM handshaking with system transfers loading the I/O data port.

The data transfer must be 16 bits (1 word) when in 16-bit mode, and 8 bits when the AX88796A Controller is set in 8-bit mode. The data width is selected by setting the WTS bit in the Data Configuration Register and setting the CPU[1:0] pins for ISA, 80186 or MC68K mode.

Destination Address	6 Bytes
Source Address	6 Bytes
Length / Type	2 Bytes
Data	46 Bytes
(Pad if < 46 Bytes)	Min.

General Transmit Packet Format

TRANSMISSION

Prior to transmission, the TPSR (Transmit Page Start Register) and TBCR0, TBCR1 (Transmit Byte Count Registers) must be initialized. To initiate transmission of the packet the TXP bit in the Command Register is set. The Transmit Status Register (TSR) is cleared and the AX88796A begins to prefetch transmit data from memory. If the Interpacket Gap (IPG) has timed out the AX88796A will begin transmission.

CONDITIONS REQUIRED TO BEGIN TRANSMISSION

In order to transmit a packet, the following three conditions must be met:

- 1. The Interpacket Gap Timer has timed out.
- 2. At least one byte has entered the FIFO. (This indicates that the burst transfer has been started).
- 3. If a collision had been detected then before transmission the packet backoff time must have timed out.

COLLISION RECOVERY

During transmission, the Buffer Management logic monitors the transmit circuitry to determine if a collision has occurred. If a collision is detected, the Buffer Management logic will reset the FIFO and restore the Transmit DMA pointers for retransmission of the packet. The COL bit will be set in the TSR and the NCR (Number of Collisions Register) will be incremented. If 15 retransmissions each result in a collision the transmission will be aborted and the ABT bit in the TSR will be set.

Transmit Packet Assembly Format

The following diagrams describe the format for how packets must be assembled prior to transmission for different byte ordering schemes. The various formats are selected in the Data Configuration Register and setting the CPU[1:0] pins for ISA, 80186, MC68K or MCS-51 mode.

D15	D8	D7 D0
Destination Address	1	Destination Address 0
Destination Address	3	Destination Address 2
Destination Address	5	Destination Address 4
Source Address 1		Source Address 0
Source Address 3		Source Address 2
Source Address 5		Source Address 4
Type / Length 1		Type / Length 0
Data 1		Data 0

WTS = 1 in Data Configuration Register.

This format is used with ISA or 80186 Mode.

D15	D8	D7 D0
Destination Address ()	Destination Address 1
Destination Address 2	2	Destination Address 3
Destination Address 4	ł	Destination Address 5
Source Address 0		Source Address 1
Source Address 2		Source Address 3
Source Address 4		Source Address 5
Type / Length 0		Type / Length 1
Data 0		Data 1

WTS = 1 in Data Configuration Register. This format is used with MC68K Mode.

D7	D0
Destination Address 0 (DA0)	
Destination Address 1 (DA1)	
Destination Address 2 (DA2)	
Destination Address 3 (DA3)	
Destination Address 4 (DA4)	
Destination Address 5 (DA5)	
Source Address 0 (SA0)	
Source Address 1 (SA1)	
Source Address 2 (SA2)	
Source Address 3 (SA3)	
Source Address 4 (SA4)	
Source Address 5 (SA5)	
Type / Length 0	
Type / Length 1	
Data 0	
Data 1	

WTS = 0 in Data Configuration Register.

This format is used with ISA, 80186 or MCS-51 Mode.

Note: All examples above will result in a transmission of a packet in order of DA0 (Destination Address 0), DA1, DA2, DA3 . . . in byte. Bits within each byte will be transmitted least significant bit first.

4.2.3 Filling Packet to Transmit Buffer (Host fill data to memory)

The Remote DMA channel is used to both assembles packets for transmission, and to remove received packets from the Receive Buffer Ring. It may also be used as a general-purpose slave DMA channel for moving blocks of data or commands between host memory and local buffer memory. There are two modes of operation, Remote Write and Remote Read Packet.

Two register pairs are used to control the Remote DMA, a Remote Start Address (RSAR0, RSAR1) and a Remote Byte Count (RBCR0, RBCR1) register pair. The Start Address Register pair points to the beginning of the block to be moved while the Byte Count Register pair is used to indicate the number of bytes to be transferred. Full handshake logic is provided to move data between local buffer memory (Embedded Memory) and a bi-directional I/O port.

REMOTE WRITE

A Remote Write transfer is used to move a block of data from the host into local buffer memory. The Remote DMA will read data from the I/O port and sequentially write it to local buffer memory beginning at the Remote Start Address. The DMA Address will be incremented and the Byte Counter will be decremented after each transfer. The DMA is terminated when the Remote Byte Count Register reaches a count of zero.

4.2.4 Removing Packets from the Ring (Host read data from memory)

REMOTE READ

A Remote Read transfer is used to move a block of data from local buffer memory to the host. The Remote DMA will sequentially read data from the local buffer memory, beginning at the Remote Start Address, and write data to the I/O port. The DMA Address will be incremented and the Byte Counter will be decremented after each transfer. The DMA is terminated when the Remote Byte Count Register reaches zero.

Packets are removed from the ring using the Remote DMA or an external device. When using the Remote DMA. The Boundary Pointer can also be moved manually by programming the Boundary Register. Care should be taken to keep the Boundary Pointer at least one buffer behind the Current Page Pointer. The following is a suggested method for maintaining the Receive Buffer Ring pointers.

- 1. At initialization set up a software variable (next_pkt) to indicate where the next packet will be read. At the beginning of each Remote Read DMA operation, the value of next_pkt will be loaded into RSAR0 and RSAR1.
- 2. When initializing the AX88796A set: BNRY = PSTART CPR = PSTART + 1 Next_pkt = PSTART + 1
- 3. After a packet is DMAed from the Receive Buffer Ring, the Next Page Pointer (second byte in AX88796A receive packet buffer header) is used to update BNRY and next_pkt.

Next_pkt = Next Page Pointer BNRY = Next Page Pointer -1If BNRY < PSTART then BNRY = PSTOP -1

Note the size of the Receive Buffer Ring is reduced by one 256-byte buffer; this will not, however, impede the operation of the AX88796A. The advantage of this scheme is that it easily differentiates between buffer full and buffer empty: it is full if BNRY = CPR; empty when BNRY = CPR-1.

STORAGE FORMAT FOR RECEIVED PACKETS

The following diagrams describe the format for how received packets are placed into memory by the local DMA channel. These modes are selected in the Data Configuration Register and setting the CPU[1:0] pins for ISA, 80186, MC68K or MCS-51 mode.

D15	D8	D7 D0)
Next Packet P	ointer	Receive Status	
Receive Byte C	Count 1	Receive Byte Count 0	
Destination Ad	dress 1	Destination Address 0	
Destination Ad	dress 3	Destination Address 2	
Destination Ad	dress 5	Destination Address 4	
Source Addr	ess 1	Source Address 0	
Source Addre	ess 3	Source Address 2	
Source Addr	ess 5	Source Address 4	
Type / Leng	th 1	Type / Length 0	
Data 1		Data 0	

WTS = 1 in Data Configuration Register.

This format is used with ISA or 80186 Mode.

D15	D8	D7	D0
Receive Status		N	ext Packet Pointer
Receive Byte Count	t 0	Re	ceive Byte Count 1
Destination Address	s 0	De	stination Address 1
Destination Address	s 2	De	stination Address 3
Destination Address	s 4	De	stination Address 5
Source Address 0		S	Source Address 1
Source Address 2	r	S	Source Address 3
Source Address 4		S	Source Address 5
Type / Length 0			Type / Length 1
Data 0			Data 1

WTS = 1 in Data Configuration Register.

This format is used with MC68K Mode.

D7		D0	
R	eceive Status		
Nex	t Packet Pointer		
Rece	ive Byte Count 0		
Rece	ive Byte Count 1		
Desti	nation Address 0		
Desti	nation Address 1		
Desti	nation Address 2		
Desti	nation Address 3		
Desti	nation Address 4		
Desti	nation Address 5		
Source Address 0			
So	urce Address 1		
So	urce Address 2		
So	urce Address 3		
So	urce Address 4		
Source Address 5			
Type / Length 0			
Type / Length 1			
	Data 0		
	Data 1		

WTS = 0 in Data Configuration Register. This format is used with ISA, 80186 or MCS-51 Mode.

4.2.5 Other Useful Operations

MEMORY DIAGNOSTICS

Memory diagnostics can be achieved by Remote Write/Read DMA operations. The following is a suggested step for memory test and assume the AX88796A has been well initialized.

