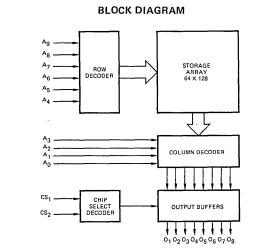
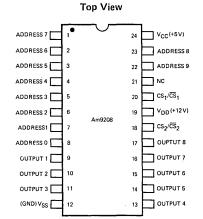
MOS-379

Am9208 1024 x 8 Read Only Memory

DISTINCTIVE CHARACTERISTICS

- 1024 x 8 organization
- High speed 400ns access time
- Fully capacitive inputs simplified driving
- 2 fully programmable chip selects increased flexibility
- Logic voltage levels compatible to TTL
- Three-state output buffers simplified expansion
- Standard supply voltages ±12V, ±5.0V
- No V_{BB} supply required
- N-channel silicon gate MOS technology
- 100% MIL-STD-883 reliability assurance testing
- Direct plug-in replacement for Intel 8308/2308 and T.I. 4700


FUNCTIONAL DESCRIPTION


The Am9208 devices are high performance, 8192 bit, static, mask programmed, read only memories. Each memory is implemented as 1024 words by 8 bits per word. This organization simplifies the design of small memory systems and permits incremental memory sizes as small as 1024 words. The fast-access times provided allow the ROM to service high performance microcomputer applications without stalling the processor.

Two Chip Select input signals are logically ANDed together to provide control of the output buffers. Each Chip Select polarity may be specified by the customer thus allowing the addressing of 4 memory chips without external gating. The outputs of unselected chips are turned off and assume a high impedance state. This permits wire-ORing with additional Am9208 devices and other three-state components.

These memories are fully static and require no clock signals of any kind. A selected chip will output data from a location specified by whatever address is present on the address input lines. The Am9208 is pin compatible with the Am9216 which is a 16k-bit mask programmed ROM. Input and output voltage levels are compatible to TTL specifications, providing simplified interfacing.

CONNECTION DIAGRAM

Note: Pin 1 is marked for orientation.

ORDERING INFORMATION

MOS-378

Package Type	Ambient Temperature Specification	Access Time 400ns
Usum stie DID	0°C ≤ T _A ≤ 70°C	AM9208BDC
Hermetic DIP	$-55^{\circ}\text{C} \leqslant \text{T}_{\text{A}} \leqslant +125^{\circ}\text{C}$	AM9208BDM
Plastic DIP	0°C ≤ T _A ≤ 70°C	AM9208BPC

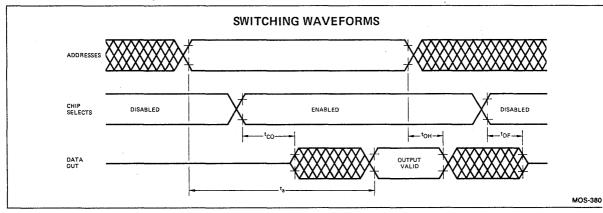
Am9208

MAXIMUM RATINGS (Above which the useful life may be impaired)

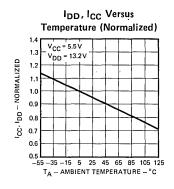
Storage Temperature	-65°C to +150°C
Ambient Temperature Under Bias	−55°C to +125°C
V _{DD} with Respect to V _{SS}	15 V
V _{CC} with Respect to V _{SS}	+7.0V
DC Voltage Applied to Outputs	-0.5 V to +7.0 V
DC Input Voltage	-0.5 V to +7.0 V
Power Dissipation	1.0W

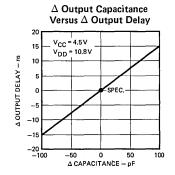
The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

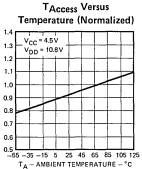
OPERATING RANGE

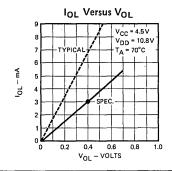

Part Number	Ambient Temperature	V _{DD}	V _{CC}	V _{SS}
Am9208DC	0°C ≤ T _A ≤ +70°C	+12 V ± 5%	+5.0V ± 5%	0∨
Am9208DM	-55°C ≤ T _A ≤ +125°C	+12V ± 10%	+5.0V ± 10%	0 V

