

This Datasheet has been downloaded from:

DisplayAlliance.com

Please call +1 (978) 465-6190 or email sales@massintegrated.com for a quote.

ISO 9001: 2008

(V) Preliminary Specifications
() Final Specifications

Module	dule 14.0" HD Color TFT-LCD with LED Backlight design				
Model Name	B140XW02 V1 (0A)				
Note (🗭)	LED Backlight with driving circuit design				

Customer	Date	Approved by
<u>ACER</u>		<u>lvy Lee</u>
Checked & Approved by	Date	Prepared by
		<u>Jonken Fan</u>
Note: This Specification is subwithout notice.	oject to change	NBBU Mark AU Optron

Approved by	Date			
<u>Ivy Lee</u>	<u>11/18/2008</u>			
Prepared by				
<u>Jonken Fan</u>	11/18/2008			
NBBU Marketing Division / AU Optronics corporation				

Product Specification au optronics corporation

Contents

1.	. Handling Precautions	
2.	. General Description	5
	2.1 General Specification	5
	2.2 Optical Characteristics	6
3.	. Functional Block Diagram	11
4.	. Absolute Maximum Ratings	12
	4.1 Absolute Ratings of TFT LCD Module	12
	4.2 Absolute Ratings of Backlight Unit	12
	4.3 Absolute Ratings of Environment	12
5.	. Electrical characteristics	13
	5.1 TFT LCD Module	13
	5.2 Backlight Unit	15
6.	. Signal Characteristic	16
	6.1 Pixel Format Image	16
	6.2 The input data format	17
	6.3 Signal Description/Pin Assignment	18
	6.4 Interface Timing	22
7.	. Connector Description	25
	7.1 TFT LCD Module	25
8.	. LED Driving Specification	26
	8.1 Connector Description	26
	8.2 Pin Assignment	26
9.	. Vibration and Shock Test	27
	9.1 Vibration Test	27
	9.2 Shock Test Spec:	27
1(0. Reliability	28
1:	1. Mechanical Characteristics	29
	11.1 LCM Outline Dimension	29
12	2. Shipping and Package	32
	12.1 Shipping Label Format	32
	12.2 Carton package	33
	12.3 Shipping package of palletizing sequence	34
13	3. Appendix: EDID description	34

Product Specification au optronics corporation

Record of Revision

Ver	Version and Date Page		Old description	New Description	Remark
0.1	2008/10/14	All	First Edition for Customer		
0.2	2008/11/03	29	Old drawing	New drawing with connectors shifted	
0.3	2008/11/13	29	Old drawing	New drawing (with new layout)	
0.4	2008/11/18	5	Old dimension	New dimension	
		20	Old drawing	New drawing (with new layout)	
		29	Old drawing	New drawing (with new bracket position)	

1. Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open nor modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) After installation of the TFT Module into an enclosure (Notebook PC Bezel, for example), do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 12) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 13) Disconnecting power supply before handling LCD modules, it can prevent electric shock, DO NOT TOUCH the electrode parts, cables, connectors and LED circuit part of TFT module that a LED light bar build in as a light source of back light unit. High voltage is supplied to these parts when power turn on.

4 of 34

AU OPTRONICS CORPORATION

2. General Description

B140XW02 V0 is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel, a driver circuit, and LED backlight system. The screen format is intended to support the HD (1366(H) x 768(V)) screen and 262k colors (RGB 6-bits data driver) with LED backlight driving circuit. All input signals are LVDS interface compatible.

B140XW02 V0 is designed for a display unit of notebook style personal computer and industrial machine.

