
Am9S12
Floating-Point Processor

DISTINCTIVE CHARACTERISTICS

• Single (32-bit) and double (64-bit) precision capability
• Add, subtract, multiply and divide functions
• Compatible with proposed IEEE format
• Easy interfacing to microprocessors
• 8-bit data bus
• Standard 24-pin package
• 12V and 5V power supplies
• Stack oriented operand storage
• Direct memory access or programmed I/O Data Transfers
• End of execution signal
• Error interrupt
• All inputs and outputs TTL level compatible
• Advanced N-channel silicon gate MOS technology
• 100% MIL-STD-883 reliability assurance testing

GENERAL DESCRIPTION

The Am9512 is a high performance floating-point processor unit
(FPU). It provides single precision (32-bit) and double precision
(64-bit) add, subtract, multiply and divide operations. It can be
easily interfaced to enhance the computational capabilities of
the host microprocessor.

The operand, result, status and command information transfers
take place over an 8-bit bidirectional data bus. Operands are
pushed onto an internal stack by the host processor and a com­
mand is issued to perform an operation on the data stack. The
results of this operation are available to the host processor by
popping the stack.

Information transfers between the Am9512 and the host proces­
sor can be handled by using programmed I/O or direct memory
access techniques. After completing an operation, the Am9512
activates an "end of execution" signal that can be used to inter­
rupt the host processor.

BLOCK DIAGRAM

Package
Type

Hermetic DIP

TWO PORT DATA STACK
8 X 17

CONTROL ROM
768 X 16

ORDERING INFORMATION

Ambient Maximum Clock Frequency

Temperature 2MHz 3MHz

O°C ",; T A ",; 70°C AM9512DC AM9512-1DC

-55°C",; TA ",; +125°C AM9512DM AM9512-1DM

7-91

ERR

SVACK

SVREQ

EACK

END

INTERFACE RESET

CONTROL

C/O

cs

AD

WR

PAUSE

1.405·203

Am9S12

CONNECTION DIAGRAM
Top View

VSS END

VCC ClK

EACK RESET

SVACK c/o

SVREQ AD

ERR WR

DO NOT cs USE

DBD PAUSE

DBl VDD

DB2 DB7

DB3 D86

DB4 DBS

Note: Pin 1 is marked for orientation.

INTERFACE SIGNAL DESCRIPTION

VCC: +5V Power Supply

VDD: +12V Power Supply

VSS: Ground

ClK (Clock, Input)

MOS·204

An external timing source connected to the ClK input provides
the necessary clocking.

RESET (Reset, Input)

A HIGH on this input causes initialization. Reset terminates any
operation in progress, and clears the status register to zero. The
internal stack pointer is initialized and the contents of the stack
may be affected. After a reset the END output, the ERR output
and the SVREQ output will be lOW. For proper initialization,
RESET must be HIGH for at least five ClK periods following
stable power supply voltages and stable clock.

C/O (Command/Data Select, Input)

The c/is input together with the RD and WR inputs determines the
type of transfer to be performed on the data bus as follows:

C/D

l

l

H

H

X

L = LOW
H = HIGH

RD

H

l

H

l

l

X = DON'T CARE

WR Function

l Push data byte into the stack

H Pop data byte from the stack

l Enter command

H Read Status

l Undefined

END (End of Execution, Output)

A HIGH on this output indicates that execution of the current
command is complete. This output will be cleared lOW by ac­
tivating the EACK input lOW or performing any read or write
operation or device initialization using the RESET. If EACK is tied
lOW, the END output will be a pulse (see EACK description).

Reading the status register while a command execution is in
progress is allowed. However any read or write operation clears

the flip-flop that generates the END output. Thus such continu­
ous reading could conflict with internal logic setting of the END
flip-flop at the end of command execution.

EACK (End Acknowledge, Input)

This input when lOW makes the END output go lOW. As men­
tioned earlier HIGH on the END output signals completion of a
command execution. The END signal is derived from an internal
flip-flop which is clocked at the completion of a command. This
flip-flop is clocked to the reset state when EACK is lOW. Con­
sequently, if EACK is tied lOW, the END output will be a pulse
that is approximately one ClK period wide.

SVREQ (Service Request, Output)

A HIGH on this output indicates completion of a command. In
this sense this output is the same as the END output. However,
the SVREQ output will go HIGH at the completion of a com­
mand. This bit must be 1 for SVREQ to go HIGH. The SVREQ
can be cleared (Le., go lOW) by activating the SVACK input
lOW or initializing the device using the RESET. Also, the
SVREQ will be automatically cleared after completion of any
command that has the service request bit as o.

SVACK (Service Acknowledge, Input)

A lOW on this input clears SVREQ. If the SVACK input is per­
manently tied lOW, it will conflict with the internal setting of the
SVREQ output. rhus the SVREQ indication cannot be relied
upon if the SVACK is tied lOW.

DBO-DB7 (Data Bus, Input/Output)

These eight bidirectional lines are used to transfer command,
status and operand information between the device and the host
processor. DBO is the least significant and DB7 is the most
significant bit position. HIGH on a data bus line corresponds to 1
and lOW corresponds to O.

When pushing operands on the stack using the data bus, the least
significant byte must be pushed first and most significant byte
last. When popping the stack to read the result of an operation,
the most Significant byte will be available on the data bus first and
the least significant byte will be the last. Moreover, for pushing
operands and popping results, the number of transactions must
be equal to the proper number of bytes appropriate for the chosen
format. Otherwise, the internal byte pointer will not be aligned
properly. The Am9512 single precision format requires 4 bytes
and double precision format requires 8 bytes.

ERR (Error, Output)

This output goes HIGH to indicate that the current command
execution resulted in an error condition. The error conditions
are: attempt to divide by zero, exponent overflow and exponent
underflow. The ERR output is cleared lOW on read status reg­
ister operation or upon RESET.

The ERR output is derived from the error bits in the status
register. These error bits will be updated internally at an appro­
priate time during a command execution. Thus ERR output going
HIGH may not correspond with the completion of a command.
Reading of the status register can be performed while a com­
mand execution is in progress. However it should be noted that
reading the status register clears the ERR output. Thus reading
the status register while a command execution in progress may
result in an internal conflict with the ERR output.

7-92

CS (Chip Select, Input)

This input must be LOW to accomplish any read or write operation
to the Am9512.

To perform a write operation, appropriate data is presented on
DBO through DB7 lines, appropriate logic level on the C/O input
and the CS input is made LOW. Whenever WR and RD inputs
are both HIGH and CS is LOW, PAUSE goes LOW. However
actual writing into the Am9512 cannot start until WR is made
LOW. After initiating the write operation by the HIGH to LOW
transition on the WR input, the PAUSE output will go HIGH
indicating the write operation has been acknowledged. The WR
input can go HIGH after PAUSE goes HIGH. The data lines, C/O
input and the CS input can change when appropriate hold time
requirements are satisfied. See 'tJrite timing diagram for details.