- 1. Issue the STOP command to the AX88796A. This is accomplished be setting the STP bit in the AX88796A's Command Register. Writing 21H to the Command Register will stop the AX88796A.
- 2. Wait for at least 1.5 ms. Since the AX88796A will complete any reception that is in progress, it is necessary to time out for the maximum possible duration of an Ethernet reception. This action prevents buffer memory from written data through Local DMA Write.
- 3. Write data pattern to MUT (memory under test) by Remote DMA write operation.
- 4. Read data pattern from MUT (memory under test) by Remote DMA read operation.
- 5. Compare the read data pattern with original write data pattern and check if it is equal.
- 6. Repeat step 3 to step 5 with various data pattern.

LOOPBACK DIAGNOSTICS

- 1. Issue the STOP command to the AX88796A. This is accomplished be setting the STP bit in the AX88796A's Command Register. Writing 21H to the Command Register will stop the AX88796A.
- 2. Wait for at least 1.5 ms. Since the AX88796A will complete any reception that is in progress, it is necessary to time out for the maximum possible duration of an Ethernet reception. This action prevents buffer memory from written data through Local DMA Write.
- 3. Place the AX88796A in mode 1 loop back. (MAC internal loop back) This can be accomplished by setting bits D2 and D1, of the Transmit Configuration Register to ``0,1''.
- 4. Issue the START command to the AX88796A. This can be accomplished by writing <u>22H</u> to the Command Register. This is necessary to activate the AX88796A's Remote DMA channel.
- 5. Write data that want to transmit to transmit buffer by Remote DMA write operation.
- 6. Issue the TXP command to the AX88796A. This can be accomplished by writing <u>26H</u> to the Command Register.
- 7. Read data current receive buffer by Remote DMA read operation.
- 8. Compare the received data with original transmit data and check if it is equal.
- 9. Repeat step 5 to step 8 for more packets test.

5.0 Registers Operation

5.1 MAC Core Registers

All registers of MAC Core are 8-bit wide and mapped into pages, which are selected by PS (Page Select) in the Command Register.

OFFSET	READ	WRITE
00H	Command Register	Command Register
	(CR)	(CR)
01H	Page Start Register	Page Start Register
	(PSTART)	(PSTART)
02H	Page Stop Register	Page Stop Register
	(PSTOP)	(PSTOP)
03H	Boundary Pointer	Boundary Pointer
	(BNRY)	(BNRY)
04H	Transmit Status Register	Transmit Page Start Address
	(TSR)	(TPSR)
05H	Number of Collisions Register	Transmit Byte Count Register 0
	(NCR)	(TBCR0)
06H	Current Page Register	Transmit Byte Count Register 1
	(CPR)	(TBCR1)
07H	Interrupt Status Register	Interrupt Status Register
	(ISR)	(ISR)
08H	Current Remote DMA Address 0	Remote Start Address Register 0
	(CRDA0)	(RSAR0)
09H	Current Remote DMA Address 1	Remote Start Address Register 1
	(CRDA1)	(RSAR1)
0AH	Reserved	Remote Byte Count 0
		(RBCR0)
0BH	Reserved	Remote Byte Count 1
		(RBCR1)
0CH	Receive Status Register	Receive Configuration Register
	(RSR)	(RCR)
0DH	Reserved	Transmit Configuration Register (TCR)
0EH	CRC error counter	Data Configuration Register
		(DCR)
0FH	Missed packet counter	Interrupt Mask Register
		(IMR)
10H, 11H	Data Port	Data Port
12H	IFGS1	IFGS1
13H	IFGS2	IFGS2
14H	MII/EEPROM Access	MII/EEPROM Access
15H	Test Register	Test Register
16H	Inter-frame Gap (IFG)	Inter-frame Gap (IFG)
17H	GPI	GPOC
18H – 1AH	Standard Printer Port (SPP)	Standard Printer Port (SPP)
1BH – 1EH	Reserved	Reserved
1FH	Reset	Reserved

PAGE 0 (PS1=0,PS0=0)

TAB - 15 Page 0 of MAC Core Registers Mapping

PAGE 1 (PS1=0,PS0=1)

OFFSET	READ	WRITE
00H	Command Register	Command Register
	(CR)	(CR)
01H	Physical Address Register 0	Physical Address Register 0
	(PARA0)	(PAR0)
02H	Physical Address Register 1	Physical Address Register 1
	(PARA1)	(PAR1)
03H	Physical Address Register 2	Physical Address Register 2
	(PARA2)	(PAR2)
04H	Physical Address Register 3	Physical Address Register 3
	(PARA3)	(PAR3)
05H	Physical Address Register 4	Physical Address Register 4
	(PARA4)	(PAR4)
06H	Physical Address Register 5	Physical Address Register 5
	(PARA5)	(PAR5)
07H	Current Page Register	Current Page Register
	(CPR)	(CPR)
08H	Multicast Address Register 0	Multicast Address Register 0
	(MAR0)	(MAR0)
09H	Multicast Address Register 1	Multicast Address Register 1
	(MAR1)	(MAR1)
0AH	Multicast Address Register 2	Multicast Address Register 2
	(MAR2)	(MAR2)
0BH	Multicast Address Register 3	Multicast Address Register 3
	(MAR3)	(MAR3)
0CH	Multicast Address Register 4	Multicast Address Register 4
	(MAR4)	(MAR4)
0DH	Multicast Address Register 5	Multicast Address Register 5
	(MAR5)	(MAR5)
0EH	Multicast Address Register 6	Multicast Address Register 6
	(MAR6)	(MAR6)
0FH	Multicast Address Register 7	Multicast Address Register 7
	(MAR7)	(MAR7)
10H, 11H	Data Port	Data Port
12H	Inter-frame Gap Segment 1	Inter-frame Gap Segment 1
	IFGS1	IFGS1
13H	Inter-frame Gap Segment 2	Inter-frame Gap Segment 2
	IFGS2	IFGS2
14H	MII/EEPROM Access	MII/EEPROM Access
15H	Test Register	Test Register
16H	Inter-frame Gap (IFG)	Inter-frame Gap (IFG)
17H	GPI	GPOC
18H – 1AH	Standard Printer Port (SPP)	Standard Printer Port (SPP)
1BH – 1EH	Reserved	Reserved
1FH	Reset	Reserved

TAB - 16 Page 1 of MAC Core Registers Mapping

5.1.1 Command Register (CR) Offset 00H (Read/Write)

FIELD	NAME	DESCRIPTION
7:6	PS1, PS0	PS1, PS0: Page Select
		The two bits selects that register page is to be accessed.
		PS1 PS0
		0 0 page 0
		0 1 page 1
5:3	RD2,	RD2, RD1, RD0: Remote DMA Command
	RD1,	These three encoded bits control operation of the Remote DMA channel. RD2 could be set to
	RD0	abort any Remote DMA command in process. RD2 is reset by AX88796A when a Remote
		DMA has been completed. The Remote Byte Count should be cleared when a Remote DMA
		has been aborted. The Remote Start Address is not restored to the starting address if the
		Remote DMA is aborted.
		RD2 RD1 RD0
		0 0 0 Not allowed
		0 0 1 Remote Read
		0 1 0 Remote Write
		0 1 1 Not allowed
		1 X X Abort / Complete Remote DMA
2	TXP	TXP: Transmit Packet
		This bit could be set to initiate transmission of a packet
1	START	START:
		This bit is used to active AX88796A operation.
0	STOP	STOP: Stop AX88796A
		This bit is used to stop the AX88796A operation.

5.1.2 Interrupt Status Register (ISR) Offset 07H (Read/Write)

FIELD	NAME	DESCRIPTION
7	RST	Reset Status:
		Set when AX88796A enters reset state and cleared when a start command is issued to the
		CR. Writing to this bit is no effect.
6	RDC	Remote DMA Complete
		Set when remote DMA operation has been completed
5	CNT	Counter Overflow
		Set when MSB of one or more of the Tally Counters has been set.
4	OVW	OVERWRITE: Set when receive buffer ring storage resources have been exhausted.
3	TXE	Transmit Error
		Set when packet transmitted with one or more of the following errors
		Excessive collisions
		FIFO Under run
2	RXE	Receive Error
		Indicates that a packet was received with one or more of the following errors
		CRC error
		Frame Alignment Error
		FIFO Overrun
		Missed Packet
1	PTX	Packet Transmitted
		Indicates packet transmitted with no error
0	PRX	Packet Received
		Indicates packet received with no error.

5.1.3 Interrupt mask register (IMR) Offset 0FH (Write)

FIELD	NAME	DESCRIPTION
7	-	Reserved
6	RDCE	DMA Complete Interrupt Enable. Default "low" disabled.
5	CNTE	Counter Overflow Interrupt Enable. Default "low" disabled.
4	OVWE	Overwrite Interrupt Enable. Default "low" disabled.
3	TXEE	Transmit Error Interrupt Enable. Default "low" disabled.
2	RXEE	Receive Error Interrupt Enable. Default "low" disabled.
1	PTXE	Packet Transmitted Interrupt Enable. Default "low" disabled.
0	PRXE	Packet Received Interrupt Enable. Default "low" disabled.