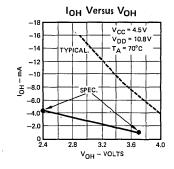
LECTRI	CAL CHARACTERISTIC	Am920	Am9208DC/PC Am9208DM							
rameters	Description	Test Condi	tions	Min.	Max.	Min.	Max.	Units		
v он	Outro A DIGULVI-la-	I _{OH} = -1.0mA		3.7		3.7		Volts		
	Output HIGH Voltage —	I _{OH} = -4.0mA		2.4		2.4		VOILS		
VOL	Output LOW Voltage	I _{OL} = 3.2mA			0.4		0.4	Volts		
VIH	Input HIGH Voltage			2.4	V _{CC} + 1.0	2.6	V _{CC} +1.0	Volts		
VIL	Input LOW Voltage			-0.5	0.8	-0.5	8.0	Volt		
ILO	Output Leakage Current	Chip disable			10		10	μΑ		
I _{LI}	Input Leakage Current				10		10	μΑ		
		Selected	Am9208B/C		35		43			
IDD	V _{DD} Supply Current	Selected	Am9208D		44		50	mA		
.00	- DD cappin, cancant	Dl	Am9208B/C		48		53	,,,,,		
1		Deselected	Am9208D		55		61			
Icc	V _{CC} Supply Current		Am9208B/C		13		15	mA		
	. CC aabbii		Am9208D		15		17	IIIA		


Am9208BDM/Am9208BDC/ Am9208BPC


				,						
Parameters	Description	Test Conditions	Min	Max	Units					
ta	Address to Output Access Time	$t_r = t_f = 20$ ns		400	ns					
tco	Chip Select to Output ON Delay	Output load: one standard		160	ns					
t _{OH}	Previous Read Data Valid with Respect to Address Change	TTL gate plus 100pF	20		ns					
t _{DF}	Chip Select to Output OFF Delay	Chip Select to Output OFF Delay (Note 1)		120	ns					
Ci	Input Capacitance	T _A = 25°C, f = 1MHz		6.0	pF					
c _o	Output Capacitance	All pins at 0V		6.0	pF					


Notes: 1. Timing reference levels - Inputs: High = 2.0V, Low = 1.0V. Outputs: High = 2.4V, Low = 0.8V




TYPICAL CHARACTERISTICS

MOS-381

PROGRAMMING INSTRUCTIONS

CUSTOM PATTERN ORDERING INFORMATION

The Am9208 is programmed from punched cards, card coding forms or from paper tape in card image form in the format as shown below.

Logic "1" = a more positive voltage (normally +5.0 V)
Logic "0" = a more negative voltage (normally 0V)

FIRST CARD

- NORMALIZED

TACESS -

Column Number
10 thru 29
32 thru 37
Total number of "1's" contained in the data.
This is optional and should be left blank if not used.

50 thru 62
9208B
65 thru 72
Data

SECOND CARD

Column Number
31 CS2 input required to select chip (0 or 1)
33 CS1 input required to select chip (0 or 1)

Two options are provided for entering the data pattern with the remaining cards.

OPTION 1 is the Binary Option where the address and data are presented in binary form on the basis of one word per card. With this option 1024 data cards are required.

Column Number

10, 12, 14, 16, 18
20, 22, 24, 26, 28
40, 42, 44, 46, 48

Address input pattern with the most significant bit (A_9) in column 10 and the least significant bit (A_0) in column 28.

Output pattern with the most significant bit (O_8) in column 40 and the least significant bit (O_1) in

40, 42, 44, 46, 48, 50, 52, 54

column 54.

70.1 00

73 thru 80 Coding these columns is not essential and may be used for card identification purposes.

Am9208

OPTION 2 is the Hexadecimal Option and is a much more compact way of presenting the data. This format requires only 64 data cards. Each data card contains the 8-bit output information for 16 storage locations in the memory. The address indicated in columns 21, 22 and 23 is the address of the data presented in columns 30 and 31. Addresses for successive data are assumed to be in incremental ascending order from the initial address. Since the address in columns 21, 22 and 23 always points only to the first data on the card, column 23 is always zero. Columns 21 and 22 take all hex values from 00 through 3F: 64 cards in all. Data is entered in hex values and may be any combination of 8 bits, that is, hex values from 00 through FF.

A D	OUTPUT VALUES FOR ADDR +																																
D D R		0		1		2		3		4		5		6	ı	7	T	T	8		9		Α		В		С		D		E	T	F
21 22 23		30 31	32	33 34	35	36 37	38	39 40	41	42 43	44	45 46	47	48 49	50	51 5	2 5	3 5	4 55	56	57 58	59	60 61	62	63 64	65	66 67	68	69 70	71	72 73	3 74	75 76
0 0 0				1		L				L						Ш										L		L				L	
0 1 0		_1_		1															1														
0 2 0																																	
	•																																
1 F 0																			1												1		
2 0 0																1			1_	Γ					1								1
																:																	
3 F 0													T						1														