2.1 General Specification

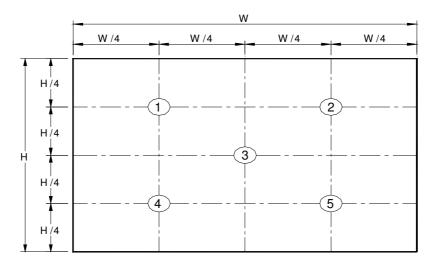
The following items are characteristics summary on the table at 25 °C condition:

Items	Unit	Specifications			
Screen Diagonal	[mm]	14.0"			
Active Area	[mm]	309.399x17	73.952		
Pixels H x V		1366x3(RG	iB) x 768		
Pixel Pitch	[mm]	0.2265			
Pixel Format		B.G.R. Ver	tical Stripe		
Display Mode		Normally W	hite /		
White Luminance (ILED=20mA)	[cd/m ²]	200 typ. (5	points avera	ige)	
Note: ILED is LED current		170 min. (5 (Note1)	points avera	age)	
Luminance Uniformity		1.25 max. (5 points)		
Contrast Ratio		500 typ			
Response Time	[ms]	8 typ			
Nominal Input Voltage VDD	[Volt]	+3.3 typ.			
Power Consumption	[Watt]	4.5 max. (Ir	nclude Logic	and Blu pov	wer) (Note1)
Weight	[Grams]	320 max.			
Physical Size with bracket &	[mm]		Min.	Тур.	Max.
bottom PCBA.		Length	319.9	320.4	320.9
				205.6	
		Thickness 3.6			3.6
Electrical Interface		1 channel LVDS			
Surface Treatment		Glare, Hard	lness 3H,		

B140XW02 V0 Document Version: 0.0 5 of 34

Support Color		262K colors (RGB 6-bit)
Temperature Range Operating Storage (Non-Operating)	[°C]	0 to +50 -20 to +65
RoHS Compliance		RoHS Compliance

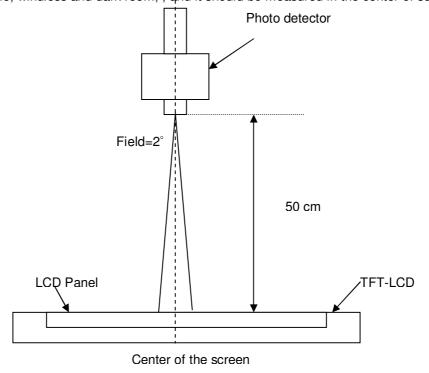
Note 1. Total power consumption including LED power efficiency under 4.5W max.


2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25°C (Room Temperature) :

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit	Note
White Luminance ILED=20mA		5 points average	170	200	-	cd/m ²	1, 3, 4.
	heta R	Horizontal (Right)	40	45	-		
Viewing Angle	$oldsymbol{ heta}$ L	CR = 10 (Left)	40	45	-	degree	
Viewing Angle	ф н	Vertical (Upper)	10	15	-		3, 8
	φ _L	CR = 10 (Lower)	30	35	-		
Luminance Uniformity	δ 5P	5 Points	-	-	1.25		1, 2, 3
Contrast Ratio	CR		400	500	-		3, 5
Cross talk	%				4		3, 6
	Tr	Rising	-		-		
Response Time	T _f	Falling	-		-	msec	3, 7
	T _{RT}	Rising + Falling	-	8			
	Red x			TBD			
	Red y			TBD			
	Green x			TBD			
Color /	Green y			TBD			
Chromaticity	Blue x	CIE 1931		TBD			3
Coodinates	Blue y			TBD			
	White x		0.263	0.313	0.363		
	White y		0.279	0.329	0.379		
NTSC	%		-	45	-		

Note 1: 5 points position (Ref: Active area)


Note 2: The luminance uniformity of 5 or 13 points is defined by dividing the maximum luminance values by the minimum test point luminance

δ w5	=	Maximum Brightness of five points
		Minimum Brightness of five points
2		Maximum Brightness of thirteen points
δ w13	= '	Minimum Brightness of thirteen points

AU OPTRONICS CORPORATION

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room, , and it should be measured in the center of screen.

