Am9112/Am91L12 FAMILY

256x4 Static R/W Random Access Memories

Daut			ΔmQ	1124	Am9112B	Am9112C				
Number	Am2112	Am2112-2	Am91	L12A	Am91L12B	Am91L12C	Am9112D			
Access Time	1000ns	650ns	500	Dns	400ns	300ns	250ns			
Time Distinctive CI • 256 x 4 organi • 16-pin standar • Low operating 125mW Ty 100mW Ty • DC standby m 20mW Typ • Logic voltage I • High noise imr • Uniform switc supply variatic • Single +5 V pc ±10% millin • Bus oriented I · Zero address, s • Direct plug-in • 100% MIL-STI	Distinctive Characteristics 256 x 4 organization 16-pin standard DIP Low operating power dissipation 125mW Typ; 290mW maximum – standard power 100mW Typ; 175mW maximum – low power DC standby mode reduces power up to 84% 20mW Typ; 47mW maximum Logic voltage levels identical to TTL High output drive – two full TTL loads guaranteed High noise immunity – full 400mV Uniform switching characteristics – access times insensitive to supply variations, address patterns and data patterns. Single +5 V power supply – tolerances ±5% commercial, ±10% military Bus oriented I/O data Zero address, set-up, and hold times guaranteed for simpler timing Direct plug-in replacement for 2112 type devices 100% MIL-STD-883 reliability assurance testing Au – Juguto Jugut				FUNCTIONAL DESCRIPTION The Am9112/Am91L12 series of products are high performance, low power, 1024-bit, static read/write random access memories. They offer a range of speeds and power dissipations including versions as fast as 200ns and as low as 100mW typical. Each memory is implemented as 256 words by 4-bits per word. This organization allows efficient design of small memory systems and permits finer resolution of incremental memory word size relative to 1024 by 1 devices. The output and input data signals are internally bussed together and share 4 common 1/0 pins. This feature keeps the package size small and provides a simplified interface to bus-oriented systems. The Am9112/Am91L12 memories may be operated in a DC standby mode for reductions of as much as 84% of the normal operating power dissipation. Though the memory cannot be operated, data can be retained in the storage cells with a power supply as low as 1.5 volts. The Am91L12 version's offer reduced power during normal operating conditions as well as even lower dissipation in standby mode. The eight Address inputs are decoded to select 1-of-256 locations within the memory. The Chip Enable input acts as a high-order address in multiple chip systems. It also controls the write amplifier and the output buffers are enabled and the memory will execute a read cycle. When CE is low and WE is high, the write amplifiers are disabled, the output buffers are disabled. These memories are fully static and require no refresh operations or sense amplifiers or clocks. All input and output voltage levels are identical to standard TTL specifications, including the power supply. CONNECTION DIAGRAM Top View					
-7		SABLE LOGIC	- CE		ADDRESS 0	13 CHIPENA 5 12 DATA I/O	4 4			
	1/0 ₁ 1/0	l ₂ 1/0 ₃ 1/0 ₄			ADDRESS 6 6 7	5 11 DATA I/O 7 10 DATA I/O 8 9 DATA I/O	² Note: Pin 1 is marked			
			MOS-256	NOS 257			for orientation.			
Ambient										

Ambient	Package	Power	Power Access Times					
Specification	Туре	Туре	1000ns	650ns	500ns	400ns	300ns	250ns
		Standard	P2112	P2112-2	AM9112APC	AM9112BPC	AM9112CPC	AM9112DPC
0°C to +70°C	Molded DIF	Low			AM91L12APC	AM91L12BPC	AM91L12CPC	
	Hermetic DIP	Standard	C2112	C2112-2	AM9112ADC	AM9112BDC	AM9112CDC	AM9112DDC
		Low			AM91L12ADC	AM91L12BDC	AM91L12CDC	
		Standard			AM9112ADM	AM9112BDM	AM9112CDM	
–55°C to +125°C	Hermetic DIP	Low			AM91L12ADM	AM91L12BDM	AM91L12CDM	
	Hermotic Elet Pack	Standard			AM9112AFM	AM9112BFM		
	Hermetic Flat Pack	Low			AM91L12AFM	AM91L12BFM		

