AmZ8136

Eight-Bit Decoder With Control Storage

DISTINCTIVE CHARACTERISTICS

- 8-bit decoder/demultiplexer with control storage
- 3-state outputs
- Common clock enable
- Common clear
- Polarity control
- Advanced Low Power Schottky Process
- 100% product assurance screening to MIL-STD-883 requirements

FUNCTIONAL DESCRIPTION

The AmZ8136 is an eight-bit decoder with control storage. It provides a conventional 8-bit decoder function with two enable inputs which may also be used for data input. This can be used to implement a demultiplexer function. In addition, the "exclusive-OR" gates provide polarity control of the selected output. The 3-state outputs are enabled by an active LOW input on the output enable, $\overline{\text{OE}}$.

The three control bits representing the output selection and the single bit polarity control are stored in "D" type flip-flops. These flip-flops have Clear, Clock, and Clock Enable functions provided. The \overline{G}_1 and G_2 inputs provide either polarity for input control or data.

LOGIC DIAGRAM 8-Bit Decoder/Demultiplexer with Control Storage

CONNECTION DIAGRAM

Note: Pin 1 is marked for orientation.

LOGIC SYMBOL

V_{CC} = 20 GND = 10

BLI-190

BLI-192

BLI-191

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:

V_{CC} = 5.0 V ±5% MIN. = 4.75 V MAX. = 5.25 V COM'L $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$ $T_A = -55^{\circ} \text{C to } +125^{\circ} \text{C}$ $V_{CC} = 5.0 \text{ V} \pm 10\%$ MIN. = 4.50 V MAX. = 5.50 V

DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	Test Conditions (Note 1)				Typ. (Note 2)	Max.	Units
VOH Output HIGH Voltage		V _{CC} = MIN.	nA, COM'L	2.4	3.2		1/-1-	
		V _{IN} = V _{IH} or V _{IL}	I _{OH} = -1.0n	nA, MIL	2.4	3.4	<u> </u>	Volts
,	Output LOW Voltage	V _{CC} = MIN.	I _{OL} = 24mA	, COM'L		0.4	0.5	Volts
v _{OL}	- Catput EOW Voltage	VIN = VIH or VIL	1 _{OL} = 12mA	, MIL		0.35 0.4		Voits
VIH	Input HIGH Level	Guaranteed input log voltage for all inputs	ical HIGH	2.0			Volts	
V	Input LOW Level	Guaranteed input logical LOW MIL voltage for all inputs COM'L					0.7	Volts
VIL	Imput LOW Level						0.8	
V _I	Input Clamp Voltage	V _{CC} = MIN., I _{IN} = -	-18mA			-1.5	Volts	
I _{IL}	Input LOW Current	V _{CC} = MAX., V _{IN} =	0.4 V			-0.4	mA	
ιн	Input HIGH Current	V _{CC} = MAX., V _{IN} =	2.7 V			20	μΑ	
I _I	Input HIGH Current	V _{CC} = MAX., V _{IN} =	7.0V			0.1	mA	
Off-State (High-Impedance) Output Current		Voc = MAY	V _O = 0.4 V			-20	-20	
		$V_{CC} = MAX.$ $V_{O} = 2.4 V$				20		μΑ
Isc	Output Short Circuit Current (Note 3)	V _{CC} = MAX.		-15		-85	mA	
Icc	Power Supply Current (Note 4)	V _{CC} = MAX.			37	56	mA	

Notes: 1. For conditions shown as MIN, or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.

- 2. Typical limits are at V_{CC} = 5.0 V, 25°C ambient and maximum loading.
- 3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

 4. Test Conditions: A = B = C = \overline{G}_1 = \overline{G}_2 = \overline{CE} = GND; CLK = \overline{CLR} = POL = 4.5 V.

