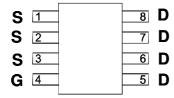


N- Channel 30-V (D-S) MOSFET


General Description

The B3450 is the N-Channel logic enhancement mode power field effect transistors are produced using high cell density, DMOS trench technology. This high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage application such as cellular phone and notebook computer power management and other battery powered circuits where high-side switching and low in-line power loss are needed in a very small outline surface mount package.

Features

- $R_{DS(ON)}=28m\Omega@V_{GS}=10V$
- $\blacksquare R_{DS(ON)}=42m\Omega@V_{GS}=4.5V$
- Super High Density Cell Design for Extremely Low R_{DS(ON)}
- Exceptional On-Resistance and Maximum DC Current
- SOP-8 Package

Pin Configuration

Applications

- Power Management in Note book
- Portable Equipment
- Battery Powered System
- DC/DC Converter
- Load Switch
- DSC

Absolute Maximum Ratings (TA=25°C Unless Otherwise Noted):

Parameter		Symbol	N-Channel	Unit
Drain-Source Voltage		V_{DSS}	30	V
Gate-Source Voltage		V_{GSS}	±20	V
Continuous Drain Current(tJ=150°C)	TA=25°C	I _D	6.9	Α
	TA=70°C		5.8	
Pulsed Drain Current		I _{DM}	30	Α
Maximum Power Dissipation	TA=25°C	P _D	2.0	W
	TA=70°C		1.3	
Operating Junction Temperature		T_J	-55 to 150	$^{\circ}\!\mathbb{C}$
Thermal Resistance-Junction to Case		RθJC	48	°C/W