Am9112/Am91L12 Family

MAXIMUM RATINGS above which the useful life may be impaired

Storage Temperature	-65°C to +150°C
Ambient Temperature Under Bias	-55°C to +125°C
V _{CC} With Respect to V _{SS} , Continuous	-0.5V to +7.0V
DC Voltage Applied to Outputs	-0.5V to +7.0V
DC Input Voltage	-0.5V to +7.0V
Power Dissipation	1.0W

FLECTRICAL CHARACTERISTICS

ELECTRIC Am9112PC, An Am91L12PC, A	$\begin{array}{llllllllllllllllllllllllllllllllllll$	≻S +70°C ±5%			Am9 Am9 Fan	112/ 1L12 nily		
Parameters	Description		Test Conditions				Units	
VOH	Output HIGH Voltage	V _{CC} = MIN., I _C	$H = -200 \mu A$		2.4		Volts	
VOL	Output LOW Voltage	V _{CC} = MIN., I _C)L = 3.2mA			0.4	Volts	
VIH	Input HIGH Voltage				2.0	Vcc	Volts	
VIL	Input LOW Voltage					0.8	Volts	
ILI	Input Load Current	V _{CC} = MAX., 0	$V_{CC} = MAX., 0V \le V_{IN} \le 5.25V$			10	μA	
	I/O Leakage Current		V _{OUT} = V _{CC}		5.0			
		ACE - AIH	V _{OUT} = 0.4 V			10	# ^	
	Deves Sweek Course		T _A = 25°C	Am9112A/B		50		
				Am9112C/D/E		55		
				Am91L12A/B		31	1	
		Data out open		Am91L12C		34	mA	
	Nower Supply Current	$V_{IN} = V_{CC}$		Am9112A/B		55		
ICC2			T _A = 0°C	Am9112C/D/E		60	-	
				Am91L12A/B		33		
				Am91L12C		36		

ELECTRICAL CHARACTERISTICS

ELECTRI Am9112DM, Am91L12DM	CAL CHARACTERI Am9112FM T _A = , Am91L12FM V _{CC} =	STICS 55°C to +125°C +5.0V ±10%			Am9 Am9 Fan	0112/ 1L12 nily		
Parameters	Description		Test Cond	litions	Min.	Max.	Units	
		1 200 0	V _{CC} = 4.75 V		2.4			
VOH Output HIGH Voltage	10H =200 µA	V _{CC} = 4.50V		2.2				
VOL	Output LOW Voltage	V _{CC} = MIN., IOI	= 3.2mA		0.4	Volts		
VIH	Input HIGH Voltage				2.0	Vcc	Volts	
VIL	Input LOW Voltage				-0.5	0.8	Volts	
ILI	Input Load Current	V _{CC} = MAX., 0	= MAX., 0V < VIN < 5.5V			10	μΑ	
			Vout = Vcc			10		
'LO	I/O Leakage Current	VCE = VIH	V _{OUT} = 0.4 V	V _{OUT} = 0.4 V			1 #4	
				Am9112A/B		50		
lass			T = 05°0	Am9112C		55	1.	
'CC1			1 _A - 25 C	Am91L12A/B		31		
	Downer Supply Convert	Data out open		Am91L12C		34	1	
	Power Supply Current	$V_{CC} = WAX.$		Am9112A/B		60	1	
		• IN - • CC	T 55°C	Am9112C		65	1	
¹ CC3			1A55 C	Am91L12A/B		37	1	
				Am91L12C		40	1	

CAPACITANCE

Parameters	Description	Test Conditions		Тур.	Max.	Uni
C _{IN}			Am2112	4.0 8.0		Τ.
	input capacitance, v IN - 0v	$T_{1} = 25^{\circ}0.6 = 4.0015$	Am9112/Am91L12	3.0	6.0	
COUT		1 A = 25 C, T = 1 MHZ	Am2112	10	18	
	Output Capacitance, v804 - 0v		Am9112/Am91L12	8.0	11	- pr