Note 4: Definition of Average Luminance of White (Y_L):

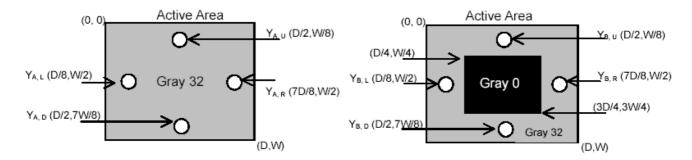
Measure the luminance of gray level 63 at 5 points \cdot $Y_L = [L (1) + L (2) + L (3) + L (4) + L (5)] / 5 L (x) is corresponding to the luminance of the point X at Figure in Note (1).$

Note 5: Definition of contrast ratio:

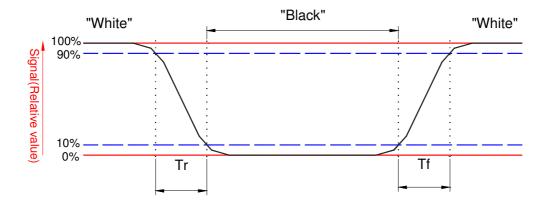
Contrast ratio is calculated with the following formula.

Note 6: Definition of Cross Talk (CT)

$$CT = |Y_B - Y_A| / Y_A \times 100 (\%)$$


Where

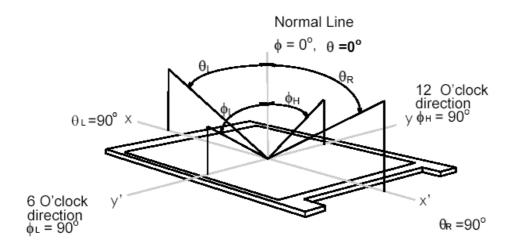
AU OPTRONICS CORPORATION


Y_A = Luminance of measured location without gray level 0 pattern (cd/m₂)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m₂)

Note 7: Definition of response time:

The output signals of BM-7 or equivalent are measured when the input signals are changed from "Black" to "White" (falling time) and from "White" to "Black" (rising time), respectively. The response time interval between the 10% and 90% of amplitudes. Refer to figure as below.


9 of 34

AU OPTRONICS CORPORATION

Note 8. Definition of viewing angle

Viewing angle is the measurement of contrast ratio ≥ 10 , at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

3. Functional Block Diagram

The following diagram shows the functional block of the 14.0 inches wide Color TFT/LCD 40 Pin (One ch/connector Module:

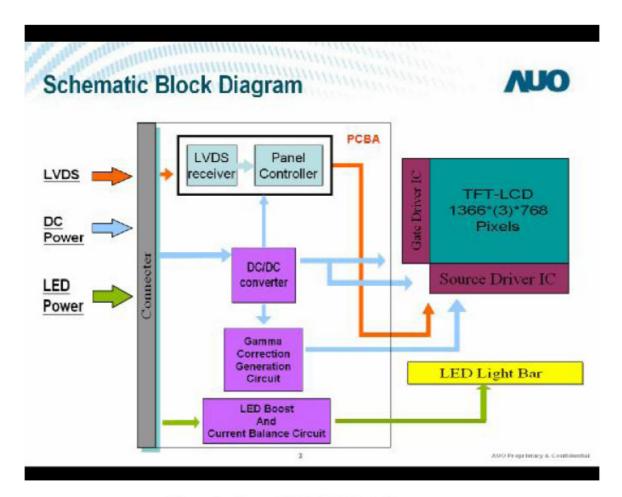


Figure 1 - General TFT LCD Block Diagram

B140XW02 V0 Document Version: 0.0 11 of 34

AU OPTRONICS CORPORATION

4. Absolute Maximum Ratings

An absolute maximum rating of the module is as following:

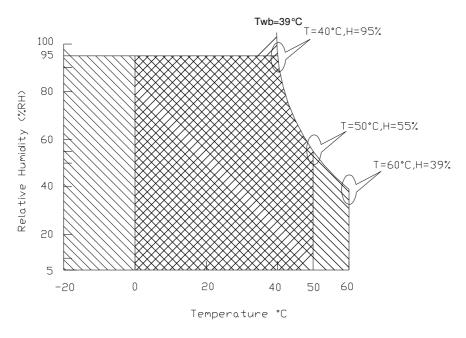
4.1 Absolute Ratings of TFT LCD Module

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive	Vin	-0.3	+4.0	[Volt]	Note 1,2