MAXIMUM RATINGS (Above which the useful life may be impaired)

-65°C to +150°C			
–55°C to +125°C			
-0.5V to +7.0V			
-0.5V to +V _{CC} ma			
-0.5V to +7.0V			
30mA			
-30mA to +5.0mA			

AmZ8136

SWITCHING CHARACTERISTICS

 $(T_A = +25^{\circ}C, V_{CC} = 5.0V)$

Parameters		Description	Min.	Тур.	Max.	Units	Test Conditions				
t _{PLH}				17	25						
t _{PLH}	$\overline{G_1}$ to $Y_0 - Y_7$			23	34	ns					
t _{PLH}	G ₂ to Y ₀ - Y ₇			20	30	ns					
t _{PHL}	G ₂ to 1 ₀ - 1 ₇			26	39	113					
t _{PLH}	CP to Y ₀ - Y ₇			24	36	ns					
t _{PHL}	OF 10 10 - 17			30	45	115	$C_L = 45pF$ $R_L = 667\Omega$				
t _{PLH}	CLR to Y ₀ - Y	<u> </u>		24	36	ns	$H^{\Gamma} = 99/11$				
t _{PHL}	OLN 10 10 - 1	7		31	46	l lis					
t _s	CE to CP		25			ns					
th	CE to CP		0			113					
t _s	A, B, C, POL to	n CP	15			ns					
th	A, D, O, 1 OL 1		0			113					
t _{HZ}	OE to Y ₀ - Y ₇			9	14	ns	$C_L = 5pF$				
t _{LZ}	OE 10 10 - 17			11	17	113	$R_L = 667\Omega$				
t _{ZH}	OE to Y ₀ - Y ₇			15	22	ns					
t _{ZL}	OL 10 10 - 17			16	24	113	C _L = 45pF				
t _s	Set-up Time, C	clear Recovery to CP	20			ns	$R_L = 667\Omega$				
	Pulse Width	Clock	15			ns	-				
tpw	i dise Width	Clear	15			""					

SWITCHING CHARACTERISTICS OVER OPERATING RANGE*

			CC)M'L	N	IIL			
				to +70°C 5.0V ±5%		C to +125°C .0V ±10%			
Parameters	De	escription	Min.	Max.	Min.	Max.	Units	Test Conditions	
t _{PLH}	G ₁ to Y ₀ - Y ₇			29		31	ns		
t _{PHL}	G1 10 10 - 17			39	_	42	115		
t _{PLH}	G ₂ to Y ₀ - Y ₇			34		37			
t _{PHL}	G ₂ to 1 ₀ - 1 ₇			44		48	ns		
t _{PLH}	CP to Y ₀ - Y ₇			40		42			
t _{PHL}	CF 10 10 - 17			51	ŀ	55	ns	C _L = 45pF	
t _{PLH}	CLR to Y ₀ - Y			47		54		$R_L = 667\Omega$	
t _{PHL}	CLN 10 10 - 1	7		58		66	ns		
ts	CE to CP		27		30				
th	CE to CP		0		0		ns		
t _s	A, B, C, POL to	CD	17		20				
t _h	A, B, C, POL (CP	0		0		ns		
t _{HZ}	OE to Y ₀ - Y ₇			17		18		C _L = 5.0pF	
t _{LZ}	OE 10 10 - 17			27		34	ns	$C_L = 5.0 pF$ $R_L = 667 \Omega$	
t _{ZH}	<u> </u>			25		27			
t _{ZL}	OE 10 10 - 17	OE to Y ₀ - Y ₇ Set-up Time, Clear Recovery to CP		28		.30	ns		
ts	Set-up Time, C				25		ns	$C_L = 5.0 pF$ $R_L = 667 \Omega$	
	Pulse Width	Clock	17		20				
t _{pw}	ruise Wiath	Clear	15		15		ns		