SWITCHING CHARACTERISTICS over operating temperature and voltage range

Output Load = 1 TTL Gate +100pF Transition Times = 10ns Input Levels, Output References = 0.8V and 2.0V

		Am9112A Am91L12A		Am9112B Am91L12B		Am9112C Am91L12C		Am9112D		
varameters	Description	Min	Мах	Min	Max	Min	Мах	Min	Мах	Units
t _{RC}	Read Cycle Time	500		400		300		250		ns
t _A	Access Time		500	,	400		300		250	ns
tco	Output Enabled to Output ON Delay (Note 1)	5.0	175	5.0	150	5.0	125	5.0	100	ns
^t он	Previous Read Data Valid with Respect to Address Change	40		40		40		30		ns
t _{DF}	Output Disabled to Output OFF Delay (Note 2)	5.0	125	5.0	100	5.0	100	5.0	75	ns
twc	Write Cycle Time	500	1	400	1	300		250		ns
t _{AW}	Address Set-up Time	0		0		0		0		ns
twn	Address Hold Time	0		0		0		0		ns
twp	Write Pulse Width (Note 3)	175		150		125		100		ns
tcw	Chip Enable Set-up Time	175		150		125		100		ns
t _{DW}	Input Data Set-up Time	150		125		100		85		ns
t _{DH}	Input Data Hold Time (Note 4)	0	1	0		0		0		ns

lotes: 1. Output is enabled and $t_{\mbox{CO}}$ commences only with both $\overline{\mbox{CE}}$ LOW and $\overline{\mbox{WE}}$ HIGH.

- 2. Output is disabled and t_{DF} defined from either the rising edge of \overline{CE} or the falling edge of \overline{WE} .
- 3. Minimum twp is valid when CE has been HIGH at least top before WE goes LOW. Otherwise twp(min.) = tDW(min.) + tDF(max.).
- 4. When WE goes HIGH at the end of the write cycle, it will be possible to turn on the output buffers if CE is still LOW. The data out will be the same as the data just written and so will not conflict with input data that may still be on the I/O bus.
- 5. See "Application Information" section of this specification.

Am9112/Am91L12 Family

DEFINITION OF TERMS

FUNCTIONAL TERMS

 \overline{CE} Active LOW Chip Enable. Data can be read from or written into the memory only if \overline{CE} is LOW.

 \overline{WE} Active LOW Write Enable. Data is written into the memory if \overline{WE} is LOW and read from the memory if \overline{WE} is HIGH.

Static RAM A random access memory in which data is stored in bistable latch circuits. A static memory will store data as long as power is supplied to the chip without requiring any special clocking or refreshing operations.

N-Channel An insulated gate field effect transistor technology in which the transistor source and drain are made of N-type material, and electrons serve as the carriers between the two regions. N-Channel transistors exhibit lower thresholds and faster switching speeds than P-Channel transistors.

SWITCHING TERMS

 t_{RC} Read Cycle Time. The minimum time required between successive address changes while reading.

 t_A Access Time. The time delay between application of an address and stable data on the output when the chip is enabled.

 t_{CO} Output Enable Time. The time during which \overline{CE} must be LOW and \overline{WE} must be HIGH prior to data on the output.

 t_{OH} Minimum time which will elapse between change of address and any change on the data output.

 t_{DF} Time which will elapse between a change on the chip enable or the right enable and on data outputs being driven to a floating status.

 t_{WC} Write Cycle Time. The minimum time required between successive address changes while writing.

 t_{AW} Address Set-up Time. The minimum time prior to the falling edge of the write enable during which the address inputs must be correct and stable.

 $t_{\mbox{WP}}$ The minimum duration of a LOW level on the write enable guaranteed to write data.

 t_{WR} Address Hold Time. The minimum time after the rising edge of the write enable during which the address must remain steady.

 t_{DW} Data Set-up Time. The minimum time that the data input must be steady prior to the rising edge of the write enable.

 $t_{\mbox{\footnotesize DH}}$ Data Hold Time. The minimum time that the data input must remain steady after the rising edge of the write enable.

 t_{CW} Chip Enable Time During Write. The minimum duration of a LOW level on the Chip Select while the write enable is LOW to guarantee writing.