To perform a read operation an appropriate logic level is estab­
lished on the cio input and CS is made LOW. The PAUSE output
goes LOW because WR and RD inputs are HIGH. The read
operation does not start until the RD input goes LOW. PAUSE will
go HIGH indicating that read operation is complete and the re­
quired information is available on the DBO through DB7lines. This
information will remain on the data lines as long as RD is LOW.
The RD input can return HIGH anytime after PAUSE goes
HIGH. The CS input and C/O input can change anytime after RD
returns HIGH. See read timing diagram for details. If the CS is
tied LOW permanently, PAUSE will remain LOW until the next
Am9512 read or write access.

RD (Read, Input)

A LOW on this input is used to read information from an internal
location and gate that information onto the data bus. The CS input
must be LOW to accomplish the read operation. The cio input
determines what internal location is of interest. See C/O, CS input
descriptions and read timing diagram for details. If the END

FUNCTIONAL DESCRIPTION

Major functional units of the Am9512 are shown in the block
diagram. The Am9512 employs a microprogram controlled stack
oriented architecture with 17-bit wide data paths.

The Arithmetic Unit receives one of its operands from the
Operand Stack. This stack is an eight word by 17-bit two port
memory with last in - first out (LIFO) attributes. The second
operand to the Arithmetic Unit is supplied by the internal 17-bit
bus. In addition to supplying the second operand, this bidirec­
tional bus also carries the results from the output of the Arithmetic
Unit when required. Writing into the Operand Stack takes place
from this internal 17-bit bus when required. Also connected to this
bus are the Constant ROM and Working Registers. The ROM
provides the required constants to perform the mathematical
operations while the Working Registers provide storage for the
intermediate values during command execution.

Communication between the external world and the Am9512
takes place on eight bidirectional input/output lines, DBO through

COMMAND FORMAT

The Operation of the Am9512 is controlled from the host proces­
sor by issuing instructions called commands. The command for­
mat is shown below:

OP CODE

I I

The command consists of 8 bits; the least significant 7 bits specify
the operation to be performed as detailed in the accompanying

Am9512

output was HIGH, performing any read operation will make the
END output go LOW after the HIGH to LOW transition of the RD
input (assuming CS is LOW). If the ERR output was HIGH per­
forming a status register read operation will make the ERR out­
put LOW. This will happen after the HIGH to LOW transition of
the RD input (assuming CS is LOW).

WR (Write, Input)

A LOW on this input is used to transfer information from the data
bus into an internal location. The CS must be LOW to accomplish
the write operation. The cio determines which internal location is
to be written. See C/O, CS input descriptions and write timing
diagram for details.

If the END output was HIGH, performing any write operation will
make the END output go LOW after the LOW to HIGH transitionaf
the WR input (assuming CS is LOW).

PAUSE (Pause, Output)

This output is a handshake signal used while performing read or
write transactions with the Am9512. If the WR and RD inputs are
both HIGH, the PAUSE output goes LOW with the CS input in
anticipation of a transaction. If WR goes LOW to initiate a write
transaction with proper signals established on the DBO-DB7, C/O
inputs, the PAUSE will return HIGH indicating that the write
operation has been accomplished. The WR can be made HIGH
after this event. On the other hand, if a read operation is desired,
the RD input is made LOW after activating CS LOW and estab­
lishing proper cio input. (The PAUSE will go LOW in response to
CS going LOW.) The PAUSE will return HIGH indicating comple­
tion of read. The RD can return HIGH after this event. It should be
noted that a read or write operation can be initiated without any
regard to whether a command execution is in progress or not.
Proper device operation is assured by obeying the PAUSE output
indication as described.

DB7 (Data Bus). These signals are gated to the internal 8-bit bus
through appropriate interface and buffer circuitry. Multiplexing
facilities exist for bidirectional communication between the inter­
nal eight and 17-bit buses. The Status Register and Command
Register are also located on the 8-bit bus.

The Am9512 operations are controlled by the microprogram
contained in the Control ROM. The Program Counter supplies the
microprogram addresses and can be partially loaded from the
Command Register. Associated with the Program Counter is the
Subroutine Stack where return addresses are held during sub­
routine calls in the microprogram. The Microinstruction Register
holds the current microinstruction being executed. The register
facilitates pipelined microprogram execution. The Instruction De­
code logic generates various internal control signals needed for
the Am9512 operation.

The Interface Control logic receives several external inputs and
provides handshake related outputs to facilitate interfacing the
Am9512 to microprocessors.

table. The most significant bit is the Service Request Enable bit.
This bit must be a 1 if SVREQ is to go high at end of executing a
command.

The Am9512 commands fall into three categories: Single preci­
sion arithmetic, double precision arithmetic and data manipula­
tion. There are four arithmetic operations that can be performed
with single precision (32-bit), or double precision (54-bit)
floating-point numbers: add, subtract, multiply and divide. These
operations require two operands. The Am9512 assumes that
these operands are located in the internal stack as Top of Stack

7-93

Am9512

(TOS) and Next on Stack (NOS). The result will always be re- operand located in TOS, exchanging single precision operands
turned to the previous NOS which becomes the new TOS. Re- located at TOS and NOS, as well as copying and popping single
suits from an operation are of the same precision and format as or double precision operands. See also the sections on status
the operands. The results will be rounded to preserve the accu- register and operand formats.
racy. The actual data formats and rounding procedures are de-
scribed in a later section. In addition to the arithmetic operations, The Execution times of the Am9512 commands are all data
the Am9512 implements eight data manipulating operations. dependent. Table 2 shows one example of each command exe-
These include changing the sign of a double or single precision cution time:

Table 1. Command Decoding Table.

Command Bits

7 6 5 4 3 2 1 0 Mnemonic Description

x 0 0 0 0 0 0 1 SADD Add TOS to NOS Single Precision and result to NOS. Pop stack.

X 0 0 0 0 0 1 0 SSUB Subtract TOS from NOS Single Precision and result to NOS. Pop stack.

X 0 0 0 0 0 1 1 SMUL Multiply NOS by TOS Single Precision and result to NOS. Pop stack.

X 0 0 0 0 1 0 0 SDIV Divide NOS by TOS Single Precision and result to NOS. Pop stack.

X 0 0 0 0 1 0 1 CHSS Change sign of TOS Single Precision operand.

X 0 0 0 0 1 1 0 PTOS Push Single Precision operand on TOS to NOS.

X 0 0 0 0 1 1 1 POPS Pop Single Precision operand from TOS. NOS becomes TOS.

X 0 0 0 1 0 0 0 XCHS Exchange TOS with NOS Single Precision.

X 0 1 0 1 1 0 1 CHSD Change sign of TOS Double Precision operand.

X 0 1 0 1 1 1 0 PTOD Push Double Precision operand on TOS to NOS.

X 0 1 0 1 1 1 1 POPD Pop Double Precision operand from TOS. NOS becomes TOS.

X 0 0 0 0 0 0 0 CLR CLR status.