5.1.4 Data Configuration Register (DCR) Offset 0EH (Write)

FIELD	NAME	DESCRIPTION
7	-	Reserved
6:2	-	Reserved
1	-	Reserved
0	WTS	Word Transfer Select
		0: Selects byte-wide DMA transfers.
		1: Selects word-wide DMA transfers.

5.1.5 Transmit Configuration Register (TCR) Offset 0DH (Write)

FIELD	NAME	DESCRIPTION
7	FDU	Full Duplex:
		This bit indicates the current media mode is Full Duplex or not. Ignore this setting when
		using internal PHY. MAC duplex will be control by internal PHY duplex status.
		0: Half duplex
		1: Full duplex
6	PD	Pad Disable
		0: Pad will be added when packet length less than 60.
		1: Pad will not be added when packet length less than 60.
5	RLO	Retry of late collision
		0: Don't retransmit packet when late collision happens.
		1: Retransmit packet when late collision happens.
4:3	-	Reserved
2:1	LB1, LB0	Encoded Loop-back Control
		These encoded configuration bits set the type of loop-back that is to be performed.
		LB1 LB0
		Mode 0 0 0 Normal operation
		Mode 1 0 1 Internal AX88796A loop-back
		Mode 2 1 0 PHYcevisor loop-back
0	CRC	Inhibit CRC
		0: CRC appended by transmitter.
		1: CRC inhibited by transmitter.

5.1.6 Transmit Status Register (TSR) Offset 04H (Read)

FIELD	NAME	DESCRIPTION
7	OWC	Out of window collision
6:4	-	Reserved
3	ABT	Transmit Aborted
		Indicates the AX88796A aborted transmission because of excessive collision.
2	COL	Transmit Collided
		Indicates that the transmission collided at least once with another station on the network.
1	-	Reserved
0	PTX	Packet Transmitted
		Indicates transmission without error.

5.1.7 Receive Configuration (RCR) Offset 0CH (Write)

FIELD	NAME	DESCRIPTION
7	-	Reserved
6	INTT	Interrupt Trigger Mode for ISA and 80186 modes
		0: Low active
		1: High active (default)
		Interrupt Trigger Mode for MCS-51 and MC68K modes
		0: High active
		1: Low active (default)
5	MON	Monitor Mode
		0: Normal Operation
		1: Monitor Mode, the input packet will be checked on NODE ADDRESS and CRC but not
		buffered into memory.
4	PRO	PRO: Promiscuous Mode
		Enable the receiver to accept all packets with a physical address.
3	AM	AM: Accept Multicast
		Enable the receiver to accept packets with a multicast address. That multicast address must
		pass the hashing array.
2	AB	AB: Accept Broadcast
		Enable the receiver to accept broadcast packet.
1	AR	AR: Accept Runt
		Enable the receiver to accept runt packet.
0	SEP	SEP: Save Error Packet
		Enable the receiver to accept and save packets with error.

5.1.8 Receive Status Register (RSR) Offset 0CH (Read)

FIELD	NAME	DESCRIPTION
7	-	Reserved
6	DIS	Receiver Disabled
5	PHY	Multicast Address Received.
4	MPA	Missed Packet
3	FO	FIFO Overrun
2	FAE	Frame alignment error.
1	CR	CRC error.
0	PRX	Packet Received Intact

5.1.9 Inter-frame gap (IFG) Offset 16H (Read/Write)

FIELD	NAME	DESCRIPTION
7	-	Reserved
6:0	IFG	Inter-frame Gap. Default value 15H.

5.1.10 Inter-frame gap Segment 1(IFGS1) Offset 12H (Read/Write)

FIELD	NAME	DESCRIPTION
7	-	Reserved
6:0	IFG	Inter-frame Gap Segment 1. Default value 0cH.

5.1.11 Inter-frame gap Segment 2(IFGS2) Offset 13H (Read/Write)

FIELD	NAME	DESCRIPTION
7	-	Reserved
6:0	IFG	Inter-frame Gap Segment 2. Default value 12H.

5.1.12 MII/EEPROM Management Register (MEMR) Offset 14H (Read/Write)

FIELD	NAME	DESCRIPTION
7	EECLK	EECLK:
		EEPROM Clock
6	EEO	EEO: (Read only)
		EEPROM Data Out value. That reflects Pin-48 EEDO value.
5	EEI	EEI
		EEPROM Data In. That output to Pin-49 EEDI as EEPROM data input value.
4	EECS	EECS
		EEPROM Chip Select
3	MDO	MDO
		MII Data Out. The value reflects to Pin-66 MDIO when MDIR=0.
2	MDI	MDI: (Read only)
		MII Data In. That reflects Pin-66 MDIO value.
1	MDIR	MII STA MDIO signal Direction
		MII Read Control Bit asserts this bit let MDIO signal as the input signal. Deassert this bit let
		MDIO as output signal.
0	MDC	MDC
		MII Clock. This value reflects to Pin-67 MDC.

5.1.13 Test Register (TR) Offset 15H (Write)

FIELD	NAME	DESCRIPTION
7:5	-	Reserved
4	TF16T	Test for Collision, default value is logic 0 (User always keep the default value unchanged)
3	TPE	Test pin Enable, default value is logic 0 (User always keep the default value unchanged)
2:0	IFG	Select Test Pins Output, default value is logic 0 (User always keep the default value
		unchanged)

5.1.14 Test Register (TR) Offset 15H (Read)

FIELD	NAME	DESCRIPTION			
7:4	-	Reserved			
3	RST_TX	100BASE-TX in Reset: This signal indicates that 100BASE-TX logic of internal PHY is in			
	В	reset.			
2	RST_10B	10BASE-T in Reset: This signal indicates that 10BASE-T logic of internal PHY is in reset.			
1	RST_B	Reset Busy: This signal indicates that internal PHY is in reset.			
0	AUTOD	Autonegotiation Done: This signal goes high whenever internal PHY autonegotiation has			
		completed. It will go low if autonegotiation has to restart.			

5.1.15 General Purpose Input Register (GPI) Offset 17H (Read)

FIELD	NAME	DESCRIPTION				
7	-	Reserved				
6	GPI2	This register reflects GPI[2] input value. May connect to external PHY speed status.				
5	GPI1	This register reflects GPI[1] input value. May connect to external PHY duplex status.				
4	GPI0	is register reflects GPI[0] input value. May connect to external PHY link status.				
3	-	Reserved				
2	I_SPD	This register reflects internal PHY speed status value. Logic one means 100Mbps				
1	I_DPX	This register reflects internal PHY duplex status value. Logic one means full duplex.				
0	I_LINK	This register reflects internal PHY link status value. Logic one means link ok.				

5.1.16 GPO and Control (GPOC) Offset 17H (Write)

FIELD	NAME	DESCRIPTION				
7	-	Reserved	Reserved			
6	-	Always w	rite 0			
5	MPSET	Media Se	t by Progran	n: The signal	is valid only when MPSEL is set high.	
		When MI	PSET is logic	c 0, internal I	PHY is selected.	
		When MI	PSET is logic	1, external	MII PHY is selected.	
4	MPSEL	Media Pri	Media Priority Select:			
		MPSEL	I_LINK	GPI0	Media Selected	
		0	1	0	Internal PHY	
		0	1	1	Internal PHY	
		0	0	0	External MII PHY	
		0	0	1	Internal PHY	
		1	Х	Х	Depend on MPSET bit	
3:1	-	Reserved				
0	/GPO0	Default "(0". The regis	ter reflects to	O GPO[0] pin with inverted value.	

5.1.17 SPP Data Port Register (SPP_DPR) Offset 18H (Read/Write)

FIELD	NAME	DESCRIPTION
7:0	DP	Printer Data Port. Default is in input mode. Write /DOE of SPP_CPR register to logic "0" to
		enable print data output to printer as bi-directional mode.