4.2 Absolute Ratings of Backlight Unit

Item	Symbol	Min	Max	Unit	Conditions
LED Driving Voltage	V_{LED}	-	36 (Row Output)	[Volt]	Note 1,2,3
LED Driving Current	I _{LED}	-	30 (Row Output)	[mA] rms	Note 1,2,3

4.3 Absolute Ratings of Environment


Item	Symbol	Min	Max	Unit	Conditions
Operating Temperature	TOP	0	+50	[°C]	Note 4
Operation Humidity	HOP	8	95	[%RH]	Note 4
Storage Temperature	TST	-20	+65	[°C]	Note 4
Storage Humidity	HST	5	95	[%RH]	Note 4

Note 1: At Ta (25°C)

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: LED specification refer to section 5.2

Note 4: For quality performance, please refer to AUO IIS (Incoming Inspection Standard).

Operating Range

Storage Range

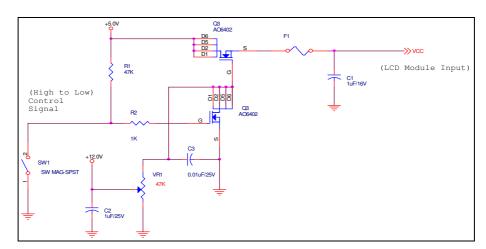
+

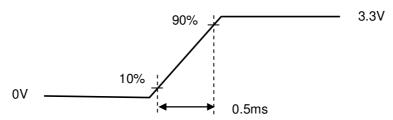
AU OPTRONICS CORPORATION

5. Electrical characteristics

5.1 TFT LCD Module

5.1.1 Power Specification


Input power specifications are as follows;


Symble	Parameter	Min	Тур	Max	Units	Note
VDD	Logic/LCD Drive Voltage	3.0	3.3	3.6	[Volt]	
PDD	VDD Power		0.9	1	[Watt]	Note 1/2
IDD	IDD Current		272	333	[mA]	Note 1/2
IRush	Inrush Current			2000	[mA]	Note 3
VDDrp	Allowable Logic/LCD Drive Ripple Voltage			100	[mV] p-p	

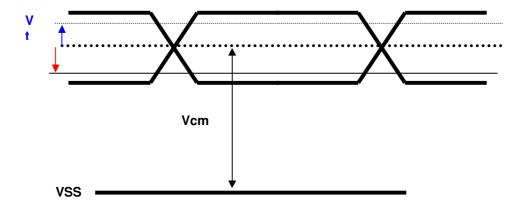
Note 1: Maximum Measurement Condition: Black Pattern

Note 2: Typical Measurement Condition: Black Pattern

Note 3: Measure Condition

B140XW02 V0 Document Version: 0.0 **Vin rising time** 13 of 34

5.1.2 Signal Electrical Characteristics


Input signals shall be low or High-impedance state when VDD is off.

It is recommended to refer the specifications of THC63LVDF84A (Thine Electronics Inc.) in detail.

Signal electrical characteristics are as follows;

Parameter	Condition	Min	Max	Unit
Vth	Differential Input High Threshold (Vcm=+1.2V)	-	100	[mV]
Vtl	Differential Input Low Threshold (Vcm=+1.2V)	-100	-	[mV]
Vcm	Differential Input Common Mode Voltage	1.125	1.375	[V]

Note: LVDS Signal Waveform

B140XW02 V0 Document Version: 0.0 14 of 34

5.2 Backlight Unit

LED Parameter guideline for LED driving selection (Ref. Remark 1)

Parameter	Symbol	Min	Тур	Max	Units	Condition
LED Forward Voltage	V _F		3.2	3.4	[Volt]	(Ta=25℃)
LED Forward Current	I _F			20	[mA]	(Ta=25°C)
LED Power consumption	P _{LED}			3.5	[Watt]	(Ta=25°C) Note 1
LED Driving Input Voltage	V_{LED}	7	12	21	[Volt]	
LED Life-Time	N/A	12,000			Hour	(Ta=25°C) I _F =20mA Note 2
Output PWM frequency	F _{PWM}	100	200	20K	Hz	
Duty ratio		5		100	%	

Note 1: Calculator value for reference IF×VF =P

Note 2: The LED life-time define as the estimated time to 50% degradation of initial luminous.