X 0 1 0 1 0 0 1 DADD Add TOS to NOS Double Precision and result to NOS. Pop stack.

X 0 1 0 1 0 1 0 DSUB Subtract TOS from NOS Double Precision and result to NOS. Pop stack.

X 0 1 0 1 0 1 1 DMUL Multiply NOS by TOS Double Precision and result to NOS. Pop stack.

X 0 1 0 1 1 0 0 DDIV Divide NOS by TOS Double Precision and result to NOS. Pop Stack.

Notes: X = Don't Care Operation for bit combinations not listed above is undefined.

Table 2. Am9S12 Execution Time in Cycles.

Single Precision Double Precision

Min Typ Max Min Typ Max

Add 58 220 512 Add 578 1200 3100

Subtract 56 220 512 Subtract 578 1200 3100

Multiply 192 220 254 Multiply 1720 1770 1860

Divide 228 240 264 Divide 4560 4920 5120

Note: Typical for add and subtract, assumes the operands are within six decimal orders of magnitude. Max is derived from the
maximum execution time of 1000 executions with random 32-bit or 64-bit patterns.

Table 3. Some Execution Examples.

Command TOS NOS Result Clock periods

SADD 3F800000 3F800000 40000000 58

SSUB 3F800000 3F800000 00000000 56

SMUL 40400000 3FCOOOOO 40900000 198

SDIV 40000000 3F800000 3FOOOOOO 228

CHSS 3F800000 - BF800000 10

PTOS 3F800000 - - 16

POPS 3F800000 - - 14

XCHS 3F800000 4000000 - 26

CHSD 3FFOOOOOOOOOOOOO - BFFOOOOOOOOOOOOO 24

PTOD 3FFOOOOOOOOOOOOO - - 40

POPD 3FFOOOOOOOOOOOOO - - 26

CLR 3FFOOOOOOOOOOOOO - - 4

DADD 3FFOOOOOAOOOOOOO 8000000000000000 3FFOOOOOAOOOOOOO 578

DSUB 3FFOOOOOAOOOOOOO 8000000000000000 3FFOOOOOAOOOOOOO 578

DMUL BFF8000000000000 3FF8000000000000 C002000000000000 1748

DDIV BFF8000000000000 3FF8000000000000 BFFOOOOOOOOOOOOO 4560

Note: TOS, NOS and Result are in hexadecimal; Clock period is in decimal.

7-94

COMMAND INITIATION

After properly positioning the required operands in the stack, a
command may be issued. The procedure for initiating a command
execution is as follows:

1. Establish appropriate command on the DBO-DB7 lines.
2. Establish HIGH on the C/O input.
3. Establish LOW on the CS input. Whenever WR and RD inputs

are HIGH the PAUSE output follows the CS input. Hence
PAUSE will become LOW.

4. Establish LOW on the WR input after an appropriate set up
time (see timing diagrams).

5. Sometime after the HIGH to LOW level transition of WR input,
the PAUSE output will become HIGH to acknowledge the write
operation. The WR input can return to HIGH anytime after
PAUSE goes HIGH. The DBO-DB7, C/O and CS inputs are
allowed to change after the hold time requirements are satis­
fied (see timing diagram).

An attempt to issue a new command while the current command
execution is in progress is allowed. Under these circumstances,
the PAUSE output will not go HIGH until the current command
execution is completed.

OPERAND ENTRY

The Am9512 commands operate on the operands located at the
TOS and NOS and results are returned to the stack at NOS and
then popped to TOS. The operands required for the Am9512 are
one of two formats - single precision floating-point (4 bytes) or
double precision floating-point (8 bytes). The result of an opera­
tion has the same format as the operands. In other words, op­
erations using single precision quantities always result in a
Single precision result while operations involving double preci­
sion quantities will result in double precision result.

Operands are always entered into the stack least significant byte
first and most significant byte last. The following procedure must
be followed to enter operands into the stack:

1. The lower significant operand byte is established on the
DBO-DB7 lines.

2. A LOW is established on the cio input to specify that data is to
be entered into the stack.

3. The CS input is made LOW. Whenever the WR and RD inputs
are HIGH, the PAUSE output will follow the CS input. Thus
PAUSE output will become LOW.

4. After appropriate set up time (see timing diagrams), the WR
input is made LOW.

5. Sometime after this event, PAUSE will return HIGH to indi­
cate that the write operation has been acknow~ed.

6. Anytime after the PAUSE output goes HIGH the WR input can
be made HIGH. The DBO-DB7, C/O and CS inputs can change
after appropriate hold time requirements are satisfied (see
timing diagrams).

The above procedure must be repeated until all bytes of the
operand are pushed into the stack. It should be noted that for
single precision operands 4 bytes should be pushed and 8 bytes
must be pushed for double precision. Not pushing all the bytes of
a quantity will result in byte pointer misalignment.

The Am9512 stack can accommodate 4 single precision quan­
tities or 2 double precision quantities. Pushing more quantities
than the capacity of the stack will result in loss of data which is
usual with any LIFO stack.

REMOVING THE RESULTS

Result from an operation will be available at the TOS. Results can
be transferred from the stack to the data bus by reading the stack.

7-95

Am9512

When the stack is popped for results, the most significant byte is
available first and the least significant byte last. A result is always
of the same preCision as the operands that produced it. Thus
when the result is taken from the stack, the total number of bytes
popped out should be appropriate with the precision - Single
precision results are 4 bytes and double precision results are 8
bytes. The following prodedure must be used for reading the
result from the stack:

1. A LOW is established on the C/O input.
2. The CS input is made LOW. When WR and RD inputs are both

HIGH, the PAUSE output follows the CS input, thus PAUSE
will be LOW.

3. After appropriate set up time (see timing diagrams), the RD
input is made LOW.

4. Sometime after this, PAUSE will return HIGH indicating that
the data is available on the DBO-DB7 lines. This data will
remain on the DBO-DB7 lines as long as the RD input remains
LOW.

5. Anytime after PAUSE goes HIGH, the RD input can return
HIGH to complete transaction.

6. The CS and C/O inputs can change after appropriate hold time
requirements are satisfied (see timing diagram).

7. Repeat this procedure until all bytes appropriate for the preci-
sion of the result are popped out.

Reading of the stack does not alter its data; it only adjusts the byte
pointer. If more data is popped than the capacity of the stack, the
internal byte pointer will wrap around and older data will be read
again, consistent with the LIFO stack.

READING STATUS REGISTER

The Am9512 status register can be read without any regard to
whether a command is in progress or not. The only implication
that has to be considered is the effect this might have on the END
and ERR outputs discussed in the signal descriptions.

The following procedure must be followed to accomplish status
register reading.

1. Establish HIGH on the C/O input.
2. Establish LOW on the CS input. Whenever WR and RD in­

puts are HIGH, PAUSE will follow the CS input. Thus,
PAUSE will go LOW.