5.1.18 SPP Status Port Register (SPP_SPR) Offset 19H (Read)

FIELD	NAME	DESCRIPTION			
7	/BUSY	Reading a '0' indicates that the printer is not ready to receive new data.			
		The register reflects the inverted value of BUSY pin.			
6	/ACK	Reading a '0' indicates that the printer has received the data and is ready to accept new data.			
		The register reflects the value of /ACK pin.			
5	PE	Reading a '1' indicates that the printer is out of paper.			
		The register reflects the value of PE pin.			
4	SLCT	Reading a '1' indicates that the printer has power on.			
		The register reflects the value of SLCT pin.			
3	/ERR	Reading a '0' indicates that there is an error condition at the printer.			
		The register reflects the value of /ERR pin.			
2:0	-	Reserved			

5.1.19 SPP Command Port Register (SPP_CPR) Offset 1AH (Read/Write)

FIELD	NAME	DESCRIPTION			
7:6	-	Reserved			
5	/DOE	Setting to '0' enables print data output to printer. Default sets to '1'.			
4	IRQEN	IRQ enable: printer port interrupt is not supported .			
3	SLCTIN	Setting to '1' selects the printer.			
		SLIN pin reflects the inverted value of this signal.			
2	/INIT	Setting to '0' initiates the printer			
		/INIT pin reflects the value of this signal.			
1	ATFD	Setting to '1' causes the printer to automatically feed one line after each line is printed.			
		/ATFD pin reflects the inverted value of this signal.			
0	STRB	Setting a low-high-low pulse on this register is used to strobe the print data into the printer.			
		/STRB pin reflects the inverted value of this signal.			

5.2 The Embedded PHY Registers

The MII management 16-bit register set implemented is as follows. And the following sub-section will describes each field of the registers. The format for the "FIELD" descriptions is as follows: the first number is the register number, the second number is the bit position in the register and the name of the instantiated pad is in capital letters. The format for the "TYPE" descriptions is as follows: R = read, W = write, LH = latch high, NA = not applicable.

ADDRESS	NAME	DESCRIPTION	DEFAULT (Hex Code)
0	MR0	Control	3000h
1	MR1	Status	7849h
2	MR2	PHY Identifier 1	003Bh
3	MR3	PHY Identifier 2	1821h
4	MR4	Autonegotiation Advertisement	01E1h
5	MR5	Autonegotiation Link Partner Ability	0000
6	MR6	Autonegotiation Expansion	0000

TAB - 17 The Embedded PHY Registers

5.2.1 MR0 – Control Register Bit Descriptions

FIELD	TYPE	DESCRIPTION
0.15 (SW_RESET)	R/W	Reset. Setting this bit to a 1 will reset the PHY. All registers will be set to their default state. This bit is self-clearing. The default is 0.
	DAV	*
0.14 (LOOPBACK)	R/W	Loopback. When this bit is set to 1, no data transmission will take place on
		the media. Any receive data will be ignored. The loopback signal path will
		contain all circuitry up to, but not including, the PMD. The default value is a
		0.
0.13(SPEED100)	R/W	Speed Selection. The value of this bit reflects the current speed of operation
		(1 = 100 Mbits/s; 0 = 10 Mbits/s). This bit will only affect operating speed
		when the autonegotiation enable bit (register 0, bit 12) is disabled (0). This
		bit is ignored when autonegotiation is enabled (register 0, bit 12). This bit is
		ANDed with the SPEED_PIN signal.
0.12 (NWAY_ENA)	R/W	Autonegotiation Enable. The autonegotiation process will be enabled by
		set-ting this bit to a 1. The default state is a 1.
0.11 (Reserved)	R/W	The default state is a 0. Always write 0.
0.10 (ISOLATE)	R/W	Isolate. When this bit is set to a 1, the MII outputs will be brought to the
		high-impedance state. The default state is a 0.
0.9 (REDONWAY)	R/W	Restart Autonegotiation. Normally, the autonegotiation process is started
		at powerup. Setting this bit to a 1 may restart the process. The default state is
		a 0. The NWAYDONE bit (register 1, bit 5) is reset when this bit goes to a 1.
		This bit is self-cleared when autonegotiation restarts.
0.8 (FULL_DUP)	R/W	Duplex Mode. This bit reflects the mode of operation $(1 = \text{full duplex}; 0 =$
		half duplex). This bit is ignored when the autonegotiation enable bit (register
		0, bit 12) is enabled. The default state is a 0. This bit is Ored with the F_DUP
		pin.
0.7 (COLTST)	R/W	Collision Test. When this bit is set to a 1, the PHY will assert the MCOL
		signal in response to MTX_EN.
0.6:0 (RESERVED)	NA	Reserved. All bits will read 0.

5.2.2 MR1 – Status Register Bit Descriptions

FIELD	TYPE	DESCRIPTION
1.15 (T4ABLE)	R	100Base-T4 Ability. This bit will always be a 0.
		0: Not able.
		1: Able.
1.14 (TXFULDUP)	R	100Base-TX Full-Duplex Ability. This bit will always be a 1.
		0: Not able.
		1: Able.
1.13 (TXHAFDUP)	R	100Base-TX Half-Duplex Ability. This bit will always be a 1.
		0: Not able.
		1: Able.
1.12 (ENFULDUP)	R	10Base-T Full-Duplex Ability. This bit will always be a 1.
		0: Not able.
		1: Able.
1.11 (ENHAFDUP)	R	10Base-T Half-Duplex Ability. This bit will always be a 1.
		0: Not able.
		1: Able.
1.10:7 (RESERVED)	R	Reserved. All bits will read as a 0.
1.6 (NO_PA_OK)	R	Suppress Preamble.
		0 = AX88796A only accepts MII management frames without preamble
		suppressed.
1.5 (NWAYDONE)	R	Autonegotiation Complete. When this bit is a 1, it indicates the
		autonegotiation process has been completed. The contents of registers MR4,
		MR5, MR6, and MR7 are now valid. The default value is a 0. This bit is reset
		when autonegotiation is started.
1.4 (REM_FLT)	R	Remote Fault. When this bit is a 1, it indicates a remote fault has been
		detected. This bit will remain set until cleared by reading the register. The
		default is a 0.
1.3 (NWAYABLE)	R	Autonegotiation Ability. When this bit is a 1, it indicates the ability to
		perform autonegotiation. The value of this bit is always a 1.
1.2 (LSTAT_OK)	R	Link Status. When this bit is a 1, it indicates a valid link has been
		established. This bit has a latching function: a link failure will cause the bit to
		clear and stay cleared until it has been read via the management interface.
1.1 (JABBER)	R	Jabber Detect. This bit will be a 1 whenever a jabber condition is detected.
		It will remain set until it is read, and the jabber condition no longer exists.
1.0 (EXT_ABLE)	R	Extended Capability. This bit indicates that the PHY supports the extended
		register set (MR2 and beyond). It will always read a 1

5.2.3 MR2, MR3 – Identification Registers (1 and 2) Bit Descriptions

FIELD	TYPE	DESCRIPTION
2.15:0 (OUI[3:18])	R	Organizationally Unique Identifier. The third through the twenty-fourth
		bit of the OUI assigned to the PHY manufacturer by the IEEE are to be
		placed in bits. 2.15:0 and 3.15:10. This value is programmable.
		Default value: 16'h003b.
3.15:10 (OUI[19:24])	R	Organizationally Unique Identifier. The remaining 6 bits of the OUI. The
		value for bits 24:19 is programmable.
		Default value: 6'h06.
3.9:4 (MODEL[5:0])	R	Model Number. 6-bit model number of the device. The model number is
		programmable.
		Default value: 6'h02.
3.3:0 (VERSION[3:0])	R	Revision Number. The value of the present revision number. The version
		number is programmable.
		Default value: 4'h1.

5.2.4 MR4 – Autonegotiation Advertisement Registers Bit Descriptions

FIELD	TYPE	DESCRIPTION
4.15 (NEXT_PAGE)	R/W	Next Page. Setting this bit to a 1 activates the next page function. This will
		allow the exchange of additional data. Data is carried by optional next pages
		of information.
4.14 (ACK)	R/W	Acknowledge. This bit is the acknowledge bit from the link code word.
4.13 (REM_FAULT)	R/W	Remote Fault. When set to 1, the PHY indicates to the link partner a remote
		fault condition.
4.12:10 (PAUSE)	R/W	Pause. When set to a 1, it indicates that the PHY wishes to exchange flow
		control information with its link partner.
4.9 (100BASET4)	R/W	100Base-T4. This bit should always be set to 0.
4.8 (100BASET_FD)	R/W	100Base-TX Full Duplex. If written to 1, autonegotiation will advertise that
		the PHY is capable of 100Base-TX full-duplex operation.
4.7 (100BASETX)	R/W	100Base-TX. If written to 1, autonegotiation will advertise that the PHY is
		capable of 100Base-TX operation.
4.6 (10BASET_FD)	R/W	10Base-T Full Duplex. If written to 1, autonegotiation will advertise that the
		PHY is capable of 10Base-T full-duplex operation.
4.5 (10BASET)	R/W	10Base-T. If written to 1, autonegotiation will advertise that the PHY is
		capable of 10Base-T operation.
4.4:0 (SELECT)	R/W	Selector Field. Reset with the value 00001 for IEEE 802.3.