15 of 34

6. Signal Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

	1				<mark>1</mark> 366
1st Line	R G B	RGB		R G B	R G B
	1	,	1	ı	1
			•	·	:
	·		:		:
					.
			•		
			•		.
			1	'	
	1	,	T	ı	'
768 th Line	R G B	RGB		R G B	R <mark>G B</mark>

6.2 The input data format

RxCLKIN		
RxIN0	G0 R5 R4 R3 R2	R1 R0
RxIN1	B1 B0 G5 G4 G3	G2 G1
RxIN2	DE VS HS B5 B4	B3 B2

Signal Name	Description	
R5	Red Data 5 (MSB)	Red-pixel Data
R4	Red Data 4	Each red pixel's brightness data consists of
R3	Red Data 3	these 6 bits pixel data.
R2	Red Data 2	·
R1	Red Data 1	
R0	Red Data 0 (LSB)	
	Red-pixel Data	
G5	Green Data 5 (MSB)	Green-pixel Data
G4	Green Data 4	Each green pixel's brightness data consists of
G3	Green Data 3	these 6 bits pixel data.
G2	Green Data 2	
G1	Green Data 1	
G0	Green Data 0 (LSB)	
	Green-pixel Data	
B5	Blue Data 5 (MSB)	Blue-pixel Data
B4	Blue Data 4	Each blue pixel's brightness data consists of
B3	Blue Data 3	these 6 bits pixel data.
B2	Blue Data 2	
B1	Blue Data 1	
B0	Blue Data 0 (LSB)	
	Blue-pixel Data	
RxCLKIN	Data Clock	The signal is used to strobe the pixel data and
. D.OLIMIT		DE signals. All pixel data shall be valid at the
		falling edge when the DE signal is high.
DE	Display Timing	This signal is strobed at the falling edge of
		RxCLKIN. When the signal is high, the pixel
		data shall be valid to be displayed.
VS	Vertical Sync	The signal is synchronized to RxCLKIN.
HS	Horizontal Sync	The signal is synchronized to RxCLKIN.

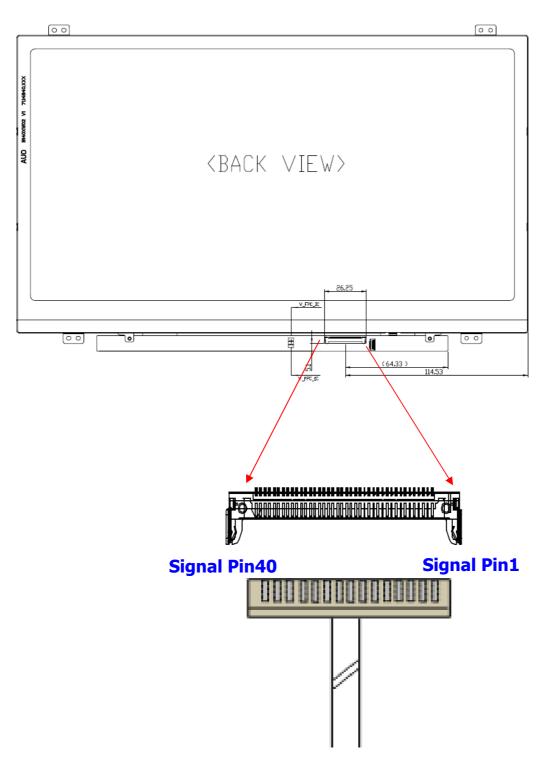
Note: Output signals from any system shall be low or High-impedance state when VDD is off.

6.3 Signal Description/Pin Assignment

LVDS is a differential signal technology for LCD interface and high speed data transfer device.