3. After appropriate set up time (see timing diagram) RD ~s
made LOW.

4. Sometime after the HIGH to LOW transition of RD, PAUSE
will become HIGH indicating that status register contents are
available on the DBO-DB7 lines. These lines will contain this
information as long as RD is LOW.

5. The RD input can be returned HIGH anytime after PAUSE
goes HIGH.

6. The C/O input and CS input can change after satisfying ap­
propriate hold time requirements (see timing diagram).

DATA FORMATS

The Am9512 handles floating-point quantities in two different
formats - single precision and double preCision. The single pre­
cision quantities are 32-bits long as shown below.

F'·""D'"
I

M

31 30 23 22

Bit 31:
S = Sign of the mantissa. 1 represents negative and 0 repre­

sents positive.

Am9512

Bits 23-30
E = These a-bits represent a biased exponent. The bias is

27 -1 = 127

Bits 0-22
M = 23-bit mantissa. Together with the sign bit, the mantissa

represents a signed fraction in sign-magitude notation.
There is an implied 1 beyond the most significant bit (bit 22)
of the mantissa. In other words, the mantissa is assumed to
be a 24-bit normalized quantity and the most significant bit
which will always be 1 due to normalization is implied. The
Am9512 restores this implied bit internally before performing
arithmetic; normalizes the result and strips the implied bit
before returning the results to the external data bus. The
binary pOint is between the implied bit and bit 22 of the
mantissa.

The quantity N represented by the above notation is

r-----Bias

J-. r-Binary Point
N = (-1)s 2E-(2

L
1) (1!M)

Provided E -j; 0 or all 1 'so

A double precision quantity consists of the mantissa sign bit(s),
an 11 bit biased exponent (E), and a 52-bit mantissa (M). The bias
for double precision quantities is 210 - 1. The double preCision
format is illustrated below.

F;MPUED'"
M

63 62 52 51

Bit 63:
S = Sign of the mantissa. 1 represents negative and 0 repre­

sents positive.

Bits 52-62
E = These 11 bits represent a biased exponent. The bias is

210 - 1 = 1023.

Bit 0-51
M = 52-bit mantissa. Together with the sign bit, the mantissa

represents a signed fraction in sign-magnitude notation.
There is an implied 1 beyond the most Significant bit (bit 51)
of the mantissa. In other words, the mantissa is assumed to
a 53-bit normalized quantity and the most significant bit,
which will always be a 1 due to normalization, is implied. The
Am9512 restores this implied bit internally before perform­
ing arithmetic; normalizes the result and strips the implied bit
before returning the result to the external data bus. The
binary pOint is between the implied bit and bit 51 of the
mantissa.

The quantity N represented by the above notation is

... ---Bias ,
-- r-- Binary point

N = (-1)5 2E-(2
1L

1) (1!M)

Provided E 1= 0 or all 1 'so

7-96

STATUS REGISTER

The Am9512 contains an a-bit status register with the following
format.

Bit 0 and bit 4 are reserved. Occurrence of exponent oerflow (V),
exponent underflow (U) and divide exception (D) are indicated
by bits 1,2 and 3 respectively. An attempt to divide by zero is the
only divide exception. Bits 5 and 6 represent a zero result and
the sign of a result respectively. Bit 7 (Busy) of the status regis­
ter indicates if the Am9512 is currently busy executing a com­
mand. AI! the bits are initialized to zero upon reset. Also,
executing a CLR (Clear Status) command will result in all zero
status register bits. A zero in Bit 7 indicates that the Am9512 is
not busy and a new command may be initiated. As soon as a
new command is issued, Bit 7 becomes 1 to indicate the device
is busy and remains 1 until the command execution is complete,
at which time it will become O. As soon as a new command is
issued, status register bits 0, 1, 2, 3, 4, 5 and 6 are cleared to
zero. The status bits will be set as required during the command
execution. Hence, as long as bit 7 is 1, the remainder of the
status register bit indications should not be relied upon un­
less the ERR occurs. The following is a detailed status bit
description.

Bit 0 Reserved
Bit 1 Exponent overflow (V): When 1, this bit indicates that

exponent overflow has occurred. Cleared to zero
otherwise.

Bit 2 Exponent Underflow (U): When 1, this bit indicates that
exponent underflow has occurred. Cleared to zero
otherwise.

Bit 3 Divide Exception (D): When 1, this bit indicates that an
attempt to divide by zero is made. Cleared to zero
otherwise.

Bit 4 Reserved
Bit 5 Zero (Z): When 1, this bit indicates that the result returned

to TOS after a command is all zeros. Cleared to zero
otherwise.

Bit 6 Sign (S): When 1, this bit indicates that the result returned
to TOS is negative. Cleared to zero otherwise.

Bit 7 Busy: When 1, this bit indicates the Am9512 is in the
process of executing a command. It will become zero after
the command execution is complete.

All other status register bits are valid when the Busy bit is zero.

ALGORITHMS OF FLOATING-POINT ARITHMETIC

1. Floating Point to Decimal Conversion
As an introduction to floating-point arithmetic, a brief descrip­
tion of the Decimal equivalent of the Am9512 floating-point
format should help the reader to understand and verify the
validity of the arithmetic operations. The Am9512 single preci­
sion format is used for the following discussions. With a minor
modification of the field lengths, the discussion would also
apply to the double precision format.

There are three parts in a floating point number:
a. The sign - the sign applies to the sign of the number. Zero

means the number is positive or zero. One means the
number is negative.

b. The exponent - the exponent represents the magnitude of
the number. The Am9512 single precision format has an
excess 12710 notation which means the code representa­
tion is 12710 higher than the actual value. The following are
a few examples of actual versus coded exponent.

Actual Coded

+12710
o

-12610

+25410
12710

+110

c. The mantissa - the mantissa is a 23-bit value with the
binary point to the left of the most significant bit. There is a
hidden 1 to the left of the binary point so the mantissa is
always less than 2 and greater than or equal to 1.

To find the Decimal equivalent of the floating point number,
the mantissa is multiplied by 2 to the power of the actual
exponent. The number is negated if the sign bit = 1. The
following are two examples of conversion:

Example 1

Floating Point No. = 0 1 0 0 0 0 0 1 1 1 1 0 B

Sign ~ Exponent Mantissa

Coded Exponent = 1 0 0 0 0 0 1 1 B
Actual Exponent = 1 0 0 0 0 0 1 1 B - 0 1 1 1 1 1 1 1 B = 0 0 0 0 0 1 0 0 B = 4'0
Mantissa = 1.1 1 0 B

= 1 + 1/2 + 1/4 = 1.7510
Decimal No. = 24 x 1.75 = 16 x 1.75 = 2BlO

Example 2

Floating Point No. = 1 0 1 1 1 1 0 1 0 0 1 1 0 B

Sign ~ Exponent Mantissa

Code Exponent = 0 1 1 1 1 0 1 0 B
Actual Exponent = 0 1 1 1 1 0 1 0 B - 0 1 1 1 1 1 1 1 B = 1 1 1 1 1 0 1 1 B = - 510
Mantissa = 1.0 1 1 0 B

= 1 + 1/4 + 1/B = 1.375,0
Decimal No. = _2- 5 x 1.375 = - .04296B75,0

2. Unpacking of the Floating-Point Numbers
The Am9512 unpacks the floating point number into three
parts before any of the arithmetic operation. The number is
divided into three parts as described in Section 1. The sign and
exponent are copied from the original number as 1 and 8-bit
numbers respectively. The mantissa is stored as a 24-bit
number. The least significant 23 bits are copied from the
original number and the MSB is set to 1. The binary point is
assumed to the right of the MSB.

