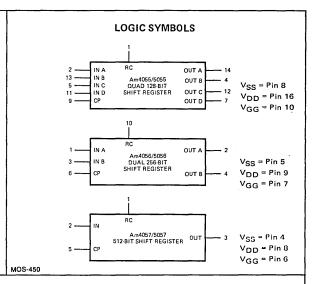
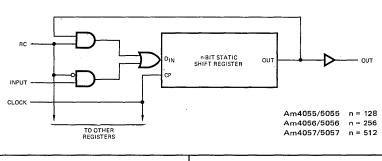
MOS-451

Am4055/5055 • Am4056/5056 • Am4057/5057

Quad 128-Bit, Dual 256-Bit and Single 512-Bit Static Shift Registers

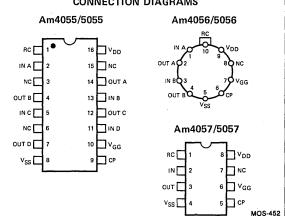

Distinctive Characteristics

- Internal recirculate
- Single TTL compatible clock


- Operation guaranteed from DC to 1.5MHz
- 100% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION

These devices are a family of static P-channel MOS shift registers in three configurations. The Am4055/5055 is a quad 128-bit register; the Am4056/5056 is a dual 256-bit register; and the Am4057/5057 is a single 512-bit register. All three devices include on chip recirculate. The registers are all clocked by a single low-level clock input. Because the registers are static, the clock may be stopped indefinitely in the LOW state without loss of data. Each of the registers has a single data input; data on the input is written into the register on the HIGH-to-LOW clock edge. A single recirculate control (RC) on each chip determines whether the registers on that chip are to write data in from the data inputs or recirculate the data appearing on the output. If RC is LOW, new data is written in; if RC is HIGH then the data on the output will be written back into the register input on the next clock pulse.



ORDERING INFORMATION

Package	Temperature	Order
Type	Range	Number
16-Pin Molded DIP	0°C to +70°C	MM5055N
16-Pin Hermetic DIP	0°C to +70°C	MM5055D
16-Pin Hermetic DIP	–55°C to +125°C	MM4055D
TO-100 Can	0°C to +70°C	MM5056H
TO-100 Can	-55°C to +125°C	MM4056H
8-Pin Molded DIP	0°C to +70°C	MM5057N
8-Pin Hermetic DIP	0°C to +70°C	MM5057D
8-Pin Hermetic DIP	–55°C to +125°C	MM4057D

CONNECTION DIAGRAMS

Am40/5055 • Am40/5056 • Am40/5057

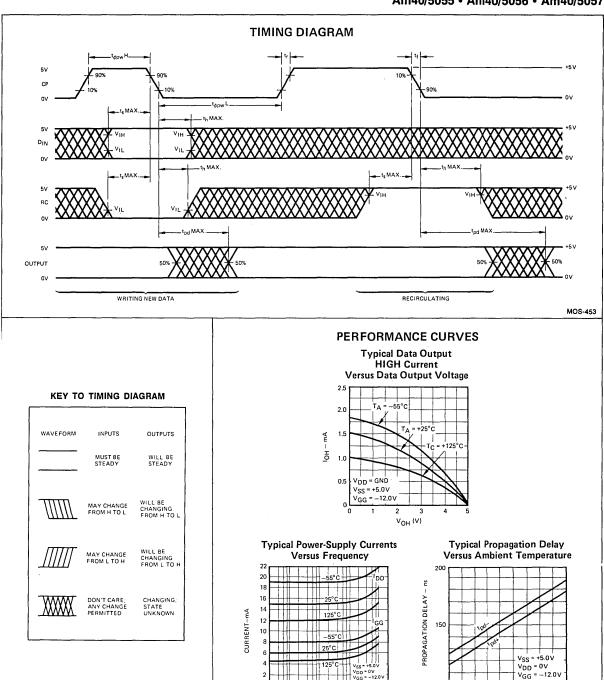
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65°C to +160°C
Temperature (Ambient) Under Bias	–55°C to +125°C
V _{DD} Supply Voltage	V _{SS} -10V to V _{SS} +0.3V
V _{GG} Supply Voltage	V_{SS} $-20V$ to V_{SS} $+0.3V$
DC Input Voltage	V_{SS} –20 V to V_{SS} +0.3 V