^{*}AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

FUNCTION TABLE

	Inputs				Internal Registers			Three-State Outputs													
Mode	С	В	Α	POL	CE	CLR	G*	ŌĒ	CP	οc	α_{B}	$\mathbf{Q}_{\boldsymbol{A}}$	OPOL	Y ₀	Υ1	Y ₂	Υ3	Y4	Y5	Y6	Y7
Clear	х	Х	Х	х	Х	L	L	L	x	L	L	L	L	Н	н	Н	Н	Н	н	Н	н
Cicai	Х	Х	X	X	X	L	Н	L	х	L	L	L	L	L	Н	Н	Н	Н	Н	Н	н
Hold	х	Х	х	×	Н	н	NC	L	1	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
Select	L	L	L	н	L	Н	Н	L	1	L	L	L	н	Н	L	L	L	L	L	L,	L
	L	L	Н	Н	L	Н	Н	L	1	L	L	Н	н	L	Н	L	L	L	L	L	L
	L	Н	L	Н	L	Н	Н	L	1	L	Н	L	Н	L	L	·H	L	L	L	L	L
	L	Н	Н	Н	L	Н	Н	L	1	L	Н	Н	Н	L	L.	L	Н	L	L	L	L.
	н	L	L	Н	L	Н	Н	L	Ť	Н	L	Ł	Н	Ł	L	L	L	Н	L	L	L
	н	L	н	н	L	Н	Н	L	1	Н	L	Н	Н	L	L	L	L	L	Н	L	L
	Н	Н	L	Н	L	Н	Н	L	1	Н	Н	L	н	L	L	L	Ł	L	L	Н	L
	Н	Н	Н	Н	L	Н	Н	L	1	н	н	Н	Н	L	L	L	L	L	L	L	н
	L	L	L	L	L	Н	Н	L,	1	L	L	L	L	L	н	н	Н	Н	Н	Н	Н
	L	L	Н	L	L	Н	Н	L	1	L	L	Н	L	Н	L	Н	н	н	Н	Н	Н
	L	Н	L	L	L	н	Н	L	1	L	Н	L	L	н	Н	L	Н	Н	Н	Н	Н
	L	Н	Н	L	L	Н	Н	L	1	L	Н	Н	L	н	Н	Н	L	Н	Н	н	Н
	Н	L	L	L	L	н	Н	L	1	н	Ļ	L	L	Н.	Н	н	Н	L.	н	Н	н
j	н	L	Н	L	L	н	Н	L	1	н	L	Н	L	н	Н	Н	Н	Н	L	н	H
	Н	Н	L	L	L	Н	Н	L	1	н	Н	L	L	н	Н	Н	Н	н	Н	L.	Н
	Н	Н	н	L	Ľ	Н	Н	L	1	н	Н	н	L	н	н	Н	Н	Н	Н	Н	L
	×	Х	х	Н	L	Н	L	L	1	×	X	X	H	L	L	L	L	L	L	L	L
	×	Х	Х	L	L	Н	L	L	1	Х	×	Х	L	н	Н	Н	Н	Н	Н	Н	н
Output Disable	x	x	х	х	×	х	×	н	x	NC	NC	NC	NC	z	z	z	z	z	z	z	z

G ₁	G ₂	G
L	٦	L
L	Н	н
н	L	L
н	н	L

NC = No Change

X = Don't Care

Z = High-Impedance

↑ = Low-to-High Transition

DEFINITION OF TERMS

- CLEAR When the CLEAR input is LOW, the control register outputs (Q_A, Q_B, Q_C, Q_{POL}) are set LOW regardless of any other inputs.
- CP CLOCK Enters data into the control register on the LOW-to-HIGH transition.
- CE CLOCK ENABLE Allows data to enter the control register when \overline{CE} is LOW. When \overline{CE} is HIGH, the Q_i outputs do not change state, regardless of data or clock input transitions.
- A,B,C Inputs to the control register which are entered on the LOW-to-HIGH clock transition if $\overline{\text{CE}}$ is LOW.
- POL Input to the control register bit used for determining the polarity of the selected output.
- \overline{G}_1 Active LOW part of the expression $G = G_1G_2$ [or $G = (\overline{G}_1)G_2$] where G is either data input for the selected Y_n or is used as an input enable.
- G_2 Active HIGH part of the expression $G = G_1G_2$.
- Y_n The three-state outputs. When active $(\overline{OE} = LOW)$, one of eight outputs is selected by the code stored in the control register, with the polarity of all eight determined by the bit stored in the POL flip-flop of the control register. The selected output can further be controlled by G according to the expression $Y_{SELECTED} = \overline{G} \oplus \overline{O}_{POL}$.
- $\overline{\text{OE}}$ OUTPUT ENABLE. When $\overline{\text{OE}}$ is HIGH the \underline{Y}_n outputs are in the high impedance state; when $\overline{\text{OE}}$ is LOW the \underline{Y}_n 's are in their active state as determined by the other control logic. The $\overline{\text{OE}}$ input affects the \underline{Y}_n output buffers only and has no effect on the control register or any other logic.

METALLIZATION AND PAD LAYOUT

DIE SIZE 0.084" X 0.099"