The abbreviations listed below are used in the following sec­
tions of algorithm description:

SIGN - Sign of Result
EXP - Exponent of Result
MAN - Mantissa of Result
SIGN (TOS) - Sign of Top of Stack
EXP (TOS) - Exponent of Top of Stack
MAN (TOS) - Mantissa of Top of Stack
SIGN (NOS) - Sign of Next on Stack
EXP (NOS) - Exponent of Next on Stack
MAN (NOS) - Mantissa of Next on Stack

3. Floating-Paint Add/Subtract
The floating-point add and subtract essentially use the same
algorithm. The only difference is that floating-point subtract
changes the sign of the floating-point number at top of stack
and then performs the floating-point add.

The following is a step by step description of a floating-point
add algorithm (Figure 1):

4.

5.

7-97

Am9S12

a. Unpack TOS and NOS.
b. The exponent of TOS is compared to the exponent of

NOS.
c. If the exponents are equal, go to step f.
d. Right shift the mantissa of the number with t; ,~ smaller

exponent.
e. Increment the smaller exponent and go to step b.
f. Set sign of result to sign of larger number.
g. Set exponent of result to exponent of larger number.
h. If sign of the two numbers are not equal, go to m.

Add Mantissas.
j. Right shift resultant mantissa by 1 and increment expo-

nent of result by 1.
k. If MSB of exponent changes from 1 to 0 as a result of the

increment. set overflow status.
Round if necessary and exit.

m. Subtract smaller mantissa from larger mantissa.
n. Left shift mantissa and decrement exponent of result.
o. If MSB of exponent changes from 0 to 1 as a result of the

decrement, set underflow status and exit.
p. If the MSB of the resultant mantissa = 0, go to n.
q. Round if necessary and exit.

Floating-Point Multiply
Floating-point multiply basically involves the addition of the
exponents and multiplication of the mantissas. The following
is a step by step description of a floating multiplication al-
gorithm (Figure 2):

a. Check if TOS or NOS = O.
b. If either TOS or NOS = 0, Set result to 0 and exit.
c. Unpack TOS and NOS.
d. Convert EXP (TOS) and EXP (NOS) to unbiased form.

EXP (TOS) = EXP (TOS) -12710
EXP (NOS) = EXP (NOS) -12710

e. Add exponents.
EXP = EXP (TOS) + EXP (NOS) 6 f. If MSB of EXP (TOS) = MSB of EXP (NOS) = 0 and MSB
of EXP = 1, then set overflow status and exit.

g. If MSB of EXP (TOS) = MSB of EXP (NOS) = 1 and MSB
of EXP = 0, then set underflow status and exit.

h. Convert Exponent back to biased form.
EXP = EXP + 12710
If sign of TOS = sign of NOS, set sign of result to 0, else set
sign of result to 1.

j. Multiply mantissa.
k. If MSB of resultant = 1, right shift mantissa by 1 and

increment exponent of resultant.
If MSB of exponent changes from 1 to 0 as a result of the
increment, set overflow status.

m. Round if necessary and exit.

Floating-Point Divide
The floating-point divide basically involves the subtraction of
exponents and the division of mantissas. The following is a
step by step description of a division algorithm (Figure 3).

a. If TOS = 0, set divide exception error and exit.
b. If NOS = 0, set result to 0 and exit.
c. Unpack TOS and NOS.
d. Convert EXP (TOS) and EXP (NOS) to unbiased form.

EXP (TOS) = EXP (TOS) - 12710
EXP (NOS) = EXP (NOS) - 12710

e. Subtract exponent of TOS from exponent of NOS.
EXP = EXP (NOS) - EXP (TOS)

f. If MSB of EXP (NOS) = 0, MSB of EXP (TOS) = 1 and
MSB of EXP = 1, then set overflow status and exit.

g. If MSB of EXP (NOS) = 1, MSB of EXP (TOS) = 0, and
MSB of EXP = 0, then set underflow status and exit.

Am9512

N

y

SET
OVERFLOW

STATUS

y

SUBTRACTION
ROUNDING

y

y

SET
UNDERFLOW

STATUS

Figure 1. Conceptual Floating-Point Addition/Subtraction.
MOS·205

h. Add bias to exponent of result.
EXP = EXP + 12710
If sign of TOS = sign of NOS, set sign of result to 0, else set
sign of result to 1.

j. Divide mantissa of NOS by mantissa of TOS.
k. If MSB = 0, left shift mantissa and decrement exponent of

resultant, else go to n.
If MSB of exponent changes from ° to 1 as a result of the
decrement, set underflow status.

m. Go to k.
n. Round if necessary and exit.

The algorithms described above provide the user a means of
verifying the validity of the result. They do not necessarily
reflect the exact internal sequence of the Am9512.

6. Rounding
The Am9512 adopts a rounding algorithm that is consistent
with the Intel® standard for floating-point arithmetic. The fol­
lowing description is an excerpt from the paper published in
proceedings of Compsac 77, November 1977, pp. 107-112 by
Dr. John F. Palmer of Intel Corporation.

7-98

The method used for doing the rounding during floating-point
arithmetic is known as "Round to Even", i.e., if the resultant
number is exactly halfway between two floating point num­
bers, the number is rounded to the nearest floating-point
number whose LSB of the mantissa is 0. In order to simplify the
explanation, the algorithms will be illustrated with 4-bit arith­
metic. The existence of an accumulator will be assumed as
shown:

OF B1 B2 B3 B4

The bit labels denote:

OF - The overflow bit
B1-B4 - The 4 mantissa bits
G - The Guard bit
R - The Rounding bit
ST - The "Sticky" bit

G R ST

RESULT = 0

SET
OVERFLOW

STATUS

SET
UNDERFLOW

STATUS

Am9S12

N

y

Figure 2. Conceptual Floating-Point Multiplication.

The Sticky bit is set to one if any ones are shifted right of the
rounding bit in the process of denormalization_ If the Sticky bit
becomes set, it remains set throughout th~ operation. All
shifting in the Accumulator involves the OF, G, Rand ST bits.
The ST bit is not affected by left shifts but, zeros are introduced
into OF by right shifts.

Rounding during addition of magnitudes - add 1 to the G
position, then if G=R=ST=O, set B4 to a ("Rounding to
Even").

Rounding during subtraction of magnitudes - if more than one
left shift was performed, no rounding is needed, otherwise
round the same way as addition of magnitudes.