		B140XW02 V0			
Pin	Signal	Description			
1	NC	No Connection (Reserve)			
2	VDD	PowerSupply,3.3V(typical)			
3	VDD	PowerSupply,3.3V(typical)			
4	DVDD	DDC 3.3Vpower			
5	NC	No Connection (Reserve)			
6	SCL	DDCClock			
7	SDA	DDCData			
8	Rin0-	-LVDSdifferential data input(R0-R5,G0)			
9	Rin0+	+LVDSdifferential data input(R0-R5,G0)			
10	GND	Ground			
11	Rin1-	-LVDSdifferential data input(G1-G5,B0-B1)			
12	Rin1+	+LVDSdifferential data input(G1-G5,B0-B1)			
13	GND	Ground			
14	Rin2-	-LVDSdifferential data input(B2-B5,HS,VS,DE)			
15	Rin2+	+LVDSdifferential data input(B2-B5,HS,VS,DE)			
16	GND	Ground			
17	ClkIN-	-LVDSdifferential clock input			
18	ClkIN+	+LVDSdifferential clock input			
19	GND	Ground			
20	NC	No Connection (Reserve)			
21	NC	No Connection (Reserve)			
22	GND	Ground			
23	NC	No Connection (Reserve)			
24	NC	No Connection (Reserve)			
25	GND	Ground-Shield			
26	NC	No Connection (Reserve)			
27	NC	No Connection (Reserve)			
28	GND	Ground-Shield			
29	NC	No Connection (Reserve)			
30	NC	No Connection (Reserve)			
31	VLED_GND	LED Ground			
32	VLED_GND	LED Ground			
33	VLED_GND	LED Ground			
34	NC	No Connection (Reserve)			
35	PWM	System PWM Signal Input			
36	LED_EN	LED enable pin(+3V Input)			

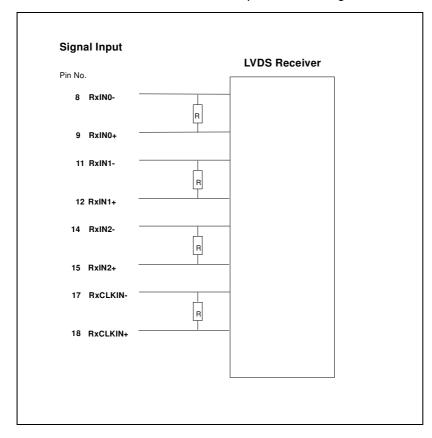
0 18 of 34 B140XW02 V0 Document Version: 0.0



37	NC	No Connection (Reserve)
38	VLED	LED Power Supply 7V-21V
39	VLED	LED Power Supply 7V-21V
40	VLED	LED Power Supply 7V-21V

19 of 34

Rear View



AU OPTRONICS CORPORATION

Note2: Input signals shall be low or High-impedance state when VDD is off. internal circuit of LVDS inputs are as following.

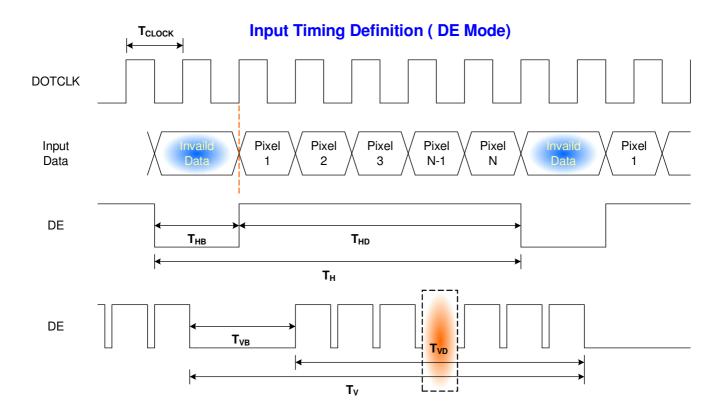
The module uses a 100ohm resistor between positive and negative data lines of each receiver input

21 of 34

6.4 Interface Timing

6.4.1 Timing Characteristics

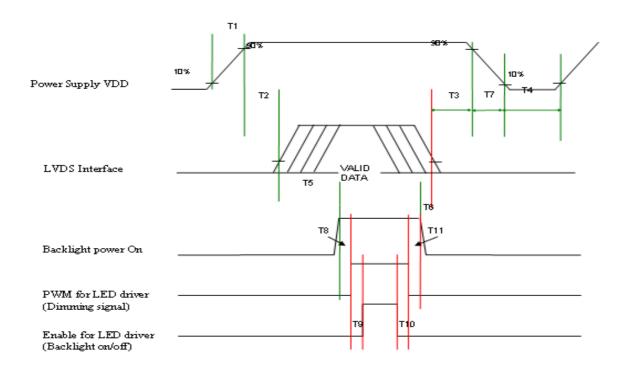
Basically, interface timings should match the 1366x768 /60Hz manufacturing guide line timing.