OPERATING RANGE

Part Number	Ambient Temperature	V _{SS}	v_{DD}	VGG
Am4055 Am4056 Am4057	−55° C to +125° C	5.0 V ±5%	ov	-12V ±5%
Am5055 Am5056 Am5057	0° C to +70° C	5.0 V ±5%	٥v	-12V ±5%

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)


Parameters	Description	Test Conditions			Min.	1 yp. (Note 1)	Max.	Units
V _{OH}	Output HIGH Voltage	I _{OH} = -0.5mA			2.4			Volts
VOL	Output LOW Voltage	I _{OL} = 1.6mA					0.4	Volts
VIH Input HIGH Level	Guaranteed input logical HIGH voltage 4055/6/7		V _{SS} -1.0		V _{SS} +0.3	Volts		
	for all inputs 5055/6/7			V _{SS} -1.5		V _{SS} +0.3	VOILS	
V _{IL}	Input LOW Level	Guaranteed input logical LOW voltage for all inputs			V _{SS} -18.5		V _{SS} -4.2	Volts
կլ	Input Leakage Current	$V_{IN} = -10.0V$, all other pins GND, $T_A = 25^{\circ}C$				0.01	0.5	μΑ
I _{DD} V _{DD} Power Supply Current	T _A = 25°C,	f ≤ 2.2MHz			15.0	20.0		
	t _{opw} H = 160 ns	f ≤ 10KHz			13.0	18.0		
IGG VGG Power Supply Current	Data = 1010	f ≤ 1.6MHz			10.5	15.5	mA	
	output open	f ≤ 2.2MHz			13.0	19.0		
		f ≤ 10KHz			6.5	9.0		

Note: 1. Typical Limits are at $V_{SS} = 5.0V$, $V_{GG} = -12V$, $25^{\circ}C$ ambient.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

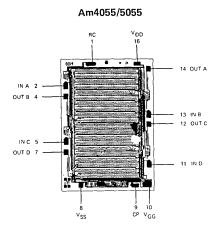
Parameters	Description		Am4055/6/7			Am5055/6/7			
		Test Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
f	Clock Frequency		0		1.0	0		1.5	MHz
t _{opw} H	Clock HIGH Time		0.4		1.0	0.23		100	μs
t _{øpw} L	Clock LOW Time		0.4		- 00	0.3			μs
t _r , t _f	Clock Rise and Fall Times				200			200	ns
t _S	Set-up Time, D or RC Inputs (see definitions)	$t_f = t_f \le 10$ ns	260			110			ns
th	Hold Time, D or RC Inputs (see definitions)	$t_r = t_f \le 10$ ns	120			40			ns
t _{pd}	Delay, Clock to Output LOW or HIGH	R _L = 4k, C _L = 10pF		350	700		250	345	ns
Cin	Capacitance, Data and RC Inputs (Note 2)	f = 1MHz, VIN = VSS		4	7		4	7	pF
c_ϕ	Capacitance, Clock Input (Note 2)	f = 1MHz, V _{IN} = V _{SS}			14			14	pF

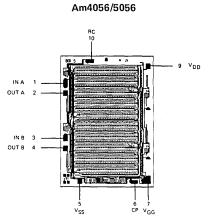
Notes: 2. This parameter is periodically sampled but not 100% tested. It is guaranteed by design. 3. At any temperature, t_{pd} min. is always much greater than $t_{h}(D)$ max.

EFINITION OF TERMS

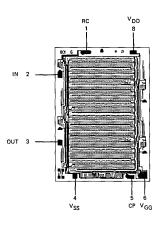
ATIC SHIFT REGISTER A shift register that is capable of intaining stored data without being continuously clocked. set static shift registers are constructed with dynamic master distatic slave flip-flops. The data is stored dynamically while clock is HIGH and is transferred to the static slaves while the ck is LOW. The clock may be stopped indefinitely in the LOW te, but there are limitations on the time it may reside in HIGH state.

SET-UP and HOLD TIMES The shift register will accept the data that is present on its input around the time the clock goes from HIGH-to-LOW. Because of variations in individual devices, there is some uncertainty as to exactly when, relative to this clock transition, the data will be stored. The set-up and hold times define the limits on this uncertainty. To guarantee storing the correct data, the data inputs should not be changed between the maximum set-up time before the clock transition and the maximum hold time after the clock transition. Data changes within this interval may or may not be detected.


-55 -35 -15 5 25 45 65 85 105 125


AMBIENT TEMPERATURE - °C

100 k


CLOCK FREQUENCY-Hz

Metallization and Pad Layouts

Am4047/5057

DIE SIZES 0.101" X 0.140"