Rounding during multiplication - let the normalized double
length product be:

7-99

MOS-206

B1 B2 B3 B4 B5 B6 B7 B8

Then G=B5, R=B6, ST=B7 V B8. The rounding is then per­
formed as in addition of magnitudes.

Rounding during division - let the first six bits of the nor­
malized quotient be

B1 B2 B3 B4 B5 B6

Then G=B5, R=B6, ST=O if and only if remainder = O. The
rounding is then performed as in addition of magnitudes.

Am9512

Figure 3. Conceptual Floating-Point Division.
MOS-207

CHSD
CHANGE SIGN DOUBLE PRECISION

7 6 5 4

Binary Coding: \SRE \ 0 0

Hex Coding: AD IF SRE = 1
2D IF SRE = 0

Execution Time: See Table 2
Description:

3 2

o
o

The sign of the double precision TOS operand A is com­
plemented. The double precision result R is returned to TOS. If
the double precision operand A is zero, then the sign is not
affected. The status bit Sand Z indicate the sign of the result and if
the result is zero. The status bits U, V and D are always cleared to
zero.
Status Affected: S, Z. (U, V, D always zero.)

BEFORE

A

B

STACK CONTENTS

TOS

NOS

AFTER

R

B

CHSS
CHANGE SIGN SINGLE PRECISION

7 6 5

Binary Coding: ISRE I 0 0

Hex Coding: 85 IF SRE = 1
05 IF SRE = 0

Execution Time: See Table 2
Description:

4 3 2

0 0 0

0

The sign of the single precision operand A at TOS is com­
plemented. The single precision result R is returned to TOS. If the
exponent field of A is zero, all bits of R will be zeros. The status
bits Sand Z indicate the sign of the result and if the result is zero.
The status bits U, V and D are cleared to zero.

Status Affected: S, Z. (U, V, D always zero.)

BEFORE

A

B

C

D

7-100

STACK CONTENTS

I---

I---

TOS

NOS

i --
AFTER

R

B

C

D

CLR
CLEAR STATUS

7 6 5

Binary Coding: ISREI 0 0

Hex Coding: 80 IF SRE = 1
00 IF SRE = 0

Execution Time: 4 clock cycles
Description:

4 3

0 0

2 0

0 0 0

The status bits S, Z, D, U, V are cleared to zero. The stack is not
affected. This essentially is a no operation command as far as
operands are concerned.

Status Affected: S, Z, D, U, V always zero.

DADD
DOUBLE PRECISION FLOATING-POINT ADD

7 6 5

Binary Coding: ISREI 0

Hex Coding: A9 IF SRE = 1
29 IF SRE = 0

Execution Time: See Table 2
Description:

4 3 2 0

0 0 0

The double precision operand A from TOS is added to the double
precision operand B from NOS. The result is rounded to obtain
the final double precision result R which is returned to TOS. The
status bits S, Z, U and V are affected to report sign of the result, if
the result is zero, exponent underflow and exponent overflow
respectively. The status bit D will be cleared to zero.

Status Affected: S, Z, U, V. (D always zero.)

STACK CONTENTS

BEFORE AFTER

DSUB
DOUBLE PRECISION

FLOATING-POINT SUBTRACT

7 6 5 4

Binary Coding: ISRE I 0 1 0

Hex Coding: AA IF SRE = 1
2A IF SRE = 0

Execution Time: See Table 2
Description:

3 2

o

Am9S12

o
o

The double precision operand A at TOS is subtracted from the
double precision operand B at NOS. The result is rounded to
obtain the final double precision result R which is returned to
TOS. The status bits S, Z, U and V are affected to report sign of
the result, if the result is zero, exponent underflow and exponent
overflow respectively. The status bit D will be cleared to zero.

Status Affected: S, Z, U, V. (D always zero.)

STACK CONTENTS

BEFORE AFTER

~-----A------~~NTOOSS~~------R------~
B ~ ~ Undefined

DMUL
DOUBLE PRECISION

FLOATING-POINT MULTIPLY

7 6 5 4

Binary Coding: ISREI 0 0

Hex Coding: AB IF SRE = 1
2B IF SRE = 0

Execution Time: See Table 2
Description:

3 2

o
o

The double precision operand A from TOS is multiplied by the
double precision operand B from NOS. The result is rounded to
obtain the final double precision result R which is returned to
TOS. The status bits S, Z, U and V are affected to report sign of
the result, if the result is zero, exponent underflow and exponent
overflow respectively. The status bit D will be cleared to zero.

Status Affected: S, Z, U, V. (D always zero.)

STACK CONTENTS

'---_____ : ______ ---'~ ~~: ~L_ ____ U_nd_:_fi_ne_d __ __'I ~----B-E-FA-O-R-E------t~ TNOOSS ~1-____ A __ ~_E_R ____ _1

. B ~ ~ Undefined

7-101

Am9512

DDIV
DOUBLE PRECISION

FLOATING-POINT DIVIDE

7 6 5

Binary Code: ISREI °
Hex Coding: AC IF SRE = 1

2C IF SRE = °
Execution Time: See Table 2
Description:

4 3 2

°
°

·0 °

The double precision operand B from NOS is divided by the
double precision operand A from TOS. The result (quotient) is
rounded to obtain the final double precision result R which is
returned to TOS. The status bits, S, Z, 0, U and V are affected to
report sign of the result, if the result is zero, attempt to divide by
zero, exponent underflow and exponent overflow respectively.

Status Affected: S, Z, 0, U, V

STACK CONTENT

BEFORE AFTER

t--___ A ___ -11-- TOS

B I-- NOS

R (see note)

Undefined

Note: If A is zero, then R = B (Divide exception).

SADD
SINGLE PRECISION FLOATING-POINT ADD

7 6 5 4 3 2 °
Binary Coding: IL.S_R_E...JI_o---'-_o--'-_O_.l..-0_L--0 __ '-O __ '----l

Hex Coding: 81 IF SRE = 1

01 IF SRE = °
Execution Time: See Table 2
Description:
The single precision operand A from TOS is added to the single
precision operand B from NOS. The result is rounded to obtain
the final single precision result R which is returned to TOS. The
status bits S, Z, U and V are affected to report the sign of the
result, if the result is zero, exponent underflow and exponent
overflow respectively. The status bit 0 will be cleared to zero.

I

Status Affected: S, Z, U, V. (0 always zero.)

BEFORE

A

B

C

0

STACK CONTENT

--
TOS

NOS
--

-.

AFTER

R

C

0

Undefined

SSUB
SINGLE PRECISION

FLOATING-POINT SUBTRACT

7 6 5

Binary Coding: ISREI ° °
Hex Coding: 82 IF SRE = 1

02 IF SRE = °
Execution Time: See Table 2
Description:

4 3 2

° ° °
°
°

The single precision operand A at TOS is subtracted from the.
single precision operand B at NOS. The result is rounded to
obtain the final single precision result R 'vvhich is returned to TOS.
The status bits S, Z, U and V are affected to report the sign of the
result, if the result is zero, e~ponent underflow and exponent
overflow respectively. The status bit 0 will be cleared to zero.