5.2.5 MR5 – Autonegotiation Link Partner Ability (Base Page) Register Bit Descriptions

FIELD	TYPE	DESCRIPTION
5.15	R	Link Partner Next Page. When this bit is set to 1, it indicates that the link
(LP_NEXT_PAGE)		partner wishes to engage in next page exchange.
5.14 (LP_ACK)	R	Link Partner Acknowledge. When this bit is set to 1, it indicates that the
		link partner has successfully received at least three consecutive and
		consistent FLP bursts.
5.13	R	Remote Fault. When this bit is set to 1, it indicates that the link partner has a
(LP_REM_FAULT)		fault.
5.12:5	R	Technology Ability Field. This field contains the technology ability of the
(LP_TECH_ABILITY)		link partner. These bits are similar to the bits defined for the MR4 register
		(see Table 16).
5.4:0 (LP_SELECT)	R	Selector Field. This field contains the type of message sent by the link
		partner. For IEEE 802.3 compliant link partners, this field should read
		00001.

5.2.6 MR5 –Autonegotiation Link Partner (LP) Ability Register (Next Page) Bit Descriptions

FIELD	TYPE	DESCRIPTION
5.15	R	Next Page. When this bit is set to logic 0, it indicates that this is the last page
(LP_NEXT_PAGE)		to be transmitted. Logic 1 indicates that additional pages will follow.
5.14 (LP_ACK)	R	Acknowledge. When this bit is set to logic 1, it indicates that the link partner
		has successfully received its partner's link code word.
5.13	R	Message Page. This bit is used by the NEXT _PAGE function to
(LPMES_PAGE)		differentiate a message page (logic 1) from an unformatted page (logic 0).
5.12 (LP_ACK2)	R	Acknowledge 2. This bit is used by the NEXT_PAGE function to indicate
		that a device has the ability to comply with the message (logic 1) or not (logic
		0).
5.11 (LP_TOGGLE)	R	Toggle. This bit is used by the arbitration function to ensure synchronization
		with the link partner during next page exchange. Logic 0 indicates that the
		previous value of the transmitted link code word was logic 1. Logic 1
		indicates that the previous value of the transmitted link code word was logic
		0.
5.10:0 (MCF)	R	Message/Unformatted Code Field. With these 11 bits, there are 2048
		possible messages. Message code field definitions are described in annex
		28C of the IEEE 802.3u standard.

5.2.7 MR6 – Autonegotiation Expansion Register Bit Descriptions

FIELD	TYPE	DESCRIPTION
6.15:5 (RESERVED)	R	Reserved.
6.4	R/LH	Parallel Detection Fault. When this bit is set to 1, it indicates that a fault has
(PAR_DET_FAULT)		been detected in the parallel detection function. This fault is due to more than
		one technology detecting concurrent link conditions. This bit can only be
		cleared by reading this register.
6.3	R	Link Partner Next Page Able. When this bit is set to 1, it indicates that the
(LP_NEXT_PAGE_AB		link partner supports the next page function.
LE)		
6.2	R	Next Page Able. This bit is set to 1, indicating that this device supports the
(NEXT_PAGE_ABLE)		NEXT_PAGE function.
6.1 (PAGE_REC)	R/LH	Page Received. When this bit is set to 1, it indicates that a NEXT_PAGE has
		been received.
6.0	R	Link Partner Autonegotiation Capable. When this bit is set to 1, it
(LP_NWAY_ABLE)		indicates that the link partner is autonegotiation capable.

6.0 CPU I/O Read and Write Functions

6.1 ISA bus type access functions.

ISA bus I/O Read function

Function Mode	/CS	/BHE	A0	/IORD	/IOWR	SD[15:8]	SD[7:0]		
Standby Mode	Н	Х	Х	Х	Х	High-Z	High-Z		
Byte Access	L	Н	L	L	Н	Not Valid	Even-Byte		
	L	Н	Н	L	Н	Not Valid	Odd-Byte		
Word Access	L	L	L	L	Н	Odd-Byte	Even-Byte		

ISA bus I/O Write function

Function Mode	/CS	/BHE	A0	/IORD	/IOWR	SD[15:8]	SD[7:0]
Standby Mode	Н	Х	Х	Х	Х	Х	Х
Byte Access	L	Н	L	Н	L	Х	Even-Byte
-	L	Н	Н	Н	L	Х	Odd-Byte
Word Access	L	L	L	Н	L	Odd-Byte	Even-Byte

6.2 80186 CPU bus type access functions.

80186 CPU bus I/O Read function

Function Mode	/CS	/BHE	A0	/IORD	/IOWR	SD[15:8]	SD[7:0]				
Standby Mode	Н	Х	Х	Х	Х	High-Z	High-Z				
Byte Access	L	Н	L	L	Н	Not Valid	Even-Byte				
	L	L	Н	L	Н	Odd-Byte	Not Valid				
Word Access	L	L	L	L	Н	Odd-Byte	Even-Byte				

80186 CPU bus I/O Write function

Function Mode	/CS	/BHE	A0	/IORD	/IOWR	SD[15:8]	SD[7:0]			
Standby Mode	Н	Х	Х	Х	Х	Х	Х			
Byte Access	L	Н	L	Н	L	Х	Even-Byte			
	L	L	Н	Н	L	Odd-Byte	Х			
Word Access	L	L	L	Н	L	Odd-Byte	Even-Byte			

6.3 MC68K CPU bus type access functions.

68K bus I/O Read function

OOK Dus 1/O Kee	ia function					
Function Mode	/CS	/UDS	/LDS	R/W	SD[15:8]	SD[7:0]
Standby Mode	Н	Х	Х	Х	High-Z	High-Z
Byte Access	L	Н	L	Н	Not Valid	Odd-Byte
	L	L	Н	Н	Even-Byte	Not Valid
Word Access	L	L	L	Н	Even-Byte	Odd-Byte

68K bus I/O Write function

Function Mode	/CS	/UDS	/LDS	R/W	SD[15:8]	SD[7:0]
Standby Mode	Н	Х	Х	Х	Х	Х
Byte Access	L	Н	L	L	Х	Odd-Byte
	L	L	Н	L	Even-Byte	Х
Word Access	L	L	L	L	Even-Byte	Odd-Byte

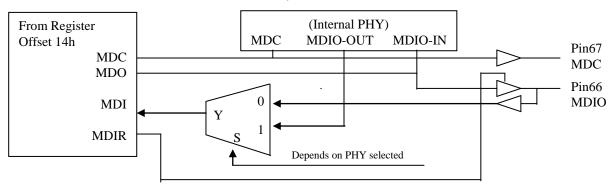
6.4 MCS-51 CPU bus type access functions.

8051 bus I/O Read function

Function Mode	/CS	/PSEN	SA0	/IORD	/IOWR	SD[15:8]	SD[7:0]
Standby Mode	Н	Х	Х	Х	Х	High-Z	High-Z
	Х	L	Х	Х	Х	High-Z	High-Z
Byte Access	L	Н	L	L	Н	Not Valid	Even-Byte
	L	Н	Н	L	Н	Not Valid	Odd-Byte

8051 bus I/O Write function

Function Mode	/CS	/PSEN	SA0	/IORD	/IOWR	SD[15:8]	SD[7:0]
Standby Mode	Н	Х	Х	Х	Х	Х	Х
	Х	L	Х	Х	Х	Х	Х
Byte Access	L	Н	L	Н	L	Х	Even-Byte
	L	Н	Н	Н	L	Х	Odd-Byte



6.5 CPU Access MII Station Management functions.

Basic Operation

The primary function of station management is to transfer control and status information about the PHY to a management entity. This function is accomplished by the MDC clock input from MAC entity, which has a maximum frequency of 12.5 MHz (for internal PHY only, as to external PHY please refer to the relevant specification), along with the MDIO signal.

The Internal PHY address is fixed to 10h and the equivalent circuit is shown as below:

A specific set of registers and their contents (described in Tab - 19 MII Management Frames- field Description) defines the nature of the information transferred across the MDIO interface. Frames transmitted on the MII management interface will have the frame structure shown in Tab - 18 MII Management Frame Format. The order of bit transmission is from left to right. Note that reading and writing the management register must be completed without interruption.