Parameter		Symbol	Min.	Тур.	Max.	Unit
Frame	Frame Rate			60		Hz
Clock frequency		1/ T _{Clock}		72		MHz
	Period	T _V		803		
Vertical	Active	T _{VD}		768		\mathbf{T}_{Line}
Section	Blanking	T _{VB}		35		
	Period	T _H		1494		
Horizontal	Active	T _{HD}		1366		T_{Clock}
Section	Blanking	T HB		128		

Note: DE mode only

22 of 34

6.4.2 Timing diagram



AU OPTRONICS CORPORATION

6.5 Power ON/OFF Sequence

VDD power on/off sequence is as follows. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off

		Value			
Parameter	Min.	Тур.	Max.	Units	
T1	0.5	-	10	(ms)	
T2	5	=	50	(ms)	
Т3	0.5	-	50	(ms)	
T4	400	-	-	(ms)	
Т5	200	-	-	(ms)	
Т6	200	-	-	(ms)	
T7	0	-	10	(ms)	
Т8	10			(ms)	
Т9	10			(ms)	
T10	0			(ms)	
T11	10			(ms)	

7. Connector Description

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

7.1 TFT LCD Module

Connector Name / Designation	For Signal Connector
Manufacturer	IPEX or compatible
Type / Part Number	IPEX 20455-040E-12
Mating Housing/Part Number	IPEX 20453-040T-11

8. LED Driving Specification

8.1 Connector Description

It is a intergrative interface and comibe into LVDS connector. The type and mating refer to section 7.

8.2 Pin Assignment

Ref. to 6.3

9. Vibration and Shock Test

9.1 Vibration Test

Test Spec:

Test method: Non-Operation

Acceleration: 1.5 G, Half sine pulse Frequency: 10 - 500Hz Sine wave

Sweep: 30 Minutes each Axis (X, Y, Z)

9.2 Shock Test Spec:

Test Spec:

Test method: Non-Operation

Acceleration: 240 G, Half sine pulse

Active time: 2 ms

Pulse: X,Y,Z .one time for each side

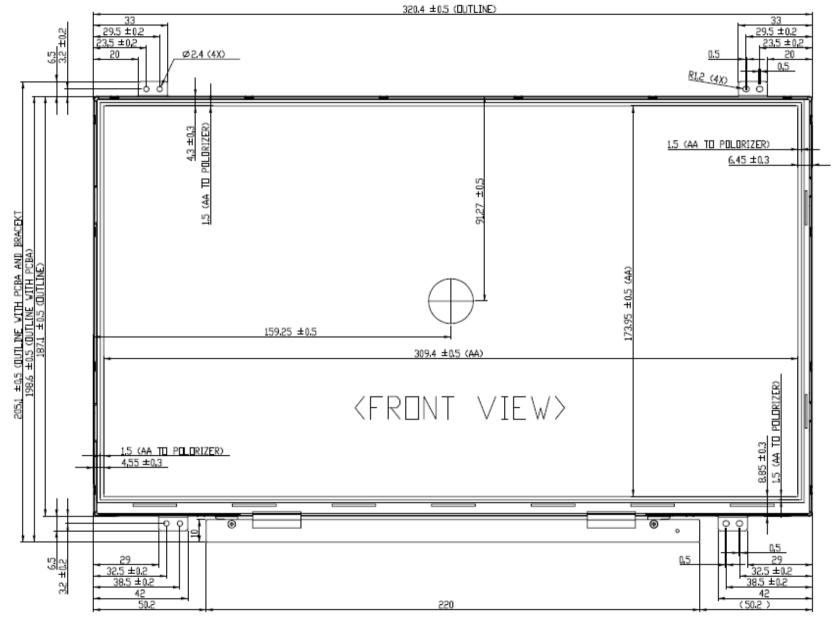
10. Reliability

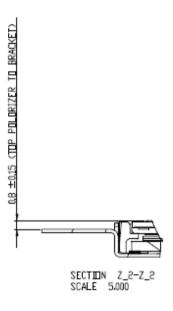
Items	Required Condition	Note
Temperature Humidity Bias	Ta= 40℃, 90%RH, 300h	
High Temperature Operation	Ta= 50℃, Dry, 300h	
Low Temperature Operation	Ta= 0°C, 300h	
High Temperature Storage	Ta= 60℃, 300h	
Low Temperature Storage	Ta= -20℃, 300h	
Thermal Shock Test	Ta=-20℃to 60℃, Duration at 30 min, 100 cycles	
ESD	Contact : ±8 KV	Note 1
	Air: ±15 KV	

Note1: According to EN 61000-4-2, ESD class B: Some performance degradation allowed. No data lost

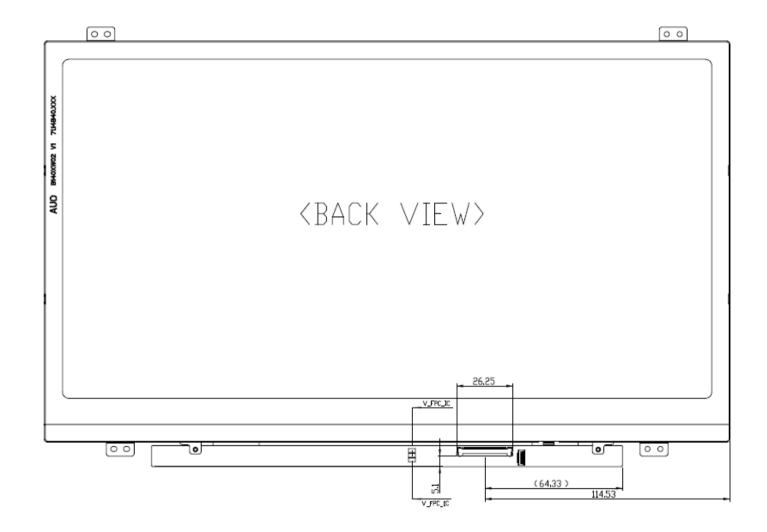
. Self-recoverable. No hardware failures.

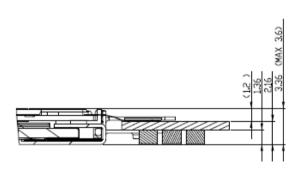
Remark: MTBF (Excluding the LED): 30,000 hours with a confidence level 90%


11. Mechanical Characteristics


11.1 LCM Outline Dimension

B140XW02 V0 Document Version: 0.0 29 of 34


AU OPTRONICS CORPORATION



AU OPTRONICS CORPORATION

SECTION V_FPC_IC-V_FPC_IC SCALE 5.000

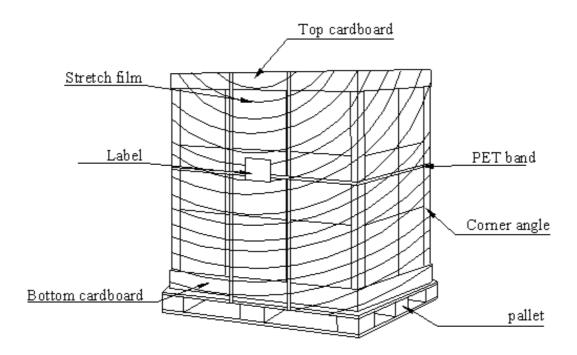
B140XW02 V0 Document Version: 0.0 31 of 34

12. Shipping and Package

12.1 Shipping Label Format

Manufactured xx/xx Model No: B140XW02 V1 0AXXG AU Optronics MADE IN CHINA (S1)

HW: 0A FW:1



12.2 Carton package

TBD

12.3 Shipping package of palletizing sequence

13. Appendix: EDID description

TBD