Status Affected: S, Z, U, V. (0 always zero.)

BEFORE

A

B

C

0

STACK CONTENTS

TOS

NOS

SMUL

AFTER

R

C

0

Undefined

SINGLE PRECISION
FLOATING-POINT MULTIPLY

7 6 5 432 °
Binary Coding: I'--S_R_E->..I_O---'-_O--'-_O_.l...-0---''--O_'-----''-----'

Hex Coding: 83 IF SRE = 1
03 IF SRE = °

Execution Time: See Table 2
Description:
The single precision operand A from TOS is multiplied by the
single precision operand B from NOS. The result is rounded to
obtain the final single precision result R which is returned to TOS.
The status bits S, Z, U and V are affected to report the sign of the
result, if the result is zero, exponent underflow and exponent
overflow respectively. The status bit 0 will be cleared to zero.

Status Affected: S, Z, U, V. (0 always zero.)

STACK CONTENTS

BEFORE AFTER

E ~ ~:~: =1f-------l~
II . D I I Undefined

7-102

SDIV
SINGLE PRECISION

FLOATING-POINT DIVIDE

7 6 5 432 °
.Binary Coding: L-I S_R_E-1I_0----1_0---L_0-L_o ---L_---L_O_L-0_

Hex Coding: 84 IF SRE = 1
04 IF SRE = °

Execution Time: See Table 2
Description:
The single precision operand B from NOS is divided by the
single precision operand A from TOS. The result (quotient) is
rounded to obtain the final result R which is returned to TOS.
The status bits S, Z, D, U and V are affected to report the sign of
the result, if the result is zero, attempt to divide by zero, expo­
nent underflow and exponent overflow respectively.

Status Affected: S, Z, D, U, V

STACK CONTENTS

BEFORE AFTER

A I---TOS- R (see note)

B --NOS--- C

C D

D Undefined

Note: If exponent field of A is zero then R = B (Divide exception).

POPS
POP STACK SINGLE PRECISION

7 6 5

Binary Coding: ISRE I ° ° Hex Coding: 87 IF SRE = 1
07 IF SRE = 0

Execution Time: See Table 2
Description:

4 3 2

° °
°

The single precision operand A is popped from the. stack. The
internal stack control mechanism is such that A will be written at
the bottom of the stack. The status bits Sand Z are affected to
report the sign of the new operand at TOS and if it is zero,
respectively. The status bits U, V and D will be cleared to zero.
Note that only the exponent field of the new TOS is checked for
zero, if it is zero status bit Z will set to 1.

Status Affected: S, Z. (U, V, D always zero.)

STACK CONTENTS

BEFORE AFTER

A ~TOS- B

B I---NOS- C

C D

D A

Am9S12

PTOD
PUSH STACK DOUBLE PRECISION

7 6 5 4

Binary Coding: iSREI 0 °
Hex Coding: AE IF SRE = 1

2E IF SRE = °
Execution Time: See Table 2
Description:

3 2 °
°

The double precision operand A from the TOS is pushed back on
to the stack. This is effectively a duplication of A into two con­
secutive stack locations. The status Sand Z are affected to report
sign of the new TOS and if the new TOS is zero respectively. The
status bits U, V and D will be cleared to zero.

Status Affected: S, Z. (U, V, D always zero.)

STACK CONTENTS

BEFORE AFTER

~-----~----~~~~:~~------:----~

PTOS
PUSH STACK SINGLE PRECISION

7 6 5 4

Binary Coding: ISREI 0 ° 0

Hex Coding: ·86 IF SRE = 1
06 IF SRE = °

Execution Time: See Table 2
Description:

3 2

o
°
°

This instruction effectively pushes the single precision operand
from TOS on to the stack. This amounts to duplicating the
operand at two locations in the stack. However, if the operand at
TOS prior to the PTOS command has only its exponent field as
zero, the new content of the TOS will all be zeroes. The contents
of NOS will be an exact copy of the old TOS. The status bits S
and Z are affected to report the sign of the new TOS and if the
content of TOS is zero, respectively. The status bits U, Vand D
will be cleared to zero.

Status Affected: S, Z. (U, V, D always zero.)

STACK CONTENTS

BEFORE AFTER

A I----TOS- A* See note
~------~ ~------~

B I--NOS- A
~------~ ~------~

C B

D C

Note: A" = A if Exponent field of A is not zero.
A* = 0 if Exponent field of A is zero.

7-103

Am9S12

POPD
POP STACK DOUBLE PRECISION

7 6 5 4

Binary Coding: ISRE I 0 1 0

Hex Coding: AF IF SRE = 1
2F IF SRE = 0

Execution Time: See Table 2
Description:

3 2 o

XCHS
EXCHANGE TOS AND NOS

SINGLE-PRECISION

7 6 5

Binary Coding: ISRE I 0 0

Hex Coding: 88 IF SRE = 1
08 IF SRE = 0

Execution Time: See Table 2
Description:

4 3 2

0 0

0

0 0

The double precision operand A is popped from the stack. The
internal stack control mechanism is such that A will be written at
the bottom of the stack. This operation has the same effect as
exchanging TOS and NOS. The status bits Sand Z are affected to
report the sign of the new operand at TOS and if it is zero,
respectively. The status bits U, V and D will be cleared to zero.

The single precision operand A at the TOS and the single preci­
sion operand B at the NOS are exchanged. After execution, B is at
the TOS and A is at the NOS. All other operands are unchanged.

Status Affected: S, Z (U, V and D always zero.)

Status Affected: S, Z (U, V and D always zero.) STACK CONTENTS

STACK CONTENTS BEFORE AFTER

BEFORE AFTER A I--TOS- B

r------:----~~:~:~~------:----~
~------------~ r------------~

B r---NOS- A
~------------~ ~------------~

C C
D D

Am8085

l'

loiM t--------I
A15 t-----OI

A14 t-----OI

A13 t-----~

A12 t-----~

All t------\

Am25lS138

Gl

G2A

G2B

C

B

A Y I""

ABr---------------------;

" -; .A
ADO-AD7 ~.------.:...8--BI-T _DA_T_A_BU_S ____ ---,

ADr---------------~

.------1 RST6.5 WR r-------------------<>I

- RST5.5 ClK OUT 1----------------------1

+12V +5V

1 1 0
Voo Vee Vss

cs

c/o
Am9512

DBO·DB7

AD
WR ERR
elK END I---
RESET

'"""~ 1- EACK
10K r READY RESET OUT 1--------------------1

L-____ ----I +5V ,..O---:.'!::"--~l.:!~ ___ ...J

Figure 1. Am9512 to Am8085 Interface.