Read/Write (R/W)	Pre	ST	OP	PHYAD	REGAD	ТА	DATA	IDLE
R	11	01	10	AAAAA	RRRRR	Z0	DDDDDDDDDDDDDD	Z
W	11	01	01	AAAAA	RRRRR	10	DDDDDDDDDDDDDD	Z

Field	Descriptions					
Pre	Preamble of MII station management frame, which consists of 32 bits of 1.					
ST	Start of Frame. The start of frame is indicated by a 01 pattern.					
OP	Operation Code . The operation code for a read transaction is 10. The operation code for a write					
	transaction is a 01.					
PHYADD	PHY Address. The PHY address is 5 bits, allowing for 32 unique addresses. The first PHY address					
	bit transmitted and received is the MSB of the address. A station management entity that is					
	attached to multiple PHY entities must have prior knowledge of the appropriate PHY address for					
	each entity.					
REGAD	Register Address. The register address is 5 bits, allowing for 32 unique registers within each PHY. The					
	first register address bit transmitted and received is the MSB of the address.					
TA	Turnaround. The turnaround time is a 2-bit time spacing between the register address field, and					
	the data field of a frame, to avoid drive contention on MDIO during a read transaction. During a					
	write to the PHY, these bits is driven to 10 by the station. During a read, the MDIO is not					
	driven during the first bit time and is driven to a 0 by the PHY during the second bit time.					
DATA	Data. The data field is 16 bits. The first bit transmitted and received will be bit 15 of the register					
	being addressed.					
IDLE	Idle Condition. The IDLE condition on MDIO is a high-impedance state. All three state drivers will be					
	disabled and the PHY's pull-up resistor will pull the MDIO line to logic 1.					

TAB - 18 MII Management Frame Format

TAB - 19 MII Management Frames- field Description

7.0 Electrical Specification and Timings

7.1 Absolute Maximum Ratings

Description	SYM	Min	Max	Units
Operating Temperature	Та	0	+85	°C
Storage Temperature	Ts	-55	+150	°C
Supply Voltage	Vdd	-0.3	+4.6	V
Input Voltage	Vin	-0.3	5.5*	V
Output Voltage	Vout	-0.3	Vdd+0.5	V

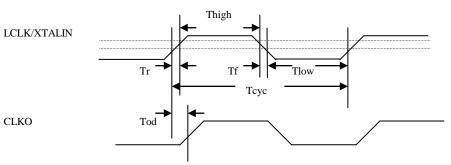
Note: Long-term exposure to absolute maximum ratings may affect device reliability, and permanent damage may occur if operate exceeding the ratting. The device should be operated under recommended operating condition.

Note: * All digital input signals can sustain 5 Volts input voltage except pin-79 LCLK/XTALIN

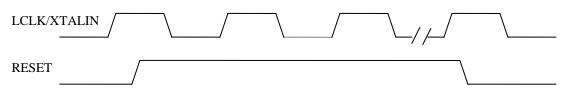
7.2 General Operation Conditions

Description	SYM	Min	Тру	Max	Units
Operating Temperature	Та	0	25	+75	°C
Junction Temperature	Tj	0	25	+125	°C
Supply Voltage	Vdd	+3.14	+3.30	+3.46	V

7.3 DC Characteristics


(Vdd=3.0V to 3.6V, Vss=0V, Ta=0°C to 75°C)

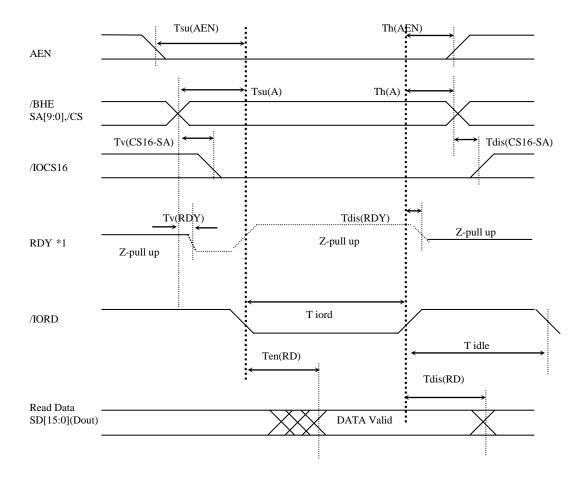
Description	SYM	Min	Тру	Max	Units
Low Input Voltage	Vil	-		0.8	V
High Input Voltage	Vih	1.9		-	V
Low Output Voltage	Vol	-		0.4	V
High Output Voltage	Voh	Vdd-0.4		-	V
Input Leakage Current	Iil	-1		+1	uA
Output Leakage Current	Iol	-1		+1	uA


7.4 A.C. Timing Characteristics

7.4.1 XTAL / CLOCK

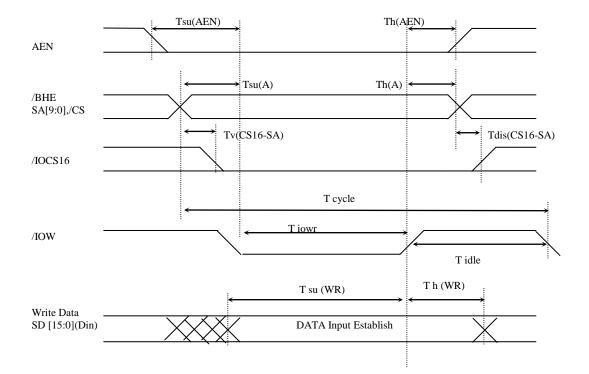
Symbol	Description	Min	Тур.	Max	Units
Тсус	CYCLE TIME		40		ns
Thigh	CLK HIGH TIME	16	20	24	ns
Tlow	CLK LOW TIME	16	20	24	ns
Tr/Tf	CLK SLEW RATE	1	-	4	ns

7.4.2 Reset Timing



Symbol	Description	Min	Тур.	Max	Units
Trst	Reset pulse width	100	-	-	LCLK

7.4.3 ISA Bus Access Timing

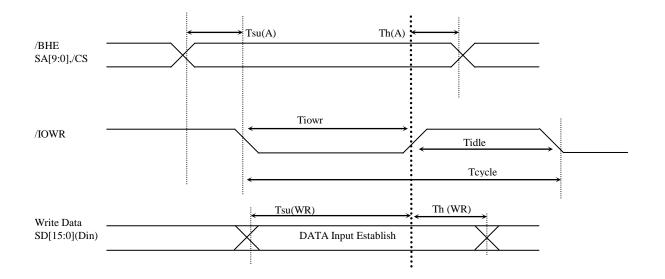

Read cycle:

Symbol	Description	Min	Typ.	Max	Units
Tsu(AEN)	AEN SETUP TIME	0	-	-	ns
Th(AEN)	AEN HOLD TIME	0	-	-	ns
Tsu(A)	ADDRESS SETUP TIME	0	-	-	ns
Th(A)	ADDRESS HOLD TIME	0	-	-	ns
Tv(CS16-SA)	/IOCS16 VALID FROM SA[9:0], /CS, /BHE AND AEN	-	-	15	ns
Tdis(CS16-SA)	/IOCS16 DISABLE FROM SA[9:0], /CS, /BHE AND AEN	-	-	8	ns
Tv(RDY)	RDY VALID FROM SA[9:0]=310 VALID, /CS,/BHE AND AEN	-	-	15	ns
Tdis(RDY)	RDY DISABLE FROM /IORD	0	-	-	ns
Ten(RD)	OUTPUT ENABLE TIME FROM /IORD	-	-	20	ns
Tdis(RD)	OUTPUT DISABLE TIME FROM /IORD	3	-	7	ns
T iord	IORD LOW REQUIRE TIME	1.5	-	-	LCLK
T idle	IORD HI REQUIRE TIME	1.5 (*)	-	-	LCLK

Write cycle:

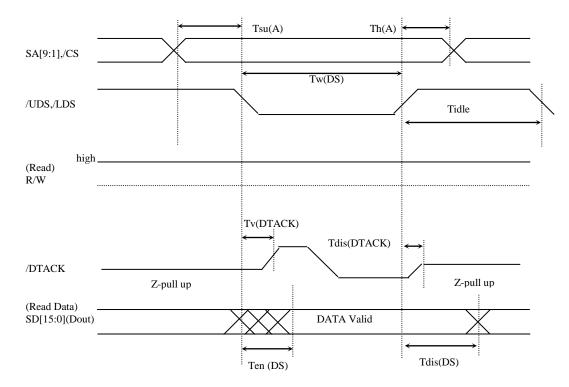
Symbol	Description	Min	Тур.	Max	Units
Tsu(A)	ADDRESS SETUP TIME	0	-	-	ns
Th(A)	ADDRESS HOLD TIME	0			ns
Tsu(AEN)	AEN SETUP TIME	0	-	-	ns
Th(AEN)	AEN HOLD TIME	0	-	-	ns
Tv(CS16-SA)	/IOCS16 VALID FROM SA[9:0], /CS, /BHE AND AEN	-	-	20	ns
Tdis(CS16-SA)	/IOCS16 DISABLE FROM SA[9:0], /CS, /BHE AND AEN	-	-	8	ns
Tsu(WR)	DATA SETUP TIME	2	-	-	ns
Th(WR)	DATA HOLD TIME	0	-	-	ns
T iowr	IOW WIDTH TIME	1.5	-	-	LCLK
T cycle	CYCLE TIME FOR EVEREY DATA PORT WRITE	3	-	-	LCLK
T idle	IOWR HI REQUIRE TIME	1.5 (*)	-	-	LCLK

