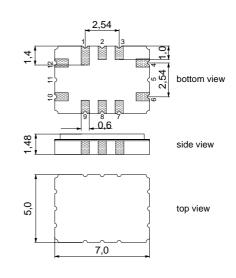


SAW Components

Data Sheet B3685

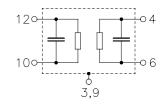

SAW Components	B3685
Low-Loss Filter	90,00 MHz

Features

- Low-loss IF filter for GSM base station
- Tx path
- Ceramic SMD package

Terminals

Gold plated



Ceramic package QCC12C

Dimensions in mm, appr. weight 0,20 g

Pin configuration

12, 10	Balanced Input
4, 6	Balanced Output
1, 2, 7, 8	Ground
3, 9	Case ground

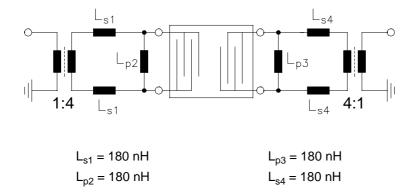
Туре	Ordering code	Marking and Package according to	Packing according to
B3685	B39900-B3685-H310	C61157-A7-A95	F61074-V8170-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

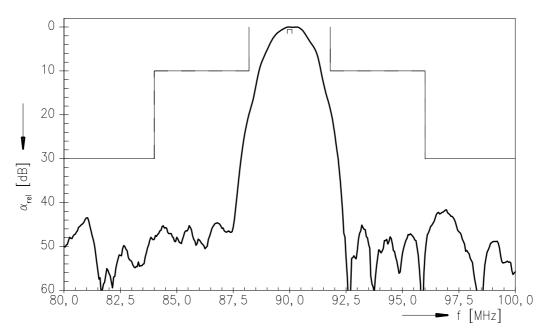
Operable temperature range	Т	-20 / +70	°C
Storage temperature range	T _{stg}	-30 / +85	°C
DC voltage	V _{DC}	0	V
Source power	Ps	10	dBm

2

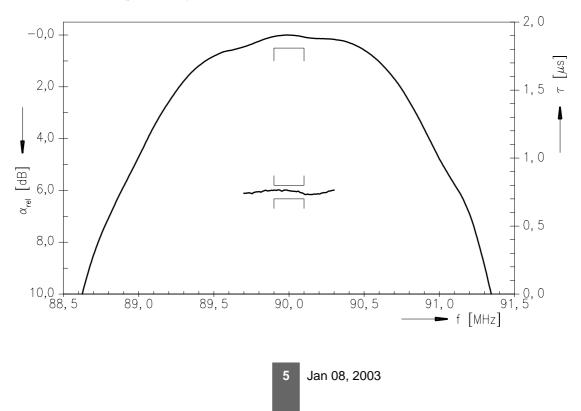

SAW Components	D3003
Low-Loss Filter	90,00 MHz
Data Sheet	
Characteristics	
Operating temperature range: Terminating source impedance: Terminating load impedance:	$T = 0.70 \degree C$ $Z_S = 200 \Omega$ balanced and matching network $Z_L = 200 \Omega$ balanced and matching network

			min.	typ.	max.	
Nominal frequency		f _N	—	90,0	—	MHz
Insertion attenuation at f_N (including matching network)		α_N	4,0	5,3	6,0	dB
Passband width	$\alpha_{rel} \le 0.5 \text{ dB}$	$B_{0,5\mathrm{dB}}$	200	850	—	kHz
Amplitude ripple (p-p)	$f_{\sf N} \pm 100 \; {\sf kHz}$	Δα	—	0,15	0,5	dB
Absolute group delay (at f_N)		τ	720	760	800	ns
Group delay ripple (p-p)	$f_{ m N}$ ± 100 kHz	$\Delta \tau$	_	30	100	ns
Average Error Vector Magn	i tude (rms)	EVM	—	0,4	1,0	%
Relative attenuation (relative $f_N \pm 1.8$ MHz $f_N \pm f_N \pm 6.0$ MHz $f_N \pm 1.8$ MHz $f_N \pm$	6,0 MHz	$\alpha_{\rm rel}$	10 30	18 44	_	dB dB
Input and Output VSWR	$f_N \pm 100 \text{ kHz}$		—	1,3:1	2,0:1	
Impedance at f_N (without mathematical Input: $Z_{IN} = R_{IN}$ Output: $Z_{OUT} = R_{OU}$	C _{IN}			335 23,8 335 23,8		Ω∥pF Ω∥pF
Temperature coefficient of f	requency	TC _f		- 18		ppm/K

Matching network to 200 Ω (element values depend on pcb layout)



4



SAW Components	B3685
Low-Loss Filter	90,00 MHz

Transfer function

Transfer function (pass band)

SAW Components	B3685
Low-Loss Filter	90,00 MHz

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC IS P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2003. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.