7-104

MOS-213

Am9512

MAXIMUM RATINGS beyond which useful life may be impaired

Storage Temperature

Ambient Temperature Under Bias

VDD with Respect to VSS -O.5V to +15.0V

vee with Respect to VSS -O.5V to + 7.0V

All Signal Voltages with Respect to VSS -O.5V to + 7.0V

Power Dissipation (Package Limitation) 2.0W

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of
static charge. It is suggested, nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid
exposure to excessive voltages. .

OPERATING RANGE
Part Number Ambient Temperature VSS VCC VDD

Arn9512DC +5.0V ±5% +12V ±5%

Arn9512DM +5.0V ±10% +12V ±10%

ELECTRICAL CHARACTERISTICS Over Operating Range (Note 1)

Parameters Description Test Conditions Min. Typ. Max. Units

VOH Output HIGH Voltage 10H = -2001LA 3.7 Volts

VOL Output LOW Voltage 10L = 3.2rnA 0.4 Volts

VIH Input HIGH Voltage 2.0 vee Volts

VIL Input LOW Voltage -0.5 0.8 Volts

IIX Input Load Current VSS';; VI.;; vce ±10 /LA

10Z Data Bus Leakage
VO = O.4V 10

ILA
VO = vce 10

TA = +25°C 50 90

ICC VCC Supply Current TA = O°C 95 rnA

TA = -55°C 100

TA = +25°C 50 90

100 VDO Supply Current TA = ooe 95 mA

TA = -55°C 100

CO Output Capacitance 8 10 pF

CI Input Capacitance fc = 1.0MHz, Inputs = OV 5 8 pF

CIO I/O Capacitance 10 12 pF

7-105

Am9512

SWITCHING CHARACTERISTICS

Parameters Description

TAPW EACK LOW Pulse Width

TCDR C/D to RD LOW Set-up Time

TCDW C/D to WR LOW Set-up Time

TCPH Clock Pulse HIGH Width

TCPL Clock Pulse LOW Width

TCSP CS LOW to PAUSE LOW Delay (Note 5)

TCSR CS to RD LOW Set-up Time

TCSW CS LOW to WR LOW S~t-up Time

TCY Clock Period

TOW Data Valid to WR HIGH De!ay

TEAE EACK LOW to END LOW Delay

TEHPHR END HIGH to PAUSE HIGH Data Read when Busy

TEHPHW END HIGH to PAUSE HIGH Write when Busy

TEPW END HIGH Pulse Width

TEX Execution Time

TOP Data Bus Output Valid to PAUSE HIGH Delay

TPPWR PAUSE LOW Pulse Width Read
Data

Status

Data
END HIGH to PAUSE HIGH Read when Busy TPPWRB

Status

TPPWW PAUSE LOW Pulse Width Write when Not Busy

TPPWWB PAUSE LOW Pulse Width Write when Busy

TPR PAUSE HIGH to Read HIGH Hold Time

TPW PAUSE HIGH to Write HIGH Hold Time

TRCD RD HIGH to C/D Hold Time

TRCS RD HIGH to CS HIGH Hold Time

TRO RD LOW to Data Bus On Delay

TRZ RD HIGH to Data Bus Off Delay

TSAPW SVACK LOW Pulse Width

TSAR SVACK LOW to SVREQ LOW Delay

TWCD WR HIGH to C/D Hold Time

TWCS WR HIGH to CS HIGH Hold Time

TWD WR HIGH to Data Bus Hold Time

NOTES:
1. Typical values are for T A = 25°C, nominal supply voltages

and nominal processing parameters.
2. Switching parameters are listed in alphabetical order.
3. Test conditions assume transition times of 20ns or less, out­

put loading of one TIL gate plus 100pF and timing reference
levels of 0.8V and 2.0V.

7-106

Am9512DC Am9512-1DC
Min Max Min Max Units

100 75 ns

0 0 ns

0 0 ns

200 500 140 500 ns

240 160 ns

150 100 ns

0 0 ns

0 0 ns

480 5000 320 2000 ns

150 100 nl>

200 175 ns

5.5TCY+300 5.5TCY+200 ns

200 175 ns

400 300 ns

See Table 2 ns

0 0 ns

3.5TCY+50 5.5TCY+300 3.5TCY+50 5.5TCY+200
ns

1.5TCY+50 3.5TCY+300 1.5TCY+50 3.5TCY+200

See Table 2
ns

1.5TCY+50 3.5TCY+300 1.5TCY+50 3.5TCY+200

TCSW+50 TCSW+50 ns

See Table 2 ns

0 0 ns

0 0 ns

0 0 ns

0 0 ns

50 50 ns

50 200 50 150 ns

100 75 ns

300 200 ns

60 30 ns

60 30 ns

20 20 ns

4. END HIGH pulse width is specified for EACK tied to VSS.
Otherwise TEAE applies.

5. PAUSE is pulled low for both command and data operations.
6. TEX is the execution time of the current command (see the

Command Execution Times table).
7. PAUSE will go low at this paint if CS is low and RD and WR are

high.

Am9512

TIMING DIAGRAMS

READ OPERATION

ClK ~

~ AD
TCOR

TCSR

cs \
TCSP

PAUSE ~
00-01

c/o

MOS-208

OPERAND READ WHEN Am9S12 IS BUSY

ClK

- I-TCOR

\ i{

'(~

.' J
--< I-TCSR TPR --TRCS-

~
t---t--TRO

~V-Ii

TPPWRB TRCO

~

NOtE 7
[\

{ { ~~
).1 - I-TOP TRZ- l-
. (

00-07 ~K \ nl'1l'lI.IIIlI.lI.II IIIIIYXXXXXI IlI.IXX DATA I :II IIIYYIIIII IIIIlI.AX
VA.LlO / ~IYIIIIIlI.II YYII lI.IIIIII

))

\~ (L ~r c/o

))
TEHPHR_

END 7
---------;ff.....----J \'--------

M05-209

7-107

Am9S12

TIMING DIAGRAMS (Cont.)

OPERAND ENTRY

CLK~. ~

:~:~::--

00-07

CiD

TCSP

DATA
VALID

\'------

~

~x=
~'----

COMMAND OR DATA WRITE WHEN Am9512 IS BUSY

ClK I

~-------------------TPPWWB---------------------1

t--+-- TWO

00-07

CID

) TEHPHW

END \ ~t ~

7-108

MOS-210

MOS-211

Am9S12

TIMING DIAGRAMS (Cont.)

COMMAND INITIATION

ClK , \'----
),

\
I

II /
f,

f-- f--TCSW f-- TWCS

\
I

fl,

i TPW
--

TCSP_ .--
"j

\ NOtE 7

i

II TOW- I-TWD H

00-07

)) J?
~

-~ \

K DATA VALID
'i

I, I reDW) l-

I'
I- TWC0"1

',I

I
I

Clli

TEX } ~~]
p ~
I') {'" i, I "~y

END

TEX

! \ ~TSAR}
-----------Ir-------------(~------~ TSAPW-Y-

SVREQ

(I Ii
I,

f' /) ,
" SVACK

MOS-212

7-109