POWER DOWN STANDBY OPERATION

The Am9112/Am91L12 Family is designed to maintain storage in a standby mode. The standby mode is entered by lowering V_{CC} to around 1.5–2.0 volts (see table and graph below). When the voltage to the device is reduced, the storage cells are isolated from the data lines, so their contents will not change. The standby mode may be used by a battery operated backup power supply system, or; in a

large system, memory pages not being accessed can be placed in standby to save power. A standby recovery time must elapse following restoration of normal power before the memory may be accessed.

To ensure that the output of the device is in a high impedance OFF state during standby, the chip select should be held at $V_{\rm IH}$ or $V_{\rm CES}$ during the entire standby cycle.

STANDBY OPERATING CONDITIONS OVER TEMPERATURE RANGE

Parameters	Description	Test Conditions				Тур.	Max.	Units
VPD	V _{CC} in Standby Mode				1.5			
			Vpp = 1.5V	Am91L12		11	25	
		$T_A = 0^{\circ}C$		Am9112		13	31	
		All Inputs = V _{PD}	V _{PD} = 2.0V	Am91L12		13	31	
100	I _{CC} in Standby Mode			Am9112		17	41	
מיי		T _A = -55°C All Inputs = V _{PD}	V _{PD} = 1.5V V _{PD} = 2.0V	Am91L12		11	28	mA
				Am9112		13	34	
				Am91L12		13	34	
				Am9112		17	46	
dv/dt	Rate of Change of V _{CC}						1.0	V/µs
tR	Standby Recovery Time				tRC			ns
tCP	Chip Deselect Time				0			ns
V _{CES}	CE Bias in Standby				VPD			Volts

30

25

20

15

10

٥

V_{CC} (+5 V)

Typical Power Supply Current Versus Voltage

Typical Output Current Versus Voltage

ADDRESS 3 1 _______ 16

Access Time Versus V_{CC} Normalized to V_{CC} = +5.0 Volts

Typical Power Supply Current Versus Ambient Temperature

APPLICATION INFORMATION

These memory products provide all of the advantages of AMD's other static N-channel memory circuits: +5 only power supply, all TTL interface, no clocks, no sensing, no refreshing, military temperature range available, low power versions available, high speed, high output drive, etc. In addition, the Am9112 series features a 256 x 4 organization with common pins used for both Data In and Data Out signals.

This bussed I/O approach keeps the package pin count low allowing the design of higher density memory systems. It also provides a direct interface to bus-oriented systems, eliminating bussing logic that could otherwise be required. Most microprocessor systems, for example, transfer information on a bidirectional data bus. The Am9112 memories can connect directly to such a processor since the common I/O pins act as a bidirectional data bus.

If the chip is enabled (\overline{CE} low) and the memory is in the Read state (\overline{WE} high), the output buffers will be turned on and will be driving data on the I/O bus lines. If the external system tries to drive the bus with data, there may be contention for control of the data lines and large current surges can result. Since the condition can occur at the beginning of a write cycle, it is important that incoming data to be written not be entered until the output buffers have been turned off.

These operational suggestions for write cycles may be of some help for memory system designs:

- 1. For systems where \overline{CE} is always low or is derived directly from addresses and so is low for the whole cycle, make sure twp is at least tDW + tDF and delay the input data until tDF following the falling edge of \overline{WE} . With zero address set-up and hold times it will often be convenient to make \overline{WE} a cycle-width level (twp = twc) so that the only subcycle timing required is the delay of the input data.
- 2. For systems where \overline{CE} is high for at least t_{DF} preceeding the falling edge of \overline{WE} , t_{WP} may assume the minimum specified value. When \overline{CE} is high for t_{DF} before the start of the cycle, then no other subcycle timing is required and \overline{WE} and data-in may be cycle-width levels.
- 3. Notice that because both CE and WE must be low to cause a write to take place, either signal can be used to determine the effective write pulse. Thus, WE could be a level with CE becoming the write timing signal. In such a case, the data set-up and hold times are specified with respect to the rising edge of CE. The value of the data set-up time remains the same and the value of the data hold time should change to a minimum of 25 ns.