7.4.4 80186 Type I/O Access Timing


Read cycle:

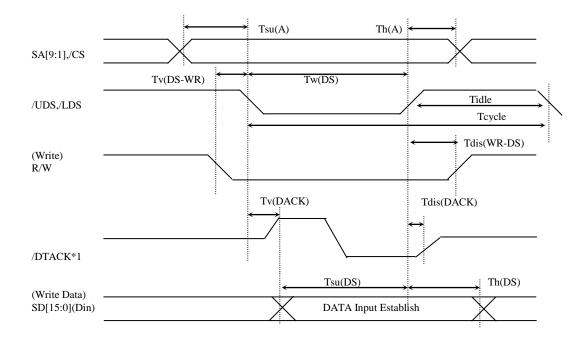
Symbol	Description	Min	Тур.	Max	Units
Tsu(A)	ADDRESS SETUP TIME	0	-	-	ns
Th(A)	ADDRESS HOLD TIME	0	-	-	ns
Tv(RDY)	RDY VALID FROM SA,/CS AND /BHE	-	-	15	ns
Tdis(RDY)	RDY DISABLE FROM SA[9:0]=310 VALID, /CS AND /BHE	0	-	-	ns
Ten(RD)	OUTPUT ENABLE TIME FROM /IORD	-	-	20	ns
Tdis(RD)	OUTPUT DISABLE TIME FROM /IORD	3	-	7	ns
Tiord	IORD LOW WIDTH TIME	1.5	-	-	LCLK
Tidle	IORD HI REQUIRE TIME	1.5 (*)	-	-	LCLK

Write Cycle



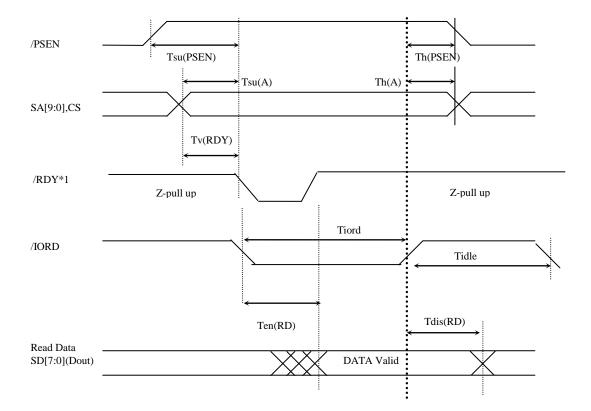
Symbol	Description	Min	Тур.	Max	Units
Tsu(A)	ADDRESS SETUP TIME	0	-	-	ns
Th(A)	ADDRESS HOLD TIME	0	-	-	ns
Tsu(WR)	DATA SETUP TIME	2	-	-	ns
Th(WR)	DATA HOLD TIME	0	-	-	ns
Tiorw	/IOWR WIDTH TIME	1.5	-	-	LCLK
Tcycle	CYCYLE TIME FOR EVERY DATA PORT WRITE	3	-	-	LCLK
T idle	IOWR HI REQUIRE TIME	1.5 (*)	-	-	LCLK

7.4.5 68K Type I/O Access Timing


Read cycle

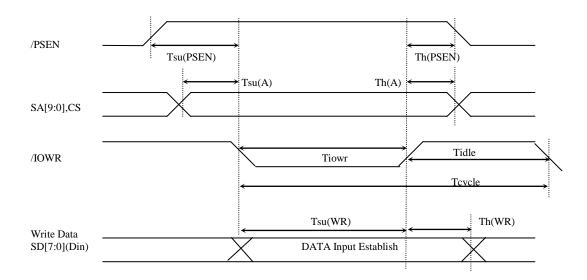
Symbol	Description	Min	Тур.	Max	Units
Tsu(A)	ADDRESS SETUP TIME	0	-	-	ns
Th(A)	ADDRESS HOLD TIME	0	-	-	ns
Tv(DTACK)	DACK VALID FROM /UDS OR /LDS	-	-	15	ns
Tdis(DTACK)	DACK DISABLE FROM /UDS OR /LDS	0	-	-	ns
Ten(DS)	OUTPUT ENABLE TIME FROM /UDS OR /LDS	-	-	20	ns
Tdis(DS)	OUTPUT DISABLE TIME FROM /UDS OR /LDS	3	-	7	ns
Tw(DS)	/UDS OR /LDS WIDTH TIME	1.5	-	-	LCLK
Tidle	IORD HI REQUIRE TIME	1.5 (*)	-	-	LCLK

Write cycle

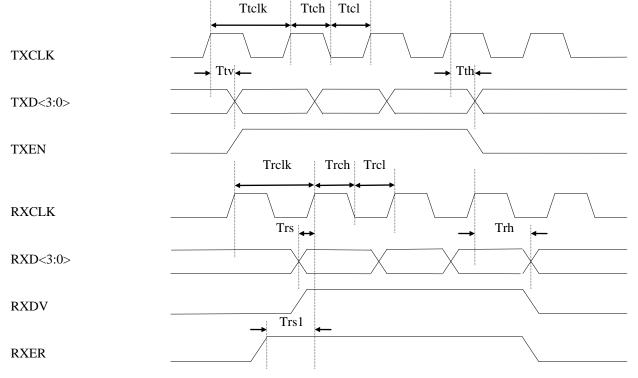


Symbol	Description	Min	Тур.	Max	Units
Tsu(A)	ADDRESS SETUP TIME	0	-	-	ns
Th(A)	ADDRESS HOLD TIME	0	-	-	ns
Tv(DS-WR)	/UDS OR /LDS VALID FROM /UDS OR /LDS	0	-	-	ns
Tdis(WR-DS)	/W DISABLE FROM /UDS OR /LDS	1	-	-	ns
Tv(DTACK)	DACK VALID FROM /UDS OR /LDS	-	-	15	ns
Tdis(DTACK)	DACK DISABLE FROM /UDS OR /LDS	0	-	-	ns
Tsu(DS)	DATA SETUP TIME	2	-	-	ns
Th(DS)	DATA HOLD TIME	0	-	-	ns
Tw(DS)	/UDS,/LDS LOW WIDTH	1.5	-	-	LCLK
Tcycle	CYCYLE TIME FOR EVERY DATA PORT WRITE	3	-	-	LCLK
Tidle	IOWR HI REQUIRE TIME	1.5 (*)	-	-	LCLK

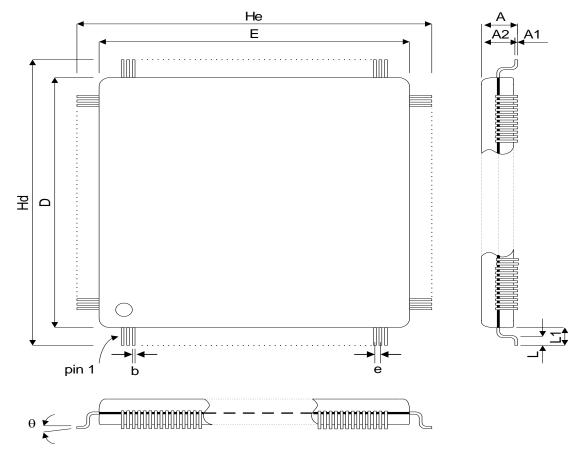
7.4.6 8051 Bus Access Timing


Read cycle

Symbol	Description	Min	Тур.	Max	Units
Tsu(A)	ADDRESS SETUP TIME	0	-	-	ns
Th(A)	ADDRESS HOLD TIME	0	-	ns	
Tsu(PSEN)	/PSEN SETUP TIME	0	-	-	ns
Th(PSEN)	/PSEN HOLD TIME	0	-	-	ns
Ten(RD)	OUTPUT ENABLE TIME FROM /IORD	-	-	20	ns
Tdis(RD)	OUTPUT DISABLE TIME FROM /IORD	3	-	7	ns
Tiord	IORD LOW WIDTH TIME	1.5	-	-	LCLK
Tidle	IORD HI REQUIRE TIME	1.5 (*)	-	-	LCLK
Tv (RDY)	RDY VALID FROM IORD	-	-	15	ns


Write cycle

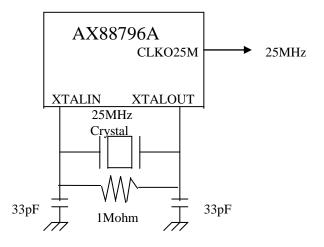
Symbol	Description	Min	Тур.	Max	Units
Tsu(A)	ADDRESS SETUP TIME	0	-	-	ns
Th(A)	ADDRESS HOLD TIME	0	-	-	ns
Tsu(PSEN)	/PSEN SETUP TIME	0	-	-	ns
Th(PSEN)	/PSEN HOLD TIME	0	-	-	ns
Tsu(WR)	DATA SETUP TIME	2	-	-	ns
Th(WR)	DATA HOLD TIME	2	-	-	ns
Tiowr	IOWR WIDTH	1.5			LCLK
Tcycle	I/O CYCLE WIDTH TIME	3			LCLK
Tidle	IOWR HI REQUIRE TIME	1.5 (*)	-	-	LCLK


7.4.7 MII Timing

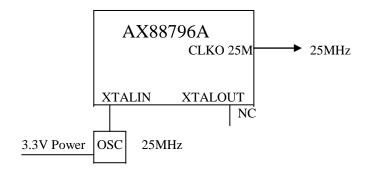
Symbol	Description	Min	Тур.	Max	Units
Ttclk	Cycle time(100Mbps)	-	40	-	ns
Ttclk	Cycle time(10Mbps)	-	400	-	ns
Ttch	high time(100Mbps)	14	-	26	ns
Ttch	high time(10Mbps)	140	-	260	ns
Trch	low time(100Mbps)	14	-	26	ns
Trch	low time(10Mbps)	140	-	260	ns
Ttv	Clock to data valid	-	-	12	ns
Tth	Data output hold time	3	-	-	ns
Trclk	Cycle time(100Mbps)	-	40	-	ns
Trclk	Cycle time(10Mbps)	-	400	-	ns
Trch	high time(100Mbps)	14	-	26	ns
Trch	high time(10Mbps)	140	-	260	ns
Trcl	low time(100Mbps)	14	-	26	ns
Trcl	low time(10Mbps)	140	-	260	ns
Trs	data setup time	6	-	-	ns
Trh	data hold time	10	-	-	ns
Trs1	RXER data setup time	10	-	-	ns

8.0 Package Information

MILIMETER			
MIN.	NOM	MAX	
0.05	0.1	0.15	
1.35	1.40	1.45	
		1.6	
0.17	0.22	0.27	
13.90	14.00	14.10	
19.90	20.00	20.10	
	0.5		
15.60	16.00	16.40	
21.00	22.00	23.00	
0.45	0.60	0.75	
	1.00		
0°		7°	
	MIN. 0.05 1.35 0.17 13.90 19.90 15.60 21.00 0.45	MIN. NOM 0.05 0.1 1.35 1.40 0.17 0.22 13.90 14.00 19.90 20.00 0.5 0.5 15.60 16.00 21.00 22.00 0.45 0.60	


9.0 Ordering Information

Part Number	Description
AX88796ALF	128 PIN, LQFP Package, Commercial grade 0°C to +70 °C
	(Green, Lead-Free)


Appendix A: Application Note

A.1 Using Crystal 25MHz

Note : The capacitors (33pF) may be various depend on the specification of crystal. While designing, please refer to the suggest circuit provided by crystal supplier.

A.2 Using Oscillator 25MHz

Appendix B: Power Consumption Reference Data

The following reference data of power consumption are measured base on prime application, that is AX88796A + EEPROM, at 3.3V/25 °C room temperature.

Item	Test Conditions	Typical Value	Units
1	Full traffic with 10Mbps, no LED drive	220	mA
2	Full traffic with 100Mbps, no LED drive	190	mA
3	No Link	157	mA

Appendix C: Notice of AX88796A

1. AX88796A supported 68K CPU with word mode only when read/write DP

MC68008 has only 8-bit data bus, so AX88796A can't support this 68K CPU.

2. The main difference between AX88796A and AX88796 are:

a) 4 Pins assignment in 68K bus mode (PIN4, 18, 19 and 22)

	AX88796A	AX88796
PIN 4	NC	/LDS
PIN 18	/LDS	R/W
PIN 19	/UDS	NC
PIN 22	R/W	/UDS
*NI (O COIZ 1'		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

*Note: On 68K applications, AX88796A can't replace AX88796 directly.

b) Change some pins as NC.

	AX88796A *	AX88796
PIN 13	NC	VDD
PIN 14	NC	VSS
PIN 40	NC	VDD
PIN 45	NC	BIST
PIN 46	NC	IDDQ
PIN 57	NC	VDD
PIN 75	NC	VSSA
PIN 77	NC	VSSM
PIN 90	NC	VSSO
PIN 94	NC	VSS
*NIster These AV00	106 A NC mins and disco	and a start in side

*Note: These AX88796A NC pins are disconnected inside.

- c) Supported auto load MAC address from external 16-bit mode 93C56/93C66 EEPROM
- NE2000 driver will read the I/O mode field (offset 1CH and 1EH) of PROM contents to decide the I/O mode (8-bit mode or 16-bit mode). The I/O mode will be 16-bit mode if the value is 57H, 8-bit mode if 42H. AX88796A also supports user defined PROM 1CH and 1EH value by EEDO pin if no programmed EEPROM on board. User can pull-down 10K-ohm at EEDO pin to set 57H to the offset 1CH and 1EH of PROM. It will be 42H if no connection at EEDO pin.
- d) PTX and TXE status report when transmit collision 16 times
- e) MAC duplex can auto control by internal PHY MR0 bit 8
- f) AX88796A does not support power MAC/PHY feature
- g) AX88796A only accept MII station management frames with correct 32-bit preamble
- h) REXT10, REXT100 (pin 84 and 83)

	A V9970CA	A V9970C
	AX88796A	AX88796
PIN 84	REXT10	REXT10
	No external resistor	An external resistor
	needed.	20k ohm is placed
		from this signal to
		ground
PIN 83	REXT100	REXT100
	No external resistor	An external resistor
	needed.	2.49k ohm is placed
		from this signal to
		ground

*Note: AX88796A Pin 84 is disconnected inside and Pin 83 can be floating or pulled down.

3. When /RDY not connect, following steps must include in driver when "READ" data port

 A minimum delay 7 LCLKs must wait between Remote DMA read command ready and 1st data valid. Or modify Remote DMA read command order as below. No need a minimum delay 7 LCLKs when using new remote DMA read command order.

ORGINAL		New Remote DMA read command order
WRITE RSAR1		WRITE RSAR1
WRITE RSAR0		WRITE RSAR0
WRITE RBCR1	*	WRITE CR (remote read)
WRITE RBCR0		WRITE RBCR1
WRITE CR (remote read)		WRITE RBCR0
READ DP		READ DP
READ DP		READ DP

b) Special restrictions on back-to-back read/write cycle if /RDY did not connect to CPU

The host processor (CPU) is required to wait the specified period of time behind some special register access. Performing "dummy" reads of "Reserved" register (such as offset 1Ch) is a convenient way to guarantee that the minimum wait time restriction is met. The table below also shows the number of dummy reads that are required for back-to-back access behind some special register access. It can be ignored "dummy" delay if host processor back-to-back Tcycle is longer than AX88796A internal busy.

AX88796A BUSY (In LCLK count)of Reserved register (Assuming Tcycle of 3 LCLK)CR (00h)2.51W	DMMAND
(In LCLK count)(Assuming Tcycle of 3 LCLK)CR (00h)2.51W	
CR (00h) 2.5 1 W	
CR (00h) 2.5 1 W	
Page0(03h) 2.5 1 Wr	Vrite CR
	rite BNRY
Ŭ ()	Vrite ISR
	ite RSAR0
U	ite RSAR1
	ite RBCR0
<u> </u>	ite RBCR1
U	rite CPR
	te Data Port
	ead (0Dh)
R	Reserved
Page0 (0Eh) 2.5 1 Read	d CRC error
	counter
Page0 (0Fh) 2.5 1 Read	Miss Packet
	counter
	d Data Port
Reset (1Fh) 2.5 1 Read (1	1Fh) Software
	II II) SOItwale

Revision History

Revision	Date	Comment	
V1.0	2006/11/03	Initial Release.	
V1.10	2012/10/31	Changed the revision number in 3-digi format.	
		2. Modified some document format.	
V1.11	2012/11/26	1. Corrected some typos in Section 1.3 and 2.	
V1.12	2013/01/09	1. Modified some descriptions in Section 3.1, Appendix C.	
V1.13	2013/03/18	1. Corrected the Preamble descriptions in Section 5.2.2, 6.5, Appendix C.	
V1.14	2013/04/15	1. Modified Fig-2 ~ Fig-7 pin connection diagram figures in Section 1.3.	
V1.15	2013/06/05	1. Modified some descriptions in Appendix C.	
V1.16	2013/06/25	1. Modified some descriptions in Section 2.2 and Appendix C.	

4F, No. 8, Hsin Ann Rd., HsinChu Science Park, HsinChu, Taiwan, R.O.C.

> TEL: 886-3-5799500 FAX: 886-3-5799558

Email:support@asix.com.twWeb:http://www.asix.com.tw